cpufreq: kirkwood: Reinstate cpufreq driver for ARCH_KIRKWOOD
[linux/fpc-iii.git] / arch / powerpc / mm / tlb_nohash.c
blob92cb18d52ea8d147ed1201d56eec2d776e28e978
1 /*
2 * This file contains the routines for TLB flushing.
3 * On machines where the MMU does not use a hash table to store virtual to
4 * physical translations (ie, SW loaded TLBs or Book3E compilant processors,
5 * this does -not- include 603 however which shares the implementation with
6 * hash based processors)
8 * -- BenH
10 * Copyright 2008,2009 Ben Herrenschmidt <benh@kernel.crashing.org>
11 * IBM Corp.
13 * Derived from arch/ppc/mm/init.c:
14 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
16 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
17 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
18 * Copyright (C) 1996 Paul Mackerras
20 * Derived from "arch/i386/mm/init.c"
21 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
23 * This program is free software; you can redistribute it and/or
24 * modify it under the terms of the GNU General Public License
25 * as published by the Free Software Foundation; either version
26 * 2 of the License, or (at your option) any later version.
30 #include <linux/kernel.h>
31 #include <linux/export.h>
32 #include <linux/mm.h>
33 #include <linux/init.h>
34 #include <linux/highmem.h>
35 #include <linux/pagemap.h>
36 #include <linux/preempt.h>
37 #include <linux/spinlock.h>
38 #include <linux/memblock.h>
39 #include <linux/of_fdt.h>
40 #include <linux/hugetlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/tlb.h>
44 #include <asm/code-patching.h>
45 #include <asm/hugetlb.h>
46 #include <asm/paca.h>
48 #include "mmu_decl.h"
51 * This struct lists the sw-supported page sizes. The hardawre MMU may support
52 * other sizes not listed here. The .ind field is only used on MMUs that have
53 * indirect page table entries.
55 #ifdef CONFIG_PPC_BOOK3E_MMU
56 #ifdef CONFIG_PPC_FSL_BOOK3E
57 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
58 [MMU_PAGE_4K] = {
59 .shift = 12,
60 .enc = BOOK3E_PAGESZ_4K,
62 [MMU_PAGE_2M] = {
63 .shift = 21,
64 .enc = BOOK3E_PAGESZ_2M,
66 [MMU_PAGE_4M] = {
67 .shift = 22,
68 .enc = BOOK3E_PAGESZ_4M,
70 [MMU_PAGE_16M] = {
71 .shift = 24,
72 .enc = BOOK3E_PAGESZ_16M,
74 [MMU_PAGE_64M] = {
75 .shift = 26,
76 .enc = BOOK3E_PAGESZ_64M,
78 [MMU_PAGE_256M] = {
79 .shift = 28,
80 .enc = BOOK3E_PAGESZ_256M,
82 [MMU_PAGE_1G] = {
83 .shift = 30,
84 .enc = BOOK3E_PAGESZ_1GB,
87 #else
88 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
89 [MMU_PAGE_4K] = {
90 .shift = 12,
91 .ind = 20,
92 .enc = BOOK3E_PAGESZ_4K,
94 [MMU_PAGE_16K] = {
95 .shift = 14,
96 .enc = BOOK3E_PAGESZ_16K,
98 [MMU_PAGE_64K] = {
99 .shift = 16,
100 .ind = 28,
101 .enc = BOOK3E_PAGESZ_64K,
103 [MMU_PAGE_1M] = {
104 .shift = 20,
105 .enc = BOOK3E_PAGESZ_1M,
107 [MMU_PAGE_16M] = {
108 .shift = 24,
109 .ind = 36,
110 .enc = BOOK3E_PAGESZ_16M,
112 [MMU_PAGE_256M] = {
113 .shift = 28,
114 .enc = BOOK3E_PAGESZ_256M,
116 [MMU_PAGE_1G] = {
117 .shift = 30,
118 .enc = BOOK3E_PAGESZ_1GB,
121 #endif /* CONFIG_FSL_BOOKE */
123 static inline int mmu_get_tsize(int psize)
125 return mmu_psize_defs[psize].enc;
127 #else
128 static inline int mmu_get_tsize(int psize)
130 /* This isn't used on !Book3E for now */
131 return 0;
133 #endif /* CONFIG_PPC_BOOK3E_MMU */
135 /* The variables below are currently only used on 64-bit Book3E
136 * though this will probably be made common with other nohash
137 * implementations at some point
139 #ifdef CONFIG_PPC64
141 int mmu_linear_psize; /* Page size used for the linear mapping */
142 int mmu_pte_psize; /* Page size used for PTE pages */
143 int mmu_vmemmap_psize; /* Page size used for the virtual mem map */
144 int book3e_htw_mode; /* HW tablewalk? Value is PPC_HTW_* */
145 unsigned long linear_map_top; /* Top of linear mapping */
149 * Number of bytes to add to SPRN_SPRG_TLB_EXFRAME on crit/mcheck/debug
150 * exceptions. This is used for bolted and e6500 TLB miss handlers which
151 * do not modify this SPRG in the TLB miss code; for other TLB miss handlers,
152 * this is set to zero.
