blk-mq: always free hctx after request queue is freed
[linux/fpc-iii.git] / fs / xfs / xfs_reflink.c
blob680ae7662a78ef260fd4897b244b69898a239c5a
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2016 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_da_format.h"
15 #include "xfs_da_btree.h"
16 #include "xfs_inode.h"
17 #include "xfs_trans.h"
18 #include "xfs_inode_item.h"
19 #include "xfs_bmap.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_error.h"
22 #include "xfs_dir2.h"
23 #include "xfs_dir2_priv.h"
24 #include "xfs_ioctl.h"
25 #include "xfs_trace.h"
26 #include "xfs_log.h"
27 #include "xfs_icache.h"
28 #include "xfs_pnfs.h"
29 #include "xfs_btree.h"
30 #include "xfs_refcount_btree.h"
31 #include "xfs_refcount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_trans_space.h"
34 #include "xfs_bit.h"
35 #include "xfs_alloc.h"
36 #include "xfs_quota_defs.h"
37 #include "xfs_quota.h"
38 #include "xfs_reflink.h"
39 #include "xfs_iomap.h"
40 #include "xfs_rmap_btree.h"
41 #include "xfs_sb.h"
42 #include "xfs_ag_resv.h"
45 * Copy on Write of Shared Blocks
47 * XFS must preserve "the usual" file semantics even when two files share
48 * the same physical blocks. This means that a write to one file must not
49 * alter the blocks in a different file; the way that we'll do that is
50 * through the use of a copy-on-write mechanism. At a high level, that
51 * means that when we want to write to a shared block, we allocate a new
52 * block, write the data to the new block, and if that succeeds we map the
53 * new block into the file.
55 * XFS provides a "delayed allocation" mechanism that defers the allocation
56 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
57 * possible. This reduces fragmentation by enabling the filesystem to ask
58 * for bigger chunks less often, which is exactly what we want for CoW.
60 * The delalloc mechanism begins when the kernel wants to make a block
61 * writable (write_begin or page_mkwrite). If the offset is not mapped, we
62 * create a delalloc mapping, which is a regular in-core extent, but without
63 * a real startblock. (For delalloc mappings, the startblock encodes both
64 * a flag that this is a delalloc mapping, and a worst-case estimate of how
65 * many blocks might be required to put the mapping into the BMBT.) delalloc
66 * mappings are a reservation against the free space in the filesystem;
67 * adjacent mappings can also be combined into fewer larger mappings.
69 * As an optimization, the CoW extent size hint (cowextsz) creates
70 * outsized aligned delalloc reservations in the hope of landing out of
71 * order nearby CoW writes in a single extent on disk, thereby reducing
72 * fragmentation and improving future performance.
74 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
75 * C: ------DDDDDDD--------- (CoW fork)
77 * When dirty pages are being written out (typically in writepage), the
78 * delalloc reservations are converted into unwritten mappings by
79 * allocating blocks and replacing the delalloc mapping with real ones.
80 * A delalloc mapping can be replaced by several unwritten ones if the
81 * free space is fragmented.
83 * D: --RRRRRRSSSRRRRRRRR---
84 * C: ------UUUUUUU---------
86 * We want to adapt the delalloc mechanism for copy-on-write, since the
87 * write paths are similar. The first two steps (creating the reservation
88 * and allocating the blocks) are exactly the same as delalloc except that
89 * the mappings must be stored in a separate CoW fork because we do not want
90 * to disturb the mapping in the data fork until we're sure that the write
91 * succeeded. IO completion in this case is the process of removing the old
92 * mapping from the data fork and moving the new mapping from the CoW fork to
93 * the data fork. This will be discussed shortly.
95 * For now, unaligned directio writes will be bounced back to the page cache.
96 * Block-aligned directio writes will use the same mechanism as buffered
97 * writes.
99 * Just prior to submitting the actual disk write requests, we convert
100 * the extents representing the range of the file actually being written
101 * (as opposed to extra pieces created for the cowextsize hint) to real
102 * extents. This will become important in the next step:
104 * D: --RRRRRRSSSRRRRRRRR---
105 * C: ------UUrrUUU---------
107 * CoW remapping must be done after the data block write completes,
108 * because we don't want to destroy the old data fork map until we're sure
109 * the new block has been written. Since the new mappings are kept in a
110 * separate fork, we can simply iterate these mappings to find the ones
111 * that cover the file blocks that we just CoW'd. For each extent, simply
112 * unmap the corresponding range in the data fork, map the new range into
113 * the data fork, and remove the extent from the CoW fork. Because of
114 * the presence of the cowextsize hint, however, we must be careful
115 * only to remap the blocks that we've actually written out -- we must
116 * never remap delalloc reservations nor CoW staging blocks that have
117 * yet to be written. This corresponds exactly to the real extents in
118 * the CoW fork:
120 * D: --RRRRRRrrSRRRRRRRR---
121 * C: ------UU--UUU---------
123 * Since the remapping operation can be applied to an arbitrary file
124 * range, we record the need for the remap step as a flag in the ioend
125 * instead of declaring a new IO type. This is required for direct io
126 * because we only have ioend for the whole dio, and we have to be able to
127 * remember the presence of unwritten blocks and CoW blocks with a single
128 * ioend structure. Better yet, the more ground we can cover with one
129 * ioend, the better.
133 * Given an AG extent, find the lowest-numbered run of shared blocks
134 * within that range and return the range in fbno/flen. If
135 * find_end_of_shared is true, return the longest contiguous extent of
136 * shared blocks. If there are no shared extents, fbno and flen will
137 * be set to NULLAGBLOCK and 0, respectively.
140 xfs_reflink_find_shared(
141 struct xfs_mount *mp,
142 struct xfs_trans *tp,
143 xfs_agnumber_t agno,
144 xfs_agblock_t agbno,
145 xfs_extlen_t aglen,
146 xfs_agblock_t *fbno,
147 xfs_extlen_t *flen,
148 bool find_end_of_shared)
150 struct xfs_buf *agbp;
151 struct xfs_btree_cur *cur;
152 int error;
154 error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
155 if (error)
156 return error;
157 if (!agbp)
158 return -ENOMEM;
160 cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno);
162 error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
163 find_end_of_shared);
165 xfs_btree_del_cursor(cur, error);
167 xfs_trans_brelse(tp, agbp);
168 return error;
172 * Trim the mapping to the next block where there's a change in the
173 * shared/unshared status. More specifically, this means that we
174 * find the lowest-numbered extent of shared blocks that coincides with
175 * the given block mapping. If the shared extent overlaps the start of
176 * the mapping, trim the mapping to the end of the shared extent. If
177 * the shared region intersects the mapping, trim the mapping to the
178 * start of the shared extent. If there are no shared regions that
179 * overlap, just return the original extent.
