1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2016 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_da_format.h"
15 #include "xfs_da_btree.h"
16 #include "xfs_inode.h"
17 #include "xfs_trans.h"
18 #include "xfs_inode_item.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_error.h"
23 #include "xfs_dir2_priv.h"
24 #include "xfs_ioctl.h"
25 #include "xfs_trace.h"
27 #include "xfs_icache.h"
29 #include "xfs_btree.h"
30 #include "xfs_refcount_btree.h"
31 #include "xfs_refcount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_trans_space.h"
35 #include "xfs_alloc.h"
36 #include "xfs_quota_defs.h"
37 #include "xfs_quota.h"
38 #include "xfs_reflink.h"
39 #include "xfs_iomap.h"
40 #include "xfs_rmap_btree.h"
42 #include "xfs_ag_resv.h"
45 * Copy on Write of Shared Blocks
47 * XFS must preserve "the usual" file semantics even when two files share
48 * the same physical blocks. This means that a write to one file must not
49 * alter the blocks in a different file; the way that we'll do that is
50 * through the use of a copy-on-write mechanism. At a high level, that
51 * means that when we want to write to a shared block, we allocate a new
52 * block, write the data to the new block, and if that succeeds we map the
53 * new block into the file.
55 * XFS provides a "delayed allocation" mechanism that defers the allocation
56 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
57 * possible. This reduces fragmentation by enabling the filesystem to ask
58 * for bigger chunks less often, which is exactly what we want for CoW.
60 * The delalloc mechanism begins when the kernel wants to make a block
61 * writable (write_begin or page_mkwrite). If the offset is not mapped, we
62 * create a delalloc mapping, which is a regular in-core extent, but without
63 * a real startblock. (For delalloc mappings, the startblock encodes both
64 * a flag that this is a delalloc mapping, and a worst-case estimate of how
65 * many blocks might be required to put the mapping into the BMBT.) delalloc
66 * mappings are a reservation against the free space in the filesystem;
67 * adjacent mappings can also be combined into fewer larger mappings.
69 * As an optimization, the CoW extent size hint (cowextsz) creates
70 * outsized aligned delalloc reservations in the hope of landing out of
71 * order nearby CoW writes in a single extent on disk, thereby reducing
72 * fragmentation and improving future performance.
74 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
75 * C: ------DDDDDDD--------- (CoW fork)
77 * When dirty pages are being written out (typically in writepage), the
78 * delalloc reservations are converted into unwritten mappings by
79 * allocating blocks and replacing the delalloc mapping with real ones.
80 * A delalloc mapping can be replaced by several unwritten ones if the
81 * free space is fragmented.
83 * D: --RRRRRRSSSRRRRRRRR---
84 * C: ------UUUUUUU---------
86 * We want to adapt the delalloc mechanism for copy-on-write, since the
87 * write paths are similar. The first two steps (creating the reservation
88 * and allocating the blocks) are exactly the same as delalloc except that
89 * the mappings must be stored in a separate CoW fork because we do not want
90 * to disturb the mapping in the data fork until we're sure that the write
91 * succeeded. IO completion in this case is the process of removing the old
92 * mapping from the data fork and moving the new mapping from the CoW fork to
93 * the data fork. This will be discussed shortly.
95 * For now, unaligned directio writes will be bounced back to the page cache.
96 * Block-aligned directio writes will use the same mechanism as buffered
99 * Just prior to submitting the actual disk write requests, we convert
100 * the extents representing the range of the file actually being written
101 * (as opposed to extra pieces created for the cowextsize hint) to real
102 * extents. This will become important in the next step:
104 * D: --RRRRRRSSSRRRRRRRR---
105 * C: ------UUrrUUU---------
107 * CoW remapping must be done after the data block write completes,
108 * because we don't want to destroy the old data fork map until we're sure
109 * the new block has been written. Since the new mappings are kept in a
110 * separate fork, we can simply iterate these mappings to find the ones
111 * that cover the file blocks that we just CoW'd. For each extent, simply
112 * unmap the corresponding range in the data fork, map the new range into
113 * the data fork, and remove the extent from the CoW fork. Because of
114 * the presence of the cowextsize hint, however, we must be careful
115 * only to remap the blocks that we've actually written out -- we must
116 * never remap delalloc reservations nor CoW staging blocks that have
117 * yet to be written. This corresponds exactly to the real extents in
120 * D: --RRRRRRrrSRRRRRRRR---
121 * C: ------UU--UUU---------
123 * Since the remapping operation can be applied to an arbitrary file
124 * range, we record the need for the remap step as a flag in the ioend
125 * instead of declaring a new IO type. This is required for direct io
126 * because we only have ioend for the whole dio, and we have to be able to
127 * remember the presence of unwritten blocks and CoW blocks with a single
128 * ioend structure. Better yet, the more ground we can cover with one
133 * Given an AG extent, find the lowest-numbered run of shared blocks
134 * within that range and return the range in fbno/flen. If
135 * find_end_of_shared is true, return the longest contiguous extent of
136 * shared blocks. If there are no shared extents, fbno and flen will
137 * be set to NULLAGBLOCK and 0, respectively.
140 xfs_reflink_find_shared(
141 struct xfs_mount
*mp
,
142 struct xfs_trans
*tp
,
148 bool find_end_of_shared
)
150 struct xfs_buf
*agbp
;
151 struct xfs_btree_cur
*cur
;
154 error
= xfs_alloc_read_agf(mp
, tp
, agno
, 0, &agbp
);
160 cur
= xfs_refcountbt_init_cursor(mp
, tp
, agbp
, agno
);
162 error
= xfs_refcount_find_shared(cur
, agbno
, aglen
, fbno
, flen
,
165 xfs_btree_del_cursor(cur
, error
);
167 xfs_trans_brelse(tp
, agbp
);
172 * Trim the mapping to the next block where there's a change in the
173 * shared/unshared status. More specifically, this means that we
174 * find the lowest-numbered extent of shared blocks that coincides with
175 * the given block mapping. If the shared extent overlaps the start of
176 * the mapping, trim the mapping to the end of the shared extent. If
177 * the shared region intersects the mapping, trim the mapping to the
178 * start of the shared extent. If there are no shared regions that
179 * overlap, just return the original extent.
