2 * linux/arch/alpha/kernel/process.c
4 * Copyright (C) 1995 Linus Torvalds
8 * This file handles the architecture-dependent parts of process handling.
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
16 #include <linux/smp.h>
17 #include <linux/stddef.h>
18 #include <linux/unistd.h>
19 #include <linux/ptrace.h>
20 #include <linux/slab.h>
21 #include <linux/user.h>
22 #include <linux/utsname.h>
23 #include <linux/time.h>
24 #include <linux/major.h>
25 #include <linux/stat.h>
27 #include <linux/mman.h>
28 #include <linux/elfcore.h>
29 #include <linux/reboot.h>
30 #include <linux/tty.h>
31 #include <linux/console.h>
34 #include <asm/uaccess.h>
35 #include <asm/system.h>
37 #include <asm/pgtable.h>
38 #include <asm/hwrpb.h>
45 * Power off function, if any
47 void (*pm_power_off
)(void) = machine_power_off
;
48 EXPORT_SYMBOL(pm_power_off
);
53 set_thread_flag(TIF_POLLING_NRFLAG
);
56 /* FIXME -- EV6 and LCA45 know how to power down
59 while (!need_resched())
72 common_shutdown_1(void *generic_ptr
)
74 struct halt_info
*how
= (struct halt_info
*)generic_ptr
;
75 struct percpu_struct
*cpup
;
76 unsigned long *pflags
, flags
;
77 int cpuid
= smp_processor_id();
79 /* No point in taking interrupts anymore. */
82 cpup
= (struct percpu_struct
*)
83 ((unsigned long)hwrpb
+ hwrpb
->processor_offset
84 + hwrpb
->processor_size
* cpuid
);
85 pflags
= &cpup
->flags
;
88 /* Clear reason to "default"; clear "bootstrap in progress". */
89 flags
&= ~0x00ff0001UL
;
92 /* Secondaries halt here. */
93 if (cpuid
!= boot_cpuid
) {
94 flags
|= 0x00040000UL
; /* "remain halted" */
96 cpu_clear(cpuid
, cpu_present_map
);
97 cpu_clear(cpuid
, cpu_possible_map
);
102 if (how
->mode
== LINUX_REBOOT_CMD_RESTART
) {
103 if (!how
->restart_cmd
) {
104 flags
|= 0x00020000UL
; /* "cold bootstrap" */
106 /* For SRM, we could probably set environment
107 variables to get this to work. We'd have to
108 delay this until after srm_paging_stop unless
109 we ever got srm_fixup working.
111 At the moment, SRM will use the last boot device,
112 but the file and flags will be the defaults, when
113 doing a "warm" bootstrap. */
114 flags
|= 0x00030000UL
; /* "warm bootstrap" */
117 flags
|= 0x00040000UL
; /* "remain halted" */
122 /* Wait for the secondaries to halt. */
123 cpu_clear(boot_cpuid
, cpu_present_map
);
124 cpu_clear(boot_cpuid
, cpu_possible_map
);
125 while (cpus_weight(cpu_present_map
))
129 /* If booted from SRM, reset some of the original environment. */
130 if (alpha_using_srm
) {
131 #ifdef CONFIG_DUMMY_CONSOLE
132 /* If we've gotten here after SysRq-b, leave interrupt
133 context before taking over the console. */
136 /* This has the effect of resetting the VGA video origin. */
137 take_over_console(&dummy_con
, 0, MAX_NR_CONSOLES
-1, 1);
139 pci_restore_srm_config();
143 if (alpha_mv
.kill_arch
)
144 alpha_mv
.kill_arch(how
->mode
);
146 if (! alpha_using_srm
&& how
->mode
!= LINUX_REBOOT_CMD_RESTART
) {
147 /* Unfortunately, since MILO doesn't currently understand
148 the hwrpb bits above, we can't reliably halt the
149 processor and keep it halted. So just loop. */
160 common_shutdown(int mode
, char *restart_cmd
)
162 struct halt_info args
;
164 args
.restart_cmd
= restart_cmd
;
165 on_each_cpu(common_shutdown_1
, &args
, 0);
169 machine_restart(char *restart_cmd
)
171 common_shutdown(LINUX_REBOOT_CMD_RESTART
, restart_cmd
);
178 common_shutdown(LINUX_REBOOT_CMD_HALT
, NULL
);
183 machine_power_off(void)
185 common_shutdown(LINUX_REBOOT_CMD_POWER_OFF
, NULL
);
189 /* Used by sysrq-p, among others. I don't believe r9-r15 are ever
190 saved in the context it's used. */
193 show_regs(struct pt_regs
*regs
)
195 dik_show_regs(regs
, NULL
);
199 * Re-start a thread when doing execve()
202 start_thread(struct pt_regs
* regs
, unsigned long pc
, unsigned long sp
)
209 EXPORT_SYMBOL(start_thread
);
212 * Free current thread data structures etc..