154 int extlb_level_exc;
156 #endif /* CONFIG_PPC64 */
158 #ifdef CONFIG_PPC_FSL_BOOK3E
159 /* next_tlbcam_idx is used to round-robin tlbcam entry assignment */
160 DEFINE_PER_CPU(int, next_tlbcam_idx);
161 EXPORT_PER_CPU_SYMBOL(next_tlbcam_idx);
162 #endif
165 * Base TLB flushing operations:
167 * - flush_tlb_mm(mm) flushes the specified mm context TLB's
168 * - flush_tlb_page(vma, vmaddr) flushes one page
169 * - flush_tlb_range(vma, start, end) flushes a range of pages
170 * - flush_tlb_kernel_range(start, end) flushes kernel pages
172 * - local_* variants of page and mm only apply to the current
173 * processor
177 * These are the base non-SMP variants of page and mm flushing
179 void local_flush_tlb_mm(struct mm_struct *mm)
181 unsigned int pid;
183 preempt_disable();
184 pid = mm->context.id;
185 if (pid != MMU_NO_CONTEXT)
186 _tlbil_pid(pid);
187 preempt_enable();
189 EXPORT_SYMBOL(local_flush_tlb_mm);
191 void __local_flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
192 int tsize, int ind)
194 unsigned int pid;
196 preempt_disable();
197 pid = mm ? mm->context.id : 0;
198 if (pid != MMU_NO_CONTEXT)
199 _tlbil_va(vmaddr, pid, tsize, ind);
200 preempt_enable();
203 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
205 __local_flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
206 mmu_get_tsize(mmu_virtual_psize), 0);
208 EXPORT_SYMBOL(local_flush_tlb_page);
211 * And here are the SMP non-local implementations
213 #ifdef CONFIG_SMP
215 static DEFINE_RAW_SPINLOCK(tlbivax_lock);
217 static int mm_is_core_local(struct mm_struct *mm)
219 return cpumask_subset(mm_cpumask(mm),
220 topology_thread_cpumask(smp_processor_id()));
223 struct tlb_flush_param {
224 unsigned long addr;
225 unsigned int pid;
226 unsigned int tsize;
227 unsigned int ind;
230 static void do_flush_tlb_mm_ipi(void *param)
232 struct tlb_flush_param *p = param;
234 _tlbil_pid(p ? p->pid : 0);
237 static void do_flush_tlb_page_ipi(void *param)
239 struct tlb_flush_param *p = param;
241 _tlbil_va(p->addr, p->pid, p->tsize, p->ind);
245 /* Note on invalidations and PID:
247 * We snapshot the PID with preempt disabled. At this point, it can still
248 * change either because:
249 * - our context is being stolen (PID -> NO_CONTEXT) on another CPU
250 * - we are invaliating some target that isn't currently running here
251 * and is concurrently acquiring a new PID on another CPU
252 * - some other CPU is re-acquiring a lost PID for this mm
253 * etc...
