Staging: comedi: mark a variable as __user
[linux/fpc-iii.git] / drivers / crypto / mv_cesa.c
blob6f29012bcc434dbcc1101782072678991d53a509
1 /*
2 * Support for Marvell's crypto engine which can be found on some Orion5X
3 * boards.
5 * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
6 * License: GPLv2
8 */
9 #include <crypto/aes.h>
10 #include <crypto/algapi.h>
11 #include <linux/crypto.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kthread.h>
15 #include <linux/platform_device.h>
16 #include <linux/scatterlist.h>
17 #include <linux/slab.h>
19 #include "mv_cesa.h"
21 * STM:
22 * /---------------------------------------\
23 * | | request complete
24 * \./ |
25 * IDLE -> new request -> BUSY -> done -> DEQUEUE
26 * /°\ |
27 * | | more scatter entries
28 * \________________/
30 enum engine_status {
31 ENGINE_IDLE,
32 ENGINE_BUSY,
33 ENGINE_W_DEQUEUE,
36 /**
37 * struct req_progress - used for every crypt request
38 * @src_sg_it: sg iterator for src
39 * @dst_sg_it: sg iterator for dst
40 * @sg_src_left: bytes left in src to process (scatter list)
41 * @src_start: offset to add to src start position (scatter list)
42 * @crypt_len: length of current crypt process
43 * @sg_dst_left: bytes left dst to process in this scatter list
44 * @dst_start: offset to add to dst start position (scatter list)
45 * @total_req_bytes: total number of bytes processed (request).
47 * sg helper are used to iterate over the scatterlist. Since the size of the
48 * SRAM may be less than the scatter size, this struct struct is used to keep
49 * track of progress within current scatterlist.
51 struct req_progress {
52 struct sg_mapping_iter src_sg_it;
53 struct sg_mapping_iter dst_sg_it;
55 /* src mostly */
56 int sg_src_left;
57 int src_start;
58 int crypt_len;
59 /* dst mostly */
60 int sg_dst_left;
61 int dst_start;
62 int total_req_bytes;
65 struct crypto_priv {
66 void __iomem *reg;
67 void __iomem *sram;
68 int irq;
69 struct task_struct *queue_th;
71 /* the lock protects queue and eng_st */
72 spinlock_t lock;
73 struct crypto_queue queue;
74 enum engine_status eng_st;
75 struct ablkcipher_request *cur_req;
76 struct req_progress p;
77 int max_req_size;
78 int sram_size;
81 static struct crypto_priv *cpg;
83 struct mv_ctx {
84 u8 aes_enc_key[AES_KEY_LEN];
85 u32 aes_dec_key[8];
86 int key_len;
87 u32 need_calc_aes_dkey;
90 enum crypto_op {
91 COP_AES_ECB,
92 COP_AES_CBC,
95 struct mv_req_ctx {
96 enum crypto_op op;
97 int decrypt;
100 static void compute_aes_dec_key(struct mv_ctx *ctx)
102 struct crypto_aes_ctx gen_aes_key;
103 int key_pos;
105 if (!ctx->need_calc_aes_dkey)
106 return;
108 crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
110 key_pos = ctx->key_len + 24;
111 memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
112 switch (ctx->key_len) {
113 case AES_KEYSIZE_256:
114 key_pos -= 2;
115 /* fall */
116 case AES_KEYSIZE_192:
117 key_pos -= 2;
118 memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
119 4 * 4);
120 break;
122 ctx->need_calc_aes_dkey = 0;
125 static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
126 unsigned int len)
128 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
129 struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
131 switch (len) {
132 case AES_KEYSIZE_128:
133 case AES_KEYSIZE_192:
134 case AES_KEYSIZE_256:
135 break;
136 default:
137 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
138 return -EINVAL;
140 ctx->key_len = len;
141 ctx->need_calc_aes_dkey = 1;
143 memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
144 return 0;
147 static void setup_data_in(struct ablkcipher_request *req)
149 int ret;
150 void *buf;
152 if (!cpg->p.sg_src_left) {
