1 // SPDX-License-Identifier: GPL-2.0
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side. When the application reads the CQ ring
8 * tail, it must use an appropriate smp_rmb() to order with the smp_wmb()
9 * the kernel uses after writing the tail. Failure to do so could cause a
10 * delay in when the application notices that completion events available.
11 * This isn't a fatal condition. Likewise, the application must use an
12 * appropriate smp_wmb() both before writing the SQ tail, and after writing
13 * the SQ tail. The first one orders the sqe writes with the tail write, and
14 * the latter is paired with the smp_rmb() the kernel will issue before
15 * reading the SQ tail on submission.
17 * Also see the examples in the liburing library:
19 * git://git.kernel.dk/liburing
21 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
22 * from data shared between the kernel and application. This is done both
23 * for ordering purposes, but also to ensure that once a value is loaded from
24 * data that the application could potentially modify, it remains stable.
26 * Copyright (C) 2018-2019 Jens Axboe
27 * Copyright (c) 2018-2019 Christoph Hellwig
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/errno.h>
32 #include <linux/syscalls.h>
33 #include <linux/compat.h>
34 #include <linux/refcount.h>
35 #include <linux/uio.h>
37 #include <linux/sched/signal.h>
39 #include <linux/file.h>
40 #include <linux/fdtable.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_context.h>
44 #include <linux/percpu.h>
45 #include <linux/slab.h>
46 #include <linux/workqueue.h>
47 #include <linux/kthread.h>
48 #include <linux/blkdev.h>
49 #include <linux/bvec.h>
50 #include <linux/net.h>
52 #include <net/af_unix.h>
54 #include <linux/anon_inodes.h>
55 #include <linux/sched/mm.h>
56 #include <linux/uaccess.h>
57 #include <linux/nospec.h>
58 #include <linux/sizes.h>
59 #include <linux/hugetlb.h>
61 #include <uapi/linux/io_uring.h>
65 #define IORING_MAX_ENTRIES 4096
66 #define IORING_MAX_FIXED_FILES 1024
69 u32 head ____cacheline_aligned_in_smp
;
70 u32 tail ____cacheline_aligned_in_smp
;
87 struct io_uring_cqe cqes
[];
90 struct io_mapped_ubuf
{
94 unsigned int nr_bvecs
;
100 struct list_head list
;
109 struct percpu_ref refs
;
110 } ____cacheline_aligned_in_smp
;
118 struct io_sq_ring
*sq_ring
;
119 unsigned cached_sq_head
;
122 unsigned sq_thread_idle
;
123 struct io_uring_sqe
*sq_sqes
;
124 } ____cacheline_aligned_in_smp
;
127 struct workqueue_struct
*sqo_wq
;
128 struct task_struct
*sqo_thread
; /* if using sq thread polling */
129 struct mm_struct
*sqo_mm
;
130 wait_queue_head_t sqo_wait
;
135 struct io_cq_ring
*cq_ring
;
136 unsigned cached_cq_tail
;
139 struct wait_queue_head cq_wait
;
140 struct fasync_struct
*cq_fasync
;
141 } ____cacheline_aligned_in_smp
;
144 * If used, fixed file set. Writers must ensure that ->refs is dead,
145 * readers must ensure that ->refs is alive as long as the file* is
146 * used. Only updated through io_uring_register(2).
148 struct file
**user_files
;
149 unsigned nr_user_files
;
151 /* if used, fixed mapped user buffers */
152 unsigned nr_user_bufs
;
153 struct io_mapped_ubuf
*user_bufs
;
155 struct user_struct
*user
;
157 struct completion ctx_done
;
160 struct mutex uring_lock
;
161 wait_queue_head_t wait
;
162 } ____cacheline_aligned_in_smp
;
165 spinlock_t completion_lock
;
166 bool poll_multi_file
;
168 * ->poll_list is protected by the ctx->uring_lock for
169 * io_uring instances that don't use IORING_SETUP_SQPOLL.
170 * For SQPOLL, only the single threaded io_sq_thread() will
171 * manipulate the list, hence no extra locking is needed there.
173 struct list_head poll_list
;
174 struct list_head cancel_list
;
175 } ____cacheline_aligned_in_smp
;
177 struct async_list pending_async
[2];
179 #if defined(CONFIG_UNIX)
180 struct socket
*ring_sock
;
185 const struct io_uring_sqe
*sqe
;
186 unsigned short index
;
189 bool needs_fixed_file
;
193 * First field must be the file pointer in all the
194 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
196 struct io_poll_iocb
{
198 struct wait_queue_head
*head
;
202 struct wait_queue_entry wait
;
206 * NOTE! Each of the iocb union members has the file pointer
207 * as the first entry in their struct definition. So you can
208 * access the file pointer through any of the sub-structs,
209 * or directly as just 'ki_filp' in this struct.
215 struct io_poll_iocb poll
;
218 struct sqe_submit submit
;
220 struct io_ring_ctx
*ctx
;
221 struct list_head list
;
224 #define REQ_F_FORCE_NONBLOCK 1 /* inline submission attempt */
225 #define REQ_F_IOPOLL_COMPLETED 2 /* polled IO has completed */
226 #define REQ_F_FIXED_FILE 4 /* ctx owns file */
227 #define REQ_F_SEQ_PREV 8 /* sequential with previous */
228 #define REQ_F_PREPPED 16 /* prep already done */
232 struct work_struct work
;
235 #define IO_PLUG_THRESHOLD 2
236 #define IO_IOPOLL_BATCH 8
238 struct io_submit_state
{
239 struct blk_plug plug
;
242 * io_kiocb alloc cache
244 void *reqs
[IO_IOPOLL_BATCH
];
245 unsigned int free_reqs
;
246 unsigned int cur_req
;
249 * File reference cache
253 unsigned int has_refs
;
254 unsigned int used_refs
;
255 unsigned int ios_left
;
258 static struct kmem_cache
*req_cachep
;
260 static const struct file_operations io_uring_fops
;
262 struct sock
*io_uring_get_socket(struct file
*file
)
264 #if defined(CONFIG_UNIX)
265 if (file
->f_op
== &io_uring_fops
) {
266 struct io_ring_ctx
*ctx
= file
->private_data
;
268 return ctx
->ring_sock
->sk
;
273 EXPORT_SYMBOL(io_uring_get_socket
);
275 static void io_ring_ctx_ref_free(struct percpu_ref
*ref
)
277 struct io_ring_ctx
*ctx
= container_of(ref
, struct io_ring_ctx
, refs
);
279 complete(&ctx
->ctx_done
);
282 static struct io_ring_ctx
*io_ring_ctx_alloc(struct io_uring_params
*p
)
284 struct io_ring_ctx
*ctx
;
287 ctx
= kzalloc(sizeof(*ctx
), GFP_KERNEL
);
291 if (percpu_ref_init(&ctx
->refs
, io_ring_ctx_ref_free
, 0, GFP_KERNEL
)) {
296 ctx
->flags
= p
->flags
;
297 init_waitqueue_head(&ctx
->cq_wait
);
298 init_completion(&ctx
->ctx_done
);
299 mutex_init(&ctx
->uring_lock
);
300 init_waitqueue_head(&ctx
->wait
);
301 for (i
= 0; i
< ARRAY_SIZE(ctx
->pending_async
); i
++) {
302 spin_lock_init(&ctx
->pending_async
[i
].lock
);
303 INIT_LIST_HEAD(&ctx
->pending_async
[i
].list
);
304 atomic_set(&ctx
->pending_async
[i
].cnt
, 0);
306 spin_lock_init(&ctx
->completion_lock
);
307 INIT_LIST_HEAD(&ctx
->poll_list
);
308 INIT_LIST_HEAD(&ctx
->cancel_list
);
312 static void io_commit_cqring(struct io_ring_ctx
*ctx
)
314 struct io_cq_ring
*ring
= ctx
->cq_ring
;
316 if (ctx
->cached_cq_tail
!= READ_ONCE(ring
->r
.tail
)) {
317 /* order cqe stores with ring update */
318 smp_store_release(&ring
->r
.tail
, ctx
->cached_cq_tail
);
321 * Write sider barrier of tail update, app has read side. See
322 * comment at the top of this file.
326 if (wq_has_sleeper(&ctx
->cq_wait
)) {
327 wake_up_interruptible(&ctx
->cq_wait
);
328 kill_fasync(&ctx
->cq_fasync
, SIGIO
, POLL_IN
);
333 static struct io_uring_cqe
*io_get_cqring(struct io_ring_ctx
*ctx
)
335 struct io_cq_ring
*ring
= ctx
->cq_ring
;
338 tail
= ctx
->cached_cq_tail
;
339 /* See comment at the top of the file */
341 if (tail
- READ_ONCE(ring
->r
.head
) == ring
->ring_entries
)
344 ctx
->cached_cq_tail
++;
345 return &ring
->cqes
[tail
& ctx
->cq_mask
];
348 static void io_cqring_fill_event(struct io_ring_ctx
*ctx
, u64 ki_user_data
,
349 long res
, unsigned ev_flags
)
351 struct io_uring_cqe
*cqe
;
354 * If we can't get a cq entry, userspace overflowed the
355 * submission (by quite a lot). Increment the overflow count in
358 cqe
= io_get_cqring(ctx
);
360 WRITE_ONCE(cqe
->user_data
, ki_user_data
);
361 WRITE_ONCE(cqe
->res
, res
);
362 WRITE_ONCE(cqe
->flags
, ev_flags
);
364 unsigned overflow
= READ_ONCE(ctx
->cq_ring
->overflow
);
366 WRITE_ONCE(ctx
->cq_ring
->overflow
, overflow
+ 1);
370 static void io_cqring_ev_posted(struct io_ring_ctx
*ctx
)
372 if (waitqueue_active(&ctx
->wait
))
374 if (waitqueue_active(&ctx
->sqo_wait
))
375 wake_up(&ctx
->sqo_wait
);
378 static void io_cqring_add_event(struct io_ring_ctx
*ctx
, u64 user_data
,
379 long res
, unsigned ev_flags
)
383 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
384 io_cqring_fill_event(ctx
, user_data
, res
, ev_flags
);
385 io_commit_cqring(ctx
);
386 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
388 io_cqring_ev_posted(ctx
);
391 static void io_ring_drop_ctx_refs(struct io_ring_ctx
*ctx
, unsigned refs
)
393 percpu_ref_put_many(&ctx
->refs
, refs
);
395 if (waitqueue_active(&ctx
->wait
))
399 static struct io_kiocb
*io_get_req(struct io_ring_ctx
*ctx
,
400 struct io_submit_state
*state
)
402 gfp_t gfp
= GFP_KERNEL
| __GFP_NOWARN
;
403 struct io_kiocb
*req
;
405 if (!percpu_ref_tryget(&ctx
->refs
))
409 req
= kmem_cache_alloc(req_cachep
, gfp
);
412 } else if (!state
->free_reqs
) {
416 sz
= min_t(size_t, state
->ios_left
, ARRAY_SIZE(state
->reqs
));
417 ret
= kmem_cache_alloc_bulk(req_cachep
, gfp
, sz
, state
->reqs
);
420 * Bulk alloc is all-or-nothing. If we fail to get a batch,
421 * retry single alloc to be on the safe side.