182 xfs_reflink_trim_around_shared(
183 struct xfs_inode *ip,
184 struct xfs_bmbt_irec *irec,
185 bool *shared)
187 xfs_agnumber_t agno;
188 xfs_agblock_t agbno;
189 xfs_extlen_t aglen;
190 xfs_agblock_t fbno;
191 xfs_extlen_t flen;
192 int error = 0;
194 /* Holes, unwritten, and delalloc extents cannot be shared */
195 if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_real_extent(irec)) {
196 *shared = false;
197 return 0;
200 trace_xfs_reflink_trim_around_shared(ip, irec);
202 agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
203 agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
204 aglen = irec->br_blockcount;
206 error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
207 aglen, &fbno, &flen, true);
208 if (error)
209 return error;
211 *shared = false;
212 if (fbno == NULLAGBLOCK) {
213 /* No shared blocks at all. */
214 return 0;
215 } else if (fbno == agbno) {
217 * The start of this extent is shared. Truncate the
218 * mapping at the end of the shared region so that a
219 * subsequent iteration starts at the start of the
220 * unshared region.
222 irec->br_blockcount = flen;
223 *shared = true;
224 return 0;
225 } else {
227 * There's a shared extent midway through this extent.
228 * Truncate the mapping at the start of the shared
229 * extent so that a subsequent iteration starts at the
230 * start of the shared region.
232 irec->br_blockcount = fbno - agbno;
233 return 0;
237 bool
238 xfs_inode_need_cow(
239 struct xfs_inode *ip,
240 struct xfs_bmbt_irec *imap,
241 bool *shared)
243 /* We can't update any real extents in always COW mode. */
244 if (xfs_is_always_cow_inode(ip) &&
245 !isnullstartblock(imap->br_startblock)) {
246 *shared = true;
247 return 0;
250 /* Trim the mapping to the nearest shared extent boundary. */
251 return xfs_reflink_trim_around_shared(ip, imap, shared);
254 static int
255 xfs_reflink_convert_cow_locked(
256 struct xfs_inode *ip,
257 xfs_fileoff_t offset_fsb,
258 xfs_filblks_t count_fsb)
260 struct xfs_iext_cursor icur;
261 struct xfs_bmbt_irec got;
262 struct xfs_btree_cur *dummy_cur = NULL;
263 int dummy_logflags;
264 int error = 0;
266 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
267 return 0;
269 do {
270 if (got.br_startoff >= offset_fsb + count_fsb)
271 break;
272 if (got.br_state == XFS_EXT_NORM)
273 continue;
274 if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
275 return -EIO;
277 xfs_trim_extent(&got, offset_fsb, count_fsb);
278 if (!got.br_blockcount)
279 continue;
281 got.br_state = XFS_EXT_NORM;
282 error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
283 XFS_COW_FORK, &icur, &dummy_cur, &got,
284 &dummy_logflags);
285 if (error)
286 return error;
287 } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
289 return error;
292 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
294 xfs_reflink_convert_cow(
295 struct xfs_inode *ip,
296 xfs_off_t offset,
297 xfs_off_t count)
299 struct xfs_mount *mp = ip->i_mount;
300 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
301 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
302 xfs_filblks_t count_fsb = end_fsb - offset_fsb;
303 int error;
305 ASSERT(count != 0);
307 xfs_ilock(ip, XFS_ILOCK_EXCL);
308 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
309 xfs_iunlock(ip, XFS_ILOCK_EXCL);
310 return error;
314 * Find the extent that maps the given range in the COW fork. Even if the extent
315 * is not shared we might have a preallocation for it in the COW fork. If so we
316 * use it that rather than trigger a new allocation.
318 static int
319 xfs_find_trim_cow_extent(
320 struct xfs_inode *ip,
321 struct xfs_bmbt_irec *imap,
322 bool *shared,
323 bool *found)
325 xfs_fileoff_t offset_fsb = imap->br_startoff;
326 xfs_filblks_t count_fsb = imap->br_blockcount;
327 struct xfs_iext_cursor icur;
328 struct xfs_bmbt_irec got;
330 *found = false;
333 * If we don't find an overlapping extent, trim the range we need to
334 * allocate to fit the hole we found.
336 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
337 got.br_startoff = offset_fsb + count_fsb;
338 if (got.br_startoff > offset_fsb) {
339 xfs_trim_extent(imap, imap->br_startoff,
340 got.br_startoff - imap->br_startoff);
341 return xfs_inode_need_cow(ip, imap, shared);
344 *shared = true;
345 if (isnullstartblock(got.br_startblock)) {
346 xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
347 return 0;
350 /* real extent found - no need to allocate */
351 xfs_trim_extent(&got, offset_fsb, count_fsb);
352 *imap = got;
353 *found = true;
354 return 0;
357 /* Allocate all CoW reservations covering a range of blocks in a file. */
359 xfs_reflink_allocate_cow(
360 struct xfs_inode *ip,
361 struct xfs_bmbt_irec *imap,
362 bool *shared,
363 uint *lockmode,
364 bool convert_now)
366 struct xfs_mount *mp = ip->i_mount;
367 xfs_fileoff_t offset_fsb = imap->br_startoff;
368 xfs_filblks_t count_fsb = imap->br_blockcount;
369 struct xfs_trans *tp;
370 int nimaps, error = 0;
371 bool found;
372 xfs_filblks_t resaligned;
373 xfs_extlen_t resblks = 0;
375 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
376 if (!ip->i_cowfp) {
377 ASSERT(!xfs_is_reflink_inode(ip));
378 xfs_ifork_init_cow(ip);
381 error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
382 if (error || !*shared)
383 return error;
384 if (found)
385 goto convert;
387 resaligned = xfs_aligned_fsb_count(imap->br_startoff,
388 imap->br_blockcount, xfs_get_cowextsz_hint(ip));
389 resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
391 xfs_iunlock(ip, *lockmode);
392 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
393 *lockmode = XFS_ILOCK_EXCL;
394 xfs_ilock(ip, *lockmode);
396 if (error)
397 return error;
399 error = xfs_qm_dqattach_locked(ip, false);
400 if (error)
401 goto out_trans_cancel;
404 * Check for an overlapping extent again now that we dropped the ilock.