182 xfs_reflink_trim_around_shared(
183 struct xfs_inode
*ip
,
184 struct xfs_bmbt_irec
*irec
,
194 /* Holes, unwritten, and delalloc extents cannot be shared */
195 if (!xfs_is_cow_inode(ip
) || !xfs_bmap_is_real_extent(irec
)) {
200 trace_xfs_reflink_trim_around_shared(ip
, irec
);
202 agno
= XFS_FSB_TO_AGNO(ip
->i_mount
, irec
->br_startblock
);
203 agbno
= XFS_FSB_TO_AGBNO(ip
->i_mount
, irec
->br_startblock
);
204 aglen
= irec
->br_blockcount
;
206 error
= xfs_reflink_find_shared(ip
->i_mount
, NULL
, agno
, agbno
,
207 aglen
, &fbno
, &flen
, true);
212 if (fbno
== NULLAGBLOCK
) {
213 /* No shared blocks at all. */
215 } else if (fbno
== agbno
) {
217 * The start of this extent is shared. Truncate the
218 * mapping at the end of the shared region so that a
219 * subsequent iteration starts at the start of the
222 irec
->br_blockcount
= flen
;
227 * There's a shared extent midway through this extent.
228 * Truncate the mapping at the start of the shared
229 * extent so that a subsequent iteration starts at the
230 * start of the shared region.
232 irec
->br_blockcount
= fbno
- agbno
;
239 struct xfs_inode
*ip
,
240 struct xfs_bmbt_irec
*imap
,
243 /* We can't update any real extents in always COW mode. */
244 if (xfs_is_always_cow_inode(ip
) &&
245 !isnullstartblock(imap
->br_startblock
)) {
250 /* Trim the mapping to the nearest shared extent boundary. */
251 return xfs_reflink_trim_around_shared(ip
, imap
, shared
);
255 xfs_reflink_convert_cow_locked(
256 struct xfs_inode
*ip
,
257 xfs_fileoff_t offset_fsb
,
258 xfs_filblks_t count_fsb
)
260 struct xfs_iext_cursor icur
;
261 struct xfs_bmbt_irec got
;
262 struct xfs_btree_cur
*dummy_cur
= NULL
;
266 if (!xfs_iext_lookup_extent(ip
, ip
->i_cowfp
, offset_fsb
, &icur
, &got
))
270 if (got
.br_startoff
>= offset_fsb
+ count_fsb
)
272 if (got
.br_state
== XFS_EXT_NORM
)
274 if (WARN_ON_ONCE(isnullstartblock(got
.br_startblock
)))
277 xfs_trim_extent(&got
, offset_fsb
, count_fsb
);
278 if (!got
.br_blockcount
)
281 got
.br_state
= XFS_EXT_NORM
;
282 error
= xfs_bmap_add_extent_unwritten_real(NULL
, ip
,
283 XFS_COW_FORK
, &icur
, &dummy_cur
, &got
,
287 } while (xfs_iext_next_extent(ip
->i_cowfp
, &icur
, &got
));
292 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
294 xfs_reflink_convert_cow(
295 struct xfs_inode
*ip
,
299 struct xfs_mount
*mp
= ip
->i_mount
;
300 xfs_fileoff_t offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
301 xfs_fileoff_t end_fsb
= XFS_B_TO_FSB(mp
, offset
+ count
);
302 xfs_filblks_t count_fsb
= end_fsb
- offset_fsb
;
307 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
308 error
= xfs_reflink_convert_cow_locked(ip
, offset_fsb
, count_fsb
);
309 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
314 * Find the extent that maps the given range in the COW fork. Even if the extent
315 * is not shared we might have a preallocation for it in the COW fork. If so we
316 * use it that rather than trigger a new allocation.
319 xfs_find_trim_cow_extent(
320 struct xfs_inode
*ip
,
321 struct xfs_bmbt_irec
*imap
,
325 xfs_fileoff_t offset_fsb
= imap
->br_startoff
;
326 xfs_filblks_t count_fsb
= imap
->br_blockcount
;
327 struct xfs_iext_cursor icur
;
328 struct xfs_bmbt_irec got
;
333 * If we don't find an overlapping extent, trim the range we need to
334 * allocate to fit the hole we found.
336 if (!xfs_iext_lookup_extent(ip
, ip
->i_cowfp
, offset_fsb
, &icur
, &got
))
337 got
.br_startoff
= offset_fsb
+ count_fsb
;
338 if (got
.br_startoff
> offset_fsb
) {
339 xfs_trim_extent(imap
, imap
->br_startoff
,
340 got
.br_startoff
- imap
->br_startoff
);
341 return xfs_inode_need_cow(ip
, imap
, shared
);
345 if (isnullstartblock(got
.br_startblock
)) {
346 xfs_trim_extent(imap
, got
.br_startoff
, got
.br_blockcount
);
350 /* real extent found - no need to allocate */
351 xfs_trim_extent(&got
, offset_fsb
, count_fsb
);
357 /* Allocate all CoW reservations covering a range of blocks in a file. */
359 xfs_reflink_allocate_cow(
360 struct xfs_inode
*ip
,
361 struct xfs_bmbt_irec
*imap
,
366 struct xfs_mount
*mp
= ip
->i_mount
;
367 xfs_fileoff_t offset_fsb
= imap
->br_startoff
;
368 xfs_filblks_t count_fsb
= imap
->br_blockcount
;
369 struct xfs_trans
*tp
;
370 int nimaps
, error
= 0;
372 xfs_filblks_t resaligned
;
373 xfs_extlen_t resblks
= 0;
375 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
377 ASSERT(!xfs_is_reflink_inode(ip
));
378 xfs_ifork_init_cow(ip
);
381 error
= xfs_find_trim_cow_extent(ip
, imap
, shared
, &found
);
382 if (error
|| !*shared
)
387 resaligned
= xfs_aligned_fsb_count(imap
->br_startoff
,
388 imap
->br_blockcount
, xfs_get_cowextsz_hint(ip
));
389 resblks
= XFS_DIOSTRAT_SPACE_RES(mp
, resaligned
);
391 xfs_iunlock(ip
, *lockmode
);
392 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_write
, resblks
, 0, 0, &tp
);
393 *lockmode
= XFS_ILOCK_EXCL
;
394 xfs_ilock(ip
, *lockmode
);
399 error
= xfs_qm_dqattach_locked(ip
, false);
401 goto out_trans_cancel
;
404 * Check for an overlapping extent again now that we dropped the ilock.