423 if (unlikely(ret
<= 0)) {
424 state
->reqs
[0] = kmem_cache_alloc(req_cachep
, gfp
);
429 state
->free_reqs
= ret
- 1;
431 req
= state
->reqs
[0];
433 req
= state
->reqs
[state
->cur_req
];
440 /* one is dropped after submission, the other at completion */
441 refcount_set(&req
->refs
, 2);
444 io_ring_drop_ctx_refs(ctx
, 1);
448 static void io_free_req_many(struct io_ring_ctx
*ctx
, void **reqs
, int *nr
)
451 kmem_cache_free_bulk(req_cachep
, *nr
, reqs
);
452 io_ring_drop_ctx_refs(ctx
, *nr
);
457 static void io_free_req(struct io_kiocb
*req
)
459 if (req
->file
&& !(req
->flags
& REQ_F_FIXED_FILE
))
461 io_ring_drop_ctx_refs(req
->ctx
, 1);
462 kmem_cache_free(req_cachep
, req
);
465 static void io_put_req(struct io_kiocb
*req
)
467 if (refcount_dec_and_test(&req
->refs
))
472 * Find and free completed poll iocbs
474 static void io_iopoll_complete(struct io_ring_ctx
*ctx
, unsigned int *nr_events
,
475 struct list_head
*done
)
477 void *reqs
[IO_IOPOLL_BATCH
];
478 struct io_kiocb
*req
;
482 while (!list_empty(done
)) {
483 req
= list_first_entry(done
, struct io_kiocb
, list
);
484 list_del(&req
->list
);
486 io_cqring_fill_event(ctx
, req
->user_data
, req
->error
, 0);
489 if (refcount_dec_and_test(&req
->refs
)) {
490 /* If we're not using fixed files, we have to pair the
491 * completion part with the file put. Use regular
492 * completions for those, only batch free for fixed
495 if (req
->flags
& REQ_F_FIXED_FILE
) {
496 reqs
[to_free
++] = req
;
497 if (to_free
== ARRAY_SIZE(reqs
))
498 io_free_req_many(ctx
, reqs
, &to_free
);
505 io_commit_cqring(ctx
);
506 io_free_req_many(ctx
, reqs
, &to_free
);
509 static int io_do_iopoll(struct io_ring_ctx
*ctx
, unsigned int *nr_events
,
512 struct io_kiocb
*req
, *tmp
;
518 * Only spin for completions if we don't have multiple devices hanging
519 * off our complete list, and we're under the requested amount.
521 spin
= !ctx
->poll_multi_file
&& *nr_events
< min
;
524 list_for_each_entry_safe(req
, tmp
, &ctx
->poll_list
, list
) {
525 struct kiocb
*kiocb
= &req
->rw
;
528 * Move completed entries to our local list. If we find a
529 * request that requires polling, break out and complete
530 * the done list first, if we have entries there.
532 if (req
->flags
& REQ_F_IOPOLL_COMPLETED
) {
533 list_move_tail(&req
->list
, &done
);
536 if (!list_empty(&done
))
539 ret
= kiocb
->ki_filp
->f_op
->iopoll(kiocb
, spin
);
548 if (!list_empty(&done
))
549 io_iopoll_complete(ctx
, nr_events
, &done
);
555 * Poll for a mininum of 'min' events. Note that if min == 0 we consider that a
556 * non-spinning poll check - we'll still enter the driver poll loop, but only
557 * as a non-spinning completion check.
559 static int io_iopoll_getevents(struct io_ring_ctx
*ctx
, unsigned int *nr_events
,
562 while (!list_empty(&ctx
->poll_list
)) {
565 ret
= io_do_iopoll(ctx
, nr_events
, min
);
568 if (!min
|| *nr_events
>= min
)
576 * We can't just wait for polled events to come to us, we have to actively
577 * find and complete them.
579 static void io_iopoll_reap_events(struct io_ring_ctx
*ctx
)
581 if (!(ctx
->flags
& IORING_SETUP_IOPOLL
))
584 mutex_lock(&ctx
->uring_lock
);
585 while (!list_empty(&ctx
->poll_list
)) {
586 unsigned int nr_events
= 0;
588 io_iopoll_getevents(ctx
, &nr_events
, 1);
590 mutex_unlock(&ctx
->uring_lock
);
593 static int io_iopoll_check(struct io_ring_ctx
*ctx
, unsigned *nr_events
,
601 if (*nr_events
< min
)
602 tmin
= min
- *nr_events
;
604 ret
= io_iopoll_getevents(ctx
, nr_events
, tmin
);
608 } while (min
&& !*nr_events
&& !need_resched());
613 static void kiocb_end_write(struct kiocb
*kiocb
)
615 if (kiocb
->ki_flags
& IOCB_WRITE
) {
616 struct inode
*inode
= file_inode(kiocb
->ki_filp
);
619 * Tell lockdep we inherited freeze protection from submission
622 if (S_ISREG(inode
->i_mode
))
623 __sb_writers_acquired(inode
->i_sb
, SB_FREEZE_WRITE
);
624 file_end_write(kiocb
->ki_filp
);
628 static void io_complete_rw(struct kiocb
*kiocb
, long res
, long res2
)
630 struct io_kiocb
*req
= container_of(kiocb
, struct io_kiocb
, rw
);
632 kiocb_end_write(kiocb
);
634 io_cqring_add_event(req
->ctx
, req
->user_data
, res
, 0);
638 static void io_complete_rw_iopoll(struct kiocb
*kiocb
, long res
, long res2
)
640 struct io_kiocb
*req
= container_of(kiocb
, struct io_kiocb
, rw
);
642 kiocb_end_write(kiocb
);
646 req
->flags
|= REQ_F_IOPOLL_COMPLETED
;
650 * After the iocb has been issued, it's safe to be found on the poll list.
651 * Adding the kiocb to the list AFTER submission ensures that we don't
652 * find it from a io_iopoll_getevents() thread before the issuer is done
653 * accessing the kiocb cookie.
655 static void io_iopoll_req_issued(struct io_kiocb
*req
)
657 struct io_ring_ctx
*ctx
= req
->ctx
;
660 * Track whether we have multiple files in our lists. This will impact
661 * how we do polling eventually, not spinning if we're on potentially
664 if (list_empty(&ctx
->poll_list
)) {
665 ctx
->poll_multi_file
= false;
666 } else if (!ctx
->poll_multi_file
) {
667 struct io_kiocb
*list_req
;
669 list_req
= list_first_entry(&ctx
->poll_list
, struct io_kiocb
,
671 if (list_req
->rw
.ki_filp
!= req
->rw
.ki_filp
)
672 ctx
->poll_multi_file
= true;
676 * For fast devices, IO may have already completed. If it has, add
677 * it to the front so we find it first.
679 if (req
->flags
& REQ_F_IOPOLL_COMPLETED
)
680 list_add(&req
->list
, &ctx
->poll_list
);
682 list_add_tail(&req
->list
, &ctx
->poll_list
);
685 static void io_file_put(struct io_submit_state
*state
)
688 int diff
= state
->has_refs
- state
->used_refs
;
691 fput_many(state
->file
, diff
);
697 * Get as many references to a file as we have IOs left in this submission,
698 * assuming most submissions are for one file, or at least that each file
699 * has more than one submission.
701 static struct file
*io_file_get(struct io_submit_state
*state
, int fd
)
707 if (state
->fd
== fd
) {
714 state
->file
= fget_many(fd
, state
->ios_left
);
719 state
->has_refs
= state
->ios_left
;
720 state
->used_refs
= 1;
726 * If we tracked the file through the SCM inflight mechanism, we could support
727 * any file. For now, just ensure that anything potentially problematic is done
730 static bool io_file_supports_async(struct file
*file
)
732 umode_t mode
= file_inode(file
)->i_mode
;
734 if (S_ISBLK(mode
) || S_ISCHR(mode
))
736 if (S_ISREG(mode
) && file
->f_op
!= &io_uring_fops
)
742 static int io_prep_rw(struct io_kiocb
*req
, const struct sqe_submit
*s
,
743 bool force_nonblock
, struct io_submit_state
*state
)
745 const struct io_uring_sqe
*sqe
= s
->sqe
;
746 struct io_ring_ctx
*ctx
= req
->ctx
;
747 struct kiocb
*kiocb
= &req
->rw
;
753 /* For -EAGAIN retry, everything is already prepped */
754 if (req
->flags
& REQ_F_PREPPED
)
757 if (force_nonblock
&& !io_file_supports_async(req
->file
))
758 force_nonblock
= false;
760 kiocb
->ki_pos
= READ_ONCE(sqe
->off
);
761 kiocb
->ki_flags
= iocb_flags(kiocb
->ki_filp
);
762 kiocb
->ki_hint
= ki_hint_validate(file_write_hint(kiocb
->ki_filp
));
764 ioprio
= READ_ONCE(sqe
->ioprio
);
766 ret
= ioprio_check_cap(ioprio
);
770 kiocb
->ki_ioprio
= ioprio
;
772 kiocb
->ki_ioprio
= get_current_ioprio();
774 ret
= kiocb_set_rw_flags(kiocb
, READ_ONCE(sqe
->rw_flags
));
777 if (force_nonblock
) {
778 kiocb
->ki_flags
|= IOCB_NOWAIT
;
779 req
->flags
|= REQ_F_FORCE_NONBLOCK
;
781 if (ctx
->flags
& IORING_SETUP_IOPOLL
) {
782 if (!(kiocb
->ki_flags
& IOCB_DIRECT
) ||
783 !kiocb
->ki_filp
->f_op
->iopoll
)
787 kiocb
->ki_flags
|= IOCB_HIPRI
;
788 kiocb
->ki_complete
= io_complete_rw_iopoll
;
790 if (kiocb
->ki_flags
& IOCB_HIPRI
)
792 kiocb
->ki_complete
= io_complete_rw
;
794 req
->flags
|= REQ_F_PREPPED
;
798 static inline void io_rw_done(struct kiocb
*kiocb
, ssize_t ret
)
804 case -ERESTARTNOINTR
:
805 case -ERESTARTNOHAND
:
806 case -ERESTART_RESTARTBLOCK
:
808 * We can't just restart the syscall, since previously
809 * submitted sqes may already be in progress. Just fail this
815 kiocb
->ki_complete(kiocb
, ret
, 0);
819 static int io_import_fixed(struct io_ring_ctx
*ctx
, int rw
,
820 const struct io_uring_sqe
*sqe
,
821 struct iov_iter
*iter
)
823 size_t len
= READ_ONCE(sqe
->len
);
824 struct io_mapped_ubuf
*imu
;
825 unsigned index
, buf_index
;
829 /* attempt to use fixed buffers without having provided iovecs */
830 if (unlikely(!ctx
->user_bufs
))
833 buf_index
= READ_ONCE(sqe
->buf_index
);
834 if (unlikely(buf_index
>= ctx
->nr_user_bufs
))
837 index
= array_index_nospec(buf_index
, ctx
->nr_user_bufs
);
838 imu
= &ctx
->user_bufs
[index
];
839 buf_addr
= READ_ONCE(sqe
->addr
);
842 if (buf_addr
+ len
< buf_addr
)
844 /* not inside the mapped region */
845 if (buf_addr
< imu
->ubuf
|| buf_addr
+ len
> imu
->ubuf
+ imu
->len
)
849 * May not be a start of buffer, set size appropriately
850 * and advance us to the beginning.
