2 * This file contains ioremap and related functions for 64-bit machines.
4 * Derived from arch/ppc64/mm/init.c
5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
7 * Modifications by Paul Mackerras (PowerMac) (paulus@samba.org)
8 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
9 * Copyright (C) 1996 Paul Mackerras
11 * Derived from "arch/i386/mm/init.c"
12 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
14 * Dave Engebretsen <engebret@us.ibm.com>
15 * Rework for PPC64 port.
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License
19 * as published by the Free Software Foundation; either version
20 * 2 of the License, or (at your option) any later version.
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/export.h>
30 #include <linux/types.h>
31 #include <linux/mman.h>
33 #include <linux/swap.h>
34 #include <linux/stddef.h>
35 #include <linux/vmalloc.h>
36 #include <linux/bootmem.h>
37 #include <linux/memblock.h>
38 #include <linux/slab.h>
40 #include <asm/pgalloc.h>
44 #include <asm/mmu_context.h>
45 #include <asm/pgtable.h>
48 #include <asm/machdep.h>
50 #include <asm/processor.h>
51 #include <asm/cputable.h>
52 #include <asm/sections.h>
53 #include <asm/firmware.h>
57 /* Some sanity checking */
58 #if TASK_SIZE_USER64 > PGTABLE_RANGE
59 #error TASK_SIZE_USER64 exceeds pagetable range
62 #ifdef CONFIG_PPC_STD_MMU_64
63 #if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT))
64 #error TASK_SIZE_USER64 exceeds user VSID range
68 unsigned long ioremap_bot
= IOREMAP_BASE
;
70 #ifdef CONFIG_PPC_MMU_NOHASH
71 static void *early_alloc_pgtable(unsigned long size
)
75 if (init_bootmem_done
)
76 pt
= __alloc_bootmem(size
, size
, __pa(MAX_DMA_ADDRESS
));
78 pt
= __va(memblock_alloc_base(size
, size
,
79 __pa(MAX_DMA_ADDRESS
)));
84 #endif /* CONFIG_PPC_MMU_NOHASH */
87 * map_kernel_page currently only called by __ioremap
88 * map_kernel_page adds an entry to the ioremap page table
89 * and adds an entry to the HPT, possibly bolting it
91 int map_kernel_page(unsigned long ea
, unsigned long pa
, int flags
)
98 if (slab_is_available()) {
99 pgdp
= pgd_offset_k(ea
);
100 pudp
= pud_alloc(&init_mm
, pgdp
, ea
);
103 pmdp
= pmd_alloc(&init_mm
, pudp
, ea
);
106 ptep
= pte_alloc_kernel(pmdp
, ea
);
109 set_pte_at(&init_mm
, ea
, ptep
, pfn_pte(pa
>> PAGE_SHIFT
,
112 #ifdef CONFIG_PPC_MMU_NOHASH
113 /* Warning ! This will blow up if bootmem is not initialized
114 * which our ppc64 code is keen to do that, we'll need to
115 * fix it and/or be more careful
117 pgdp
= pgd_offset_k(ea
);
118 #ifdef PUD_TABLE_SIZE
119 if (pgd_none(*pgdp
)) {
120 pudp
= early_alloc_pgtable(PUD_TABLE_SIZE
);
121 BUG_ON(pudp
== NULL
);
122 pgd_populate(&init_mm
, pgdp
, pudp
);
124 #endif /* PUD_TABLE_SIZE */
125 pudp
= pud_offset(pgdp
, ea
);
126 if (pud_none(*pudp
)) {
127 pmdp
= early_alloc_pgtable(PMD_TABLE_SIZE
);
128 BUG_ON(pmdp
== NULL
);
129 pud_populate(&init_mm
, pudp
, pmdp
);
131 pmdp
= pmd_offset(pudp
, ea
);
132 if (!pmd_present(*pmdp
)) {
133 ptep
= early_alloc_pgtable(PAGE_SIZE
);
134 BUG_ON(ptep
== NULL
);
135 pmd_populate_kernel(&init_mm
, pmdp
, ptep
);
137 ptep
= pte_offset_kernel(pmdp
, ea
);
138 set_pte_at(&init_mm
, ea
, ptep
, pfn_pte(pa
>> PAGE_SHIFT
,
140 #else /* CONFIG_PPC_MMU_NOHASH */
142 * If the mm subsystem is not fully up, we cannot create a
143 * linux page table entry for this mapping. Simply bolt an
144 * entry in the hardware page table.