222 /* Arrange for each exec'ed process to start off with a clean slate
223 with respect to the FPU. This is all exceptions disabled. */
224 current_thread_info()->ieee_state
= 0;
225 wrfpcr(FPCR_DYN_NORMAL
| ieee_swcr_to_fpcr(0));
227 /* Clean slate for TLS. */
228 current_thread_info()->pcb
.unique
= 0;
232 release_thread(struct task_struct
*dead_task
)
237 * "alpha_clone()".. By the time we get here, the
238 * non-volatile registers have also been saved on the
239 * stack. We do some ugly pointer stuff here.. (see
242 * Notice that "fork()" is implemented in terms of clone,
243 * with parameters (SIGCHLD, 0).
246 alpha_clone(unsigned long clone_flags
, unsigned long usp
,
247 int __user
*parent_tid
, int __user
*child_tid
,
248 unsigned long tls_value
, struct pt_regs
*regs
)
253 return do_fork(clone_flags
, usp
, regs
, 0, parent_tid
, child_tid
);
257 alpha_vfork(struct pt_regs
*regs
)
259 return do_fork(CLONE_VFORK
| CLONE_VM
| SIGCHLD
, rdusp(),
260 regs
, 0, NULL
, NULL
);
264 * Copy an alpha thread..
266 * Note the "stack_offset" stuff: when returning to kernel mode, we need
267 * to have some extra stack-space for the kernel stack that still exists
268 * after the "ret_from_fork". When returning to user mode, we only want
269 * the space needed by the syscall stack frame (ie "struct pt_regs").
270 * Use the passed "regs" pointer to determine how much space we need
271 * for a kernel fork().
275 copy_thread(int nr
, unsigned long clone_flags
, unsigned long usp
,
276 unsigned long unused
,
277 struct task_struct
* p
, struct pt_regs
* regs
)
279 extern void ret_from_fork(void);
281 struct thread_info
*childti
= task_thread_info(p
);
282 struct pt_regs
* childregs
;
283 struct switch_stack
* childstack
, *stack
;
284 unsigned long stack_offset
, settls
;
286 stack_offset
= PAGE_SIZE
- sizeof(struct pt_regs
);
288 stack_offset
= (PAGE_SIZE
-1) & (unsigned long) regs
;
289 childregs
= (struct pt_regs
*)
290 (stack_offset
+ PAGE_SIZE
+ task_stack_page(p
));
296 childregs
->r20
= 1; /* OSF/1 has some strange fork() semantics. */
298 stack
= ((struct switch_stack
*) regs
) - 1;
299 childstack
= ((struct switch_stack
*) childregs
) - 1;
300 *childstack
= *stack
;
301 childstack
->r26
= (unsigned long) ret_from_fork
;
302 childti
->pcb
.usp
= usp
;
303 childti
->pcb
.ksp
= (unsigned long) childstack
;
304 childti
->pcb
.flags
= 1; /* set FEN, clear everything else */
306 /* Set a new TLS for the child thread? Peek back into the
307 syscall arguments that we saved on syscall entry. Oops,
308 except we'd have clobbered it with the parent/child set
309 of r20. Read the saved copy. */
310 /* Note: if CLONE_SETTLS is not set, then we must inherit the
311 value from the parent, which will have been set by the block
312 copy in dup_task_struct. This is non-intuitive, but is
313 required for proper operation in the case of a threaded
314 application calling fork. */
315 if (clone_flags
& CLONE_SETTLS
)
316 childti
->pcb
.unique
= settls
;
322 * Fill in the user structure for a ELF core dump.
325 dump_elf_thread(elf_greg_t
*dest
, struct pt_regs
*pt
, struct thread_info
*ti
)
327 /* switch stack follows right below pt_regs: */
328 struct switch_stack
* sw
= ((struct switch_stack
*) pt
) - 1;
363 /* Once upon a time this was the PS value. Which is stupid
364 since that is always 8 for usermode. Usurped for the more
365 useful value of the thread's UNIQUE field. */
366 dest
[32] = ti
->pcb
.unique
;
368 EXPORT_SYMBOL(dump_elf_thread
);
371 dump_elf_task(elf_greg_t
*dest
, struct task_struct
*task
)
373 dump_elf_thread(dest
, task_pt_regs(task
), task_thread_info(task
));
376 EXPORT_SYMBOL(dump_elf_task
);
379 dump_elf_task_fp(elf_fpreg_t
*dest
, struct task_struct
*task
)
381 struct switch_stack
*sw
= (struct switch_stack
*)task_pt_regs(task
) - 1;
382 memcpy(dest
, sw
->fp
, 32 * 8);
385 EXPORT_SYMBOL(dump_elf_task_fp
);
388 * sys_execve() executes a new program.
391 do_sys_execve(char __user
*ufilename
, char __user
* __user
*argv
,
392 char __user
* __user
*envp
, struct pt_regs
*regs
)
397 filename
= getname(ufilename
);
398 error
= PTR_ERR(filename
);
399 if (IS_ERR(filename
))
401 error
= do_execve(filename
, argv
, envp
, regs
);
408 * Return saved PC of a blocked thread. This assumes the frame
409 * pointer is the 6th saved long on the kernel stack and that the
410 * saved return address is the first long in the frame. This all
411 * holds provided the thread blocked through a call to schedule() ($15
412 * is the frame pointer in schedule() and $15 is saved at offset 48 by
413 * entry.S:do_switch_stack).
415 * Under heavy swap load I've seen this lose in an ugly way. So do
416 * some extra sanity checking on the ranges we expect these pointers
417 * to be in so that we can fail gracefully. This is just for ps after
422 thread_saved_pc(struct task_struct
*t
)
424 unsigned long base
= (unsigned long)task_stack_page(t
);
425 unsigned long fp
, sp
= task_thread_info(t
)->pcb
.ksp
;
427 if (sp
> base
&& sp
+6*8 < base
+ 16*1024) {
428 fp
= ((unsigned long*)sp
)[6];
429 if (fp
> sp
&& fp
< base
+ 16*1024)
430 return *(unsigned long *)fp
;
437 get_wchan(struct task_struct
*p
)
439 unsigned long schedule_frame
;
441 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
444 * This one depends on the frame size of schedule(). Do a
445 * "disass schedule" in gdb to find the frame size. Also, the
446 * code assumes that sleep_on() follows immediately after
447 * interruptible_sleep_on() and that add_timer() follows
448 * immediately after interruptible_sleep(). Ugly, isn't it?
449 * Maybe adding a wchan field to task_struct would be better,
453 pc
= thread_saved_pc(p
);
454 if (in_sched_functions(pc
)) {
455 schedule_frame
= ((unsigned long *)task_thread_info(p
)->pcb
.ksp
)[6];
456 return ((unsigned long *)schedule_frame
)[12];