255 * However, this shouldn't be a problem as we only guarantee
256 * invalidation of TLB entries present prior to this call, so we
257 * don't care about the PID changing, and invalidating a stale PID
258 * is generally harmless.
261 void flush_tlb_mm(struct mm_struct *mm)
263 unsigned int pid;
265 preempt_disable();
266 pid = mm->context.id;
267 if (unlikely(pid == MMU_NO_CONTEXT))
268 goto no_context;
269 if (!mm_is_core_local(mm)) {
270 struct tlb_flush_param p = { .pid = pid };
271 /* Ignores smp_processor_id() even if set. */
272 smp_call_function_many(mm_cpumask(mm),
273 do_flush_tlb_mm_ipi, &p, 1);
275 _tlbil_pid(pid);
276 no_context:
277 preempt_enable();
279 EXPORT_SYMBOL(flush_tlb_mm);
281 void __flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
282 int tsize, int ind)
284 struct cpumask *cpu_mask;
285 unsigned int pid;
287 preempt_disable();
288 pid = mm ? mm->context.id : 0;
289 if (unlikely(pid == MMU_NO_CONTEXT))
290 goto bail;
291 cpu_mask = mm_cpumask(mm);
292 if (!mm_is_core_local(mm)) {
293 /* If broadcast tlbivax is supported, use it */
294 if (mmu_has_feature(MMU_FTR_USE_TLBIVAX_BCAST)) {
295 int lock = mmu_has_feature(MMU_FTR_LOCK_BCAST_INVAL);
296 if (lock)
297 raw_spin_lock(&tlbivax_lock);
298 _tlbivax_bcast(vmaddr, pid, tsize, ind);
299 if (lock)
300 raw_spin_unlock(&tlbivax_lock);
301 goto bail;
302 } else {
303 struct tlb_flush_param p = {
304 .pid = pid,
305 .addr = vmaddr,
306 .tsize = tsize,
307 .ind = ind,
309 /* Ignores smp_processor_id() even if set in cpu_mask */
310 smp_call_function_many(cpu_mask,
311 do_flush_tlb_page_ipi, &p, 1);
314 _tlbil_va(vmaddr, pid, tsize, ind);
315 bail:
316 preempt_enable();
319 void flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
321 #ifdef CONFIG_HUGETLB_PAGE
322 if (vma && is_vm_hugetlb_page(vma))
323 flush_hugetlb_page(vma, vmaddr);
324 #endif
326 __flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
327 mmu_get_tsize(mmu_virtual_psize), 0);
329 EXPORT_SYMBOL(flush_tlb_page);
331 #endif /* CONFIG_SMP */
333 #ifdef CONFIG_PPC_47x
334 void __init early_init_mmu_47x(void)
336 #ifdef CONFIG_SMP
337 unsigned long root = of_get_flat_dt_root();
338 if (of_get_flat_dt_prop(root, "cooperative-partition", NULL))
339 mmu_clear_feature(MMU_FTR_USE_TLBIVAX_BCAST);
340 #endif /* CONFIG_SMP */
342 #endif /* CONFIG_PPC_47x */
345 * Flush kernel TLB entries in the given range
347 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
349 #ifdef CONFIG_SMP
350 preempt_disable();
351 smp_call_function(do_flush_tlb_mm_ipi, NULL, 1);
352 _tlbil_pid(0);
353 preempt_enable();
354 #else
355 _tlbil_pid(0);
356 #endif
358 EXPORT_SYMBOL(flush_tlb_kernel_range);
361 * Currently, for range flushing, we just do a full mm flush. This should
362 * be optimized based on a threshold on the size of the range, since
363 * some implementation can stack multiple tlbivax before a tlbsync but
364 * for now, we keep it that way