406 error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
407 if (error || !*shared)
408 goto out_trans_cancel;
409 if (found) {
410 xfs_trans_cancel(tp);
411 goto convert;
414 error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
415 XFS_QMOPT_RES_REGBLKS);
416 if (error)
417 goto out_trans_cancel;
419 xfs_trans_ijoin(tp, ip, 0);
421 /* Allocate the entire reservation as unwritten blocks. */
422 nimaps = 1;
423 error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
424 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC,
425 resblks, imap, &nimaps);
426 if (error)
427 goto out_unreserve;
429 xfs_inode_set_cowblocks_tag(ip);
430 error = xfs_trans_commit(tp);
431 if (error)
432 return error;
435 * Allocation succeeded but the requested range was not even partially
436 * satisfied? Bail out!
438 if (nimaps == 0)
439 return -ENOSPC;
440 convert:
441 xfs_trim_extent(imap, offset_fsb, count_fsb);
443 * COW fork extents are supposed to remain unwritten until we're ready
444 * to initiate a disk write. For direct I/O we are going to write the
445 * data and need the conversion, but for buffered writes we're done.
447 if (!convert_now || imap->br_state == XFS_EXT_NORM)
448 return 0;
449 trace_xfs_reflink_convert_cow(ip, imap);
450 return xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
452 out_unreserve:
453 xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
454 XFS_QMOPT_RES_REGBLKS);
455 out_trans_cancel:
456 xfs_trans_cancel(tp);
457 return error;
461 * Cancel CoW reservations for some block range of an inode.
463 * If cancel_real is true this function cancels all COW fork extents for the
464 * inode; if cancel_real is false, real extents are not cleared.
466 * Caller must have already joined the inode to the current transaction. The
467 * inode will be joined to the transaction returned to the caller.
470 xfs_reflink_cancel_cow_blocks(
471 struct xfs_inode *ip,
472 struct xfs_trans **tpp,
473 xfs_fileoff_t offset_fsb,
474 xfs_fileoff_t end_fsb,
475 bool cancel_real)
477 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
478 struct xfs_bmbt_irec got, del;
479 struct xfs_iext_cursor icur;
480 int error = 0;
482 if (!xfs_inode_has_cow_data(ip))
483 return 0;
484 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
485 return 0;
487 /* Walk backwards until we're out of the I/O range... */
488 while (got.br_startoff + got.br_blockcount > offset_fsb) {
489 del = got;
490 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
492 /* Extent delete may have bumped ext forward */
493 if (!del.br_blockcount) {
494 xfs_iext_prev(ifp, &icur);
495 goto next_extent;
498 trace_xfs_reflink_cancel_cow(ip, &del);
500 if (isnullstartblock(del.br_startblock)) {
501 error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
502 &icur, &got, &del);
503 if (error)
504 break;
505 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
506 ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
508 /* Free the CoW orphan record. */
509 error = xfs_refcount_free_cow_extent(*tpp,
510 del.br_startblock, del.br_blockcount);
511 if (error)
512 break;
514 xfs_bmap_add_free(*tpp, del.br_startblock,
515 del.br_blockcount, NULL);
517 /* Roll the transaction */
518 error = xfs_defer_finish(tpp);
519 if (error)
520 break;
522 /* Remove the mapping from the CoW fork. */
523 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
525 /* Remove the quota reservation */
526 error = xfs_trans_reserve_quota_nblks(NULL, ip,
527 -(long)del.br_blockcount, 0,
528 XFS_QMOPT_RES_REGBLKS);
529 if (error)
530 break;
531 } else {
532 /* Didn't do anything, push cursor back. */
533 xfs_iext_prev(ifp, &icur);
535 next_extent:
536 if (!xfs_iext_get_extent(ifp, &icur, &got))
537 break;
540 /* clear tag if cow fork is emptied */
541 if (!ifp->if_bytes)
542 xfs_inode_clear_cowblocks_tag(ip);
543 return error;
547 * Cancel CoW reservations for some byte range of an inode.
549 * If cancel_real is true this function cancels all COW fork extents for the
550 * inode; if cancel_real is false, real extents are not cleared.
553 xfs_reflink_cancel_cow_range(
554 struct xfs_inode *ip,
555 xfs_off_t offset,
556 xfs_off_t count,
557 bool cancel_real)
559 struct xfs_trans *tp;
560 xfs_fileoff_t offset_fsb;
561 xfs_fileoff_t end_fsb;
562 int error;
564 trace_xfs_reflink_cancel_cow_range(ip, offset, count);
565 ASSERT(ip->i_cowfp);
567 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
568 if (count == NULLFILEOFF)
569 end_fsb = NULLFILEOFF;
570 else
571 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
573 /* Start a rolling transaction to remove the mappings */
574 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
575 0, 0, XFS_TRANS_NOFS, &tp);
576 if (error)
577 goto out;
579 xfs_ilock(ip, XFS_ILOCK_EXCL);
580 xfs_trans_ijoin(tp, ip, 0);
582 /* Scrape out the old CoW reservations */
583 error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
584 cancel_real);
585 if (error)
586 goto out_cancel;
588 error = xfs_trans_commit(tp);
590 xfs_iunlock(ip, XFS_ILOCK_EXCL);
591 return error;
593 out_cancel:
594 xfs_trans_cancel(tp);
595 xfs_iunlock(ip, XFS_ILOCK_EXCL);
596 out:
597 trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
598 return error;
602 * Remap part of the CoW fork into the data fork.
604 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
605 * into the data fork; this function will remap what it can (at the end of the
606 * range) and update @end_fsb appropriately. Each remap gets its own
607 * transaction because we can end up merging and splitting bmbt blocks for
608 * every remap operation and we'd like to keep the block reservation
609 * requirements as low as possible.