406 error
= xfs_find_trim_cow_extent(ip
, imap
, shared
, &found
);
407 if (error
|| !*shared
)
408 goto out_trans_cancel
;
410 xfs_trans_cancel(tp
);
414 error
= xfs_trans_reserve_quota_nblks(tp
, ip
, resblks
, 0,
415 XFS_QMOPT_RES_REGBLKS
);
417 goto out_trans_cancel
;
419 xfs_trans_ijoin(tp
, ip
, 0);
421 /* Allocate the entire reservation as unwritten blocks. */
423 error
= xfs_bmapi_write(tp
, ip
, imap
->br_startoff
, imap
->br_blockcount
,
424 XFS_BMAPI_COWFORK
| XFS_BMAPI_PREALLOC
,
425 resblks
, imap
, &nimaps
);
429 xfs_inode_set_cowblocks_tag(ip
);
430 error
= xfs_trans_commit(tp
);
435 * Allocation succeeded but the requested range was not even partially
436 * satisfied? Bail out!
441 xfs_trim_extent(imap
, offset_fsb
, count_fsb
);
443 * COW fork extents are supposed to remain unwritten until we're ready
444 * to initiate a disk write. For direct I/O we are going to write the
445 * data and need the conversion, but for buffered writes we're done.
447 if (!convert_now
|| imap
->br_state
== XFS_EXT_NORM
)
449 trace_xfs_reflink_convert_cow(ip
, imap
);
450 return xfs_reflink_convert_cow_locked(ip
, offset_fsb
, count_fsb
);
453 xfs_trans_unreserve_quota_nblks(tp
, ip
, (long)resblks
, 0,
454 XFS_QMOPT_RES_REGBLKS
);
456 xfs_trans_cancel(tp
);
461 * Cancel CoW reservations for some block range of an inode.
463 * If cancel_real is true this function cancels all COW fork extents for the
464 * inode; if cancel_real is false, real extents are not cleared.
466 * Caller must have already joined the inode to the current transaction. The
467 * inode will be joined to the transaction returned to the caller.
470 xfs_reflink_cancel_cow_blocks(
471 struct xfs_inode
*ip
,
472 struct xfs_trans
**tpp
,
473 xfs_fileoff_t offset_fsb
,
474 xfs_fileoff_t end_fsb
,
477 struct xfs_ifork
*ifp
= XFS_IFORK_PTR(ip
, XFS_COW_FORK
);
478 struct xfs_bmbt_irec got
, del
;
479 struct xfs_iext_cursor icur
;
482 if (!xfs_inode_has_cow_data(ip
))
484 if (!xfs_iext_lookup_extent_before(ip
, ifp
, &end_fsb
, &icur
, &got
))
487 /* Walk backwards until we're out of the I/O range... */
488 while (got
.br_startoff
+ got
.br_blockcount
> offset_fsb
) {
490 xfs_trim_extent(&del
, offset_fsb
, end_fsb
- offset_fsb
);
492 /* Extent delete may have bumped ext forward */
493 if (!del
.br_blockcount
) {
494 xfs_iext_prev(ifp
, &icur
);
498 trace_xfs_reflink_cancel_cow(ip
, &del
);
500 if (isnullstartblock(del
.br_startblock
)) {
501 error
= xfs_bmap_del_extent_delay(ip
, XFS_COW_FORK
,
505 } else if (del
.br_state
== XFS_EXT_UNWRITTEN
|| cancel_real
) {
506 ASSERT((*tpp
)->t_firstblock
== NULLFSBLOCK
);
508 /* Free the CoW orphan record. */
509 error
= xfs_refcount_free_cow_extent(*tpp
,
510 del
.br_startblock
, del
.br_blockcount
);
514 xfs_bmap_add_free(*tpp
, del
.br_startblock
,
515 del
.br_blockcount
, NULL
);
517 /* Roll the transaction */
518 error
= xfs_defer_finish(tpp
);
522 /* Remove the mapping from the CoW fork. */
523 xfs_bmap_del_extent_cow(ip
, &icur
, &got
, &del
);
525 /* Remove the quota reservation */
526 error
= xfs_trans_reserve_quota_nblks(NULL
, ip
,
527 -(long)del
.br_blockcount
, 0,
528 XFS_QMOPT_RES_REGBLKS
);
532 /* Didn't do anything, push cursor back. */
533 xfs_iext_prev(ifp
, &icur
);
536 if (!xfs_iext_get_extent(ifp
, &icur
, &got
))
540 /* clear tag if cow fork is emptied */
542 xfs_inode_clear_cowblocks_tag(ip
);
547 * Cancel CoW reservations for some byte range of an inode.
549 * If cancel_real is true this function cancels all COW fork extents for the
550 * inode; if cancel_real is false, real extents are not cleared.
553 xfs_reflink_cancel_cow_range(
554 struct xfs_inode
*ip
,
559 struct xfs_trans
*tp
;
560 xfs_fileoff_t offset_fsb
;
561 xfs_fileoff_t end_fsb
;
564 trace_xfs_reflink_cancel_cow_range(ip
, offset
, count
);
567 offset_fsb
= XFS_B_TO_FSBT(ip
->i_mount
, offset
);
568 if (count
== NULLFILEOFF
)
569 end_fsb
= NULLFILEOFF
;
571 end_fsb
= XFS_B_TO_FSB(ip
->i_mount
, offset
+ count
);
573 /* Start a rolling transaction to remove the mappings */
574 error
= xfs_trans_alloc(ip
->i_mount
, &M_RES(ip
->i_mount
)->tr_write
,
575 0, 0, XFS_TRANS_NOFS
, &tp
);
579 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
580 xfs_trans_ijoin(tp
, ip
, 0);
582 /* Scrape out the old CoW reservations */
583 error
= xfs_reflink_cancel_cow_blocks(ip
, &tp
, offset_fsb
, end_fsb
,
588 error
= xfs_trans_commit(tp
);
590 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
594 xfs_trans_cancel(tp
);
595 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
597 trace_xfs_reflink_cancel_cow_range_error(ip
, error
, _RET_IP_
);
602 * Remap part of the CoW fork into the data fork.
604 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
605 * into the data fork; this function will remap what it can (at the end of the
606 * range) and update @end_fsb appropriately. Each remap gets its own
607 * transaction because we can end up merging and splitting bmbt blocks for
608 * every remap operation and we'd like to keep the block reservation
609 * requirements as low as possible.
612 xfs_reflink_end_cow_extent(
613 struct xfs_inode
*ip
,
614 xfs_fileoff_t offset_fsb
,
615 xfs_fileoff_t
*end_fsb
)
617 struct xfs_bmbt_irec got
, del
;
618 struct xfs_iext_cursor icur
;
619 struct xfs_mount
*mp
= ip
->i_mount
;
620 struct xfs_trans
*tp
;
621 struct xfs_ifork
*ifp
= XFS_IFORK_PTR(ip
, XFS_COW_FORK
);
623 unsigned int resblks
;
626 /* No COW extents? That's easy! */
627 if (ifp
->if_bytes
== 0) {
628 *end_fsb
= offset_fsb
;
632 resblks
= XFS_EXTENTADD_SPACE_RES(mp
, XFS_DATA_FORK
);
633 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_write
, resblks
, 0,
634 XFS_TRANS_RESERVE
| XFS_TRANS_NOFS
, &tp
);
639 * Lock the inode. We have to ijoin without automatic unlock because
640 * the lead transaction is the refcountbt record deletion; the data
641 * fork update follows as a deferred log item.
643 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
644 xfs_trans_ijoin(tp
, ip
, 0);
647 * In case of racing, overlapping AIO writes no COW extents might be
648 * left by the time I/O completes for the loser of the race. In that
651 if (!xfs_iext_lookup_extent_before(ip
, ifp
, end_fsb
, &icur
, &got
) ||
652 got
.br_startoff
+ got
.br_blockcount
<= offset_fsb
) {
653 *end_fsb
= offset_fsb
;
658 * Structure copy @got into @del, then trim @del to the range that we
659 * were asked to remap. We preserve @got for the eventual CoW fork
660 * deletion; from now on @del represents the mapping that we're
661 * actually remapping.
664 xfs_trim_extent(&del
, offset_fsb
, *end_fsb
- offset_fsb
);
666 ASSERT(del
.br_blockcount
> 0);
669 * Only remap real extents that contain data. With AIO, speculative
670 * preallocations can leak into the range we are called upon, and we
673 if (!xfs_bmap_is_real_extent(&got
)) {
674 *end_fsb
= del
.br_startoff
;
678 /* Unmap the old blocks in the data fork. */
679 rlen
= del
.br_blockcount
;
680 error
= __xfs_bunmapi(tp
, ip
, del
.br_startoff
, &rlen
, 0, 1);
684 /* Trim the extent to whatever got unmapped. */
685 xfs_trim_extent(&del
, del
.br_startoff
+ rlen
, del
.br_blockcount
- rlen
);
686 trace_xfs_reflink_cow_remap(ip
, &del
);
688 /* Free the CoW orphan record. */
689 error
= xfs_refcount_free_cow_extent(tp
, del
.br_startblock
,
694 /* Map the new blocks into the data fork. */
695 error
= xfs_bmap_map_extent(tp
, ip
, &del
);
699 /* Charge this new data fork mapping to the on-disk quota. */
700 xfs_trans_mod_dquot_byino(tp
, ip
, XFS_TRANS_DQ_DELBCOUNT
,
701 (long)del
.br_blockcount
);
703 /* Remove the mapping from the CoW fork. */
704 xfs_bmap_del_extent_cow(ip
, &icur
, &got
, &del
);
706 error
= xfs_trans_commit(tp
);
707 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
711 /* Update the caller about how much progress we made. */
712 *end_fsb
= del
.br_startoff
;
716 xfs_trans_cancel(tp
);
717 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
722 * Remap parts of a file's data fork after a successful CoW.
726 struct xfs_inode
*ip
,
730 xfs_fileoff_t offset_fsb
;
731 xfs_fileoff_t end_fsb
;
734 trace_xfs_reflink_end_cow(ip
, offset
, count
);
736 offset_fsb
= XFS_B_TO_FSBT(ip
->i_mount
, offset
);
737 end_fsb
= XFS_B_TO_FSB(ip
->i_mount
, offset
+ count
);
740 * Walk backwards until we're out of the I/O range. The loop function
741 * repeatedly cycles the ILOCK to allocate one transaction per remapped
744 * If we're being called by writeback then the the pages will still
745 * have PageWriteback set, which prevents races with reflink remapping
746 * and truncate. Reflink remapping prevents races with writeback by
747 * taking the iolock and mmaplock before flushing the pages and
748 * remapping, which means there won't be any further writeback or page
749 * cache dirtying until the reflink completes.
751 * We should never have two threads issuing writeback for the same file
752 * region. There are also have post-eof checks in the writeback
753 * preparation code so that we don't bother writing out pages that are
754 * about to be truncated.
756 * If we're being called as part of directio write completion, the dio
757 * count is still elevated, which reflink and truncate will wait for.
758 * Reflink remapping takes the iolock and mmaplock and waits for
759 * pending dio to finish, which should prevent any directio until the
760 * remap completes. Multiple concurrent directio writes to the same
761 * region are handled by end_cow processing only occurring for the
762 * threads which succeed; the outcome of multiple overlapping direct
763 * writes is not well defined anyway.
765 * It's possible that a buffered write and a direct write could collide
766 * here (the buffered write stumbles in after the dio flushes and
767 * invalidates the page cache and immediately queues writeback), but we
768 * have never supported this 100%. If either disk write succeeds the
769 * blocks will be remapped.
771 while (end_fsb
> offset_fsb
&& !error
)
772 error
= xfs_reflink_end_cow_extent(ip
, offset_fsb
, &end_fsb
);
775 trace_xfs_reflink_end_cow_error(ip
, error
, _RET_IP_
);
780 * Free leftover CoW reservations that didn't get cleaned out.
783 xfs_reflink_recover_cow(
784 struct xfs_mount
*mp
)
789 if (!xfs_sb_version_hasreflink(&mp
->m_sb
))
792 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
793 error
= xfs_refcount_recover_cow_leftovers(mp
, agno
);
802 * Reflinking (Block) Ranges of Two Files Together
804 * First, ensure that the reflink flag is set on both inodes. The flag is an
805 * optimization to avoid unnecessary refcount btree lookups in the write path.
807 * Now we can iteratively remap the range of extents (and holes) in src to the
808 * corresponding ranges in dest. Let drange and srange denote the ranges of
809 * logical blocks in dest and src touched by the reflink operation.