852 offset
= buf_addr
- imu
->ubuf
;
853 iov_iter_bvec(iter
, rw
, imu
->bvec
, imu
->nr_bvecs
, offset
+ len
);
855 iov_iter_advance(iter
, offset
);
857 /* don't drop a reference to these pages */
858 iter
->type
|= ITER_BVEC_FLAG_NO_REF
;
862 static int io_import_iovec(struct io_ring_ctx
*ctx
, int rw
,
863 const struct sqe_submit
*s
, struct iovec
**iovec
,
864 struct iov_iter
*iter
)
866 const struct io_uring_sqe
*sqe
= s
->sqe
;
867 void __user
*buf
= u64_to_user_ptr(READ_ONCE(sqe
->addr
));
868 size_t sqe_len
= READ_ONCE(sqe
->len
);
872 * We're reading ->opcode for the second time, but the first read
873 * doesn't care whether it's _FIXED or not, so it doesn't matter
874 * whether ->opcode changes concurrently. The first read does care
875 * about whether it is a READ or a WRITE, so we don't trust this read
876 * for that purpose and instead let the caller pass in the read/write
879 opcode
= READ_ONCE(sqe
->opcode
);
880 if (opcode
== IORING_OP_READ_FIXED
||
881 opcode
== IORING_OP_WRITE_FIXED
) {
882 int ret
= io_import_fixed(ctx
, rw
, sqe
, iter
);
892 return compat_import_iovec(rw
, buf
, sqe_len
, UIO_FASTIOV
,
896 return import_iovec(rw
, buf
, sqe_len
, UIO_FASTIOV
, iovec
, iter
);
900 * Make a note of the last file/offset/direction we punted to async
901 * context. We'll use this information to see if we can piggy back a
902 * sequential request onto the previous one, if it's still hasn't been
903 * completed by the async worker.
905 static void io_async_list_note(int rw
, struct io_kiocb
*req
, size_t len
)
907 struct async_list
*async_list
= &req
->ctx
->pending_async
[rw
];
908 struct kiocb
*kiocb
= &req
->rw
;
909 struct file
*filp
= kiocb
->ki_filp
;
910 off_t io_end
= kiocb
->ki_pos
+ len
;
912 if (filp
== async_list
->file
&& kiocb
->ki_pos
== async_list
->io_end
) {
913 unsigned long max_pages
;
915 /* Use 8x RA size as a decent limiter for both reads/writes */
916 max_pages
= filp
->f_ra
.ra_pages
;
918 max_pages
= VM_READAHEAD_PAGES
;
921 /* If max pages are exceeded, reset the state */
923 if (async_list
->io_pages
+ len
<= max_pages
) {
924 req
->flags
|= REQ_F_SEQ_PREV
;
925 async_list
->io_pages
+= len
;
928 async_list
->io_pages
= 0;
932 /* New file? Reset state. */
933 if (async_list
->file
!= filp
) {
934 async_list
->io_pages
= 0;
935 async_list
->file
= filp
;
937 async_list
->io_end
= io_end
;
940 static int io_read(struct io_kiocb
*req
, const struct sqe_submit
*s
,
941 bool force_nonblock
, struct io_submit_state
*state
)
943 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
944 struct kiocb
*kiocb
= &req
->rw
;
945 struct iov_iter iter
;
950 ret
= io_prep_rw(req
, s
, force_nonblock
, state
);
953 file
= kiocb
->ki_filp
;
955 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
957 if (unlikely(!file
->f_op
->read_iter
))
960 ret
= io_import_iovec(req
->ctx
, READ
, s
, &iovec
, &iter
);
964 iov_count
= iov_iter_count(&iter
);
965 ret
= rw_verify_area(READ
, file
, &kiocb
->ki_pos
, iov_count
);
969 /* Catch -EAGAIN return for forced non-blocking submission */
970 ret2
= call_read_iter(file
, kiocb
, &iter
);
971 if (!force_nonblock
|| ret2
!= -EAGAIN
) {
972 io_rw_done(kiocb
, ret2
);
975 * If ->needs_lock is true, we're already in async
979 io_async_list_note(READ
, req
, iov_count
);
987 static int io_write(struct io_kiocb
*req
, const struct sqe_submit
*s
,
988 bool force_nonblock
, struct io_submit_state
*state
)
990 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
991 struct kiocb
*kiocb
= &req
->rw
;
992 struct iov_iter iter
;
997 ret
= io_prep_rw(req
, s
, force_nonblock
, state
);
1001 file
= kiocb
->ki_filp
;
1002 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1004 if (unlikely(!file
->f_op
->write_iter
))
1007 ret
= io_import_iovec(req
->ctx
, WRITE
, s
, &iovec
, &iter
);
1011 iov_count
= iov_iter_count(&iter
);
1014 if (force_nonblock
&& !(kiocb
->ki_flags
& IOCB_DIRECT
)) {
1015 /* If ->needs_lock is true, we're already in async context. */
1017 io_async_list_note(WRITE
, req
, iov_count
);
1021 ret
= rw_verify_area(WRITE
, file
, &kiocb
->ki_pos
, iov_count
);
1026 * Open-code file_start_write here to grab freeze protection,
1027 * which will be released by another thread in
1028 * io_complete_rw(). Fool lockdep by telling it the lock got
1029 * released so that it doesn't complain about the held lock when
1030 * we return to userspace.
1032 if (S_ISREG(file_inode(file
)->i_mode
)) {
1033 __sb_start_write(file_inode(file
)->i_sb
,
1034 SB_FREEZE_WRITE
, true);
1035 __sb_writers_release(file_inode(file
)->i_sb
,
1038 kiocb
->ki_flags
|= IOCB_WRITE
;
1040 ret2
= call_write_iter(file
, kiocb
, &iter
);
1041 if (!force_nonblock
|| ret2
!= -EAGAIN
) {
1042 io_rw_done(kiocb
, ret2
);
1045 * If ->needs_lock is true, we're already in async
1049 io_async_list_note(WRITE
, req
, iov_count
);
1059 * IORING_OP_NOP just posts a completion event, nothing else.
1061 static int io_nop(struct io_kiocb
*req
, u64 user_data
)
1063 struct io_ring_ctx
*ctx
= req
->ctx
;
1066 if (unlikely(ctx
->flags
& IORING_SETUP_IOPOLL
))
1069 io_cqring_add_event(ctx
, user_data
, err
, 0);
1074 static int io_prep_fsync(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
1076 struct io_ring_ctx
*ctx
= req
->ctx
;
1080 /* Prep already done (EAGAIN retry) */
1081 if (req
->flags
& REQ_F_PREPPED
)
1084 if (unlikely(ctx
->flags
& IORING_SETUP_IOPOLL
))
1086 if (unlikely(sqe
->addr
|| sqe
->ioprio
|| sqe
->buf_index
))
1089 req
->flags
|= REQ_F_PREPPED
;
1093 static int io_fsync(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
,
1094 bool force_nonblock
)
1096 loff_t sqe_off
= READ_ONCE(sqe
->off
);
1097 loff_t sqe_len
= READ_ONCE(sqe
->len
);
1098 loff_t end
= sqe_off
+ sqe_len
;
1099 unsigned fsync_flags
;
1102 fsync_flags
= READ_ONCE(sqe
->fsync_flags
);
1103 if (unlikely(fsync_flags
& ~IORING_FSYNC_DATASYNC
))
1106 ret
= io_prep_fsync(req
, sqe
);
1110 /* fsync always requires a blocking context */
1114 ret
= vfs_fsync_range(req
->rw
.ki_filp
, sqe_off
,
1115 end
> 0 ? end
: LLONG_MAX
,
1116 fsync_flags
& IORING_FSYNC_DATASYNC
);
1118 io_cqring_add_event(req
->ctx
, sqe
->user_data
, ret
, 0);
1123 static void io_poll_remove_one(struct io_kiocb
*req
)
1125 struct io_poll_iocb
*poll
= &req
->poll
;
1127 spin_lock(&poll
->head
->lock
);
1128 WRITE_ONCE(poll
->canceled
, true);
1129 if (!list_empty(&poll
->wait
.entry
)) {
1130 list_del_init(&poll
->wait
.entry
);
1131 queue_work(req
->ctx
->sqo_wq
, &req
->work
);
1133 spin_unlock(&poll
->head
->lock
);
1135 list_del_init(&req
->list
);
1138 static void io_poll_remove_all(struct io_ring_ctx
*ctx
)
1140 struct io_kiocb
*req
;
1142 spin_lock_irq(&ctx
->completion_lock
);
1143 while (!list_empty(&ctx
->cancel_list
)) {
1144 req
= list_first_entry(&ctx
->cancel_list
, struct io_kiocb
,list
);
1145 io_poll_remove_one(req
);
1147 spin_unlock_irq(&ctx
->completion_lock
);
1151 * Find a running poll command that matches one specified in sqe->addr,
1152 * and remove it if found.