147 if (htab_bolt_mapping(ea
, ea
+ PAGE_SIZE
, pa
, flags
,
148 mmu_io_psize
, mmu_kernel_ssize
)) {
149 printk(KERN_ERR
"Failed to do bolted mapping IO "
150 "memory at %016lx !\n", pa
);
153 #endif /* !CONFIG_PPC_MMU_NOHASH */
156 #ifdef CONFIG_PPC_BOOK3E_64
158 * With hardware tablewalk, a sync is needed to ensure that
159 * subsequent accesses see the PTE we just wrote. Unlike userspace
160 * mappings, we can't tolerate spurious faults, so make sure
161 * the new PTE will be seen the first time.
172 * __ioremap_at - Low level function to establish the page tables
175 void __iomem
* __ioremap_at(phys_addr_t pa
, void *ea
, unsigned long size
,
180 /* Make sure we have the base flags */
181 if ((flags
& _PAGE_PRESENT
) == 0)
182 flags
|= pgprot_val(PAGE_KERNEL
);
184 /* Non-cacheable page cannot be coherent */
185 if (flags
& _PAGE_NO_CACHE
)
186 flags
&= ~_PAGE_COHERENT
;
188 /* We don't support the 4K PFN hack with ioremap */
189 if (flags
& _PAGE_4K_PFN
)
192 WARN_ON(pa
& ~PAGE_MASK
);
193 WARN_ON(((unsigned long)ea
) & ~PAGE_MASK
);
194 WARN_ON(size
& ~PAGE_MASK
);
196 for (i
= 0; i
< size
; i
+= PAGE_SIZE
)
197 if (map_kernel_page((unsigned long)ea
+i
, pa
+i
, flags
))
200 return (void __iomem
*)ea
;
204 * __iounmap_from - Low level function to tear down the page tables
205 * for an IO mapping. This is used for mappings that
206 * are manipulated manually, like partial unmapping of
207 * PCI IOs or ISA space.
209 void __iounmap_at(void *ea
, unsigned long size
)
211 WARN_ON(((unsigned long)ea
) & ~PAGE_MASK
);
212 WARN_ON(size
& ~PAGE_MASK
);
214 unmap_kernel_range((unsigned long)ea
, size
);
217 void __iomem
* __ioremap_caller(phys_addr_t addr
, unsigned long size
,
218 unsigned long flags
, void *caller
)
220 phys_addr_t paligned
;
224 * Choose an address to map it to.
225 * Once the imalloc system is running, we use it.