611 STATIC int
612 xfs_reflink_end_cow_extent(
613 struct xfs_inode *ip,
614 xfs_fileoff_t offset_fsb,
615 xfs_fileoff_t *end_fsb)
617 struct xfs_bmbt_irec got, del;
618 struct xfs_iext_cursor icur;
619 struct xfs_mount *mp = ip->i_mount;
620 struct xfs_trans *tp;
621 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
622 xfs_filblks_t rlen;
623 unsigned int resblks;
624 int error;
626 /* No COW extents? That's easy! */
627 if (ifp->if_bytes == 0) {
628 *end_fsb = offset_fsb;
629 return 0;
632 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
633 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
634 XFS_TRANS_RESERVE | XFS_TRANS_NOFS, &tp);
635 if (error)
636 return error;
639 * Lock the inode. We have to ijoin without automatic unlock because
640 * the lead transaction is the refcountbt record deletion; the data
641 * fork update follows as a deferred log item.
643 xfs_ilock(ip, XFS_ILOCK_EXCL);
644 xfs_trans_ijoin(tp, ip, 0);
647 * In case of racing, overlapping AIO writes no COW extents might be
648 * left by the time I/O completes for the loser of the race. In that
649 * case we are done.
651 if (!xfs_iext_lookup_extent_before(ip, ifp, end_fsb, &icur, &got) ||
652 got.br_startoff + got.br_blockcount <= offset_fsb) {
653 *end_fsb = offset_fsb;
654 goto out_cancel;
658 * Structure copy @got into @del, then trim @del to the range that we
659 * were asked to remap. We preserve @got for the eventual CoW fork
660 * deletion; from now on @del represents the mapping that we're
661 * actually remapping.
663 del = got;
664 xfs_trim_extent(&del, offset_fsb, *end_fsb - offset_fsb);
666 ASSERT(del.br_blockcount > 0);
669 * Only remap real extents that contain data. With AIO, speculative
670 * preallocations can leak into the range we are called upon, and we
671 * need to skip them.
673 if (!xfs_bmap_is_real_extent(&got)) {
674 *end_fsb = del.br_startoff;
675 goto out_cancel;
678 /* Unmap the old blocks in the data fork. */
679 rlen = del.br_blockcount;
680 error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
681 if (error)
682 goto out_cancel;
684 /* Trim the extent to whatever got unmapped. */
685 xfs_trim_extent(&del, del.br_startoff + rlen, del.br_blockcount - rlen);
686 trace_xfs_reflink_cow_remap(ip, &del);
688 /* Free the CoW orphan record. */
689 error = xfs_refcount_free_cow_extent(tp, del.br_startblock,
690 del.br_blockcount);
691 if (error)
692 goto out_cancel;
694 /* Map the new blocks into the data fork. */
695 error = xfs_bmap_map_extent(tp, ip, &del);
696 if (error)
697 goto out_cancel;
699 /* Charge this new data fork mapping to the on-disk quota. */
700 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
701 (long)del.br_blockcount);
703 /* Remove the mapping from the CoW fork. */
704 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
706 error = xfs_trans_commit(tp);
707 xfs_iunlock(ip, XFS_ILOCK_EXCL);
708 if (error)
709 return error;
711 /* Update the caller about how much progress we made. */
712 *end_fsb = del.br_startoff;
713 return 0;
715 out_cancel:
716 xfs_trans_cancel(tp);
717 xfs_iunlock(ip, XFS_ILOCK_EXCL);
718 return error;
722 * Remap parts of a file's data fork after a successful CoW.
725 xfs_reflink_end_cow(
726 struct xfs_inode *ip,
727 xfs_off_t offset,
728 xfs_off_t count)
730 xfs_fileoff_t offset_fsb;
731 xfs_fileoff_t end_fsb;
732 int error = 0;
734 trace_xfs_reflink_end_cow(ip, offset, count);
736 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
737 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
740 * Walk backwards until we're out of the I/O range. The loop function
741 * repeatedly cycles the ILOCK to allocate one transaction per remapped
742 * extent.
744 * If we're being called by writeback then the the pages will still
745 * have PageWriteback set, which prevents races with reflink remapping
746 * and truncate. Reflink remapping prevents races with writeback by
747 * taking the iolock and mmaplock before flushing the pages and
748 * remapping, which means there won't be any further writeback or page
749 * cache dirtying until the reflink completes.
751 * We should never have two threads issuing writeback for the same file
752 * region. There are also have post-eof checks in the writeback
753 * preparation code so that we don't bother writing out pages that are
754 * about to be truncated.
756 * If we're being called as part of directio write completion, the dio
757 * count is still elevated, which reflink and truncate will wait for.
758 * Reflink remapping takes the iolock and mmaplock and waits for
759 * pending dio to finish, which should prevent any directio until the
760 * remap completes. Multiple concurrent directio writes to the same
761 * region are handled by end_cow processing only occurring for the
762 * threads which succeed; the outcome of multiple overlapping direct
763 * writes is not well defined anyway.
765 * It's possible that a buffered write and a direct write could collide
766 * here (the buffered write stumbles in after the dio flushes and
767 * invalidates the page cache and immediately queues writeback), but we
768 * have never supported this 100%. If either disk write succeeds the
769 * blocks will be remapped.
771 while (end_fsb > offset_fsb && !error)
772 error = xfs_reflink_end_cow_extent(ip, offset_fsb, &end_fsb);
774 if (error)
775 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
776 return error;
780 * Free leftover CoW reservations that didn't get cleaned out.
783 xfs_reflink_recover_cow(
784 struct xfs_mount *mp)
786 xfs_agnumber_t agno;
787 int error = 0;
789 if (!xfs_sb_version_hasreflink(&mp->m_sb))
790 return 0;
792 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
793 error = xfs_refcount_recover_cow_leftovers(mp, agno);
794 if (error)
795 break;
798 return error;
802 * Reflinking (Block) Ranges of Two Files Together
804 * First, ensure that the reflink flag is set on both inodes. The flag is an
805 * optimization to avoid unnecessary refcount btree lookups in the write path.
807 * Now we can iteratively remap the range of extents (and holes) in src to the
808 * corresponding ranges in dest. Let drange and srange denote the ranges of
809 * logical blocks in dest and src touched by the reflink operation.
811 * While the length of drange is greater than zero,
812 * - Read src's bmbt at the start of srange ("imap")
813 * - If imap doesn't exist, make imap appear to start at the end of srange
814 * with zero length.
815 * - If imap starts before srange, advance imap to start at srange.
816 * - If imap goes beyond srange, truncate imap to end at the end of srange.