811 * While the length of drange is greater than zero,
812 * - Read src's bmbt at the start of srange ("imap")
813 * - If imap doesn't exist, make imap appear to start at the end of srange
815 * - If imap starts before srange, advance imap to start at srange.
816 * - If imap goes beyond srange, truncate imap to end at the end of srange.
817 * - Punch (imap start - srange start + imap len) blocks from dest at
818 * offset (drange start).
819 * - If imap points to a real range of pblks,
820 * > Increase the refcount of the imap's pblks
821 * > Map imap's pblks into dest at the offset
822 * (drange start + imap start - srange start)
823 * - Advance drange and srange by (imap start - srange start + imap len)
825 * Finally, if the reflink made dest longer, update both the in-core and
826 * on-disk file sizes.
828 * ASCII Art Demonstration:
830 * Let's say we want to reflink this source file:
832 * ----SSSSSSS-SSSSS----SSSSSS (src file)
833 * <-------------------->
835 * into this destination file:
837 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
838 * <-------------------->
839 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
840 * Observe that the range has different logical offsets in either file.
842 * Consider that the first extent in the source file doesn't line up with our
843 * reflink range. Unmapping and remapping are separate operations, so we can
844 * unmap more blocks from the destination file than we remap.
846 * ----SSSSSSS-SSSSS----SSSSSS
848 * --DDDDD---------DDDDD--DDD
851 * Now remap the source extent into the destination file:
853 * ----SSSSSSS-SSSSS----SSSSSS
855 * --DDDDD--SSSSSSSDDDDD--DDD
858 * Do likewise with the second hole and extent in our range. Holes in the
859 * unmap range don't affect our operation.
861 * ----SSSSSSS-SSSSS----SSSSSS
863 * --DDDDD--SSSSSSS-SSSSS-DDD
866 * Finally, unmap and remap part of the third extent. This will increase the
867 * size of the destination file.
869 * ----SSSSSSS-SSSSS----SSSSSS
871 * --DDDDD--SSSSSSS-SSSSS----SSS
874 * Once we update the destination file's i_size, we're done.
878 * Ensure the reflink bit is set in both inodes.
881 xfs_reflink_set_inode_flag(
882 struct xfs_inode
*src
,
883 struct xfs_inode
*dest
)
885 struct xfs_mount
*mp
= src
->i_mount
;
887 struct xfs_trans
*tp
;
889 if (xfs_is_reflink_inode(src
) && xfs_is_reflink_inode(dest
))
892 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_ichange
, 0, 0, 0, &tp
);
896 /* Lock both files against IO */
897 if (src
->i_ino
== dest
->i_ino
)
898 xfs_ilock(src
, XFS_ILOCK_EXCL
);
900 xfs_lock_two_inodes(src
, XFS_ILOCK_EXCL
, dest
, XFS_ILOCK_EXCL
);
902 if (!xfs_is_reflink_inode(src
)) {
903 trace_xfs_reflink_set_inode_flag(src
);
904 xfs_trans_ijoin(tp
, src
, XFS_ILOCK_EXCL
);
905 src
->i_d
.di_flags2
|= XFS_DIFLAG2_REFLINK
;
906 xfs_trans_log_inode(tp
, src
, XFS_ILOG_CORE
);
907 xfs_ifork_init_cow(src
);
909 xfs_iunlock(src
, XFS_ILOCK_EXCL
);
911 if (src
->i_ino
== dest
->i_ino
)
914 if (!xfs_is_reflink_inode(dest
)) {
915 trace_xfs_reflink_set_inode_flag(dest
);
916 xfs_trans_ijoin(tp
, dest
, XFS_ILOCK_EXCL
);
917 dest
->i_d
.di_flags2
|= XFS_DIFLAG2_REFLINK
;
918 xfs_trans_log_inode(tp
, dest
, XFS_ILOG_CORE
);
919 xfs_ifork_init_cow(dest
);
921 xfs_iunlock(dest
, XFS_ILOCK_EXCL
);
924 error
= xfs_trans_commit(tp
);
930 trace_xfs_reflink_set_inode_flag_error(dest
, error
, _RET_IP_
);
935 * Update destination inode size & cowextsize hint, if necessary.
938 xfs_reflink_update_dest(
939 struct xfs_inode
*dest
,
941 xfs_extlen_t cowextsize
,
942 unsigned int remap_flags
)
944 struct xfs_mount
*mp
= dest
->i_mount
;
945 struct xfs_trans
*tp
;
948 if (newlen
<= i_size_read(VFS_I(dest
)) && cowextsize
== 0)
951 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_ichange
, 0, 0, 0, &tp
);
955 xfs_ilock(dest
, XFS_ILOCK_EXCL
);
956 xfs_trans_ijoin(tp
, dest
, XFS_ILOCK_EXCL
);
958 if (newlen
> i_size_read(VFS_I(dest
))) {
959 trace_xfs_reflink_update_inode_size(dest
, newlen
);
960 i_size_write(VFS_I(dest
), newlen
);
961 dest
->i_d
.di_size
= newlen
;
965 dest
->i_d
.di_cowextsize
= cowextsize
;
966 dest
->i_d
.di_flags2
|= XFS_DIFLAG2_COWEXTSIZE
;
969 xfs_trans_log_inode(tp
, dest
, XFS_ILOG_CORE
);
971 error
= xfs_trans_commit(tp
);
977 trace_xfs_reflink_update_inode_size_error(dest
, error
, _RET_IP_
);
982 * Do we have enough reserve in this AG to handle a reflink? The refcount
983 * btree already reserved all the space it needs, but the rmap btree can grow
984 * infinitely, so we won't allow more reflinks when the AG is down to the
988 xfs_reflink_ag_has_free_space(
989 struct xfs_mount
*mp
,
992 struct xfs_perag
*pag
;
995 if (!xfs_sb_version_hasrmapbt(&mp
->m_sb
))
998 pag
= xfs_perag_get(mp
, agno
);
999 if (xfs_ag_resv_critical(pag
, XFS_AG_RESV_RMAPBT
) ||
1000 xfs_ag_resv_critical(pag
, XFS_AG_RESV_METADATA
))
1007 * Unmap a range of blocks from a file, then map other blocks into the hole.
1008 * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
1009 * The extent irec is mapped into dest at irec->br_startoff.