226 * Before that, we map using addresses going
227 * up from ioremap_bot. imalloc will use
228 * the addresses from ioremap_bot through
232 paligned
= addr
& PAGE_MASK
;
233 size
= PAGE_ALIGN(addr
+ size
) - paligned
;
235 if ((size
== 0) || (paligned
== 0))
239 struct vm_struct
*area
;
241 area
= __get_vm_area_caller(size
, VM_IOREMAP
,
242 ioremap_bot
, IOREMAP_END
,
247 area
->phys_addr
= paligned
;
248 ret
= __ioremap_at(paligned
, area
->addr
, size
, flags
);
252 ret
= __ioremap_at(paligned
, (void *)ioremap_bot
, size
, flags
);
258 ret
+= addr
& ~PAGE_MASK
;
262 void __iomem
* __ioremap(phys_addr_t addr
, unsigned long size
,
265 return __ioremap_caller(addr
, size
, flags
, __builtin_return_address(0));
268 void __iomem
* ioremap(phys_addr_t addr
, unsigned long size
)
270 unsigned long flags
= _PAGE_NO_CACHE
| _PAGE_GUARDED
;
271 void *caller
= __builtin_return_address(0);
274 return ppc_md
.ioremap(addr
, size
, flags
, caller
);
275 return __ioremap_caller(addr
, size
, flags
, caller
);
278 void __iomem
* ioremap_wc(phys_addr_t addr
, unsigned long size
)
280 unsigned long flags
= _PAGE_NO_CACHE
;
281 void *caller
= __builtin_return_address(0);
284 return ppc_md
.ioremap(addr
, size
, flags
, caller
);
285 return __ioremap_caller(addr
, size
, flags
, caller
);
288 void __iomem
* ioremap_prot(phys_addr_t addr
, unsigned long size
,
291 void *caller
= __builtin_return_address(0);
293 /* writeable implies dirty for kernel addresses */
294 if (flags
& _PAGE_RW
)
295 flags
|= _PAGE_DIRTY
;
297 /* we don't want to let _PAGE_USER and _PAGE_EXEC leak out */
298 flags
&= ~(_PAGE_USER
| _PAGE_EXEC
);
301 /* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format
302 * which means that we just cleared supervisor access... oops ;-) This
305 flags
|= _PAGE_BAP_SR
;
309 return ppc_md
.ioremap(addr
, size
, flags
, caller
);
310 return __ioremap_caller(addr
, size
, flags
, caller
);
315 * Unmap an IO region and remove it from imalloc'd list.
316 * Access to IO memory should be serialized by driver.
318 void __iounmap(volatile void __iomem
*token
)
325 addr
= (void *) ((unsigned long __force
)
326 PCI_FIX_ADDR(token
) & PAGE_MASK
);
327 if ((unsigned long)addr
< ioremap_bot
) {
328 printk(KERN_WARNING
"Attempt to iounmap early bolted mapping"
335 void iounmap(volatile void __iomem
*token
)
338 ppc_md
.iounmap(token
);
343 EXPORT_SYMBOL(ioremap
);
344 EXPORT_SYMBOL(ioremap_wc
);
345 EXPORT_SYMBOL(ioremap_prot
);
346 EXPORT_SYMBOL(__ioremap
);
347 EXPORT_SYMBOL(__ioremap_at
);
348 EXPORT_SYMBOL(iounmap
);
349 EXPORT_SYMBOL(__iounmap
);
350 EXPORT_SYMBOL(__iounmap_at
);
353 * For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags
354 * For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address.
356 struct page
*pmd_page(pmd_t pmd
)
358 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
359 if (pmd_trans_huge(pmd
))
360 return pfn_to_page(pmd_pfn(pmd
));
362 return virt_to_page(pmd_page_vaddr(pmd
));
365 #ifdef CONFIG_PPC_64K_PAGES
366 static pte_t
*get_from_cache(struct mm_struct
*mm
)
368 void *pte_frag
, *ret
;
370 spin_lock(&mm
->page_table_lock
);
371 ret
= mm
->context
.pte_frag
;
373 pte_frag
= ret
+ PTE_FRAG_SIZE
;
375 * If we have taken up all the fragments mark PTE page NULL
377 if (((unsigned long)pte_frag
& ~PAGE_MASK
) == 0)
379 mm
->context
.pte_frag
= pte_frag
;
381 spin_unlock(&mm