817 * - Punch (imap start - srange start + imap len) blocks from dest at
818 * offset (drange start).
819 * - If imap points to a real range of pblks,
820 * > Increase the refcount of the imap's pblks
821 * > Map imap's pblks into dest at the offset
822 * (drange start + imap start - srange start)
823 * - Advance drange and srange by (imap start - srange start + imap len)
825 * Finally, if the reflink made dest longer, update both the in-core and
826 * on-disk file sizes.
828 * ASCII Art Demonstration:
830 * Let's say we want to reflink this source file:
832 * ----SSSSSSS-SSSSS----SSSSSS (src file)
833 * <-------------------->
835 * into this destination file:
837 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
838 * <-------------------->
839 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
840 * Observe that the range has different logical offsets in either file.
842 * Consider that the first extent in the source file doesn't line up with our
843 * reflink range. Unmapping and remapping are separate operations, so we can
844 * unmap more blocks from the destination file than we remap.
846 * ----SSSSSSS-SSSSS----SSSSSS
847 * <------->
848 * --DDDDD---------DDDDD--DDD
849 * <------->
851 * Now remap the source extent into the destination file:
853 * ----SSSSSSS-SSSSS----SSSSSS
854 * <------->
855 * --DDDDD--SSSSSSSDDDDD--DDD
856 * <------->
858 * Do likewise with the second hole and extent in our range. Holes in the
859 * unmap range don't affect our operation.
861 * ----SSSSSSS-SSSSS----SSSSSS
862 * <---->
863 * --DDDDD--SSSSSSS-SSSSS-DDD
864 * <---->
866 * Finally, unmap and remap part of the third extent. This will increase the
867 * size of the destination file.
869 * ----SSSSSSS-SSSSS----SSSSSS
870 * <----->
871 * --DDDDD--SSSSSSS-SSSSS----SSS
872 * <----->
874 * Once we update the destination file's i_size, we're done.
878 * Ensure the reflink bit is set in both inodes.
880 STATIC int
881 xfs_reflink_set_inode_flag(
882 struct xfs_inode *src,
883 struct xfs_inode *dest)
885 struct xfs_mount *mp = src->i_mount;
886 int error;
887 struct xfs_trans *tp;
889 if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
890 return 0;
892 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
893 if (error)
894 goto out_error;
896 /* Lock both files against IO */
897 if (src->i_ino == dest->i_ino)
898 xfs_ilock(src, XFS_ILOCK_EXCL);
899 else
900 xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
902 if (!xfs_is_reflink_inode(src)) {
903 trace_xfs_reflink_set_inode_flag(src);
904 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
905 src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
906 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
907 xfs_ifork_init_cow(src);
908 } else
909 xfs_iunlock(src, XFS_ILOCK_EXCL);
911 if (src->i_ino == dest->i_ino)
912 goto commit_flags;
914 if (!xfs_is_reflink_inode(dest)) {
915 trace_xfs_reflink_set_inode_flag(dest);
916 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
917 dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
918 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
919 xfs_ifork_init_cow(dest);
920 } else
921 xfs_iunlock(dest, XFS_ILOCK_EXCL);
923 commit_flags:
924 error = xfs_trans_commit(tp);
925 if (error)
926 goto out_error;
927 return error;
929 out_error:
930 trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
931 return error;
935 * Update destination inode size & cowextsize hint, if necessary.
938 xfs_reflink_update_dest(
939 struct xfs_inode *dest,
940 xfs_off_t newlen,
941 xfs_extlen_t cowextsize,
942 unsigned int remap_flags)
944 struct xfs_mount *mp = dest->i_mount;
945 struct xfs_trans *tp;
946 int error;
948 if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
949 return 0;
951 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
952 if (error)
953 goto out_error;
955 xfs_ilock(dest, XFS_ILOCK_EXCL);
956 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
958 if (newlen > i_size_read(VFS_I(dest))) {
959 trace_xfs_reflink_update_inode_size(dest, newlen);
960 i_size_write(VFS_I(dest), newlen);
961 dest->i_d.di_size = newlen;
964 if (cowextsize) {
965 dest->i_d.di_cowextsize = cowextsize;
966 dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
969 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
971 error = xfs_trans_commit(tp);
972 if (error)
973 goto out_error;
974 return error;
976 out_error:
977 trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
978 return error;
982 * Do we have enough reserve in this AG to handle a reflink? The refcount
983 * btree already reserved all the space it needs, but the rmap btree can grow
984 * infinitely, so we won't allow more reflinks when the AG is down to the
985 * btree reserves.
987 static int
988 xfs_reflink_ag_has_free_space(
989 struct xfs_mount *mp,
990 xfs_agnumber_t agno)
992 struct xfs_perag *pag;
993 int error = 0;
995 if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
996 return 0;
998 pag = xfs_perag_get(mp, agno);
999 if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
1000 xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
1001 error = -ENOSPC;
1002 xfs_perag_put(pag);
1003 return error;
1007 * Unmap a range of blocks from a file, then map other blocks into the hole.
1008 * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
1009 * The extent irec is mapped into dest at irec->br_startoff.
1011 STATIC int
1012 xfs_reflink_remap_extent(
1013 struct xfs_inode *ip,
1014 struct xfs_bmbt_irec *irec,
1015 xfs_fileoff_t destoff,
1016 xfs_off_t new_isize)
1018 struct xfs_mount *mp = ip->i_mount;
1019 bool real_extent = xfs_bmap_is_real_extent(irec);
1020 struct xfs_trans *tp;
1021 unsigned int resblks;
1022 struct xfs_bmbt_irec uirec;
1023 xfs_filblks_t rlen;
1024 xfs_filblks_t unmap_len;
1025 xfs_off_t newlen;
1026 int error;
1028 unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
1029 trace_xfs_reflink_punch_range(ip, destoff, unmap_len);
1031 /* No reflinking if we're low on space */
1032 if (real_extent) {
1033 error = xfs_reflink_ag_has_free_space(mp,
1034 XFS_FSB_TO_AGNO(mp, irec->br_startblock));
1035 if (error)
1036 goto out;
1039 /* Start a rolling transaction to switch the mappings */
1040 resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
1041 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1042 if (error)
1043 goto out;
1045 xfs_ilock(ip, XFS_ILOCK_EXCL);
1046 xfs_trans_ijoin(tp, ip, 0);
1048 /* If we're not just clearing space, then do we have enough quota? */
1049 if (real_extent) {
1050 error = xfs_trans_reserve_quota_nblks(tp, ip,
1051 irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS);
1052 if (error)
1053 goto out_cancel;
1056 trace_xfs_reflink_remap(ip, irec->br_startoff,
1057 irec->br_blockcount, irec->br_startblock);
1059 /* Unmap the old blocks in the data fork. */
1060 rlen = unmap_len;
1061 while (rlen) {
1062 ASSERT(tp->t_firstblock == NULLFSBLOCK);
1063 error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1);
1064 if (error)
1065 goto out_cancel;
1068 * Trim the extent to whatever got unmapped.
1069 * Remember, bunmapi works backwards.
1071 uirec.br_startblock = irec->br_startblock + rlen;
1072 uirec.br_startoff = irec->br_startoff + rlen;
1073 uirec.br_blockcount = unmap_len - rlen;
1074 unmap_len = rlen;
1076 /* If this isn't a real mapping, we're done. */
1077 if (!real_extent || uirec.br_blockcount == 0)
1078 goto next_extent;
1080 trace_xfs_reflink_remap(ip, uirec.br_startoff,
1081 uirec.br_blockcount, uirec.br_startblock);
1083 /* Update the refcount tree */
1084 error = xfs_refcount_increase_extent(tp, &uirec);
1085 if (error)
1086 goto out_cancel;
1088 /* Map the new blocks into the data fork. */
1089 error = xfs_bmap_map_extent(tp, ip, &uirec);
1090 if (error)
1091 goto out_cancel;
1093 /* Update quota accounting. */
1094 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
1095 uirec.br_blockcount);
1097 /* Update dest isize if needed. */
1098 newlen = XFS_FSB_TO_B(mp,
1099 uirec.br_startoff + uirec.br_blockcount);
1100 newlen = min_t(xfs_off_t, newlen, new_isize);
1101 if (newlen > i_size_read(VFS_I(ip))) {
1102 trace_xfs_reflink_update_inode_size(ip, newlen);
1103 i_size_write(VFS_I(ip), newlen);
1104 ip->i_d.di_size = newlen;
1105 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1108 next_extent:
1109 /* Process all the deferred stuff. */
1110 error = xfs_defer_finish(&tp);
1111 if (error)
1112 goto out_cancel;
1115 error = xfs_trans_commit(tp);
1116 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1117 if (error)
1118 goto out;
1119 return 0;
1121 out_cancel:
1122 xfs_trans_cancel(tp);
1123 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1124 out:
1125 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1126 return error;
1130 * Iteratively remap one file's extents (and holes) to another's.
1133 xfs_reflink_remap_blocks(
1134 struct xfs_inode *src,
1135 loff_t pos_in,
1136 struct xfs_inode *dest,
1137 loff_t pos_out,
1138 loff_t remap_len,
1139 loff_t *remapped)
1141 struct xfs_bmbt_irec imap;
1142 xfs_fileoff_t srcoff;
1143 xfs_fileoff_t destoff;
1144 xfs_filblks_t len;
1145 xfs_filblks_t range_len;
1146 xfs_filblks_t remapped_len = 0;
1147 xfs_off_t new_isize = pos_out + remap_len;
1148 int nimaps;
1149 int error = 0;
1151 destoff = XFS_B_TO_FSBT(src->i_mount, pos_out);
1152 srcoff = XFS_B_TO_FSBT(src->i_mount, pos_in);
1153 len = XFS_B_TO_FSB(src->i_mount, remap_len);
1155 /* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
1156 while (len) {
1157 uint lock_mode;
1159 trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
1160 dest, destoff);
1162 /* Read extent from the source file */
1163 nimaps = 1;
1164 lock_mode = xfs_ilock_data_map_shared(src);
1165 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1166 xfs_iunlock(src, lock_mode);
1167 if (error)
1168 break;
1169 ASSERT(nimaps == 1);
1171 trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_DATA_FORK,
1172 &imap);
1174 /* Translate imap into the destination file. */
1175 range_len = imap.br_startoff + imap.br_blockcount - srcoff;
1176 imap.br_startoff += destoff - srcoff;
1178 /* Clear dest from destoff to the end of imap and map it in. */
1179 error = xfs_reflink_remap_extent(dest, &imap, destoff,
1180 new_isize);
1181 if (error)
1182 break;
1184 if (fatal_signal_pending(current)) {
1185 error = -EINTR;
1186 break;
1189 /* Advance drange/srange */
1190 srcoff += range_len;
1191 destoff += range_len;
1192 len -= range_len;
1193 remapped_len += range_len;
1196 if (error)
1197 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1198 *remapped = min_t(loff_t, remap_len,
1199 XFS_FSB_TO_B(src->i_mount, remapped_len));
1200 return error;
1204 * Grab the exclusive iolock for a data copy from src to dest, making
1205 * sure to abide vfs locking order (lowest pointer value goes first) and
1206 * breaking the pnfs layout leases on dest before proceeding. The loop
1207 * is needed because we cannot call the blocking break_layout() with the
1208 * src iolock held, and therefore have to back out both locks.
1210 static int
1211 xfs_iolock_two_inodes_and_break_layout(
1212 struct inode *src,
1213 struct inode *dest)
1215 int error;
1217 retry:
1218 if (src < dest) {
1219 inode_lock_shared(src);
1220 inode_lock_nested(dest, I_MUTEX_NONDIR2);
1221 } else {
1222 /* src >= dest */
1223 inode_lock(dest);
1226 error = break_layout(dest, false);
1227 if (error == -EWOULDBLOCK) {
1228 inode_unlock(dest);
1229 if (src < dest)
1230 inode_unlock_shared(src);
1231 error = break_layout(dest, true);
1232 if (error)
1233 return error;
1234 goto retry;
1236 if (error) {
1237 inode_unlock(dest);
1238 if (src < dest)
1239 inode_unlock_shared(src);
1240 return error;
1242 if (src > dest)
1243 inode_lock_shared_nested(src, I_MUTEX_NONDIR2);
1244 return 0;
1247 /* Unlock both inodes after they've been prepped for a range clone. */
1248 void
1249 xfs_reflink_remap_unlock(
1250 struct file *file_in,
1251 struct file *file_out)
1253 struct inode *inode_in = file_inode(file_in);
1254 struct xfs_inode *src = XFS_I(inode_in);
1255 struct inode *inode_out = file_inode(file_out);
1256 struct xfs_inode *dest = XFS_I(inode_out);
1257 bool same_inode = (inode_in == inode_out);
1259 xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
1260 if (!same_inode)
1261 xfs_iunlock(src, XFS_MMAPLOCK_SHARED);
1262 inode_unlock(inode_out);
1263 if (!same_inode)
1264 inode_unlock_shared(inode_in);
1268 * If we're reflinking to a point past the destination file's EOF, we must
1269 * zero any speculative post-EOF preallocations that sit between the old EOF
1270 * and the destination file offset.
1272 static int
1273 xfs_reflink_zero_posteof(
1274 struct xfs_inode *ip,
1275 loff_t pos)
1277 loff_t isize = i_size_read(VFS_I(ip));
1279 if (pos <= isize)
1280 return 0;
1282 trace_xfs_zero_eof(ip, isize, pos - isize);
1283 return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
1284 &xfs_iomap_ops);
1288 * Prepare two files for range cloning. Upon a successful return both inodes
1289 * will have the iolock and mmaplock held, the page cache of the out file will
1290 * be truncated, and any leases on the out file will have been broken. This
1291 * function borrows heavily from xfs_file_aio_write_checks.
1293 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1294 * checked that the bytes beyond EOF physically match. Hence we cannot use the
1295 * EOF block in the source dedupe range because it's not a complete block match,
1296 * hence can introduce a corruption into the file that has it's block replaced.
1298 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1299 * "block aligned" for the purposes of cloning entire files. However, if the
1300 * source file range includes the EOF block and it lands within the existing EOF
1301 * of the destination file, then we can expose stale data from beyond the source
1302 * file EOF in the destination file.
1304 * XFS doesn't support partial block sharing, so in both cases we have check
1305 * these cases ourselves. For dedupe, we can simply round the length to dedupe
1306 * down to the previous whole block and ignore the partial EOF block. While this
1307 * means we can't dedupe the last block of a file, this is an acceptible
1308 * tradeoff for simplicity on implementation.
1310 * For cloning, we want to share the partial EOF block if it is also the new EOF
1311 * block of the destination file. If the partial EOF block lies inside the
1312 * existing destination EOF, then we have to abort the clone to avoid exposing
1313 * stale data in the destination file. Hence we reject these clone attempts with
1314 * -EINVAL in this case.
1317 xfs_reflink_remap_prep(
1318 struct file *file_in,
1319 loff_t pos_in,
1320 struct file *file_out,
1321 loff_t pos_out,
1322 loff_t *len,
1323 unsigned int remap_flags)
1325 struct inode *inode_in = file_inode(file_in);
1326 struct xfs_inode *src = XFS_I(inode_in);
1327 struct inode *inode_out = file_inode(file_out);
1328 struct xfs_inode *dest = XFS_I(inode_out);
1329 bool same_inode = (inode_in == inode_out);
1330 ssize_t ret;
1332 /* Lock both files against IO */
1333 ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out);
1334 if (ret)
1335 return ret;
1336 if (same_inode)
1337 xfs_ilock(src, XFS_MMAPLOCK_EXCL);
1338 else
1339 xfs_lock_two_inodes(src, XFS_MMAPLOCK_SHARED, dest,
1340 XFS_MMAPLOCK_EXCL);
1342 /* Check file eligibility and prepare for block sharing. */
1343 ret = -EINVAL;
1344 /* Don't reflink realtime inodes */
1345 if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1346 goto out_unlock;
1348 /* Don't share DAX file data for now. */
1349 if (IS_DAX(inode_in) || IS_DAX(inode_out))
1350 goto out_unlock;
1352 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
1353 len, remap_flags);
1354 if (ret < 0 || *len == 0)
1355 goto out_unlock;
1357 /* Attach dquots to dest inode before changing block map */
1358 ret = xfs_qm_dqattach(dest);
1359 if (ret)
1360 goto out_unlock;
1363 * Zero existing post-eof speculative preallocations in the destination
1364 * file.
1366 ret = xfs_reflink_zero_posteof(dest, pos_out);
1367 if (ret)
1368 goto out_unlock;
1370 /* Set flags and remap blocks. */
1371 ret = xfs_reflink_set_inode_flag(src, dest);
1372 if (ret)
1373 goto out_unlock;
1376 * If pos_out > EOF, we may have dirtied blocks between EOF and
1377 * pos_out. In that case, we need to extend the flush and unmap to cover
1378 * from EOF to the end of the copy length.
1380 if (pos_out > XFS_ISIZE(dest)) {
1381 loff_t flen = *len + (pos_out - XFS_ISIZE(dest));
1382 ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1383 } else {
1384 ret = xfs_flush_unmap_range(dest, pos_out, *len);
1386 if (ret)
1387 goto out_unlock;
1389 return 1;
1390 out_unlock:
1391 xfs_reflink_remap_unlock(file_in, file_out);
1392 return ret;
1396 * The user wants to preemptively CoW all shared blocks in this file,
1397 * which enables us to turn off the reflink flag. Iterate all
1398 * extents which are not prealloc/delalloc to see which ranges are
1399 * mentioned in the refcount tree, then read those blocks into the
1400 * pagecache, dirty them, fsync them back out, and then we can update
1401 * the inode flag. What happens if we run out of memory? :)
1403 STATIC int
1404 xfs_reflink_dirty_extents(
1405 struct xfs_inode *ip,
1406 xfs_fileoff_t fbno,
1407 xfs_filblks_t end,
1408 xfs_off_t isize)
1410 struct xfs_mount *mp = ip->i_mount;
1411 xfs_agnumber_t agno;
1412 xfs_agblock_t agbno;
1413 xfs_extlen_t aglen;
1414 xfs_agblock_t rbno;
1415 xfs_extlen_t rlen;
1416 xfs_off_t fpos;
1417 xfs_off_t flen;
1418 struct xfs_bmbt_irec map[2];
1419 int nmaps;
1420 int error = 0;
1422 while (end - fbno > 0) {
1423 nmaps = 1;
1425 * Look for extents in the file. Skip holes, delalloc, or
1426 * unwritten extents; they can't be reflinked.
1428 error = xfs_bmapi_read(ip, fbno, end - fbno, map, &nmaps, 0);
1429 if (error)
1430 goto out;
1431 if (nmaps == 0)
1432 break;
1433 if (!xfs_bmap_is_real_extent(&map[0]))
1434 goto next;
1436 map[1] = map[0];
1437 while (map[1].br_blockcount) {
1438 agno = XFS_FSB_TO_AGNO(mp, map[1].br_startblock);
1439 agbno = XFS_FSB_TO_AGBNO(mp, map[1].br_startblock);
1440 aglen = map[1].br_blockcount;
1442 error = xfs_reflink_find_shared(mp, NULL, agno, agbno,
1443 aglen, &rbno, &rlen, true);
1444 if (error)
1445 goto out;
1446 if (rbno == NULLAGBLOCK)
1447 break;
1449 /* Dirty the pages */
1450 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1451 fpos = XFS_FSB_TO_B(mp, map[1].br_startoff +
1452 (rbno - agbno));
1453 flen = XFS_FSB_TO_B(mp, rlen);
1454 if (fpos + flen > isize)
1455 flen = isize - fpos;
1456 error = iomap_file_dirty(VFS_I(ip), fpos, flen,
1457 &xfs_iomap_ops);
1458 xfs_ilock(ip, XFS_ILOCK_EXCL);
1459 if (error)
1460 goto out;
1462 map[1].br_blockcount -= (rbno - agbno + rlen);
1463 map[1].br_startoff += (rbno - agbno + rlen);
1464 map[1].br_startblock += (rbno - agbno + rlen);
1467 next:
1468 fbno = map[0].br_startoff + map[0].br_blockcount;
1470 out:
1471 return error;
1474 /* Does this inode need the reflink flag? */
1476 xfs_reflink_inode_has_shared_extents(
1477 struct xfs_trans *tp,
1478 struct xfs_inode *ip,
1479 bool *has_shared)
1481 struct xfs_bmbt_irec got;
1482 struct xfs_mount *mp = ip->i_mount;
1483 struct xfs_ifork *ifp;
1484 xfs_agnumber_t agno;
1485 xfs_agblock_t agbno;
1486 xfs_extlen_t aglen;
1487 xfs_agblock_t rbno;
1488 xfs_extlen_t rlen;
1489 struct xfs_iext_cursor icur;
1490 bool found;
1491 int error;
1493 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1494 if (!(ifp->if_flags & XFS_IFEXTENTS)) {
1495 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1496 if (error)
1497 return error;
1500 *has_shared = false;
1501 found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1502 while (found) {
1503 if (isnullstartblock(got.br_startblock) ||
1504 got.br_state != XFS_EXT_NORM)
1505 goto next;
1506 agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1507 agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1508 aglen = got.br_blockcount;
1510 error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1511 &rbno, &rlen, false);
1512 if (error)
1513 return error;
1514 /* Is there still a shared block here? */
1515 if (rbno != NULLAGBLOCK) {
1516 *has_shared = true;
1517 return 0;
1519 next:
1520 found = xfs_iext_next_extent(ifp, &icur, &got);
1523 return 0;
1527 * Clear the inode reflink flag if there are no shared extents.
1529 * The caller is responsible for joining the inode to the transaction passed in.
1530 * The inode will be joined to the transaction that is returned to the caller.
1533 xfs_reflink_clear_inode_flag(
1534 struct xfs_inode *ip,
1535 struct xfs_trans **tpp)
1537 bool needs_flag;
1538 int error = 0;
1540 ASSERT(xfs_is_reflink_inode(ip));
1542 error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1543 if (error || needs_flag)
1544 return error;
1547 * We didn't find any shared blocks so turn off the reflink flag.
1548 * First, get rid of any leftover CoW mappings.
1550 error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true);
1551 if (error)
1552 return error;
1554 /* Clear the inode flag. */
1555 trace_xfs_reflink_unset_inode_flag(ip);
1556 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1557 xfs_inode_clear_cowblocks_tag(ip);
1558 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1560 return error;
1564 * Clear the inode reflink flag if there are no shared extents and the size
1565 * hasn't changed.
1567 STATIC int
1568 xfs_reflink_try_clear_inode_flag(
1569 struct xfs_inode *ip)
1571 struct xfs_mount *mp = ip->i_mount;
1572 struct xfs_trans *tp;
1573 int error = 0;
1575 /* Start a rolling transaction to remove the mappings */
1576 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1577 if (error)
1578 return error;
1580 xfs_ilock(ip, XFS_ILOCK_EXCL);
1581 xfs_trans_ijoin(tp, ip, 0);
1583 error = xfs_reflink_clear_inode_flag(ip, &tp);
1584 if (error)
1585 goto cancel;
1587 error = xfs_trans_commit(tp);
1588 if (error)
1589 goto out;
1591 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1592 return 0;
1593 cancel:
1594 xfs_trans_cancel(tp);
1595 out:
1596 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1597 return error;
1601 * Pre-COW all shared blocks within a given byte range of a file and turn off
1602 * the reflink flag if we unshare all of the file's blocks.
1605 xfs_reflink_unshare(
1606 struct xfs_inode *ip,
1607 xfs_off_t offset,
1608 xfs_off_t len)
1610 struct xfs_mount *mp = ip->i_mount;
1611 xfs_fileoff_t fbno;
1612 xfs_filblks_t end;
1613 xfs_off_t isize;
1614 int error;
1616 if (!xfs_is_reflink_inode(ip))
1617 return 0;
1619 trace_xfs_reflink_unshare(ip, offset, len);
1621 inode_dio_wait(VFS_I(ip));
1623 /* Try to CoW the selected ranges */
1624 xfs_ilock(ip, XFS_ILOCK_EXCL);
1625 fbno = XFS_B_TO_FSBT(mp, offset);
1626 isize = i_size_read(VFS_I(ip));
1627 end = XFS_B_TO_FSB(mp, offset + len);
1628 error = xfs_reflink_dirty_extents(ip, fbno, end, isize);
1629 if (error)
1630 goto out_unlock;
1631 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1633 /* Wait for the IO to finish */
1634 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1635 if (error)
1636 goto out;
1638 /* Turn off the reflink flag if possible. */
1639 error = xfs_reflink_try_clear_inode_flag(ip);
1640 if (error)
1641 goto out;
1643 return 0;
1645 out_unlock:
1646 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1647 out:
1648 trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1649 return error;