153 ret = sg_miter_next(&cpg->p.src_sg_it);
154 BUG_ON(!ret);
155 cpg->p.sg_src_left = cpg->p.src_sg_it.length;
156 cpg->p.src_start = 0;
159 cpg->p.crypt_len = min(cpg->p.sg_src_left, cpg->max_req_size);
161 buf = cpg->p.src_sg_it.addr;
162 buf += cpg->p.src_start;
164 memcpy(cpg->sram + SRAM_DATA_IN_START, buf, cpg->p.crypt_len);
166 cpg->p.sg_src_left -= cpg->p.crypt_len;
167 cpg->p.src_start += cpg->p.crypt_len;
170 static void mv_process_current_q(int first_block)
172 struct ablkcipher_request *req = cpg->cur_req;
173 struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
174 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
175 struct sec_accel_config op;
177 switch (req_ctx->op) {
178 case COP_AES_ECB:
179 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
180 break;
181 case COP_AES_CBC:
182 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
183 op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
184 ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
185 if (first_block)
186 memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
187 break;
189 if (req_ctx->decrypt) {
190 op.config |= CFG_DIR_DEC;
191 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
192 AES_KEY_LEN);
193 } else {
194 op.config |= CFG_DIR_ENC;
195 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
196 AES_KEY_LEN);
199 switch (ctx->key_len) {
200 case AES_KEYSIZE_128:
201 op.config |= CFG_AES_LEN_128;
202 break;
203 case AES_KEYSIZE_192:
204 op.config |= CFG_AES_LEN_192;
205 break;
206 case AES_KEYSIZE_256:
207 op.config |= CFG_AES_LEN_256;
208 break;
210 op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
211 ENC_P_DST(SRAM_DATA_OUT_START);
212 op.enc_key_p = SRAM_DATA_KEY_P;
214 setup_data_in(req);
215 op.enc_len = cpg->p.crypt_len;
216 memcpy(cpg->sram + SRAM_CONFIG, &op,
217 sizeof(struct sec_accel_config));
219 writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
220 /* GO */
221 writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
224 * XXX: add timer if the interrupt does not occur for some mystery
225 * reason
229 static void mv_crypto_algo_completion(void)
231 struct ablkcipher_request *req = cpg->cur_req;
232 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
234 if (req_ctx->op != COP_AES_CBC)
235 return ;
237 memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
240 static void dequeue_complete_req(void)
242 struct ablkcipher_request *req = cpg->cur_req;
243 void *buf;
244 int ret;
246 cpg->p.total_req_bytes += cpg->p.crypt_len;
247 do {
248 int dst_copy;
250 if (!cpg->p.sg_dst_left) {
251 ret = sg_miter_next(&cpg->p.dst_sg_it);
252 BUG_ON(!ret);
253 cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
254 cpg->p.dst_start = 0;
257 buf = cpg->p.dst_sg_it.addr;
258 buf += cpg->p.dst_start;
260 dst_copy = min(cpg->p.crypt_len, cpg->p.sg_dst_left);
262 memcpy(buf, cpg->sram + SRAM_DATA_OUT_START, dst_copy);
264 cpg->p.sg_dst_left -= dst_copy;
265 cpg->p.crypt_len -= dst_copy;
266 cpg->p.dst_start += dst_copy;
267 } while (cpg->p.crypt_len > 0);
269 BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
270 if (cpg->p.total_req_bytes < req->nbytes) {
271 /* process next scatter list entry */
272 cpg->eng_st = ENGINE_BUSY;
273 mv_process_current_q(0);
274 } else {
275 sg_miter_stop(&cpg->p.src_sg_it);
276 sg_miter_stop(&cpg->p.dst_sg_it);
277 mv_crypto_algo_completion();
278 cpg->eng_st = ENGINE_IDLE;
279 req->base.complete(&req->base, 0);
283 static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
285 int i = 0;
287 do {
288 total_bytes -= sl[i].length;
289 i++;
291 } while (total_bytes > 0);
293 return i;
296 static void mv_enqueue_new_req(struct ablkcipher_request *req)
298 int num_sgs;
300 cpg->cur_req = req;
301 memset(&cpg->p, 0, sizeof(struct req_progress));
303 num_sgs = count_sgs(req->src, req->nbytes);
304 sg_miter_start(&cpg->p.src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
306 num_sgs = count_sgs(req->dst, req->nbytes);
307 sg_miter_start(&cpg->p.dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
308 mv_process_current_q(1);
311 static int queue_manag(void *data)
313 cpg->eng_st = ENGINE_IDLE;
314 do {
315 struct ablkcipher_request *req;
316 struct crypto_async_request *async_req = NULL;
317 struct crypto_async_request *backlog;
319 __set_current_state(TASK_INTERRUPTIBLE);
321 if (cpg->eng_st == ENGINE_W_DEQUEUE)
322 dequeue_complete_req();
324 spin_lock_irq(&cpg->lock);
325 if (cpg->eng_st == ENGINE_IDLE) {
326 backlog = crypto_get_backlog(&cpg->queue);
327 async_req = crypto_dequeue_request(&cpg->queue);
328 if (async_req) {
329 BUG_ON(cpg->eng_st != ENGINE_IDLE);
330 cpg->eng_st = ENGINE_BUSY;
333 spin_unlock_irq(&cpg->lock);
335 if (backlog) {
336 backlog->complete(backlog, -EINPROGRESS);
337 backlog = NULL;
340 if (async_req) {
341 req = container_of(async_req,
342 struct ablkcipher_request, base);
343 mv_enqueue_new_req(req);
344 async_req = NULL;
347 schedule();
349 } while (!kthread_should_stop());
350 return 0;
353 static int mv_handle_req(struct ablkcipher_request *req)
355 unsigned long flags;
356 int ret;
358 spin_lock_irqsave(&cpg->lock, flags);
359 ret = ablkcipher_enqueue_request(&cpg->queue, req);
360 spin_unlock_irqrestore(&cpg->lock, flags);
361 wake_up_process(cpg->queue_th);
362 return ret;
365 static int mv_enc_aes_ecb(struct ablkcipher_request *req)
367 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
369 req_ctx->op = COP_AES_ECB;
370 req_ctx->decrypt = 0;
372 return mv_handle_req(req);
375 static int mv_dec_aes_ecb(struct ablkcipher_request *req)
377 struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
378 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
380 req_ctx->op = COP_AES_ECB;
381 req_ctx->decrypt = 1;
383 compute_aes_dec_key(ctx);
384 return mv_handle_req(req);
387 static int mv_enc_aes_cbc(struct ablkcipher_request *req)
389 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
391 req_ctx->op = COP_AES_CBC;
392 req_ctx->decrypt = 0;
394 return mv_handle_req(req);
397 static int mv_dec_aes_cbc(struct ablkcipher_request *req)
399 struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
400 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
402 req_ctx->op = COP_AES_CBC;
403 req_ctx->decrypt = 1;
405 compute_aes_dec_key(ctx);
406 return mv_handle_req(req);
409 static int mv_cra_init(struct crypto_tfm *tfm)
411 tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
412 return 0;
415 irqreturn_t crypto_int(int irq, void *priv)
417 u32 val;
419 val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
420 if (!(val & SEC_INT_ACCEL0_DONE))
421 return IRQ_NONE;
423 val &= ~SEC_INT_ACCEL0_DONE;
424 writel(val, cpg->reg + FPGA_INT_STATUS);
425 writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
426 BUG_ON(cpg->eng_st != ENGINE_BUSY);
427 cpg->eng_st = ENGINE_W_DEQUEUE;
428 wake_up_process(cpg->queue_th);
429 return IRQ_HANDLED;
432 struct crypto_alg mv_aes_alg_ecb = {
433 .cra_name = "ecb(aes)",
434 .cra_driver_name = "mv-ecb-aes",
435 .cra_priority = 300,
436 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
437 .cra_blocksize = 16,
438 .cra_ctxsize = sizeof(struct mv_ctx),
439 .cra_alignmask = 0,
440 .cra_type = &crypto_ablkcipher_type,
441 .cra_module = THIS_MODULE,
442 .cra_init = mv_cra_init,
443 .cra_u = {
444 .ablkcipher = {
445 .min_keysize = AES_MIN_KEY_SIZE,
446 .max_keysize = AES_MAX_KEY_SIZE,
447 .setkey = mv_setkey_aes,
448 .encrypt = mv_enc_aes_ecb,
449 .decrypt = mv_dec_aes_ecb,
454 struct crypto_alg mv_aes_alg_cbc = {
455 .cra_name = "cbc(aes)",
456 .cra_driver_name = "mv-cbc-aes",
457 .cra_priority = 300,
458 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
459 .cra_blocksize = AES_BLOCK_SIZE,
460 .cra_ctxsize = sizeof(struct mv_ctx),
461 .cra_alignmask = 0,
462 .cra_type = &crypto_ablkcipher_type,
463 .cra_module = THIS_MODULE,
464 .cra_init = mv_cra_init,
465 .cra_u = {
466 .ablkcipher = {
467 .ivsize = AES_BLOCK_SIZE,
468 .min_keysize = AES_MIN_KEY_SIZE,
469 .max_keysize = AES_MAX_KEY_SIZE,
470 .setkey = mv_setkey_aes,
471 .encrypt = mv_enc_aes_cbc,
472 .decrypt = mv_dec_aes_cbc,
477 static int mv_probe(struct platform_device *pdev)
479 struct crypto_priv *cp;
480 struct resource *res;
481 int irq;
482 int ret;
484 if (cpg) {
485 printk(KERN_ERR "Second crypto dev?\n");
486 return -EEXIST;
489 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
490 if (!res)
491 return -ENXIO;
493 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
494 if (!cp)
495 return -ENOMEM;
497 spin_lock_init(&cp->lock);
498 crypto_init_queue(&cp->queue, 50);
499 cp->reg = ioremap(res->start, res->end - res->start + 1);
500 if (!cp->reg) {
501 ret = -ENOMEM;
502 goto err;
505 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
506 if (!res) {
507 ret = -ENXIO;
508 goto err_unmap_reg;
510 cp->sram_size = res->end - res->start + 1;
511 cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
512 cp->sram = ioremap(res->start, cp->sram_size);
513 if (!cp->sram) {
514 ret = -ENOMEM;
515 goto err_unmap_reg;
518 irq = platform_get_irq(pdev, 0);
519 if (irq < 0 || irq == NO_IRQ) {
520 ret = irq;
521 goto err_unmap_sram;
523 cp->irq = irq;
525 platform_set_drvdata(pdev, cp);
526 cpg = cp;
528 cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
529 if (IS_ERR(cp->queue_th)) {
530 ret = PTR_ERR(cp->queue_th);
531 goto err_thread;
534 ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev),
535 cp);
536 if (ret)
537 goto err_unmap_sram;
539 writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
540 writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
542 ret = crypto_register_alg(&mv_aes_alg_ecb);
543 if (ret)
544 goto err_reg;
546 ret = crypto_register_alg(&mv_aes_alg_cbc);
547 if (ret)
548 goto err_unreg_ecb;
549 return 0;
550 err_unreg_ecb:
551 crypto_unregister_alg(&mv_aes_alg_ecb);
552 err_thread:
553 free_irq(irq, cp);
554 err_reg:
555 kthread_stop(cp->queue_th);
556 err_unmap_sram:
557 iounmap(cp->sram);
558 err_unmap_reg:
559 iounmap(cp->reg);
560 err:
561 kfree(cp);
562 cpg = NULL;
563 platform_set_drvdata(pdev, NULL);
564 return ret;
567 static int mv_remove(struct platform_device *pdev)
569 struct crypto_priv *cp = platform_get_drvdata(pdev);
571 crypto_unregister_alg(&mv_aes_alg_ecb);
572 crypto_unregister_alg(&mv_aes_alg_cbc);
573 kthread_stop(cp->queue_th);
574 free_irq(cp->irq, cp);
575 memset(cp->sram, 0, cp->sram_size);
576 iounmap(cp->sram);
577 iounmap(cp->reg);
578 kfree(cp);
579 cpg = NULL;
580 return 0;
583 static struct platform_driver marvell_crypto = {
584 .probe = mv_probe,
585 .remove = mv_remove,
586 .driver = {
587 .owner = THIS_MODULE,
588 .name = "mv_crypto",
591 MODULE_ALIAS("platform:mv_crypto");
593 static int __init mv_crypto_init(void)
595 return platform_driver_register(&marvell_crypto);
597 module_init(mv_crypto_init);
599 static void __exit mv_crypto_exit(void)
601 platform_driver_unregister(&marvell_crypto);
603 module_exit(mv_crypto_exit);
605 MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
606 MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
607 MODULE_LICENSE("GPL");