->page_table_lock
);
385 static pte_t
*__alloc_for_cache(struct mm_struct
*mm
, int kernel
)
388 struct page
*page
= alloc_page(GFP_KERNEL
| __GFP_NOTRACK
|
389 __GFP_REPEAT
| __GFP_ZERO
);
392 if (!kernel
&& !pgtable_page_ctor(page
)) {
397 ret
= page_address(page
);
398 spin_lock(&mm
->page_table_lock
);
400 * If we find pgtable_page set, we return
401 * the allocated page with single fragement
404 if (likely(!mm
->context
.pte_frag
)) {
405 atomic_set(&page
->_count
, PTE_FRAG_NR
);
406 mm
->context
.pte_frag
= ret
+ PTE_FRAG_SIZE
;
408 spin_unlock(&mm
->page_table_lock
);
413 pte_t
*page_table_alloc(struct mm_struct
*mm
, unsigned long vmaddr
, int kernel
)
417 pte
= get_from_cache(mm
);
421 return __alloc_for_cache(mm
, kernel
);
424 void page_table_free(struct mm_struct
*mm
, unsigned long *table
, int kernel
)
426 struct page
*page
= virt_to_page(table
);
427 if (put_page_testzero(page
)) {
429 pgtable_page_dtor(page
);
430 free_hot_cold_page(page
, 0);
435 static void page_table_free_rcu(void *table
)
437 struct page
*page
= virt_to_page(table
);
438 if (put_page_testzero(page
)) {
439 pgtable_page_dtor(page
);
440 free_hot_cold_page(page
, 0);
444 void pgtable_free_tlb(struct mmu_gather
*tlb
, void *table
, int shift
)
446 unsigned long pgf
= (unsigned long)table
;
448 BUG_ON(shift
> MAX_PGTABLE_INDEX_SIZE
);
450 tlb_remove_table(tlb
, (void *)pgf
);
453 void __tlb_remove_table(void *_table
)
455 void *table
= (void *)((unsigned long)_table
& ~MAX_PGTABLE_INDEX_SIZE
);
456 unsigned shift
= (unsigned long)_table
& MAX_PGTABLE_INDEX_SIZE
;
459 /* PTE page needs special handling */
460 page_table_free_rcu(table
);
462 BUG_ON(shift
> MAX_PGTABLE_INDEX_SIZE
);
463 kmem_cache_free(PGT_CACHE(shift
), table
);
467 void pgtable_free_tlb(struct mmu_gather
*tlb
, void *table
, int shift
)
470 /* PTE page needs special handling */
471 struct page
*page
= virt_to_page(table
);
472 if (put_page_testzero(page
)) {
473 pgtable_page_dtor(page
);
474 free_hot_cold_page(page
, 0);
477 BUG_ON(shift
> MAX_PGTABLE_INDEX_SIZE
);
478 kmem_cache_free(PGT_CACHE(shift
), table
);
482 #endif /* CONFIG_PPC_64K_PAGES */
484 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
487 * This is called when relaxing access to a hugepage. It's also called in the page
488 * fault path when we don't hit any of the major fault cases, ie, a minor
489 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
490 * handled those two for us, we additionally deal with missing execute
491 * permission here on some processors
493 int pmdp_set_access_flags(struct vm_area_struct
*vma
, unsigned long address
,
494 pmd_t
*pmdp
, pmd_t entry
, int dirty
)
497 #ifdef CONFIG_DEBUG_VM
498 WARN_ON(!pmd_trans_huge(*pmdp
));
499 assert_spin_locked(&vma
->vm_mm
->page_table_lock
);
501 changed
= !pmd_same(*(pmdp
), entry
);
503 __ptep_set_access_flags(pmdp_ptep(pmdp
), pmd_pte(entry
));
505 * Since we are not supporting SW TLB systems, we don't
506 * have any thing similar to flush_tlb_page_nohash()
512 unsigned long pmd_hugepage_update(struct mm_struct
*mm
, unsigned long addr
,
513 pmd_t
*pmdp
, unsigned long clr
,
517 unsigned long old
, tmp
;
519 #ifdef CONFIG_DEBUG_VM
520 WARN_ON(!pmd_trans_huge(*pmdp
));
521 assert_spin_locked(&mm
->page_table_lock
);
524 #ifdef PTE_ATOMIC_UPDATES
525 __asm__
__volatile__(
533 : "=&r" (old
), "=&r" (tmp