1154 static int io_poll_remove(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
1156 struct io_ring_ctx
*ctx
= req
->ctx
;
1157 struct io_kiocb
*poll_req
, *next
;
1160 if (unlikely(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
1162 if (sqe
->ioprio
|| sqe
->off
|| sqe
->len
|| sqe
->buf_index
||
1166 spin_lock_irq(&ctx
->completion_lock
);
1167 list_for_each_entry_safe(poll_req
, next
, &ctx
->cancel_list
, list
) {
1168 if (READ_ONCE(sqe
->addr
) == poll_req
->user_data
) {
1169 io_poll_remove_one(poll_req
);
1174 spin_unlock_irq(&ctx
->completion_lock
);
1176 io_cqring_add_event(req
->ctx
, sqe
->user_data
, ret
, 0);
1181 static void io_poll_complete(struct io_ring_ctx
*ctx
, struct io_kiocb
*req
,
1184 req
->poll
.done
= true;
1185 io_cqring_fill_event(ctx
, req
->user_data
, mangle_poll(mask
), 0);
1186 io_commit_cqring(ctx
);
1189 static void io_poll_complete_work(struct work_struct
*work
)
1191 struct io_kiocb
*req
= container_of(work
, struct io_kiocb
, work
);
1192 struct io_poll_iocb
*poll
= &req
->poll
;
1193 struct poll_table_struct pt
= { ._key
= poll
->events
};
1194 struct io_ring_ctx
*ctx
= req
->ctx
;
1197 if (!READ_ONCE(poll
->canceled
))
1198 mask
= vfs_poll(poll
->file
, &pt
) & poll
->events
;
1201 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1202 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1203 * synchronize with them. In the cancellation case the list_del_init
1204 * itself is not actually needed, but harmless so we keep it in to
1205 * avoid further branches in the fast path.
1207 spin_lock_irq(&ctx
->completion_lock
);
1208 if (!mask
&& !READ_ONCE(poll
->canceled
)) {
1209 add_wait_queue(poll
->head
, &poll
->wait
);
1210 spin_unlock_irq(&ctx
->completion_lock
);
1213 list_del_init(&req
->list
);
1214 io_poll_complete(ctx
, req
, mask
);
1215 spin_unlock_irq(&ctx
->completion_lock
);
1217 io_cqring_ev_posted(ctx
);
1221 static int io_poll_wake(struct wait_queue_entry
*wait
, unsigned mode
, int sync
,
1224 struct io_poll_iocb
*poll
= container_of(wait
, struct io_poll_iocb
,
1226 struct io_kiocb
*req
= container_of(poll
, struct io_kiocb
, poll
);
1227 struct io_ring_ctx
*ctx
= req
->ctx
;
1228 __poll_t mask
= key_to_poll(key
);
1229 unsigned long flags
;
1231 /* for instances that support it check for an event match first: */
1232 if (mask
&& !(mask
& poll
->events
))
1235 list_del_init(&poll
->wait
.entry
);
1237 if (mask
&& spin_trylock_irqsave(&ctx
->completion_lock
, flags
)) {
1238 list_del(&req
->list
);
1239 io_poll_complete(ctx
, req
, mask
);
1240 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
1242 io_cqring_ev_posted(ctx
);
1245 queue_work(ctx
->sqo_wq
, &req
->work
);
1251 struct io_poll_table
{
1252 struct poll_table_struct pt
;
1253 struct io_kiocb
*req
;
1257 static void io_poll_queue_proc(struct file
*file
, struct wait_queue_head
*head
,
1258 struct poll_table_struct
*p
)
1260 struct io_poll_table
*pt
= container_of(p
, struct io_poll_table
, pt
);
1262 if (unlikely(pt
->req
->poll
.head
)) {
1263 pt
->error
= -EINVAL
;
1268 pt
->req
->poll
.head
= head
;
1269 add_wait_queue(head
, &pt
->req
->poll
.wait
);
1272 static int io_poll_add(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
1274 struct io_poll_iocb
*poll
= &req
->poll
;
1275 struct io_ring_ctx
*ctx
= req
->ctx
;
1276 struct io_poll_table ipt
;
1277 bool cancel
= false;
1281 if (unlikely(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
1283 if (sqe
->addr
|| sqe
->ioprio
|| sqe
->off
|| sqe
->len
|| sqe
->buf_index
)
1288 INIT_WORK(&req
->work
, io_poll_complete_work
);
1289 events
= READ_ONCE(sqe
->poll_events
);
1290 poll
->events
= demangle_poll(events
) | EPOLLERR
| EPOLLHUP
;
1294 poll
->canceled
= false;
1296 ipt
.pt
._qproc
= io_poll_queue_proc
;
1297 ipt
.pt
._key
= poll
->events
;
1299 ipt
.error
= -EINVAL
; /* same as no support for IOCB_CMD_POLL */
1301 /* initialized the list so that we can do list_empty checks */
1302 INIT_LIST_HEAD(&poll
->wait
.entry
);
1303 init_waitqueue_func_entry(&poll
->wait
, io_poll_wake
);
1305 mask
= vfs_poll(poll
->file
, &ipt
.pt
) & poll
->events
;
1307 spin_lock_irq(&ctx
->completion_lock
);
1308 if (likely(poll
->head
)) {
1309 spin_lock(&poll
->head
->lock
);
1310 if (unlikely(list_empty(&poll
->wait
.entry
))) {
1316 if (mask
|| ipt
.error
)
1317 list_del_init(&poll
->wait
.entry
);
1319 WRITE_ONCE(poll
->canceled
, true);
1320 else if (!poll
->done
) /* actually waiting for an event */
1321 list_add_tail(&req
->list
, &ctx
->cancel_list
);
1322 spin_unlock(&poll
->head
->lock
);
1324 if (mask
) { /* no async, we'd stolen it */
1325 req
->error
= mangle_poll(mask
);
1327 io_poll_complete(ctx
, req
, mask
);
1329 spin_unlock_irq(&ctx
->completion_lock
);
1332 io_cqring_ev_posted(ctx
);
1338 static int __io_submit_sqe(struct io_ring_ctx
*ctx
, struct io_kiocb
*req
,
1339 const struct sqe_submit
*s
, bool force_nonblock
,
1340 struct io_submit_state
*state
)
1344 if (unlikely(s
->index
>= ctx
->sq_entries
))
1346 req
->user_data
= READ_ONCE(s
->sqe
->user_data
);
1348 opcode
= READ_ONCE(s
->sqe
->opcode
);
1351 ret
= io_nop(req
, req
->user_data
);
1353 case IORING_OP_READV
:
1354 if (unlikely(s
->sqe
->buf_index
))
1356 ret
= io_read(req
, s
, force_nonblock
, state
);
1358 case IORING_OP_WRITEV
:
1359 if (unlikely(s
->sqe
->buf_index
))
1361 ret
= io_write(req
, s
, force_nonblock
, state
);
1363 case IORING_OP_READ_FIXED
:
1364 ret
= io_read(req
, s
, force_nonblock
, state
);
1366 case IORING_OP_WRITE_FIXED
:
1367 ret
= io_write(req
, s
, force_nonblock
, state
);
1369 case IORING_OP_FSYNC
:
1370 ret
= io_fsync(req
, s
->sqe
, force_nonblock
);
1372 case IORING_OP_POLL_ADD
:
1373 ret
= io_poll_add(req
, s
->sqe
);
1375 case IORING_OP_POLL_REMOVE
:
1376 ret
= io_poll_remove(req
, s
->sqe
);
1386 if (ctx
->flags
& IORING_SETUP_IOPOLL
) {
1387 if (req
->error
== -EAGAIN
)
1390 /* workqueue context doesn't hold uring_lock, grab it now */
1392 mutex_lock(&ctx
->uring_lock
);
1393 io_iopoll_req_issued(req
);
1395 mutex_unlock(&ctx
->uring_lock
);
1401 static struct async_list
*io_async_list_from_sqe(struct io_ring_ctx
*ctx
,
1402 const struct io_uring_sqe
*sqe
)
1404 switch (sqe
->opcode
) {
1405 case IORING_OP_READV
:
1406 case IORING_OP_READ_FIXED
:
1407 return &ctx
->pending_async
[READ
];
1408 case IORING_OP_WRITEV
:
1409 case IORING_OP_WRITE_FIXED
:
1410 return &ctx
->pending_async
[WRITE
];
1416 static inline bool io_sqe_needs_user(const struct io_uring_sqe
*sqe
)
1418 u8 opcode
= READ_ONCE(sqe
->opcode
);
1420 return !(opcode
== IORING_OP_READ_FIXED
||
1421 opcode
== IORING_OP_WRITE_FIXED
);
1424 static void io_sq_wq_submit_work(struct work_struct
*work
)
1426 struct io_kiocb
*req
= container_of(work
, struct io_kiocb
, work
);
1427 struct io_ring_ctx
*ctx
= req
->ctx
;
1428 struct mm_struct
*cur_mm
= NULL
;
1429 struct async_list
*async_list
;
1430 LIST_HEAD(req_list
);
1431 mm_segment_t old_fs
;
1434 async_list
= io_async_list_from_sqe(ctx
, req
->submit
.sqe
);
1437 struct sqe_submit
*s
= &req
->submit
;
1438 const struct io_uring_sqe
*sqe
= s
->sqe
;
1440 /* Ensure we clear previously set forced non-block flag */
1441 req
->flags
&= ~REQ_F_FORCE_NONBLOCK
;
1442 req
->rw
.ki_flags
&= ~IOCB_NOWAIT
;
1445 if (io_sqe_needs_user(sqe
) && !cur_mm
) {
1446 if (!mmget_not_zero(ctx
->sqo_mm
)) {
1449 cur_mm
= ctx
->sqo_mm
;
1457 s
->has_user
= cur_mm
!= NULL
;
1458 s
->needs_lock
= true;
1460 ret
= __io_submit_sqe(ctx
, req
, s
, false, NULL
);
1462 * We can get EAGAIN for polled IO even though
1463 * we're forcing a sync submission from here,
1464 * since we can't wait for request slots on the
1472 /* drop submission reference */
1476 io_cqring_add_event(ctx
, sqe
->user_data
, ret
, 0);
1480 /* async context always use a copy of the sqe */
1485 if (!list_empty(&req_list
)) {
1486 req
= list_first_entry(&req_list
, struct io_kiocb
,
1488 list_del(&req
->list
);
1491 if (list_empty(&async_list
->list
))
1495 spin_lock(&async_list
->lock
);
1496 if (list_empty(&async_list
->list
)) {
1497 spin_unlock(&async_list
->lock
);
1500 list_splice_init(&async_list
->list
, &req_list
);
1501 spin_unlock(&async_list
->lock
);
1503 req
= list_first_entry(&req_list
, struct io_kiocb
, list
);
1504 list_del(&req
->list
);
1508 * Rare case of racing with a submitter. If we find the count has
1509 * dropped to zero AND we have pending work items, then restart
1510 * the processing. This is a tiny race window.