1012 xfs_reflink_remap_extent(
1013 struct xfs_inode
*ip
,
1014 struct xfs_bmbt_irec
*irec
,
1015 xfs_fileoff_t destoff
,
1016 xfs_off_t new_isize
)
1018 struct xfs_mount
*mp
= ip
->i_mount
;
1019 bool real_extent
= xfs_bmap_is_real_extent(irec
);
1020 struct xfs_trans
*tp
;
1021 unsigned int resblks
;
1022 struct xfs_bmbt_irec uirec
;
1024 xfs_filblks_t unmap_len
;
1028 unmap_len
= irec
->br_startoff
+ irec
->br_blockcount
- destoff
;
1029 trace_xfs_reflink_punch_range(ip
, destoff
, unmap_len
);
1031 /* No reflinking if we're low on space */
1033 error
= xfs_reflink_ag_has_free_space(mp
,
1034 XFS_FSB_TO_AGNO(mp
, irec
->br_startblock
));
1039 /* Start a rolling transaction to switch the mappings */
1040 resblks
= XFS_EXTENTADD_SPACE_RES(ip
->i_mount
, XFS_DATA_FORK
);
1041 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_write
, resblks
, 0, 0, &tp
);
1045 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1046 xfs_trans_ijoin(tp
, ip
, 0);
1048 /* If we're not just clearing space, then do we have enough quota? */
1050 error
= xfs_trans_reserve_quota_nblks(tp
, ip
,
1051 irec
->br_blockcount
, 0, XFS_QMOPT_RES_REGBLKS
);
1056 trace_xfs_reflink_remap(ip
, irec
->br_startoff
,
1057 irec
->br_blockcount
, irec
->br_startblock
);
1059 /* Unmap the old blocks in the data fork. */
1062 ASSERT(tp
->t_firstblock
== NULLFSBLOCK
);
1063 error
= __xfs_bunmapi(tp
, ip
, destoff
, &rlen
, 0, 1);
1068 * Trim the extent to whatever got unmapped.
1069 * Remember, bunmapi works backwards.
1071 uirec
.br_startblock
= irec
->br_startblock
+ rlen
;
1072 uirec
.br_startoff
= irec
->br_startoff
+ rlen
;
1073 uirec
.br_blockcount
= unmap_len
- rlen
;
1076 /* If this isn't a real mapping, we're done. */
1077 if (!real_extent
|| uirec
.br_blockcount
== 0)
1080 trace_xfs_reflink_remap(ip
, uirec
.br_startoff
,
1081 uirec
.br_blockcount
, uirec
.br_startblock
);
1083 /* Update the refcount tree */
1084 error
= xfs_refcount_increase_extent(tp
, &uirec
);
1088 /* Map the new blocks into the data fork. */
1089 error
= xfs_bmap_map_extent(tp
, ip
, &uirec
);
1093 /* Update quota accounting. */
1094 xfs_trans_mod_dquot_byino(tp
, ip
, XFS_TRANS_DQ_BCOUNT
,
1095 uirec
.br_blockcount
);
1097 /* Update dest isize if needed. */
1098 newlen
= XFS_FSB_TO_B(mp
,
1099 uirec
.br_startoff
+ uirec
.br_blockcount
);
1100 newlen
= min_t(xfs_off_t
, newlen
, new_isize
);
1101 if (newlen
> i_size_read(VFS_I(ip
))) {
1102 trace_xfs_reflink_update_inode_size(ip
, newlen
);
1103 i_size_write(VFS_I(ip
), newlen
);
1104 ip
->i_d
.di_size
= newlen
;
1105 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1109 /* Process all the deferred stuff. */
1110 error
= xfs_defer_finish(&tp
);
1115 error
= xfs_trans_commit(tp
);
1116 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1122 xfs_trans_cancel(tp
);
1123 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1125 trace_xfs_reflink_remap_extent_error(ip
, error
, _RET_IP_
);
1130 * Iteratively remap one file's extents (and holes) to another's.
1133 xfs_reflink_remap_blocks(
1134 struct xfs_inode
*src
,
1136 struct xfs_inode
*dest
,
1141 struct xfs_bmbt_irec imap
;
1142 xfs_fileoff_t srcoff
;
1143 xfs_fileoff_t destoff
;
1145 xfs_filblks_t range_len
;
1146 xfs_filblks_t remapped_len
= 0;
1147 xfs_off_t new_isize
= pos_out
+ remap_len
;
1151 destoff
= XFS_B_TO_FSBT(src
->i_mount
, pos_out
);
1152 srcoff
= XFS_B_TO_FSBT(src
->i_mount
, pos_in
);
1153 len
= XFS_B_TO_FSB(src
->i_mount
, remap_len
);
1155 /* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
1159 trace_xfs_reflink_remap_blocks_loop(src
, srcoff
, len
,
1162 /* Read extent from the source file */
1164 lock_mode
= xfs_ilock_data_map_shared(src
);
1165 error
= xfs_bmapi_read(src
, srcoff
, len
, &imap
, &nimaps
, 0);
1166 xfs_iunlock(src
, lock_mode
);
1169 ASSERT(nimaps
== 1);
1171 trace_xfs_reflink_remap_imap(src
, srcoff
, len
, XFS_DATA_FORK
,
1174 /* Translate imap into the destination file. */
1175 range_len
= imap
.br_startoff
+ imap
.br_blockcount
- srcoff
;
1176 imap
.br_startoff
+= destoff
- srcoff
;
1178 /* Clear dest from destoff to the end of imap and map it in. */
1179 error
= xfs_reflink_remap_extent(dest
, &imap
, destoff
,
1184 if (fatal_signal_pending(current
)) {
1189 /* Advance drange/srange */
1190 srcoff
+= range_len
;
1191 destoff
+= range_len
;
1193 remapped_len
+= range_len
;
1197 trace_xfs_reflink_remap_blocks_error(dest
, error
, _RET_IP_
);
1198 *remapped
= min_t(loff_t
, remap_len
,
1199 XFS_FSB_TO_B(src
->i_mount
, remapped_len
));
1204 * Grab the exclusive iolock for a data copy from src to dest, making
1205 * sure to abide vfs locking order (lowest pointer value goes first) and
1206 * breaking the pnfs layout leases on dest before proceeding. The loop
1207 * is needed because we cannot call the blocking break_layout() with the
1208 * src iolock held, and therefore have to back out both locks.
1211 xfs_iolock_two_inodes_and_break_layout(
1219 inode_lock_shared(src
);
1220 inode_lock_nested(dest
, I_MUTEX_NONDIR2
);
1226 error
= break_layout(dest
, false);
1227 if (error
== -EWOULDBLOCK
) {
1230 inode_unlock_shared(src
);
1231 error
= break_layout(dest
, true);
1239 inode_unlock_shared(src
);
1243 inode_lock_shared_nested(src
, I_MUTEX_NONDIR2
);
1247 /* Unlock both inodes after they've been prepped for a range clone. */
1249 xfs_reflink_remap_unlock(
1250 struct file
*file_in
,
1251 struct file
*file_out
)
1253 struct inode
*inode_in
= file_inode(file_in
);
1254 struct xfs_inode
*src
= XFS_I(inode_in
);
1255 struct inode
*inode_out
= file_inode(file_out
);
1256 struct xfs_inode
*dest
= XFS_I(inode_out
);
1257 bool same_inode
= (inode_in
== inode_out
);
1259 xfs_iunlock(dest
, XFS_MMAPLOCK_EXCL
);
1261 xfs_iunlock(src
, XFS_MMAPLOCK_SHARED
);
1262 inode_unlock(inode_out
);
1264 inode_unlock_shared(inode_in
);
1268 * If we're reflinking to a point past the destination file's EOF, we must
1269 * zero any speculative post-EOF preallocations that sit between the old EOF
1270 * and the destination file offset.
1273 xfs_reflink_zero_posteof(
1274 struct xfs_inode
*ip
,
1277 loff_t isize
= i_size_read(VFS_I(ip
));
1282 trace_xfs_zero_eof(ip
, isize
, pos
- isize
);
1283 return iomap_zero_range(VFS_I(ip
), isize
, pos
- isize
, NULL
,
1288 * Prepare two files for range cloning. Upon a successful return both inodes
1289 * will have the iolock and mmaplock held, the page cache of the out file will
1290 * be truncated, and any leases on the out file will have been broken. This
1291 * function borrows heavily from xfs_file_aio_write_checks.
1293 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1294 * checked that the bytes beyond EOF physically match. Hence we cannot use the
1295 * EOF block in the source dedupe range because it's not a complete block match,
1296 * hence can introduce a corruption into the file that has it's block replaced.
1298 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1299 * "block aligned" for the purposes of cloning entire files. However, if the
1300 * source file range includes the EOF block and it lands within the existing EOF
1301 * of the destination file, then we can expose stale data from beyond the source
1302 * file EOF in the destination file.
1304 * XFS doesn't support partial block sharing, so in both cases we have check
1305 * these cases ourselves. For dedupe, we can simply round the length to dedupe
1306 * down to the previous whole block and ignore the partial EOF block. While this
1307 * means we can't dedupe the last block of a file, this is an acceptible
1308 * tradeoff for simplicity on implementation.
1310 * For cloning, we want to share the partial EOF block if it is also the new EOF
1311 * block of the destination file. If the partial EOF block lies inside the
1312 * existing destination EOF, then we have to abort the clone to avoid exposing
1313 * stale data in the destination file. Hence we reject these clone attempts with
1314 * -EINVAL in this case.
1317 xfs_reflink_remap_prep(
1318 struct file
*file_in
,
1320 struct file
*file_out
,
1323 unsigned int remap_flags
)
1325 struct inode
*inode_in
= file_inode(file_in
);
1326 struct xfs_inode
*src
= XFS_I(inode_in
);
1327 struct inode
*inode_out
= file_inode(file_out
);
1328 struct xfs_inode
*dest
= XFS_I(inode_out
);
1329 bool same_inode
= (inode_in
== inode_out
);
1332 /* Lock both files against IO */
1333 ret
= xfs_iolock_two_inodes_and_break_layout(inode_in
, inode_out
);
1337 xfs_ilock(src
, XFS_MMAPLOCK_EXCL
);
1339 xfs_lock_two_inodes(src
, XFS_MMAPLOCK_SHARED
, dest
,
1342 /* Check file eligibility and prepare for block sharing. */
1344 /* Don't reflink realtime inodes */
1345 if (XFS_IS_REALTIME_INODE(src
) || XFS_IS_REALTIME_INODE(dest
))
1348 /* Don't share DAX file data for now. */
1349 if (IS_DAX(inode_in
) || IS_DAX(inode_out
))
1352 ret
= generic_remap_file_range_prep(file_in
, pos_in
, file_out
, pos_out
,
1354 if (ret
< 0 || *len
== 0)
1357 /* Attach dquots to dest inode before changing block map */
1358 ret
= xfs_qm_dqattach(dest
);
1363 * Zero existing post-eof speculative preallocations in the destination
1366 ret
= xfs_reflink_zero_posteof(dest
, pos_out
);
1370 /* Set flags and remap blocks. */
1371 ret
= xfs_reflink_set_inode_flag(src
, dest
);
1376 * If pos_out > EOF, we may have dirtied blocks between EOF and
1377 * pos_out. In that case, we need to extend the flush and unmap to cover
1378 * from EOF to the end of the copy length.
1380 if (pos_out
> XFS_ISIZE(dest
)) {
1381 loff_t flen
= *len
+ (pos_out
- XFS_ISIZE(dest
));
1382 ret
= xfs_flush_unmap_range(dest
, XFS_ISIZE(dest
), flen
);
1384 ret
= xfs_flush_unmap_range(dest
, pos_out
, *len
);
1391 xfs_reflink_remap_unlock(file_in
, file_out
);
1396 * The user wants to preemptively CoW all shared blocks in this file,
1397 * which enables us to turn off the reflink flag. Iterate all
1398 * extents which are not prealloc/delalloc to see which ranges are
1399 * mentioned in the refcount tree, then read those blocks into the
1400 * pagecache, dirty them, fsync them back out, and then we can update
1401 * the inode flag. What happens if we run out of memory? :)
1404 xfs_reflink_dirty_extents(
1405 struct xfs_inode
*ip
,
1410 struct xfs_mount
*mp
= ip
->i_mount
;
1411 xfs_agnumber_t agno
;
1412 xfs_agblock_t agbno
;
1418 struct xfs_bmbt_irec map
[2];
1422 while (end
- fbno
> 0) {
1425 * Look for extents in the file. Skip holes, delalloc, or
1426 * unwritten extents; they can't be reflinked.
1428 error
= xfs_bmapi_read(ip
, fbno
, end
- fbno
, map
, &nmaps
, 0);
1433 if (!xfs_bmap_is_real_extent(&map
[0]))
1437 while (map
[1].br_blockcount
) {
1438 agno
= XFS_FSB_TO_AGNO(mp
, map
[1].br_startblock
);
1439 agbno
= XFS_FSB_TO_AGBNO(mp
, map
[1].br_startblock
);
1440 aglen
= map
[1].br_blockcount
;
1442 error
= xfs_reflink_find_shared(mp
, NULL
, agno
, agbno
,
1443 aglen
, &rbno
, &rlen
, true);
1446 if (rbno
== NULLAGBLOCK
)
1449 /* Dirty the pages */
1450 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1451 fpos
= XFS_FSB_TO_B(mp
, map
[1].br_startoff
+
1453 flen
= XFS_FSB_TO_B(mp
, rlen
);
1454 if (fpos
+ flen
> isize
)
1455 flen
= isize
- fpos
;
1456 error
= iomap_file_dirty(VFS_I(ip
), fpos
, flen
,
1458 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1462 map
[1].br_blockcount
-= (rbno
- agbno
+ rlen
);
1463 map
[1].br_startoff
+= (rbno
- agbno
+ rlen
);
1464 map
[1].br_startblock
+= (rbno
- agbno
+ rlen
);
1468 fbno
= map
[0].br_startoff
+ map
[0].br_blockcount
;
1474 /* Does this inode need the reflink flag? */
1476 xfs_reflink_inode_has_shared_extents(
1477 struct xfs_trans
*tp
,
1478 struct xfs_inode
*ip
,
1481 struct xfs_bmbt_irec got
;
1482 struct xfs_mount
*mp
= ip
->i_mount
;
1483 struct xfs_ifork
*ifp
;
1484 xfs_agnumber_t agno
;
1485 xfs_agblock_t agbno
;
1489 struct xfs_iext_cursor icur
;
1493 ifp
= XFS_IFORK_PTR(ip
, XFS_DATA_FORK
);
1494 if (!(ifp
->if_flags
& XFS_IFEXTENTS
)) {
1495 error
= xfs_iread_extents(tp
, ip
, XFS_DATA_FORK
);
1500 *has_shared
= false;
1501 found
= xfs_iext_lookup_extent(ip
, ifp
, 0, &icur
, &got
);
1503 if (isnullstartblock(got
.br_startblock
) ||
1504 got
.br_state
!= XFS_EXT_NORM
)
1506 agno
= XFS_FSB_TO_AGNO(mp
, got
.br_startblock
);
1507 agbno
= XFS_FSB_TO_AGBNO(mp
, got
.br_startblock
);
1508 aglen
= got
.br_blockcount
;
1510 error
= xfs_reflink_find_shared(mp
, tp
, agno
, agbno
, aglen
,
1511 &rbno
, &rlen
, false);
1514 /* Is there still a shared block here? */
1515 if (rbno
!= NULLAGBLOCK
) {
1520 found
= xfs_iext_next_extent(ifp
, &icur
, &got
);
1527 * Clear the inode reflink flag if there are no shared extents.
1529 * The caller is responsible for joining the inode to the transaction passed in.
1530 * The inode will be joined to the transaction that is returned to the caller.
1533 xfs_reflink_clear_inode_flag(
1534 struct xfs_inode
*ip
,
1535 struct xfs_trans
**tpp
)
1540 ASSERT(xfs_is_reflink_inode(ip
));
1542 error
= xfs_reflink_inode_has_shared_extents(*tpp
, ip
, &needs_flag
);
1543 if (error
|| needs_flag
)
1547 * We didn't find any shared blocks so turn off the reflink flag.
1548 * First, get rid of any leftover CoW mappings.
1550 error
= xfs_reflink_cancel_cow_blocks(ip
, tpp
, 0, NULLFILEOFF
, true);
1554 /* Clear the inode flag. */
1555 trace_xfs_reflink_unset_inode_flag(ip
);
1556 ip
->i_d
.di_flags2
&= ~XFS_DIFLAG2_REFLINK
;
1557 xfs_inode_clear_cowblocks_tag(ip
);
1558 xfs_trans_log_inode(*tpp
, ip
, XFS_ILOG_CORE
);
1564 * Clear the inode reflink flag if there are no shared extents and the size
1568 xfs_reflink_try_clear_inode_flag(
1569 struct xfs_inode
*ip
)
1571 struct xfs_mount
*mp
= ip
->i_mount
;
1572 struct xfs_trans
*tp
;
1575 /* Start a rolling transaction to remove the mappings */
1576 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_write
, 0, 0, 0, &tp
);
1580 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1581 xfs_trans_ijoin(tp
, ip
, 0);
1583 error
= xfs_reflink_clear_inode_flag(ip
, &tp
);
1587 error
= xfs_trans_commit(tp
);
1591 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1594 xfs_trans_cancel(tp
);
1596 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1601 * Pre-COW all shared blocks within a given byte range of a file and turn off
1602 * the reflink flag if we unshare all of the file's blocks.
1605 xfs_reflink_unshare(
1606 struct xfs_inode
*ip
,
1610 struct xfs_mount
*mp
= ip
->i_mount
;
1616 if (!xfs_is_reflink_inode(ip
))
1619 trace_xfs_reflink_unshare(ip
, offset
, len
);
1621 inode_dio_wait(VFS_I(ip
));
1623 /* Try to CoW the selected ranges */
1624 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1625 fbno
= XFS_B_TO_FSBT(mp
, offset
);
1626 isize
= i_size_read(VFS_I(ip
));
1627 end
= XFS_B_TO_FSB(mp
, offset
+ len
);
1628 error
= xfs_reflink_dirty_extents(ip
, fbno
, end
, isize
);
1631 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1633 /* Wait for the IO to finish */
1634 error
= filemap_write_and_wait(VFS_I(ip
)->i_mapping
);
1638 /* Turn off the reflink flag if possible. */
1639 error
= xfs_reflink_try_clear_inode_flag(ip
);
1646 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1648 trace_xfs_reflink_unshare_error(ip
, error
, _RET_IP_
);