), "=m" (*pmdp
)
534 : "r" (pmdp
), "r" (clr
), "m" (*pmdp
), "i" (_PAGE_BUSY
), "r" (set
)
537 old
= pmd_val(*pmdp
);
538 *pmdp
= __pmd((old
& ~clr
) | set
);
540 if (old
& _PAGE_HASHPTE
)
541 hpte_do_hugepage_flush(mm
, addr
, pmdp
);
545 pmd_t
pmdp_clear_flush(struct vm_area_struct
*vma
, unsigned long address
,
550 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
551 if (pmd_trans_huge(*pmdp
)) {
552 pmd
= pmdp_get_and_clear(vma
->vm_mm
, address
, pmdp
);
555 * khugepaged calls this for normal pmd
560 * Wait for all pending hash_page to finish. This is needed
561 * in case of subpage collapse. When we collapse normal pages
562 * to hugepage, we first clear the pmd, then invalidate all
563 * the PTE entries. The assumption here is that any low level
564 * page fault will see a none pmd and take the slow path that
565 * will wait on mmap_sem. But we could very well be in a
566 * hash_page with local ptep pointer value. Such a hash page
567 * can result in adding new HPTE entries for normal subpages.
568 * That means we could be modifying the page content as we
569 * copy them to a huge page. So wait for parallel hash_page
570 * to finish before invalidating HPTE entries. We can do this
571 * by sending an IPI to all the cpus and executing a dummy
574 kick_all_cpus_sync();
576 * Now invalidate the hpte entries in the range
577 * covered by pmd. This make sure we take a
578 * fault and will find the pmd as none, which will
579 * result in a major fault which takes mmap_sem and
580 * hence wait for collapse to complete. Without this
581 * the __collapse_huge_page_copy can result in copying
584 flush_tlb_pmd_range(vma
->vm_mm
, &pmd
, address
);
589 int pmdp_test_and_clear_young(struct vm_area_struct
*vma
,
590 unsigned long address
, pmd_t
*pmdp
)
592 return __pmdp_test_and_clear_young(vma
->vm_mm
, address
, pmdp
);
596 * We currently remove entries from the hashtable regardless of whether
597 * the entry was young or dirty. The generic routines only flush if the
598 * entry was young or dirty which is not good enough.
600 * We should be more intelligent about this but for the moment we override
601 * these functions and force a tlb flush unconditionally
603 int pmdp_clear_flush_young(struct vm_area_struct
*vma
,
604 unsigned long address
, pmd_t
*pmdp
)
606 return __pmdp_test_and_clear_young(vma
->vm_mm
, address
, pmdp
);
610 * We mark the pmd splitting and invalidate all the hpte
611 * entries for this hugepage.
613 void pmdp_splitting_flush(struct vm_area_struct
*vma
,
614 unsigned long address
, pmd_t
*pmdp
)
616 unsigned long old
, tmp
;
618 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
620 #ifdef CONFIG_DEBUG_VM
621 WARN_ON(!pmd_trans_huge(*pmdp
));
622 assert_spin_locked(&vma
->vm_mm
->page_table_lock
);
625 #ifdef PTE_ATOMIC_UPDATES
627 __asm__
__volatile__(
634 : "=&r" (old
), "=&r" (tmp
), "=m" (*pmdp
)
635 : "r" (pmdp
), "i" (_PAGE_SPLITTING
), "m" (*pmdp
), "i" (_PAGE_BUSY
)
638 old
= pmd_val(*pmdp
);
639 *pmdp
= __pmd(old
| _PAGE_SPLITTING
);
642 * If we didn't had the splitting flag set, go and flush the
645 if (!(old
& _PAGE_SPLITTING
)) {
646 /* We need to flush the hpte */
647 if (old
& _PAGE_HASHPTE
)
648 hpte_do_hugepage_flush(vma
->vm_mm
, address
, pmdp
);
651 * This ensures that generic code that rely on IRQ disabling
652 * to prevent a parallel THP split work as expected.