1513 ret
= atomic_dec_return(&async_list
->cnt
);
1514 while (!ret
&& !list_empty(&async_list
->list
)) {
1515 spin_lock(&async_list
->lock
);
1516 atomic_inc(&async_list
->cnt
);
1517 list_splice_init(&async_list
->list
, &req_list
);
1518 spin_unlock(&async_list
->lock
);
1520 if (!list_empty(&req_list
)) {
1521 req
= list_first_entry(&req_list
,
1522 struct io_kiocb
, list
);
1523 list_del(&req
->list
);
1526 ret
= atomic_dec_return(&async_list
->cnt
);
1538 * See if we can piggy back onto previously submitted work, that is still
1539 * running. We currently only allow this if the new request is sequential
1540 * to the previous one we punted.
1542 static bool io_add_to_prev_work(struct async_list
*list
, struct io_kiocb
*req
)
1548 if (!(req
->flags
& REQ_F_SEQ_PREV
))
1550 if (!atomic_read(&list
->cnt
))
1554 spin_lock(&list
->lock
);
1555 list_add_tail(&req
->list
, &list
->list
);
1556 if (!atomic_read(&list
->cnt
)) {
1557 list_del_init(&req
->list
);
1560 spin_unlock(&list
->lock
);
1564 static bool io_op_needs_file(const struct io_uring_sqe
*sqe
)
1566 int op
= READ_ONCE(sqe
->opcode
);
1570 case IORING_OP_POLL_REMOVE
:
1577 static int io_req_set_file(struct io_ring_ctx
*ctx
, const struct sqe_submit
*s
,
1578 struct io_submit_state
*state
, struct io_kiocb
*req
)
1583 flags
= READ_ONCE(s
->sqe
->flags
);
1584 fd
= READ_ONCE(s
->sqe
->fd
);
1586 if (!io_op_needs_file(s
->sqe
)) {
1591 if (flags
& IOSQE_FIXED_FILE
) {
1592 if (unlikely(!ctx
->user_files
||
1593 (unsigned) fd
>= ctx
->nr_user_files
))
1595 req
->file
= ctx
->user_files
[fd
];
1596 req
->flags
|= REQ_F_FIXED_FILE
;
1598 if (s
->needs_fixed_file
)
1600 req
->file
= io_file_get(state
, fd
);
1601 if (unlikely(!req
->file
))
1608 static int io_submit_sqe(struct io_ring_ctx
*ctx
, struct sqe_submit
*s
,
1609 struct io_submit_state
*state
)
1611 struct io_kiocb
*req
;
1614 /* enforce forwards compatibility on users */
1615 if (unlikely(s
->sqe
->flags
& ~IOSQE_FIXED_FILE
))
1618 req
= io_get_req(ctx
, state
);
1622 ret
= io_req_set_file(ctx
, s
, state
, req
);
1626 ret
= __io_submit_sqe(ctx
, req
, s
, true, state
);
1627 if (ret
== -EAGAIN
) {
1628 struct io_uring_sqe
*sqe_copy
;
1630 sqe_copy
= kmalloc(sizeof(*sqe_copy
), GFP_KERNEL
);
1632 struct async_list
*list
;
1634 memcpy(sqe_copy
, s
->sqe
, sizeof(*sqe_copy
));
1637 memcpy(&req
->submit
, s
, sizeof(*s
));
1638 list
= io_async_list_from_sqe(ctx
, s
->sqe
);
1639 if (!io_add_to_prev_work(list
, req
)) {
1641 atomic_inc(&list
->cnt
);
1642 INIT_WORK(&req
->work
, io_sq_wq_submit_work
);
1643 queue_work(ctx
->sqo_wq
, &req
->work
);
1647 * Queued up for async execution, worker will release
1648 * submit reference when the iocb is actually
1656 /* drop submission reference */
1659 /* and drop final reference, if we failed */
1667 * Batched submission is done, ensure local IO is flushed out.
1669 static void io_submit_state_end(struct io_submit_state
*state
)
1671 blk_finish_plug(&state
->plug
);
1673 if (state
->free_reqs
)
1674 kmem_cache_free_bulk(req_cachep
, state
->free_reqs
,
1675 &state
->reqs
[state
->cur_req
]);
1679 * Start submission side cache.
1681 static void io_submit_state_start(struct io_submit_state
*state
,
1682 struct io_ring_ctx
*ctx
, unsigned max_ios
)
1684 blk_start_plug(&state
->plug
);
1685 state
->free_reqs
= 0;
1687 state
->ios_left
= max_ios
;
1690 static void io_commit_sqring(struct io_ring_ctx
*ctx
)
1692 struct io_sq_ring
*ring
= ctx
->sq_ring
;
1694 if (ctx
->cached_sq_head
!= READ_ONCE(ring
->r
.head
)) {
1696 * Ensure any loads from the SQEs are done at this point,
1697 * since once we write the new head, the application could
1698 * write new data to them.
1700 smp_store_release(&ring
->r
.head
, ctx
->cached_sq_head
);
1703 * write side barrier of head update, app has read side. See
1704 * comment at the top of this file
1711 * Undo last io_get_sqring()
1713 static void io_drop_sqring(struct io_ring_ctx
*ctx
)
1715 ctx
->cached_sq_head
--;
1719 * Fetch an sqe, if one is available. Note that s->sqe will point to memory
1720 * that is mapped by userspace. This means that care needs to be taken to
1721 * ensure that reads are stable, as we cannot rely on userspace always
1722 * being a good citizen. If members of the sqe are validated and then later
1723 * used, it's important that those reads are done through READ_ONCE() to
1724 * prevent a re-load down the line.
1726 static bool io_get_sqring(struct io_ring_ctx
*ctx
, struct sqe_submit
*s
)
1728 struct io_sq_ring
*ring
= ctx
->sq_ring
;
1732 * The cached sq head (or cq tail) serves two purposes:
1734 * 1) allows us to batch the cost of updating the user visible
1736 * 2) allows the kernel side to track the head on its own, even
1737 * though the application is the one updating it.
1739 head
= ctx
->cached_sq_head
;
1740 /* See comment at the top of this file */
1742 if (head
== READ_ONCE(ring
->r
.tail
))
1745 head
= READ_ONCE(ring
->array
[head
& ctx
->sq_mask
]);
1746 if (head
< ctx
->sq_entries
) {
1748 s
->sqe
= &ctx
->sq_sqes
[head
];
1749 ctx
->cached_sq_head
++;
1753 /* drop invalid entries */
1754 ctx
->cached_sq_head
++;
1756 /* See comment at the top of this file */
1761 static int io_submit_sqes(struct io_ring_ctx
*ctx
, struct sqe_submit
*sqes
,
1762 unsigned int nr
, bool has_user
, bool mm_fault
)
1764 struct io_submit_state state
, *statep
= NULL
;
1765 int ret
, i
, submitted
= 0;
1767 if (nr
> IO_PLUG_THRESHOLD
) {
1768 io_submit_state_start(&state
, ctx
, nr
);
1772 for (i
= 0; i
< nr
; i
++) {
1773 if (unlikely(mm_fault
)) {
1776 sqes
[i
].has_user
= has_user
;
1777 sqes
[i
].needs_lock
= true;
1778 sqes
[i
].needs_fixed_file
= true;
1779 ret
= io_submit_sqe(ctx
, &sqes
[i
], statep
);
1786 io_cqring_add_event(ctx
, sqes
[i
].sqe
->user_data
, ret
, 0);
1790 io_submit_state_end(&state
);
1795 static int io_sq_thread(void *data
)
1797 struct sqe_submit sqes
[IO_IOPOLL_BATCH
];
1798 struct io_ring_ctx
*ctx
= data
;
1799 struct mm_struct
*cur_mm
= NULL
;
1800 mm_segment_t old_fs
;
1803 unsigned long timeout
;
1808 timeout
= inflight
= 0;
1809 while (!kthread_should_stop() && !ctx
->sqo_stop
) {
1810 bool all_fixed
, mm_fault
= false;
1814 unsigned nr_events
= 0;
1816 if (ctx
->flags
& IORING_SETUP_IOPOLL
) {
1818 * We disallow the app entering submit/complete
1819 * with polling, but we still need to lock the
1820 * ring to prevent racing with polled issue
1821 * that got punted to a workqueue.
1823 mutex_lock(&ctx
->uring_lock
);
1824 io_iopoll_check(ctx
, &nr_events
, 0);
1825 mutex_unlock(&ctx
->uring_lock
);
1828 * Normal IO, just pretend everything completed.
1829 * We don't have to poll completions for that.
1831 nr_events
= inflight
;
1834 inflight
-= nr_events
;
1836 timeout
= jiffies
+ ctx
->sq_thread_idle
;
1839 if (!io_get_sqring(ctx
, &sqes
[0])) {
1841 * We're polling. If we're within the defined idle
1842 * period, then let us spin without work before going
1845 if (inflight
|| !time_after(jiffies
, timeout
)) {
1851 * Drop cur_mm before scheduling, we can't hold it for
1852 * long periods (or over schedule()). Do this before
1853 * adding ourselves to the waitqueue, as the unuse/drop
1862 prepare_to_wait(&ctx
->sqo_wait
, &wait
,
1863 TASK_INTERRUPTIBLE
);
1865 /* Tell userspace we may need a wakeup call */
1866 ctx
->sq_ring
->flags
|= IORING_SQ_NEED_WAKEUP
;
1869 if (!io_get_sqring(ctx
, &sqes
[0])) {
1870 if (kthread_should_stop()) {
1871 finish_wait(&ctx
->sqo_wait
, &wait
);
1874 if (signal_pending(current
))
1875 flush_signals(current
);
1877 finish_wait(&ctx
->sqo_wait
, &wait
);
1879 ctx
->sq_ring
->flags
&= ~IORING_SQ_NEED_WAKEUP
;
1883 finish_wait(&ctx
->sqo_wait
, &wait
);
1885 ctx
->sq_ring
->flags
&= ~IORING_SQ_NEED_WAKEUP
;
1892 if (all_fixed
&& io_sqe_needs_user(sqes
[i
].sqe
))
1896 if (i
== ARRAY_SIZE(sqes
))
1898 } while (io_get_sqring(ctx
, &sqes
[i
]));
1900 /* Unless all new commands are FIXED regions, grab mm */
1901 if (!all_fixed
&& !cur_mm
) {
1902 mm_fault
= !mmget_not_zero(ctx
->sqo_mm
);
1904 use_mm(ctx
->sqo_mm
);
1905 cur_mm
= ctx
->sqo_mm
;
1909 inflight
+= io_submit_sqes(ctx
, sqes
, i
, cur_mm
!= NULL
,
1912 /* Commit SQ ring head once we've consumed all SQEs */
1913 io_commit_sqring(ctx
);
1922 if (kthread_should_park())
1928 static int io_ring_submit(struct io_ring_ctx
*ctx
, unsigned int to_submit
)
1930 struct io_submit_state state
, *statep
= NULL
;
1931 int i
, ret
= 0, submit
= 0;
1933 if (to_submit
> IO_PLUG_THRESHOLD
) {
1934 io_submit_state_start(&state
, ctx
, to_submit
);
1938 for (i
= 0; i
< to_submit
; i
++) {
1939 struct sqe_submit s
;
1941 if (!io_get_sqring(ctx
, &s
))
1945 s
.needs_lock
= false;
1946 s
.needs_fixed_file
= false;
1948 ret
= io_submit_sqe(ctx
, &s
, statep
);
1950 io_drop_sqring(ctx
);
1956 io_commit_sqring(ctx
);
1959 io_submit_state_end(statep
);
1961 return submit
? submit
: ret
;
1964 static unsigned io_cqring_events(struct io_cq_ring
*ring
)
1966 return READ_ONCE(ring
->r
.tail
) - READ_ONCE(ring
->r
.head
);
1970 * Wait until events become available, if we don't already have some. The
1971 * application must reap them itself, as they reside on the shared cq ring.