366 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
367 unsigned long end)
370 flush_tlb_mm(vma->vm_mm);
372 EXPORT_SYMBOL(flush_tlb_range);
374 void tlb_flush(struct mmu_gather *tlb)
376 flush_tlb_mm(tlb->mm);
380 * Below are functions specific to the 64-bit variant of Book3E though that
381 * may change in the future
384 #ifdef CONFIG_PPC64
387 * Handling of virtual linear page tables or indirect TLB entries
388 * flushing when PTE pages are freed
390 void tlb_flush_pgtable(struct mmu_gather *tlb, unsigned long address)
392 int tsize = mmu_psize_defs[mmu_pte_psize].enc;
394 if (book3e_htw_mode != PPC_HTW_NONE) {
395 unsigned long start = address & PMD_MASK;
396 unsigned long end = address + PMD_SIZE;
397 unsigned long size = 1UL << mmu_psize_defs[mmu_pte_psize].shift;
399 /* This isn't the most optimal, ideally we would factor out the
400 * while preempt & CPU mask mucking around, or even the IPI but
401 * it will do for now
403 while (start < end) {
404 __flush_tlb_page(tlb->mm, start, tsize, 1);
405 start += size;
407 } else {
408 unsigned long rmask = 0xf000000000000000ul;
409 unsigned long rid = (address & rmask) | 0x1000000000000000ul;
410 unsigned long vpte = address & ~rmask;
412 #ifdef CONFIG_PPC_64K_PAGES
413 vpte = (vpte >> (PAGE_SHIFT - 4)) & ~0xfffful;
414 #else
415 vpte = (vpte >> (PAGE_SHIFT - 3)) & ~0xffful;
416 #endif
417 vpte |= rid;
418 __flush_tlb_page(tlb->mm, vpte, tsize, 0);
422 static void setup_page_sizes(void)
424 unsigned int tlb0cfg;
425 unsigned int tlb0ps;
426 unsigned int eptcfg;
427 int i, psize;
429 #ifdef CONFIG_PPC_FSL_BOOK3E
430 unsigned int mmucfg = mfspr(SPRN_MMUCFG);
431 int fsl_mmu = mmu_has_feature(MMU_FTR_TYPE_FSL_E);
433 if (fsl_mmu && (mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V1) {
434 unsigned int tlb1cfg = mfspr(SPRN_TLB1CFG);
435 unsigned int min_pg, max_pg;
437 min_pg = (tlb1cfg & TLBnCFG_MINSIZE) >> TLBnCFG_MINSIZE_SHIFT;
438 max_pg = (tlb1cfg & TLBnCFG_MAXSIZE) >> TLBnCFG_MAXSIZE_SHIFT;
440 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
441 struct mmu_psize_def *def;
442 unsigned int shift;
444 def = &mmu_psize_defs[psize];
445 shift = def->shift;
447 if (shift == 0 || shift & 1)
448 continue;
450 /* adjust to be in terms of 4^shift Kb */
451 shift = (shift - 10) >> 1;
453 if ((shift >= min_pg) && (shift <= max_pg))
454 def->flags |= MMU_PAGE_SIZE_DIRECT;
457 goto out;
460 if (fsl_mmu && (mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V2) {
461 u32 tlb1cfg, tlb1ps;
463 tlb0cfg = mfspr(SPRN_TLB0CFG);
464 tlb1cfg = mfspr(SPRN_TLB1CFG);
465 tlb1ps = mfspr(SPRN_TLB1PS);
466 eptcfg = mfspr(SPRN_EPTCFG);
468 if ((tlb1cfg & TLBnCFG_IND) && (tlb0cfg & TLBnCFG_PT))
469 book3e_htw_mode = PPC_HTW_E6500;
472 * We expect 4K subpage size and unrestricted indirect size.
473 * The lack of a restriction on indirect size is a Freescale
474 * extension, indicated by PSn = 0 but SPSn != 0.
476 if (eptcfg != 2)
477 book3e_htw_mode = PPC_HTW_NONE;
479 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
480 struct mmu_psize_def *def = &mmu_psize_defs[psize];
482 if (tlb1ps & (1U << (def->shift - 10))) {
483 def->flags |= MMU_PAGE_SIZE_DIRECT;
485 if (book3e_htw_mode && psize == MMU_PAGE_2M)
486 def->flags |= MMU_PAGE_SIZE_INDIRECT;
490 goto out;
492 #endif
494 tlb0cfg = mfspr(SPRN_TLB0CFG);
495 tlb0ps = mfspr(SPRN_TLB0PS);
496 eptcfg = mfspr(SPRN_EPTCFG);
498 /* Look for supported direct sizes */
499 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
500 struct mmu_psize_def *def = &mmu_psize_defs[psize];
502 if (tlb0ps & (1U << (def->shift - 10)))
503 def->flags |= MMU_PAGE_SIZE_DIRECT;
506 /* Indirect page sizes supported ? */
507 if ((tlb0cfg & TLBnCFG_IND) == 0 ||
508 (tlb0cfg & TLBnCFG_PT) == 0)
509 goto out;
511 book3e_htw_mode = PPC_HTW_IBM;
513 /* Now, we only deal with one IND page size for each
514 * direct size. Hopefully all implementations today are
515 * unambiguous, but we might want to be careful in the
516 * future.
518 for (i = 0; i < 3; i++) {
519 unsigned int ps, sps;
521 sps = eptcfg & 0x1f;
522 eptcfg >>= 5;
523 ps = eptcfg & 0x1f;
524 eptcfg >>= 5;
525 if (!ps || !sps)
526 continue;
527 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
528 struct mmu_psize_def *def = &mmu_psize_defs[psize];
530 if (ps == (def->shift - 10))
531 def->flags |= MMU_PAGE_SIZE_INDIRECT;
532 if (sps == (def->shift - 10))
533 def->ind = ps + 10;
537 out:
538 /* Cleanup array and print summary */
539 pr_info("MMU: Supported page sizes\n");
540 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
541 struct mmu_psize_def *def = &mmu_psize_defs[psize];
542 const char *__page_type_names[] = {
543 "unsupported",
544 "direct",
545 "indirect",
546 "direct & indirect"
548 if (def->flags == 0) {
549 def->shift = 0;
550 continue;
552 pr_info(" %8ld KB as %s\n", 1ul << (def->shift - 10),
553 __page_type_names[def->flags & 0x3]);
557 static void setup_mmu_htw(void)
560 * If we want to use HW tablewalk, enable it by patching the TLB miss
561 * handlers to branch to the one dedicated to it.
564 switch (book3e_htw_mode) {
565 case PPC_HTW_IBM:
566 patch_exception(0x1c0, exc_data_tlb_miss_htw_book3e);
567 patch_exception(0x1e0, exc_instruction_tlb_miss_htw_book3e);
568 break;
569 #ifdef CONFIG_PPC_FSL_BOOK3E
570 case PPC_HTW_E6500:
571 extlb_level_exc = EX_TLB_SIZE;
572 patch_exception(0x1c0, exc_data_tlb_miss_e6500_book3e);
573 patch_exception(0x1e0, exc_instruction_tlb_miss_e6500_book3e);
574 break;
575 #endif
577 pr_info("MMU: Book3E HW tablewalk %s\n",
578 book3e_htw_mode != PPC_HTW_NONE ? "enabled" : "not supported");
582 * Early initialization of the MMU TLB code
584 static void __early_init_mmu(int boot_cpu)
586 unsigned int mas4;
588 /* XXX This will have to be decided at runtime, but right
589 * now our boot and TLB miss code hard wires it. Ideally
590 * we should find out a suitable page size and patch the
591 * TLB miss code (either that or use the PACA to store
592 * the value we want)
594 mmu_linear_psize = MMU_PAGE_1G;
596 /* XXX This should be decided at runtime based on supported
597 * page sizes in the TLB, but for now let's assume 16M is
598 * always there and a good fit (which it probably is)
600 * Freescale booke only supports 4K pages in TLB0, so use that.
602 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
603 mmu_vmemmap_psize = MMU_PAGE_4K;
604 else
605 mmu_vmemmap_psize = MMU_PAGE_16M;
607 /* XXX This code only checks for TLB 0 capabilities and doesn't
608 * check what page size combos are supported by the HW. It
609 * also doesn't handle the case where a separate array holds
610 * the IND entries from the array loaded by the PT.
612 if (boot_cpu) {
613 /* Look for supported page sizes */
614 setup_page_sizes();
616 /* Look for HW tablewalk support */
617 setup_mmu_htw();
620 /* Set MAS4 based on page table setting */
622 mas4 = 0x4 << MAS4_WIMGED_SHIFT;
623 switch (book3e_htw_mode) {
624 case PPC_HTW_E6500:
625 mas4 |= MAS4_INDD;
626 mas4 |= BOOK3E_PAGESZ_2M << MAS4_TSIZED_SHIFT;
627 mas4 |= MAS4_TLBSELD(1);
628 mmu_pte_psize = MMU_PAGE_2M;
629 break;
631 case PPC_HTW_IBM:
632 mas4 |= MAS4_INDD;
633 #ifdef CONFIG_PPC_64K_PAGES
634 mas4 |= BOOK3E_PAGESZ_256M << MAS4_TSIZED_SHIFT;
635 mmu_pte_psize = MMU_PAGE_256M;
636 #else
637 mas4 |= BOOK3E_PAGESZ_1M << MAS4_TSIZED_SHIFT;
638 mmu_pte_psize = MMU_PAGE_1M;
639 #endif
640 break;
642 case PPC_HTW_NONE:
643 #ifdef CONFIG_PPC_64K_PAGES
644 mas4 |= BOOK3E_PAGESZ_64K << MAS4_TSIZED_SHIFT;
645 #else
646 mas4 |= BOOK3E_PAGESZ_4K << MAS4_TSIZED_SHIFT;
647 #endif
648 mmu_pte_psize = mmu_virtual_psize;
649 break;
651 mtspr(SPRN_MAS4, mas4);
653 /* Set the global containing the top of the linear mapping
654 * for use by the TLB miss code
656 linear_map_top = memblock_end_of_DRAM();
658 #ifdef CONFIG_PPC_FSL_BOOK3E
659 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
660 unsigned int num_cams;
662 /* use a quarter of the TLBCAM for bolted linear map */
663 num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4;
664 linear_map_top = map_mem_in_cams(linear_map_top, num_cams);
666 /* limit memory so we dont have linear faults */
667 memblock_enforce_memory_limit(linear_map_top);
669 if (book3e_htw_mode == PPC_HTW_NONE) {
670 extlb_level_exc = EX_TLB_SIZE;
671 patch_exception(0x1c0, exc_data_tlb_miss_bolted_book3e);
672 patch_exception(0x1e0,
673 exc_instruction_tlb_miss_bolted_book3e);
676 #endif
678 /* A sync won't hurt us after mucking around with
679 * the MMU configuration
681 mb();
683 memblock_set_current_limit(linear_map_top);
686 void __init early_init_mmu(void)
688 __early_init_mmu(1);
691 void early_init_mmu_secondary(void)
693 __early_init_mmu(0);
696 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
697 phys_addr_t first_memblock_size)
699 /* On non-FSL Embedded 64-bit, we adjust the RMA size to match
700 * the bolted TLB entry. We know for now that only 1G
701 * entries are supported though that may eventually
702 * change.
704 * on FSL Embedded 64-bit, we adjust the RMA size to match the
705 * first bolted TLB entry size. We still limit max to 1G even if
706 * the TLB could cover more. This is due to what the early init
707 * code is setup to do.
709 * We crop it to the size of the first MEMBLOCK to
710 * avoid going over total available memory just in case...
712 #ifdef CONFIG_PPC_FSL_BOOK3E
713 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
714 unsigned long linear_sz;
715 linear_sz = calc_cam_sz(first_memblock_size, PAGE_OFFSET,
716 first_memblock_base);
717 ppc64_rma_size = min_t(u64, linear_sz, 0x40000000);
718 } else
719 #endif
720 ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
722 /* Finally limit subsequent allocations */
723 memblock_set_current_limit(first_memblock_base + ppc64_rma_size);
725 #else /* ! CONFIG_PPC64 */
726 void __init early_init_mmu(void)
728 #ifdef CONFIG_PPC_47x
729 early_init_mmu_47x();
730 #endif
732 #endif /* CONFIG_PPC64 */