654 kick_all_cpus_sync();
658 * We want to put the pgtable in pmd and use pgtable for tracking
659 * the base page size hptes
661 void pgtable_trans_huge_deposit(struct mm_struct
*mm
, pmd_t
*pmdp
,
664 pgtable_t
*pgtable_slot
;
665 assert_spin_locked(&mm
->page_table_lock
);
667 * we store the pgtable in the second half of PMD
669 pgtable_slot
= (pgtable_t
*)pmdp
+ PTRS_PER_PMD
;
670 *pgtable_slot
= pgtable
;
672 * expose the deposited pgtable to other cpus.
673 * before we set the hugepage PTE at pmd level
674 * hash fault code looks at the deposted pgtable
675 * to store hash index values.
680 pgtable_t
pgtable_trans_huge_withdraw(struct mm_struct
*mm
, pmd_t
*pmdp
)
683 pgtable_t
*pgtable_slot
;
685 assert_spin_locked(&mm
->page_table_lock
);
686 pgtable_slot
= (pgtable_t
*)pmdp
+ PTRS_PER_PMD
;
687 pgtable
= *pgtable_slot
;
689 * Once we withdraw, mark the entry NULL.
691 *pgtable_slot
= NULL
;
693 * We store HPTE information in the deposited PTE fragment.
694 * zero out the content on withdraw.
696 memset(pgtable
, 0, PTE_FRAG_SIZE
);
701 * set a new huge pmd. We should not be called for updating
702 * an existing pmd entry. That should go via pmd_hugepage_update.
704 void set_pmd_at(struct mm_struct
*mm
, unsigned long addr
,
705 pmd_t
*pmdp
, pmd_t pmd
)
707 #ifdef CONFIG_DEBUG_VM
708 WARN_ON(pmd_val(*pmdp
) & _PAGE_PRESENT
);
709 assert_spin_locked(&mm
->page_table_lock
);
710 WARN_ON(!pmd_trans_huge(pmd
));
712 return set_pte_at(mm
, addr
, pmdp_ptep(pmdp
), pmd_pte(pmd
));
715 void pmdp_invalidate(struct vm_area_struct
*vma
, unsigned long address
,
718 pmd_hugepage_update(vma
->vm_mm
, address
, pmdp
, _PAGE_PRESENT
, 0);
722 * A linux hugepage PMD was changed and the corresponding hash table entries
723 * neesd to be flushed.
725 void hpte_do_hugepage_flush(struct mm_struct
*mm
, unsigned long addr
,
729 unsigned long s_addr
;
731 unsigned int psize
, valid
;
732 unsigned char *hpte_slot_array
;
733 unsigned long hidx
, vpn
, vsid
, hash
, shift
, slot
;
736 * Flush all the hptes mapping this hugepage
738 s_addr
= addr
& HPAGE_PMD_MASK
;
739 hpte_slot_array
= get_hpte_slot_array(pmdp
);
741 * IF we try to do a HUGE PTE update after a withdraw is done.