1973 static int io_cqring_wait(struct io_ring_ctx
*ctx
, int min_events
,
1974 const sigset_t __user
*sig
, size_t sigsz
)
1976 struct io_cq_ring
*ring
= ctx
->cq_ring
;
1977 sigset_t ksigmask
, sigsaved
;
1981 /* See comment at the top of this file */
1983 if (io_cqring_events(ring
) >= min_events
)
1987 #ifdef CONFIG_COMPAT
1988 if (in_compat_syscall())
1989 ret
= set_compat_user_sigmask((const compat_sigset_t __user
*)sig
,
1990 &ksigmask
, &sigsaved
, sigsz
);
1993 ret
= set_user_sigmask(sig
, &ksigmask
,
2001 prepare_to_wait(&ctx
->wait
, &wait
, TASK_INTERRUPTIBLE
);
2004 /* See comment at the top of this file */
2006 if (io_cqring_events(ring
) >= min_events
)
2012 if (signal_pending(current
))
2016 finish_wait(&ctx
->wait
, &wait
);
2019 restore_user_sigmask(sig
, &sigsaved
);
2021 return READ_ONCE(ring
->r
.head
) == READ_ONCE(ring
->r
.tail
) ? ret
: 0;
2024 static void __io_sqe_files_unregister(struct io_ring_ctx
*ctx
)
2026 #if defined(CONFIG_UNIX)
2027 if (ctx
->ring_sock
) {
2028 struct sock
*sock
= ctx
->ring_sock
->sk
;
2029 struct sk_buff
*skb
;
2031 while ((skb
= skb_dequeue(&sock
->sk_receive_queue
)) != NULL
)
2037 for (i
= 0; i
< ctx
->nr_user_files
; i
++)
2038 fput(ctx
->user_files
[i
]);
2042 static int io_sqe_files_unregister(struct io_ring_ctx
*ctx
)
2044 if (!ctx
->user_files
)
2047 __io_sqe_files_unregister(ctx
);
2048 kfree(ctx
->user_files
);
2049 ctx
->user_files
= NULL
;
2050 ctx
->nr_user_files
= 0;
2054 static void io_sq_thread_stop(struct io_ring_ctx
*ctx
)
2056 if (ctx
->sqo_thread
) {
2059 kthread_park(ctx
->sqo_thread
);
2060 kthread_stop(ctx
->sqo_thread
);
2061 ctx
->sqo_thread
= NULL
;
2065 static void io_finish_async(struct io_ring_ctx
*ctx
)
2067 io_sq_thread_stop(ctx
);
2070 destroy_workqueue(ctx
->sqo_wq
);
2075 #if defined(CONFIG_UNIX)
2076 static void io_destruct_skb(struct sk_buff
*skb
)
2078 struct io_ring_ctx
*ctx
= skb
->sk
->sk_user_data
;
2080 io_finish_async(ctx
);
2081 unix_destruct_scm(skb
);
2085 * Ensure the UNIX gc is aware of our file set, so we are certain that
2086 * the io_uring can be safely unregistered on process exit, even if we have
2087 * loops in the file referencing.
2089 static int __io_sqe_files_scm(struct io_ring_ctx
*ctx
, int nr
, int offset
)
2091 struct sock
*sk
= ctx
->ring_sock
->sk
;
2092 struct scm_fp_list
*fpl
;
2093 struct sk_buff
*skb
;
2096 if (!capable(CAP_SYS_RESOURCE
) && !capable(CAP_SYS_ADMIN
)) {
2097 unsigned long inflight
= ctx
->user
->unix_inflight
+ nr
;
2099 if (inflight
> task_rlimit(current
, RLIMIT_NOFILE
))
2103 fpl
= kzalloc(sizeof(*fpl
), GFP_KERNEL
);
2107 skb
= alloc_skb(0, GFP_KERNEL
);
2114 skb
->destructor
= io_destruct_skb
;
2116 fpl
->user
= get_uid(ctx
->user
);
2117 for (i
= 0; i
< nr
; i
++) {
2118 fpl
->fp
[i
] = get_file(ctx
->user_files
[i
+ offset
]);
2119 unix_inflight(fpl
->user
, fpl
->fp
[i
]);
2122 fpl
->max
= fpl
->count
= nr
;
2123 UNIXCB(skb
).fp
= fpl
;
2124 refcount_add(skb
->truesize
, &sk
->sk_wmem_alloc
);
2125 skb_queue_head(&sk
->sk_receive_queue
, skb
);
2127 for (i
= 0; i
< nr
; i
++)
2134 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
2135 * causes regular reference counting to break down. We rely on the UNIX
2136 * garbage collection to take care of this problem for us.
2138 static int io_sqe_files_scm(struct io_ring_ctx
*ctx
)
2140 unsigned left
, total
;
2144 left
= ctx
->nr_user_files
;
2146 unsigned this_files
= min_t(unsigned, left
, SCM_MAX_FD
);
2149 ret
= __io_sqe_files_scm(ctx
, this_files
, total
);
2153 total
+= this_files
;
2159 while (total
< ctx
->nr_user_files
) {
2160 fput(ctx
->user_files
[total
]);
2167 static int io_sqe_files_scm(struct io_ring_ctx
*ctx
)
2173 static int io_sqe_files_register(struct io_ring_ctx
*ctx
, void __user
*arg
,
2176 __s32 __user
*fds
= (__s32 __user
*) arg
;
2180 if (ctx
->user_files
)
2184 if (nr_args
> IORING_MAX_FIXED_FILES
)
2187 ctx
->user_files
= kcalloc(nr_args
, sizeof(struct file
*), GFP_KERNEL
);
2188 if (!ctx
->user_files
)
2191 for (i
= 0; i
< nr_args
; i
++) {
2193 if (copy_from_user(&fd
, &fds
[i
], sizeof(fd
)))
2196 ctx
->user_files
[i
] = fget(fd
);
2199 if (!ctx
->user_files
[i
])
2202 * Don't allow io_uring instances to be registered. If UNIX
2203 * isn't enabled, then this causes a reference cycle and this
2204 * instance can never get freed. If UNIX is enabled we'll
2205 * handle it just fine, but there's still no point in allowing
2206 * a ring fd as it doesn't support regular read/write anyway.
2208 if (ctx
->user_files
[i
]->f_op
== &io_uring_fops
) {
2209 fput(ctx
->user_files
[i
]);
2212 ctx
->nr_user_files
++;
2217 for (i
= 0; i
< ctx
->nr_user_files
; i
++)
2218 fput(ctx
->user_files
[i
]);
2220 kfree(ctx
->user_files
);
2221 ctx
->user_files
= NULL
;
2222 ctx
->nr_user_files
= 0;
2226 ret
= io_sqe_files_scm(ctx
);
2228 io_sqe_files_unregister(ctx
);
2233 static int io_sq_offload_start(struct io_ring_ctx
*ctx
,
2234 struct io_uring_params
*p
)
2238 init_waitqueue_head(&ctx
->sqo_wait
);
2239 mmgrab(current
->mm
);
2240 ctx
->sqo_mm
= current
->mm
;
2243 if (!cpu_possible(p
->sq_thread_cpu
))
2246 if (ctx
->flags
& IORING_SETUP_SQPOLL
) {
2248 if (!capable(CAP_SYS_ADMIN
))
2251 ctx
->sq_thread_idle
= msecs_to_jiffies(p
->sq_thread_idle
);
2252 if (!ctx
->sq_thread_idle
)
2253 ctx
->sq_thread_idle
= HZ
;
2255 if (p
->flags
& IORING_SETUP_SQ_AFF
) {
2258 cpu
= array_index_nospec(p
->sq_thread_cpu
, NR_CPUS
);
2260 if (!cpu_possible(p
->sq_thread_cpu
))
2263 ctx
->sqo_thread
= kthread_create_on_cpu(io_sq_thread
,
2267 ctx
->sqo_thread
= kthread_create(io_sq_thread
, ctx
,
2270 if (IS_ERR(ctx
->sqo_thread
)) {
2271 ret
= PTR_ERR(ctx
->sqo_thread
);
2272 ctx
->sqo_thread
= NULL
;
2275 wake_up_process(ctx
->sqo_thread
);
2276 } else if (p
->flags
& IORING_SETUP_SQ_AFF
) {
2277 /* Can't have SQ_AFF without SQPOLL */
2282 /* Do QD, or 2 * CPUS, whatever is smallest */
2283 ctx
->sqo_wq
= alloc_workqueue("io_ring-wq", WQ_UNBOUND
| WQ_FREEZABLE
,
2284 min(ctx
->sq_entries
- 1, 2 * num_online_cpus()));
2292 io_sq_thread_stop(ctx
);
2293 mmdrop(ctx
->sqo_mm
);
2298 static void io_unaccount_mem(struct user_struct
*user
, unsigned long nr_pages
)
2300 atomic_long_sub(nr_pages
, &user
->locked_vm
);
2303 static int io_account_mem(struct user_struct
*user
, unsigned long nr_pages
)
2305 unsigned long page_limit
, cur_pages
, new_pages
;
2307 /* Don't allow more pages than we can safely lock */
2308 page_limit
= rlimit(RLIMIT_MEMLOCK
) >> PAGE_SHIFT
;
2311 cur_pages
= atomic_long_read(&user
->locked_vm
);
2312 new_pages
= cur_pages
+ nr_pages
;
2313 if (new_pages
> page_limit
)
2315 } while (atomic_long_cmpxchg(&user
->locked_vm
, cur_pages
,
2316 new_pages
) != cur_pages
);
2321 static void io_mem_free(void *ptr
)
2323 struct page
*page
= virt_to_head_page(ptr
);
2325 if (put_page_testzero(page
))
2326 free_compound_page(page
);
2329 static void *io_mem_alloc(size_t size
)
2331 gfp_t gfp_flags
= GFP_KERNEL
| __GFP_ZERO
| __GFP_NOWARN
| __GFP_COMP
|
2334 return (void *) __get_free_pages(gfp_flags
, get_order(size
));
2337 static unsigned long ring_pages(unsigned sq_entries
, unsigned cq_entries
)
2339 struct io_sq_ring
*sq_ring
;
2340 struct io_cq_ring
*cq_ring
;
2343 bytes
= struct_size(sq_ring
, array
, sq_entries
);
2344 bytes
+= array_size(sizeof(struct io_uring_sqe
), sq_entries
);
2345 bytes
+= struct_size(cq_ring
, cqes
, cq_entries
);
2347 return (bytes
+ PAGE_SIZE
- 1) / PAGE_SIZE
;
2350 static int io_sqe_buffer_unregister(struct io_ring_ctx
*ctx
)
2354 if (!ctx
->user_bufs
)
2357 for (i
= 0; i
< ctx
->nr_user_bufs
; i
++) {
2358 struct io_mapped_ubuf
*imu
= &ctx
->user_bufs
[i
];
2360 for (j
= 0; j
< imu
->nr_bvecs
; j
++)
2361 put_page(imu
->bvec
[j
].bv_page
);
2363 if (ctx
->account_mem
)
2364 io_unaccount_mem(ctx
->user
, imu
->nr_bvecs
);
2369 kfree(ctx
->user_bufs
);
2370 ctx
->user_bufs
= NULL
;
2371 ctx
->nr_user_bufs
= 0;
2375 static int io_copy_iov(struct io_ring_ctx
*ctx
, struct iovec
*dst
,
2376 void __user
*arg
, unsigned index
)
2378 struct iovec __user
*src
;
2380 #ifdef CONFIG_COMPAT
2382 struct compat_iovec __user
*ciovs
;
2383 struct compat_iovec ciov
;
2385 ciovs
= (struct compat_iovec __user
*) arg
;
2386 if (copy_from_user(&ciov
, &ciovs
[index
], sizeof(ciov
)))
2389 dst
->iov_base
= (void __user
*) (unsigned long) ciov
.iov_base
;
2390 dst
->iov_len
= ciov
.iov_len
;
2394 src
= (struct iovec __user
*) arg
;
2395 if (copy_from_user(dst
, &src
[index
], sizeof(*dst
)))
2400 static int io_sqe_buffer_register(struct io_ring_ctx
*ctx
, void __user
*arg
,
2403 struct vm_area_struct
**vmas
= NULL
;
2404 struct page
**pages
= NULL
;
2405 int i
, j
, got_pages
= 0;
2410 if (!nr_args
|| nr_args
> UIO_MAXIOV
)
2413 ctx
->user_bufs
= kcalloc(nr_args
, sizeof(struct io_mapped_ubuf
),
2415 if (!ctx
->user_bufs
)
2418 for (i
= 0; i
< nr_args
; i
++) {
2419 struct io_mapped_ubuf
*imu
= &ctx
->user_bufs
[i
];
2420 unsigned long off
, start
, end
, ubuf
;
2425 ret
= io_copy_iov(ctx
, &iov
, arg
, i
);
2430 * Don't impose further limits on the size and buffer
2431 * constraints here, we'll -EINVAL later when IO is
2432 * submitted if they are wrong.
2435 if (!iov
.iov_base
|| !iov
.iov_len
)
2438 /* arbitrary limit, but we need something */
2439 if (iov
.iov_len
> SZ_1G
)
2442 ubuf
= (unsigned long) iov
.iov_base
;
2443 end
= (ubuf
+ iov
.iov_len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2444 start
= ubuf
>> PAGE_SHIFT
;
2445 nr_pages
= end
- start
;
2447 if (ctx
->account_mem
) {
2448 ret
= io_account_mem(ctx
->user
, nr_pages
);
2454 if (!pages
|| nr_pages
> got_pages
) {
2457 pages
= kmalloc_array(nr_pages
, sizeof(struct page
*),
2459 vmas
= kmalloc_array(nr_pages
,
2460 sizeof(struct vm_area_struct
*),
2462 if (!pages
|| !vmas
) {
2464 if (ctx
->account_mem
)
2465 io_unaccount_mem(ctx
->user
, nr_pages
);
2468 got_pages
= nr_pages
;
2471 imu
->bvec
= kmalloc_array(nr_pages
, sizeof(struct bio_vec
),
2475 if (ctx
->account_mem
)
2476 io_unaccount_mem(ctx
->user
, nr_pages
);
2481 down_read(¤t
->mm
->mmap_sem
);
2482 pret
= get_user_pages_longterm(ubuf
, nr_pages
, FOLL_WRITE
,
2484 if (pret
== nr_pages
) {
2485 /* don't support file backed memory */
2486 for (j
= 0; j
< nr_pages
; j
++) {
2487 struct vm_area_struct
*vma
= vmas
[j
];
2490 !is_file_hugepages(vma
->vm_file
)) {
2496 ret
= pret
< 0 ? pret
: -EFAULT
;
2498 up_read(¤t
->mm
->mmap_sem
);
2501 * if we did partial map, or found file backed vmas,
2502 * release any pages we did get
2505 for (j
= 0; j
< pret
; j
++)
2508 if (ctx
->account_mem
)
2509 io_unaccount_mem(ctx
->user
, nr_pages
);
2513 off
= ubuf
& ~PAGE_MASK
;
2515 for (j
= 0; j
< nr_pages
; j
++) {
2518 vec_len
= min_t(size_t, size
, PAGE_SIZE
- off
);
2519 imu
->bvec
[j
].bv_page
= pages
[j
];
2520 imu
->bvec
[j
].bv_len
= vec_len
;
2521 imu
->bvec
[j
].bv_offset
= off
;
2525 /* store original address for later verification */
2527 imu
->len
= iov
.iov_len
;
2528 imu
->nr_bvecs
= nr_pages
;
2530 ctx
->nr_user_bufs
++;
2538 io_sqe_buffer_unregister(ctx
);
2542 static void io_ring_ctx_free(struct io_ring_ctx
*ctx
)
2544 io_finish_async(ctx
);
2546 mmdrop(ctx
->sqo_mm
);
2548 io_iopoll_reap_events(ctx
);
2549 io_sqe_buffer_unregister(ctx
);
2550 io_sqe_files_unregister(ctx
);
2552 #if defined(CONFIG_UNIX)
2554 sock_release(ctx
->ring_sock
);
2557 io_mem_free(ctx
->sq_ring
);
2558 io_mem_free(ctx
->sq_sqes
);
2559 io_mem_free(ctx
->cq_ring
);
2561 percpu_ref_exit(&ctx
->refs
);
2562 if (ctx
->account_mem
)
2563 io_unaccount_mem(ctx
->user
,
2564 ring_pages(ctx
->sq_entries
, ctx
->cq_entries
));
2565 free_uid(ctx
->user
);
2569 static __poll_t
io_uring_poll(struct file
*file
, poll_table
*wait
)
2571 struct io_ring_ctx
*ctx
= file
->private_data
;
2574 poll_wait(file
, &ctx
->cq_wait
, wait
);
2575 /* See comment at the top of this file */
2577 if (READ_ONCE(ctx
->sq_ring
->r
.tail
) + 1 != ctx
->cached_sq_head
)
2578 mask
|= EPOLLOUT
| EPOLLWRNORM
;
2579 if (READ_ONCE(ctx
->cq_ring
->r
.head
) != ctx
->cached_cq_tail
)
2580 mask
|= EPOLLIN
| EPOLLRDNORM
;
2585 static int io_uring_fasync(int fd
, struct file
*file
, int on
)
2587 struct io_ring_ctx
*ctx
= file
->private_data
;
2589 return fasync_helper(fd
, file
, on
, &ctx
->cq_fasync
);
2592 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx
*ctx
)
2594 mutex_lock(&ctx
->uring_lock
);
2595 percpu_ref_kill(&ctx
->refs
);
2596 mutex_unlock(&ctx
->uring_lock
);
2598 io_poll_remove_all(ctx
);
2599 io_iopoll_reap_events(ctx
);
2600 wait_for_completion(&ctx
->ctx_done
);
2601 io_ring_ctx_free(ctx
);
2604 static int io_uring_release(struct inode
*inode
, struct file
*file
)
2606 struct io_ring_ctx
*ctx
= file
->private_data
;
2608 file
->private_data
= NULL
;
2609 io_ring_ctx_wait_and_kill(ctx
);
2613 static int io_uring_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2615 loff_t offset
= (loff_t
) vma
->vm_pgoff
<< PAGE_SHIFT
;
2616 unsigned long sz
= vma
->vm_end
- vma
->vm_start
;
2617 struct io_ring_ctx
*ctx
= file
->private_data
;
2623 case IORING_OFF_SQ_RING
:
2626 case IORING_OFF_SQES
:
2629 case IORING_OFF_CQ_RING
:
2636 page
= virt_to_head_page(ptr
);
2637 if (sz
> (PAGE_SIZE
<< compound_order(page
)))
2640 pfn
= virt_to_phys(ptr
) >> PAGE_SHIFT
;
2641 return remap_pfn_range(vma
, vma
->vm_start
, pfn
, sz
, vma
->vm_page_prot
);
2644 SYSCALL_DEFINE6(io_uring_enter
, unsigned int, fd
, u32
, to_submit
,
2645 u32
, min_complete
, u32
, flags
, const sigset_t __user
*, sig
,
2648 struct io_ring_ctx
*ctx
;
2653 if (flags
& ~(IORING_ENTER_GETEVENTS
| IORING_ENTER_SQ_WAKEUP
))
2661 if (f
.file
->f_op
!= &io_uring_fops
)
2665 ctx
= f
.file
->private_data
;
2666 if (!percpu_ref_tryget(&ctx
->refs
))
2670 * For SQ polling, the thread will do all submissions and completions.
2671 * Just return the requested submit count, and wake the thread if
2674 if (ctx
->flags
& IORING_SETUP_SQPOLL
) {
2675 if (flags
& IORING_ENTER_SQ_WAKEUP
)
2676 wake_up(&ctx
->sqo_wait
);
2677 submitted
= to_submit
;
2683 to_submit
= min(to_submit
, ctx
->sq_entries
);
2685 mutex_lock(&ctx
->uring_lock
);
2686 submitted
= io_ring_submit(ctx
, to_submit
);
2687 mutex_unlock(&ctx
->uring_lock
);
2692 if (flags
& IORING_ENTER_GETEVENTS
) {
2693 unsigned nr_events
= 0;
2695 min_complete
= min(min_complete
, ctx
->cq_entries
);
2698 * The application could have included the 'to_submit' count
2699 * in how many events it wanted to wait for. If we failed to
2700 * submit the desired count, we may need to adjust the number
2701 * of events to poll/wait for.
2703 if (submitted
< to_submit
)
2704 min_complete
= min_t(unsigned, submitted
, min_complete
);
2706 if (ctx
->flags
& IORING_SETUP_IOPOLL
) {
2707 mutex_lock(&ctx
->uring_lock
);
2708 ret
= io_iopoll_check(ctx
, &nr_events
, min_complete
);
2709 mutex_unlock(&ctx
->uring_lock
);
2711 ret
= io_cqring_wait(ctx
, min_complete
, sig
, sigsz
);
2716 io_ring_drop_ctx_refs(ctx
, 1);
2719 return submitted
? submitted
: ret
;
2722 static const struct file_operations io_uring_fops
= {
2723 .release
= io_uring_release
,
2724 .mmap
= io_uring_mmap
,
2725 .poll
= io_uring_poll
,
2726 .fasync
= io_uring_fasync
,
2729 static int io_allocate_scq_urings(struct io_ring_ctx
*ctx
,
2730 struct io_uring_params
*p
)
2732 struct io_sq_ring
*sq_ring
;
2733 struct io_cq_ring
*cq_ring
;
2736 sq_ring
= io_mem_alloc(struct_size(sq_ring
, array
, p
->sq_entries
));
2740 ctx
->sq_ring
= sq_ring
;
2741 sq_ring
->ring_mask
= p
->sq_entries
- 1;
2742 sq_ring
->ring_entries
= p
->sq_entries
;
2743 ctx
->sq_mask
= sq_ring
->ring_mask
;
2744 ctx
->sq_entries
= sq_ring
->ring_entries
;
2746 size
= array_size(sizeof(struct io_uring_sqe
), p
->sq_entries
);
2747 if (size
== SIZE_MAX
)
2750 ctx
->sq_sqes
= io_mem_alloc(size
);
2751 if (!ctx
->sq_sqes
) {
2752 io_mem_free(ctx
->sq_ring
);
2756 cq_ring
= io_mem_alloc(struct_size(cq_ring
, cqes
, p
->cq_entries
));
2758 io_mem_free(ctx
->sq_ring
);
2759 io_mem_free(ctx
->sq_sqes
);
2763 ctx
->cq_ring
= cq_ring
;
2764 cq_ring
->ring_mask
= p
->cq_entries
- 1;
2765 cq_ring
->ring_entries
= p
->cq_entries
;
2766 ctx
->cq_mask
= cq_ring
->ring_mask
;
2767 ctx
->cq_entries
= cq_ring
->ring_entries
;
2772 * Allocate an anonymous fd, this is what constitutes the application
2773 * visible backing of an io_uring instance. The application mmaps this
2774 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
2775 * we have to tie this fd to a socket for file garbage collection purposes.
2777 static int io_uring_get_fd(struct io_ring_ctx
*ctx
)
2782 #if defined(CONFIG_UNIX)
2783 ret
= sock_create_kern(&init_net
, PF_UNIX
, SOCK_RAW
, IPPROTO_IP
,
2789 ret
= get_unused_fd_flags(O_RDWR
| O_CLOEXEC
);
2793 file
= anon_inode_getfile("[io_uring]", &io_uring_fops
, ctx
,
2794 O_RDWR
| O_CLOEXEC
);
2797 ret
= PTR_ERR(file
);
2801 #if defined(CONFIG_UNIX)
2802 ctx
->ring_sock
->file
= file
;
2803 ctx
->ring_sock
->sk
->sk_user_data
= ctx
;
2805 fd_install(ret
, file
);
2808 #if defined(CONFIG_UNIX)
2809 sock_release(ctx
->ring_sock
);
2810 ctx
->ring_sock
= NULL
;
2815 static int io_uring_create(unsigned entries
, struct io_uring_params
*p
)
2817 struct user_struct
*user
= NULL
;
2818 struct io_ring_ctx
*ctx
;
2822 if (!entries
|| entries
> IORING_MAX_ENTRIES
)
2826 * Use twice as many entries for the CQ ring. It's possible for the
2827 * application to drive a higher depth than the size of the SQ ring,
2828 * since the sqes are only used at submission time. This allows for
2829 * some flexibility in overcommitting a bit.
2831 p
->sq_entries
= roundup_pow_of_two(entries
);
2832 p
->cq_entries
= 2 * p
->sq_entries
;
2834 user
= get_uid(current_user());
2835 account_mem
= !capable(CAP_IPC_LOCK
);
2838 ret
= io_account_mem(user
,
2839 ring_pages(p
->sq_entries
, p
->cq_entries
));
2846 ctx
= io_ring_ctx_alloc(p
);
2849 io_unaccount_mem(user
, ring_pages(p
->sq_entries
,
2854 ctx
->compat
= in_compat_syscall();
2855 ctx
->account_mem
= account_mem
;
2858 ret
= io_allocate_scq_urings(ctx
, p
);
2862 ret
= io_sq_offload_start(ctx
, p
);
2866 ret
= io_uring_get_fd(ctx
);
2870 memset(&p
->sq_off
, 0, sizeof(p
->sq_off
));
2871 p
->sq_off
.head
= offsetof(struct io_sq_ring
, r
.head
);
2872 p
->sq_off
.tail
= offsetof(struct io_sq_ring
, r
.tail
);
2873 p
->sq_off
.ring_mask
= offsetof(struct io_sq_ring
, ring_mask
);
2874 p
->sq_off
.ring_entries
= offsetof(struct io_sq_ring
, ring_entries
);
2875 p
->sq_off
.flags
= offsetof(struct io_sq_ring
, flags
);
2876 p
->sq_off
.dropped
= offsetof(struct io_sq_ring
, dropped
);
2877 p
->sq_off
.array
= offsetof(struct io_sq_ring
, array
);
2879 memset(&p
->cq_off
, 0, sizeof(p
->cq_off
));
2880 p
->cq_off
.head
= offsetof(struct io_cq_ring
, r
.head
);
2881 p
->cq_off
.tail
= offsetof(struct io_cq_ring
, r
.tail
);
2882 p
->cq_off
.ring_mask
= offsetof(struct io_cq_ring
, ring_mask
);
2883 p
->cq_off
.ring_entries
= offsetof(struct io_cq_ring
, ring_entries
);
2884 p
->cq_off
.overflow
= offsetof(struct io_cq_ring
, overflow
);
2885 p
->cq_off
.cqes
= offsetof(struct io_cq_ring
, cqes
);
2888 io_ring_ctx_wait_and_kill(ctx
);
2893 * Sets up an aio uring context, and returns the fd. Applications asks for a
2894 * ring size, we return the actual sq/cq ring sizes (among other things) in the
2895 * params structure passed in.
2897 static long io_uring_setup(u32 entries
, struct io_uring_params __user
*params
)
2899 struct io_uring_params p
;
2903 if (copy_from_user(&p
, params
, sizeof(p
)))
2905 for (i
= 0; i
< ARRAY_SIZE(p
.resv
); i
++) {
2910 if (p
.flags
& ~(IORING_SETUP_IOPOLL
| IORING_SETUP_SQPOLL
|
2911 IORING_SETUP_SQ_AFF
))
2914 ret
= io_uring_create(entries
, &p
);
2918 if (copy_to_user(params
, &p
, sizeof(p
)))
2924 SYSCALL_DEFINE2(io_uring_setup
, u32
, entries
,
2925 struct io_uring_params __user
*, params
)
2927 return io_uring_setup(entries
, params
);
2930 static int __io_uring_register(struct io_ring_ctx
*ctx
, unsigned opcode
,
2931 void __user
*arg
, unsigned nr_args
)
2932 __releases(ctx
->uring_lock
)
2933 __acquires(ctx
->uring_lock
)
2937 percpu_ref_kill(&ctx
->refs
);
2940 * Drop uring mutex before waiting for references to exit. If another
2941 * thread is currently inside io_uring_enter() it might need to grab
2942 * the uring_lock to make progress. If we hold it here across the drain
2943 * wait, then we can deadlock. It's safe to drop the mutex here, since
2944 * no new references will come in after we've killed the percpu ref.
2946 mutex_unlock(&ctx
->uring_lock
);
2947 wait_for_completion(&ctx
->ctx_done
);
2948 mutex_lock(&ctx
->uring_lock
);
2951 case IORING_REGISTER_BUFFERS
:
2952 ret
= io_sqe_buffer_register(ctx
, arg
, nr_args
);
2954 case IORING_UNREGISTER_BUFFERS
:
2958 ret
= io_sqe_buffer_unregister(ctx
);
2960 case IORING_REGISTER_FILES
:
2961 ret
= io_sqe_files_register(ctx
, arg
, nr_args
);
2963 case IORING_UNREGISTER_FILES
:
2967 ret
= io_sqe_files_unregister(ctx
);
2974 /* bring the ctx back to life */
2975 reinit_completion(&ctx
->ctx_done
);
2976 percpu_ref_reinit(&ctx
->refs
);
2980 SYSCALL_DEFINE4(io_uring_register
, unsigned int, fd
, unsigned int, opcode
,
2981 void __user
*, arg
, unsigned int, nr_args
)
2983 struct io_ring_ctx
*ctx
;
2992 if (f
.file
->f_op
!= &io_uring_fops
)
2995 ctx
= f
.file
->private_data
;
2997 mutex_lock(&ctx
->uring_lock
);
2998 ret
= __io_uring_register(ctx
, opcode
, arg
, nr_args
);
2999 mutex_unlock(&ctx
->uring_lock
);
3005 static int __init
io_uring_init(void)
3007 req_cachep
= KMEM_CACHE(io_kiocb
, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
);
3010 __initcall(io_uring_init
);