742 * we will find the below NULL. This happens when we do
743 * split_huge_page_pmd
745 if (!hpte_slot_array
)
748 /* get the base page size */
749 psize
= get_slice_psize(mm
, s_addr
);
751 if (ppc_md
.hugepage_invalidate
)
752 return ppc_md
.hugepage_invalidate(mm
, hpte_slot_array
,
755 * No bluk hpte removal support, invalidate each entry
757 shift
= mmu_psize_defs
[psize
].shift
;
758 max_hpte_count
= HPAGE_PMD_SIZE
>> shift
;
759 for (i
= 0; i
< max_hpte_count
; i
++) {
761 * 8 bits per each hpte entries
762 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
764 valid
= hpte_valid(hpte_slot_array
, i
);
767 hidx
= hpte_hash_index(hpte_slot_array
, i
);
770 addr
= s_addr
+ (i
* (1ul << shift
));
771 if (!is_kernel_addr(addr
)) {
772 ssize
= user_segment_size(addr
);
773 vsid
= get_vsid(mm
->context
.id
, addr
, ssize
);
776 vsid
= get_kernel_vsid(addr
, mmu_kernel_ssize
);
777 ssize
= mmu_kernel_ssize
;
780 vpn
= hpt_vpn(addr
, vsid
, ssize
);
781 hash
= hpt_hash(vpn
, shift
, ssize
);
782 if (hidx
& _PTEIDX_SECONDARY
)
785 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
786 slot
+= hidx
& _PTEIDX_GROUP_IX
;
787 ppc_md
.hpte_invalidate(slot
, vpn
, psize
,
788 MMU_PAGE_16M
, ssize
, 0);
792 static pmd_t
pmd_set_protbits(pmd_t pmd
, pgprot_t pgprot
)
794 pmd_val(pmd
) |= pgprot_val(pgprot
);
798 pmd_t
pfn_pmd(unsigned long pfn
, pgprot_t pgprot
)
802 * For a valid pte, we would have _PAGE_PRESENT or _PAGE_FILE always
803 * set. We use this to check THP page at pmd level.
804 * leaf pte for huge page, bottom two bits != 00
806 pmd_val(pmd
) = pfn
<< PTE_RPN_SHIFT
;
807 pmd_val(pmd
) |= _PAGE_THP_HUGE
;
808 pmd
= pmd_set_protbits(pmd
, pgprot
);
812 pmd_t
mk_pmd(struct page
*page
, pgprot_t pgprot
)
814 return pfn_pmd(page_to_pfn(page
), pgprot
);
817 pmd_t
pmd_modify(pmd_t pmd
, pgprot_t newprot
)
820 pmd_val(pmd
) &= _HPAGE_CHG_MASK
;
821 pmd
= pmd_set_protbits(pmd
, newprot
);
826 * This is called at the end of handling a user page fault, when the
827 * fault has been handled by updating a HUGE PMD entry in the linux page tables.
828 * We use it to preload an HPTE into the hash table corresponding to
829 * the updated linux HUGE PMD entry.
831 void update_mmu_cache_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
837 pmd_t
pmdp_get_and_clear(struct mm_struct
*mm
,
838 unsigned long addr
, pmd_t
*pmdp
)
843 pgtable_t
*pgtable_slot
;
845 old
= pmd_hugepage_update(mm
, addr
, pmdp
, ~0UL, 0);
846 old_pmd
= __pmd(old
);
848 * We have pmd == none and we are holding page_table_lock.
849 * So we can safely go and clear the pgtable hash
852 pgtable_slot
= (pgtable_t
*)pmdp
+ PTRS_PER_PMD
;
853 pgtable
= *pgtable_slot
;
855 * Let's zero out old valid and hash index details
856 * hash fault look at them.
858 memset(pgtable
, 0, PTE_FRAG_SIZE
);
862 int has_transparent_hugepage(void)
864 if (!mmu_has_feature(MMU_FTR_16M_PAGE
))
867 * We support THP only if PMD_SIZE is 16MB.
869 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
!= PMD_SHIFT
)
872 * We need to make sure that we support 16MB hugepage in a segement
873 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
877 * If we have 64K HPTE, we will be using that by default
879 if (mmu_psize_defs
[MMU_PAGE_64K
].shift
&&
880 (mmu_psize_defs
[MMU_PAGE_64K
].penc
[MMU_PAGE_16M
] == -1))
883 * Ok we only have 4K HPTE
885 if (mmu_psize_defs
[MMU_PAGE_4K
].penc
[MMU_PAGE_16M
] == -1)
890 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */