NFSv4.1: RECLAIM_COMPLETE must handle NFS4ERR_CONN_NOT_BOUND_TO_SESSION
[linux/fpc-iii.git] / mm / mempolicy.c
bloba8ab5e73dc6156cb0fba867e26aeb1737f78a6fd
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
101 #include "internal.h"
103 /* Internal flags */
104 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
105 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
107 static struct kmem_cache *policy_cache;
108 static struct kmem_cache *sn_cache;
110 /* Highest zone. An specific allocation for a zone below that is not
111 policied. */
112 enum zone_type policy_zone = 0;
115 * run-time system-wide default policy => local allocation
117 static struct mempolicy default_policy = {
118 .refcnt = ATOMIC_INIT(1), /* never free it */
119 .mode = MPOL_PREFERRED,
120 .flags = MPOL_F_LOCAL,
123 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
125 struct mempolicy *get_task_policy(struct task_struct *p)
127 struct mempolicy *pol = p->mempolicy;
128 int node;
130 if (pol)
131 return pol;
133 node = numa_node_id();
134 if (node != NUMA_NO_NODE) {
135 pol = &preferred_node_policy[node];
136 /* preferred_node_policy is not initialised early in boot */
137 if (pol->mode)
138 return pol;
141 return &default_policy;
144 static const struct mempolicy_operations {
145 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
147 * If read-side task has no lock to protect task->mempolicy, write-side
148 * task will rebind the task->mempolicy by two step. The first step is
149 * setting all the newly nodes, and the second step is cleaning all the
150 * disallowed nodes. In this way, we can avoid finding no node to alloc
151 * page.
152 * If we have a lock to protect task->mempolicy in read-side, we do
153 * rebind directly.
155 * step:
156 * MPOL_REBIND_ONCE - do rebind work at once
157 * MPOL_REBIND_STEP1 - set all the newly nodes
158 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
160 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
161 enum mpol_rebind_step step);
162 } mpol_ops[MPOL_MAX];
164 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
166 return pol->flags & MPOL_MODE_FLAGS;
169 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
170 const nodemask_t *rel)
172 nodemask_t tmp;
173 nodes_fold(tmp, *orig, nodes_weight(*rel));
174 nodes_onto(*ret, tmp, *rel);
177 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
179 if (nodes_empty(*nodes))
180 return -EINVAL;
181 pol->v.nodes = *nodes;
182 return 0;
185 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
187 if (!nodes)
188 pol->flags |= MPOL_F_LOCAL; /* local allocation */
189 else if (nodes_empty(*nodes))
190 return -EINVAL; /* no allowed nodes */
191 else
192 pol->v.preferred_node = first_node(*nodes);
193 return 0;
196 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
198 if (nodes_empty(*nodes))
199 return -EINVAL;
200 pol->v.nodes = *nodes;
201 return 0;
205 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
206 * any, for the new policy. mpol_new() has already validated the nodes
207 * parameter with respect to the policy mode and flags. But, we need to
208 * handle an empty nodemask with MPOL_PREFERRED here.
210 * Must be called holding task's alloc_lock to protect task's mems_allowed
211 * and mempolicy. May also be called holding the mmap_semaphore for write.
213 static int mpol_set_nodemask(struct mempolicy *pol,
214 const nodemask_t *nodes, struct nodemask_scratch *nsc)
216 int ret;
218 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
219 if (pol == NULL)
220 return 0;
221 /* Check N_MEMORY */
222 nodes_and(nsc->mask1,
223 cpuset_current_mems_allowed, node_states[N_MEMORY]);
225 VM_BUG_ON(!nodes);
226 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
227 nodes = NULL; /* explicit local allocation */
228 else {
229 if (pol->flags & MPOL_F_RELATIVE_NODES)
230 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
231 else
232 nodes_and(nsc->mask2, *nodes, nsc->mask1);
234 if (mpol_store_user_nodemask(pol))
235 pol->w.user_nodemask = *nodes;
236 else
237 pol->w.cpuset_mems_allowed =
238 cpuset_current_mems_allowed;
241 if (nodes)
242 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
243 else
244 ret = mpol_ops[pol->mode].create(pol, NULL);
245 return ret;
249 * This function just creates a new policy, does some check and simple
250 * initialization. You must invoke mpol_set_nodemask() to set nodes.
252 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
253 nodemask_t *nodes)
255 struct mempolicy *policy;
257 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
258 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
260 if (mode == MPOL_DEFAULT) {
261 if (nodes && !nodes_empty(*nodes))
262 return ERR_PTR(-EINVAL);
263 return NULL;
265 VM_BUG_ON(!nodes);
268 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
269 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
270 * All other modes require a valid pointer to a non-empty nodemask.
272 if (mode == MPOL_PREFERRED) {
273 if (nodes_empty(*nodes)) {
274 if (((flags & MPOL_F_STATIC_NODES) ||
275 (flags & MPOL_F_RELATIVE_NODES)))
276 return ERR_PTR(-EINVAL);
278 } else if (mode == MPOL_LOCAL) {
279 if (!nodes_empty(*nodes))
280 return ERR_PTR(-EINVAL);
281 mode = MPOL_PREFERRED;
282 } else if (nodes_empty(*nodes))
283 return ERR_PTR(-EINVAL);
284 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
285 if (!policy)
286 return ERR_PTR(-ENOMEM);
287 atomic_set(&policy->refcnt, 1);
288 policy->mode = mode;
289 policy->flags = flags;
291 return policy;
294 /* Slow path of a mpol destructor. */
295 void __mpol_put(struct mempolicy *p)
297 if (!atomic_dec_and_test(&p->refcnt))
298 return;
299 kmem_cache_free(policy_cache, p);
302 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
303 enum mpol_rebind_step step)
308 * step:
309 * MPOL_REBIND_ONCE - do rebind work at once
310 * MPOL_REBIND_STEP1 - set all the newly nodes
311 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
313 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
314 enum mpol_rebind_step step)
316 nodemask_t tmp;
318 if (pol->flags & MPOL_F_STATIC_NODES)
319 nodes_and(tmp, pol->w.user_nodemask, *nodes);
320 else if (pol->flags & MPOL_F_RELATIVE_NODES)
321 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
322 else {
324 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
325 * result
327 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
328 nodes_remap(tmp, pol->v.nodes,
329 pol->w.cpuset_mems_allowed, *nodes);
330 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
331 } else if (step == MPOL_REBIND_STEP2) {
332 tmp = pol->w.cpuset_mems_allowed;
333 pol->w.cpuset_mems_allowed = *nodes;
334 } else
335 BUG();
338 if (nodes_empty(tmp))
339 tmp = *nodes;
341 if (step == MPOL_REBIND_STEP1)
342 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
343 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
344 pol->v.nodes = tmp;
345 else
346 BUG();
348 if (!node_isset(current->il_next, tmp)) {
349 current->il_next = next_node_in(current->il_next, tmp);
350 if (current->il_next >= MAX_NUMNODES)
351 current->il_next = numa_node_id();
355 static void mpol_rebind_preferred(struct mempolicy *pol,
356 const nodemask_t *nodes,
357 enum mpol_rebind_step step)
359 nodemask_t tmp;
361 if (pol->flags & MPOL_F_STATIC_NODES) {
362 int node = first_node(pol->w.user_nodemask);
364 if (node_isset(node, *nodes)) {
365 pol->v.preferred_node = node;
366 pol->flags &= ~MPOL_F_LOCAL;
367 } else
368 pol->flags |= MPOL_F_LOCAL;
369 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
370 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
371 pol->v.preferred_node = first_node(tmp);
372 } else if (!(pol->flags & MPOL_F_LOCAL)) {
373 pol->v.preferred_node = node_remap(pol->v.preferred_node,
374 pol->w.cpuset_mems_allowed,
375 *nodes);
376 pol->w.cpuset_mems_allowed = *nodes;
381 * mpol_rebind_policy - Migrate a policy to a different set of nodes
383 * If read-side task has no lock to protect task->mempolicy, write-side
384 * task will rebind the task->mempolicy by two step. The first step is
385 * setting all the newly nodes, and the second step is cleaning all the
386 * disallowed nodes. In this way, we can avoid finding no node to alloc
387 * page.
388 * If we have a lock to protect task->mempolicy in read-side, we do
389 * rebind directly.
391 * step:
392 * MPOL_REBIND_ONCE - do rebind work at once
393 * MPOL_REBIND_STEP1 - set all the newly nodes
394 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
396 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
397 enum mpol_rebind_step step)
399 if (!pol)
400 return;
401 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
402 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
403 return;
405 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
406 return;
408 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
409 BUG();
411 if (step == MPOL_REBIND_STEP1)
412 pol->flags |= MPOL_F_REBINDING;
413 else if (step == MPOL_REBIND_STEP2)
414 pol->flags &= ~MPOL_F_REBINDING;
415 else if (step >= MPOL_REBIND_NSTEP)
416 BUG();
418 mpol_ops[pol->mode].rebind(pol, newmask, step);
422 * Wrapper for mpol_rebind_policy() that just requires task
423 * pointer, and updates task mempolicy.
425 * Called with task's alloc_lock held.
428 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
429 enum mpol_rebind_step step)
431 mpol_rebind_policy(tsk->mempolicy, new, step);
435 * Rebind each vma in mm to new nodemask.
437 * Call holding a reference to mm. Takes mm->mmap_sem during call.
440 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
442 struct vm_area_struct *vma;
444 down_write(&mm->mmap_sem);
445 for (vma = mm->mmap; vma; vma = vma->vm_next)
446 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
447 up_write(&mm->mmap_sem);
450 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
451 [MPOL_DEFAULT] = {
452 .rebind = mpol_rebind_default,
454 [MPOL_INTERLEAVE] = {
455 .create = mpol_new_interleave,
456 .rebind = mpol_rebind_nodemask,
458 [MPOL_PREFERRED] = {
459 .create = mpol_new_preferred,
460 .rebind = mpol_rebind_preferred,
462 [MPOL_BIND] = {
463 .create = mpol_new_bind,
464 .rebind = mpol_rebind_nodemask,
468 static void migrate_page_add(struct page *page, struct list_head *pagelist,
469 unsigned long flags);
471 struct queue_pages {
472 struct list_head *pagelist;
473 unsigned long flags;
474 nodemask_t *nmask;
475 struct vm_area_struct *prev;
479 * Scan through pages checking if pages follow certain conditions,
480 * and move them to the pagelist if they do.
482 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
483 unsigned long end, struct mm_walk *walk)
485 struct vm_area_struct *vma = walk->vma;
486 struct page *page;
487 struct queue_pages *qp = walk->private;
488 unsigned long flags = qp->flags;
489 int nid, ret;
490 pte_t *pte;
491 spinlock_t *ptl;
493 if (pmd_trans_huge(*pmd)) {
494 ptl = pmd_lock(walk->mm, pmd);
495 if (pmd_trans_huge(*pmd)) {
496 page = pmd_page(*pmd);
497 if (is_huge_zero_page(page)) {
498 spin_unlock(ptl);
499 split_huge_pmd(vma, pmd, addr);
500 } else {
501 get_page(page);
502 spin_unlock(ptl);
503 lock_page(page);
504 ret = split_huge_page(page);
505 unlock_page(page);
506 put_page(page);
507 if (ret)
508 return 0;
510 } else {
511 spin_unlock(ptl);
515 if (pmd_trans_unstable(pmd))
516 return 0;
517 retry:
518 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
519 for (; addr != end; pte++, addr += PAGE_SIZE) {
520 if (!pte_present(*pte))
521 continue;
522 page = vm_normal_page(vma, addr, *pte);
523 if (!page)
524 continue;
526 * vm_normal_page() filters out zero pages, but there might
527 * still be PageReserved pages to skip, perhaps in a VDSO.
529 if (PageReserved(page))
530 continue;
531 nid = page_to_nid(page);
532 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
533 continue;
534 if (PageTransCompound(page)) {
535 get_page(page);
536 pte_unmap_unlock(pte, ptl);
537 lock_page(page);
538 ret = split_huge_page(page);
539 unlock_page(page);
540 put_page(page);
541 /* Failed to split -- skip. */
542 if (ret) {
543 pte = pte_offset_map_lock(walk->mm, pmd,
544 addr, &ptl);
545 continue;
547 goto retry;
550 migrate_page_add(page, qp->pagelist, flags);
552 pte_unmap_unlock(pte - 1, ptl);
553 cond_resched();
554 return 0;
557 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
558 unsigned long addr, unsigned long end,
559 struct mm_walk *walk)
561 #ifdef CONFIG_HUGETLB_PAGE
562 struct queue_pages *qp = walk->private;
563 unsigned long flags = qp->flags;
564 int nid;
565 struct page *page;
566 spinlock_t *ptl;
567 pte_t entry;
569 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
570 entry = huge_ptep_get(pte);
571 if (!pte_present(entry))
572 goto unlock;
573 page = pte_page(entry);
574 nid = page_to_nid(page);
575 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
576 goto unlock;
577 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
578 if (flags & (MPOL_MF_MOVE_ALL) ||
579 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
580 isolate_huge_page(page, qp->pagelist);
581 unlock:
582 spin_unlock(ptl);
583 #else
584 BUG();
585 #endif
586 return 0;
589 #ifdef CONFIG_NUMA_BALANCING
591 * This is used to mark a range of virtual addresses to be inaccessible.
592 * These are later cleared by a NUMA hinting fault. Depending on these
593 * faults, pages may be migrated for better NUMA placement.
595 * This is assuming that NUMA faults are handled using PROT_NONE. If
596 * an architecture makes a different choice, it will need further
597 * changes to the core.
599 unsigned long change_prot_numa(struct vm_area_struct *vma,
600 unsigned long addr, unsigned long end)
602 int nr_updated;
604 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
605 if (nr_updated)
606 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
608 return nr_updated;
610 #else
611 static unsigned long change_prot_numa(struct vm_area_struct *vma,
612 unsigned long addr, unsigned long end)
614 return 0;
616 #endif /* CONFIG_NUMA_BALANCING */
618 static int queue_pages_test_walk(unsigned long start, unsigned long end,
619 struct mm_walk *walk)
621 struct vm_area_struct *vma = walk->vma;
622 struct queue_pages *qp = walk->private;
623 unsigned long endvma = vma->vm_end;
624 unsigned long flags = qp->flags;
626 if (!vma_migratable(vma))
627 return 1;
629 if (endvma > end)
630 endvma = end;
631 if (vma->vm_start > start)
632 start = vma->vm_start;
634 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
635 if (!vma->vm_next && vma->vm_end < end)
636 return -EFAULT;
637 if (qp->prev && qp->prev->vm_end < vma->vm_start)
638 return -EFAULT;
641 qp->prev = vma;
643 if (flags & MPOL_MF_LAZY) {
644 /* Similar to task_numa_work, skip inaccessible VMAs */
645 if (!is_vm_hugetlb_page(vma) &&
646 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
647 !(vma->vm_flags & VM_MIXEDMAP))
648 change_prot_numa(vma, start, endvma);
649 return 1;
652 /* queue pages from current vma */
653 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
654 return 0;
655 return 1;
659 * Walk through page tables and collect pages to be migrated.
661 * If pages found in a given range are on a set of nodes (determined by
662 * @nodes and @flags,) it's isolated and queued to the pagelist which is
663 * passed via @private.)
665 static int
666 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
667 nodemask_t *nodes, unsigned long flags,
668 struct list_head *pagelist)
670 struct queue_pages qp = {
671 .pagelist = pagelist,
672 .flags = flags,
673 .nmask = nodes,
674 .prev = NULL,
676 struct mm_walk queue_pages_walk = {
677 .hugetlb_entry = queue_pages_hugetlb,
678 .pmd_entry = queue_pages_pte_range,
679 .test_walk = queue_pages_test_walk,
680 .mm = mm,
681 .private = &qp,
684 return walk_page_range(start, end, &queue_pages_walk);
688 * Apply policy to a single VMA
689 * This must be called with the mmap_sem held for writing.
691 static int vma_replace_policy(struct vm_area_struct *vma,
692 struct mempolicy *pol)
694 int err;
695 struct mempolicy *old;
696 struct mempolicy *new;
698 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
699 vma->vm_start, vma->vm_end, vma->vm_pgoff,
700 vma->vm_ops, vma->vm_file,
701 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
703 new = mpol_dup(pol);
704 if (IS_ERR(new))
705 return PTR_ERR(new);
707 if (vma->vm_ops && vma->vm_ops->set_policy) {
708 err = vma->vm_ops->set_policy(vma, new);
709 if (err)
710 goto err_out;
713 old = vma->vm_policy;
714 vma->vm_policy = new; /* protected by mmap_sem */
715 mpol_put(old);
717 return 0;
718 err_out:
719 mpol_put(new);
720 return err;
723 /* Step 2: apply policy to a range and do splits. */
724 static int mbind_range(struct mm_struct *mm, unsigned long start,
725 unsigned long end, struct mempolicy *new_pol)
727 struct vm_area_struct *next;
728 struct vm_area_struct *prev;
729 struct vm_area_struct *vma;
730 int err = 0;
731 pgoff_t pgoff;
732 unsigned long vmstart;
733 unsigned long vmend;
735 vma = find_vma(mm, start);
736 if (!vma || vma->vm_start > start)
737 return -EFAULT;
739 prev = vma->vm_prev;
740 if (start > vma->vm_start)
741 prev = vma;
743 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
744 next = vma->vm_next;
745 vmstart = max(start, vma->vm_start);
746 vmend = min(end, vma->vm_end);
748 if (mpol_equal(vma_policy(vma), new_pol))
749 continue;
751 pgoff = vma->vm_pgoff +
752 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
753 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
754 vma->anon_vma, vma->vm_file, pgoff,
755 new_pol, vma->vm_userfaultfd_ctx);
756 if (prev) {
757 vma = prev;
758 next = vma->vm_next;
759 if (mpol_equal(vma_policy(vma), new_pol))
760 continue;
761 /* vma_merge() joined vma && vma->next, case 8 */
762 goto replace;
764 if (vma->vm_start != vmstart) {
765 err = split_vma(vma->vm_mm, vma, vmstart, 1);
766 if (err)
767 goto out;
769 if (vma->vm_end != vmend) {
770 err = split_vma(vma->vm_mm, vma, vmend, 0);
771 if (err)
772 goto out;
774 replace:
775 err = vma_replace_policy(vma, new_pol);
776 if (err)
777 goto out;
780 out:
781 return err;
784 /* Set the process memory policy */
785 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
786 nodemask_t *nodes)
788 struct mempolicy *new, *old;
789 NODEMASK_SCRATCH(scratch);
790 int ret;
792 if (!scratch)
793 return -ENOMEM;
795 new = mpol_new(mode, flags, nodes);
796 if (IS_ERR(new)) {
797 ret = PTR_ERR(new);
798 goto out;
801 task_lock(current);
802 ret = mpol_set_nodemask(new, nodes, scratch);
803 if (ret) {
804 task_unlock(current);
805 mpol_put(new);
806 goto out;
808 old = current->mempolicy;
809 current->mempolicy = new;
810 if (new && new->mode == MPOL_INTERLEAVE &&
811 nodes_weight(new->v.nodes))
812 current->il_next = first_node(new->v.nodes);
813 task_unlock(current);
814 mpol_put(old);
815 ret = 0;
816 out:
817 NODEMASK_SCRATCH_FREE(scratch);
818 return ret;
822 * Return nodemask for policy for get_mempolicy() query
824 * Called with task's alloc_lock held
826 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
828 nodes_clear(*nodes);
829 if (p == &default_policy)
830 return;
832 switch (p->mode) {
833 case MPOL_BIND:
834 /* Fall through */
835 case MPOL_INTERLEAVE:
836 *nodes = p->v.nodes;
837 break;
838 case MPOL_PREFERRED:
839 if (!(p->flags & MPOL_F_LOCAL))
840 node_set(p->v.preferred_node, *nodes);
841 /* else return empty node mask for local allocation */
842 break;
843 default:
844 BUG();
848 static int lookup_node(unsigned long addr)
850 struct page *p;
851 int err;
853 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
854 if (err >= 0) {
855 err = page_to_nid(p);
856 put_page(p);
858 return err;
861 /* Retrieve NUMA policy */
862 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
863 unsigned long addr, unsigned long flags)
865 int err;
866 struct mm_struct *mm = current->mm;
867 struct vm_area_struct *vma = NULL;
868 struct mempolicy *pol = current->mempolicy;
870 if (flags &
871 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
872 return -EINVAL;
874 if (flags & MPOL_F_MEMS_ALLOWED) {
875 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
876 return -EINVAL;
877 *policy = 0; /* just so it's initialized */
878 task_lock(current);
879 *nmask = cpuset_current_mems_allowed;
880 task_unlock(current);
881 return 0;
884 if (flags & MPOL_F_ADDR) {
886 * Do NOT fall back to task policy if the
887 * vma/shared policy at addr is NULL. We
888 * want to return MPOL_DEFAULT in this case.
890 down_read(&mm->mmap_sem);
891 vma = find_vma_intersection(mm, addr, addr+1);
892 if (!vma) {
893 up_read(&mm->mmap_sem);
894 return -EFAULT;
896 if (vma->vm_ops && vma->vm_ops->get_policy)
897 pol = vma->vm_ops->get_policy(vma, addr);
898 else
899 pol = vma->vm_policy;
900 } else if (addr)
901 return -EINVAL;
903 if (!pol)
904 pol = &default_policy; /* indicates default behavior */
906 if (flags & MPOL_F_NODE) {
907 if (flags & MPOL_F_ADDR) {
908 err = lookup_node(addr);
909 if (err < 0)
910 goto out;
911 *policy = err;
912 } else if (pol == current->mempolicy &&
913 pol->mode == MPOL_INTERLEAVE) {
914 *policy = current->il_next;
915 } else {
916 err = -EINVAL;
917 goto out;
919 } else {
920 *policy = pol == &default_policy ? MPOL_DEFAULT :
921 pol->mode;
923 * Internal mempolicy flags must be masked off before exposing
924 * the policy to userspace.
926 *policy |= (pol->flags & MPOL_MODE_FLAGS);
929 err = 0;
930 if (nmask) {
931 if (mpol_store_user_nodemask(pol)) {
932 *nmask = pol->w.user_nodemask;
933 } else {
934 task_lock(current);
935 get_policy_nodemask(pol, nmask);
936 task_unlock(current);
940 out:
941 mpol_cond_put(pol);
942 if (vma)
943 up_read(&current->mm->mmap_sem);
944 return err;
947 #ifdef CONFIG_MIGRATION
949 * page migration
951 static void migrate_page_add(struct page *page, struct list_head *pagelist,
952 unsigned long flags)
955 * Avoid migrating a page that is shared with others.
957 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
958 if (!isolate_lru_page(page)) {
959 list_add_tail(&page->lru, pagelist);
960 inc_node_page_state(page, NR_ISOLATED_ANON +
961 page_is_file_cache(page));
966 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
968 if (PageHuge(page))
969 return alloc_huge_page_node(page_hstate(compound_head(page)),
970 node);
971 else
972 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
973 __GFP_THISNODE, 0);
977 * Migrate pages from one node to a target node.
978 * Returns error or the number of pages not migrated.
980 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
981 int flags)
983 nodemask_t nmask;
984 LIST_HEAD(pagelist);
985 int err = 0;
987 nodes_clear(nmask);
988 node_set(source, nmask);
991 * This does not "check" the range but isolates all pages that
992 * need migration. Between passing in the full user address
993 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
995 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
996 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
997 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
999 if (!list_empty(&pagelist)) {
1000 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1001 MIGRATE_SYNC, MR_SYSCALL);
1002 if (err)
1003 putback_movable_pages(&pagelist);
1006 return err;
1010 * Move pages between the two nodesets so as to preserve the physical
1011 * layout as much as possible.
1013 * Returns the number of page that could not be moved.
1015 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1016 const nodemask_t *to, int flags)
1018 int busy = 0;
1019 int err;
1020 nodemask_t tmp;
1022 err = migrate_prep();
1023 if (err)
1024 return err;
1026 down_read(&mm->mmap_sem);
1029 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1030 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1031 * bit in 'tmp', and return that <source, dest> pair for migration.
1032 * The pair of nodemasks 'to' and 'from' define the map.
1034 * If no pair of bits is found that way, fallback to picking some
1035 * pair of 'source' and 'dest' bits that are not the same. If the
1036 * 'source' and 'dest' bits are the same, this represents a node
1037 * that will be migrating to itself, so no pages need move.
1039 * If no bits are left in 'tmp', or if all remaining bits left
1040 * in 'tmp' correspond to the same bit in 'to', return false
1041 * (nothing left to migrate).
1043 * This lets us pick a pair of nodes to migrate between, such that
1044 * if possible the dest node is not already occupied by some other
1045 * source node, minimizing the risk of overloading the memory on a
1046 * node that would happen if we migrated incoming memory to a node
1047 * before migrating outgoing memory source that same node.
1049 * A single scan of tmp is sufficient. As we go, we remember the
1050 * most recent <s, d> pair that moved (s != d). If we find a pair
1051 * that not only moved, but what's better, moved to an empty slot
1052 * (d is not set in tmp), then we break out then, with that pair.
1053 * Otherwise when we finish scanning from_tmp, we at least have the
1054 * most recent <s, d> pair that moved. If we get all the way through
1055 * the scan of tmp without finding any node that moved, much less
1056 * moved to an empty node, then there is nothing left worth migrating.
1059 tmp = *from;
1060 while (!nodes_empty(tmp)) {
1061 int s,d;
1062 int source = NUMA_NO_NODE;
1063 int dest = 0;
1065 for_each_node_mask(s, tmp) {
1068 * do_migrate_pages() tries to maintain the relative
1069 * node relationship of the pages established between
1070 * threads and memory areas.
1072 * However if the number of source nodes is not equal to
1073 * the number of destination nodes we can not preserve
1074 * this node relative relationship. In that case, skip
1075 * copying memory from a node that is in the destination
1076 * mask.
1078 * Example: [2,3,4] -> [3,4,5] moves everything.
1079 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1082 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1083 (node_isset(s, *to)))
1084 continue;
1086 d = node_remap(s, *from, *to);
1087 if (s == d)
1088 continue;
1090 source = s; /* Node moved. Memorize */
1091 dest = d;
1093 /* dest not in remaining from nodes? */
1094 if (!node_isset(dest, tmp))
1095 break;
1097 if (source == NUMA_NO_NODE)
1098 break;
1100 node_clear(source, tmp);
1101 err = migrate_to_node(mm, source, dest, flags);
1102 if (err > 0)
1103 busy += err;
1104 if (err < 0)
1105 break;
1107 up_read(&mm->mmap_sem);
1108 if (err < 0)
1109 return err;
1110 return busy;
1115 * Allocate a new page for page migration based on vma policy.
1116 * Start by assuming the page is mapped by the same vma as contains @start.
1117 * Search forward from there, if not. N.B., this assumes that the
1118 * list of pages handed to migrate_pages()--which is how we get here--
1119 * is in virtual address order.
1121 static struct page *new_page(struct page *page, unsigned long start, int **x)
1123 struct vm_area_struct *vma;
1124 unsigned long uninitialized_var(address);
1126 vma = find_vma(current->mm, start);
1127 while (vma) {
1128 address = page_address_in_vma(page, vma);
1129 if (address != -EFAULT)
1130 break;
1131 vma = vma->vm_next;
1134 if (PageHuge(page)) {
1135 BUG_ON(!vma);
1136 return alloc_huge_page_noerr(vma, address, 1);
1139 * if !vma, alloc_page_vma() will use task or system default policy
1141 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1143 #else
1145 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1146 unsigned long flags)
1150 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1151 const nodemask_t *to, int flags)
1153 return -ENOSYS;
1156 static struct page *new_page(struct page *page, unsigned long start, int **x)
1158 return NULL;
1160 #endif
1162 static long do_mbind(unsigned long start, unsigned long len,
1163 unsigned short mode, unsigned short mode_flags,
1164 nodemask_t *nmask, unsigned long flags)
1166 struct mm_struct *mm = current->mm;
1167 struct mempolicy *new;
1168 unsigned long end;
1169 int err;
1170 LIST_HEAD(pagelist);
1172 if (flags & ~(unsigned long)MPOL_MF_VALID)
1173 return -EINVAL;
1174 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1175 return -EPERM;
1177 if (start & ~PAGE_MASK)
1178 return -EINVAL;
1180 if (mode == MPOL_DEFAULT)
1181 flags &= ~MPOL_MF_STRICT;
1183 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1184 end = start + len;
1186 if (end < start)
1187 return -EINVAL;
1188 if (end == start)
1189 return 0;
1191 new = mpol_new(mode, mode_flags, nmask);
1192 if (IS_ERR(new))
1193 return PTR_ERR(new);
1195 if (flags & MPOL_MF_LAZY)
1196 new->flags |= MPOL_F_MOF;
1199 * If we are using the default policy then operation
1200 * on discontinuous address spaces is okay after all
1202 if (!new)
1203 flags |= MPOL_MF_DISCONTIG_OK;
1205 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1206 start, start + len, mode, mode_flags,
1207 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1209 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1211 err = migrate_prep();
1212 if (err)
1213 goto mpol_out;
1216 NODEMASK_SCRATCH(scratch);
1217 if (scratch) {
1218 down_write(&mm->mmap_sem);
1219 task_lock(current);
1220 err = mpol_set_nodemask(new, nmask, scratch);
1221 task_unlock(current);
1222 if (err)
1223 up_write(&mm->mmap_sem);
1224 } else
1225 err = -ENOMEM;
1226 NODEMASK_SCRATCH_FREE(scratch);
1228 if (err)
1229 goto mpol_out;
1231 err = queue_pages_range(mm, start, end, nmask,
1232 flags | MPOL_MF_INVERT, &pagelist);
1233 if (!err)
1234 err = mbind_range(mm, start, end, new);
1236 if (!err) {
1237 int nr_failed = 0;
1239 if (!list_empty(&pagelist)) {
1240 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1241 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1242 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1243 if (nr_failed)
1244 putback_movable_pages(&pagelist);
1247 if (nr_failed && (flags & MPOL_MF_STRICT))
1248 err = -EIO;
1249 } else
1250 putback_movable_pages(&pagelist);
1252 up_write(&mm->mmap_sem);
1253 mpol_out:
1254 mpol_put(new);
1255 return err;
1259 * User space interface with variable sized bitmaps for nodelists.
1262 /* Copy a node mask from user space. */
1263 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1264 unsigned long maxnode)
1266 unsigned long k;
1267 unsigned long nlongs;
1268 unsigned long endmask;
1270 --maxnode;
1271 nodes_clear(*nodes);
1272 if (maxnode == 0 || !nmask)
1273 return 0;
1274 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1275 return -EINVAL;
1277 nlongs = BITS_TO_LONGS(maxnode);
1278 if ((maxnode % BITS_PER_LONG) == 0)
1279 endmask = ~0UL;
1280 else
1281 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1283 /* When the user specified more nodes than supported just check
1284 if the non supported part is all zero. */
1285 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1286 if (nlongs > PAGE_SIZE/sizeof(long))
1287 return -EINVAL;
1288 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1289 unsigned long t;
1290 if (get_user(t, nmask + k))
1291 return -EFAULT;
1292 if (k == nlongs - 1) {
1293 if (t & endmask)
1294 return -EINVAL;
1295 } else if (t)
1296 return -EINVAL;
1298 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1299 endmask = ~0UL;
1302 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1303 return -EFAULT;
1304 nodes_addr(*nodes)[nlongs-1] &= endmask;
1305 return 0;
1308 /* Copy a kernel node mask to user space */
1309 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1310 nodemask_t *nodes)
1312 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1313 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1315 if (copy > nbytes) {
1316 if (copy > PAGE_SIZE)
1317 return -EINVAL;
1318 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1319 return -EFAULT;
1320 copy = nbytes;
1322 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1325 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1326 unsigned long, mode, const unsigned long __user *, nmask,
1327 unsigned long, maxnode, unsigned, flags)
1329 nodemask_t nodes;
1330 int err;
1331 unsigned short mode_flags;
1333 mode_flags = mode & MPOL_MODE_FLAGS;
1334 mode &= ~MPOL_MODE_FLAGS;
1335 if (mode >= MPOL_MAX)
1336 return -EINVAL;
1337 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1338 (mode_flags & MPOL_F_RELATIVE_NODES))
1339 return -EINVAL;
1340 err = get_nodes(&nodes, nmask, maxnode);
1341 if (err)
1342 return err;
1343 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1346 /* Set the process memory policy */
1347 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1348 unsigned long, maxnode)
1350 int err;
1351 nodemask_t nodes;
1352 unsigned short flags;
1354 flags = mode & MPOL_MODE_FLAGS;
1355 mode &= ~MPOL_MODE_FLAGS;
1356 if ((unsigned int)mode >= MPOL_MAX)
1357 return -EINVAL;
1358 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1359 return -EINVAL;
1360 err = get_nodes(&nodes, nmask, maxnode);
1361 if (err)
1362 return err;
1363 return do_set_mempolicy(mode, flags, &nodes);
1366 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1367 const unsigned long __user *, old_nodes,
1368 const unsigned long __user *, new_nodes)
1370 const struct cred *cred = current_cred(), *tcred;
1371 struct mm_struct *mm = NULL;
1372 struct task_struct *task;
1373 nodemask_t task_nodes;
1374 int err;
1375 nodemask_t *old;
1376 nodemask_t *new;
1377 NODEMASK_SCRATCH(scratch);
1379 if (!scratch)
1380 return -ENOMEM;
1382 old = &scratch->mask1;
1383 new = &scratch->mask2;
1385 err = get_nodes(old, old_nodes, maxnode);
1386 if (err)
1387 goto out;
1389 err = get_nodes(new, new_nodes, maxnode);
1390 if (err)
1391 goto out;
1393 /* Find the mm_struct */
1394 rcu_read_lock();
1395 task = pid ? find_task_by_vpid(pid) : current;
1396 if (!task) {
1397 rcu_read_unlock();
1398 err = -ESRCH;
1399 goto out;
1401 get_task_struct(task);
1403 err = -EINVAL;
1406 * Check if this process has the right to modify the specified
1407 * process. The right exists if the process has administrative
1408 * capabilities, superuser privileges or the same
1409 * userid as the target process.
1411 tcred = __task_cred(task);
1412 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1413 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1414 !capable(CAP_SYS_NICE)) {
1415 rcu_read_unlock();
1416 err = -EPERM;
1417 goto out_put;
1419 rcu_read_unlock();
1421 task_nodes = cpuset_mems_allowed(task);
1422 /* Is the user allowed to access the target nodes? */
1423 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1424 err = -EPERM;
1425 goto out_put;
1428 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1429 err = -EINVAL;
1430 goto out_put;
1433 err = security_task_movememory(task);
1434 if (err)
1435 goto out_put;
1437 mm = get_task_mm(task);
1438 put_task_struct(task);
1440 if (!mm) {
1441 err = -EINVAL;
1442 goto out;
1445 err = do_migrate_pages(mm, old, new,
1446 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1448 mmput(mm);
1449 out:
1450 NODEMASK_SCRATCH_FREE(scratch);
1452 return err;
1454 out_put:
1455 put_task_struct(task);
1456 goto out;
1461 /* Retrieve NUMA policy */
1462 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1463 unsigned long __user *, nmask, unsigned long, maxnode,
1464 unsigned long, addr, unsigned long, flags)
1466 int err;
1467 int uninitialized_var(pval);
1468 nodemask_t nodes;
1470 if (nmask != NULL && maxnode < MAX_NUMNODES)
1471 return -EINVAL;
1473 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1475 if (err)
1476 return err;
1478 if (policy && put_user(pval, policy))
1479 return -EFAULT;
1481 if (nmask)
1482 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1484 return err;
1487 #ifdef CONFIG_COMPAT
1489 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1490 compat_ulong_t __user *, nmask,
1491 compat_ulong_t, maxnode,
1492 compat_ulong_t, addr, compat_ulong_t, flags)
1494 long err;
1495 unsigned long __user *nm = NULL;
1496 unsigned long nr_bits, alloc_size;
1497 DECLARE_BITMAP(bm, MAX_NUMNODES);
1499 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1500 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1502 if (nmask)
1503 nm = compat_alloc_user_space(alloc_size);
1505 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1507 if (!err && nmask) {
1508 unsigned long copy_size;
1509 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1510 err = copy_from_user(bm, nm, copy_size);
1511 /* ensure entire bitmap is zeroed */
1512 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1513 err |= compat_put_bitmap(nmask, bm, nr_bits);
1516 return err;
1519 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1520 compat_ulong_t, maxnode)
1522 unsigned long __user *nm = NULL;
1523 unsigned long nr_bits, alloc_size;
1524 DECLARE_BITMAP(bm, MAX_NUMNODES);
1526 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1527 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1529 if (nmask) {
1530 if (compat_get_bitmap(bm, nmask, nr_bits))
1531 return -EFAULT;
1532 nm = compat_alloc_user_space(alloc_size);
1533 if (copy_to_user(nm, bm, alloc_size))
1534 return -EFAULT;
1537 return sys_set_mempolicy(mode, nm, nr_bits+1);
1540 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1541 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1542 compat_ulong_t, maxnode, compat_ulong_t, flags)
1544 unsigned long __user *nm = NULL;
1545 unsigned long nr_bits, alloc_size;
1546 nodemask_t bm;
1548 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1549 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1551 if (nmask) {
1552 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1553 return -EFAULT;
1554 nm = compat_alloc_user_space(alloc_size);
1555 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1556 return -EFAULT;
1559 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1562 #endif
1564 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1565 unsigned long addr)
1567 struct mempolicy *pol = NULL;
1569 if (vma) {
1570 if (vma->vm_ops && vma->vm_ops->get_policy) {
1571 pol = vma->vm_ops->get_policy(vma, addr);
1572 } else if (vma->vm_policy) {
1573 pol = vma->vm_policy;
1576 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1577 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1578 * count on these policies which will be dropped by
1579 * mpol_cond_put() later
1581 if (mpol_needs_cond_ref(pol))
1582 mpol_get(pol);
1586 return pol;
1590 * get_vma_policy(@vma, @addr)
1591 * @vma: virtual memory area whose policy is sought
1592 * @addr: address in @vma for shared policy lookup
1594 * Returns effective policy for a VMA at specified address.
1595 * Falls back to current->mempolicy or system default policy, as necessary.
1596 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1597 * count--added by the get_policy() vm_op, as appropriate--to protect against
1598 * freeing by another task. It is the caller's responsibility to free the
1599 * extra reference for shared policies.
1601 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1602 unsigned long addr)
1604 struct mempolicy *pol = __get_vma_policy(vma, addr);
1606 if (!pol)
1607 pol = get_task_policy(current);
1609 return pol;
1612 bool vma_policy_mof(struct vm_area_struct *vma)
1614 struct mempolicy *pol;
1616 if (vma->vm_ops && vma->vm_ops->get_policy) {
1617 bool ret = false;
1619 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1620 if (pol && (pol->flags & MPOL_F_MOF))
1621 ret = true;
1622 mpol_cond_put(pol);
1624 return ret;
1627 pol = vma->vm_policy;
1628 if (!pol)
1629 pol = get_task_policy(current);
1631 return pol->flags & MPOL_F_MOF;
1634 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1636 enum zone_type dynamic_policy_zone = policy_zone;
1638 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1641 * if policy->v.nodes has movable memory only,
1642 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1644 * policy->v.nodes is intersect with node_states[N_MEMORY].
1645 * so if the following test faile, it implies
1646 * policy->v.nodes has movable memory only.
1648 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1649 dynamic_policy_zone = ZONE_MOVABLE;
1651 return zone >= dynamic_policy_zone;
1655 * Return a nodemask representing a mempolicy for filtering nodes for
1656 * page allocation
1658 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1660 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1661 if (unlikely(policy->mode == MPOL_BIND) &&
1662 apply_policy_zone(policy, gfp_zone(gfp)) &&
1663 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1664 return &policy->v.nodes;
1666 return NULL;
1669 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1670 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1671 int nd)
1673 switch (policy->mode) {
1674 case MPOL_PREFERRED:
1675 if (!(policy->flags & MPOL_F_LOCAL))
1676 nd = policy->v.preferred_node;
1677 break;
1678 case MPOL_BIND:
1680 * Normally, MPOL_BIND allocations are node-local within the
1681 * allowed nodemask. However, if __GFP_THISNODE is set and the
1682 * current node isn't part of the mask, we use the zonelist for
1683 * the first node in the mask instead.
1685 if (unlikely(gfp & __GFP_THISNODE) &&
1686 unlikely(!node_isset(nd, policy->v.nodes)))
1687 nd = first_node(policy->v.nodes);
1688 break;
1689 default:
1690 BUG();
1692 return node_zonelist(nd, gfp);
1695 /* Do dynamic interleaving for a process */
1696 static unsigned interleave_nodes(struct mempolicy *policy)
1698 unsigned nid, next;
1699 struct task_struct *me = current;
1701 nid = me->il_next;
1702 next = next_node_in(nid, policy->v.nodes);
1703 if (next < MAX_NUMNODES)
1704 me->il_next = next;
1705 return nid;
1709 * Depending on the memory policy provide a node from which to allocate the
1710 * next slab entry.
1712 unsigned int mempolicy_slab_node(void)
1714 struct mempolicy *policy;
1715 int node = numa_mem_id();
1717 if (in_interrupt())
1718 return node;
1720 policy = current->mempolicy;
1721 if (!policy || policy->flags & MPOL_F_LOCAL)
1722 return node;
1724 switch (policy->mode) {
1725 case MPOL_PREFERRED:
1727 * handled MPOL_F_LOCAL above
1729 return policy->v.preferred_node;
1731 case MPOL_INTERLEAVE:
1732 return interleave_nodes(policy);
1734 case MPOL_BIND: {
1735 struct zoneref *z;
1738 * Follow bind policy behavior and start allocation at the
1739 * first node.
1741 struct zonelist *zonelist;
1742 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1743 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1744 z = first_zones_zonelist(zonelist, highest_zoneidx,
1745 &policy->v.nodes);
1746 return z->zone ? z->zone->node : node;
1749 default:
1750 BUG();
1755 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1756 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1757 * number of present nodes.
1759 static unsigned offset_il_node(struct mempolicy *pol,
1760 struct vm_area_struct *vma, unsigned long n)
1762 unsigned nnodes = nodes_weight(pol->v.nodes);
1763 unsigned target;
1764 int i;
1765 int nid;
1767 if (!nnodes)
1768 return numa_node_id();
1769 target = (unsigned int)n % nnodes;
1770 nid = first_node(pol->v.nodes);
1771 for (i = 0; i < target; i++)
1772 nid = next_node(nid, pol->v.nodes);
1773 return nid;
1776 /* Determine a node number for interleave */
1777 static inline unsigned interleave_nid(struct mempolicy *pol,
1778 struct vm_area_struct *vma, unsigned long addr, int shift)
1780 if (vma) {
1781 unsigned long off;
1784 * for small pages, there is no difference between
1785 * shift and PAGE_SHIFT, so the bit-shift is safe.
1786 * for huge pages, since vm_pgoff is in units of small
1787 * pages, we need to shift off the always 0 bits to get
1788 * a useful offset.
1790 BUG_ON(shift < PAGE_SHIFT);
1791 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1792 off += (addr - vma->vm_start) >> shift;
1793 return offset_il_node(pol, vma, off);
1794 } else
1795 return interleave_nodes(pol);
1798 #ifdef CONFIG_HUGETLBFS
1800 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1801 * @vma: virtual memory area whose policy is sought
1802 * @addr: address in @vma for shared policy lookup and interleave policy
1803 * @gfp_flags: for requested zone
1804 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1805 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1807 * Returns a zonelist suitable for a huge page allocation and a pointer
1808 * to the struct mempolicy for conditional unref after allocation.
1809 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1810 * @nodemask for filtering the zonelist.
1812 * Must be protected by read_mems_allowed_begin()
1814 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1815 gfp_t gfp_flags, struct mempolicy **mpol,
1816 nodemask_t **nodemask)
1818 struct zonelist *zl;
1820 *mpol = get_vma_policy(vma, addr);
1821 *nodemask = NULL; /* assume !MPOL_BIND */
1823 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1824 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1825 huge_page_shift(hstate_vma(vma))), gfp_flags);
1826 } else {
1827 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1828 if ((*mpol)->mode == MPOL_BIND)
1829 *nodemask = &(*mpol)->v.nodes;
1831 return zl;
1835 * init_nodemask_of_mempolicy
1837 * If the current task's mempolicy is "default" [NULL], return 'false'
1838 * to indicate default policy. Otherwise, extract the policy nodemask
1839 * for 'bind' or 'interleave' policy into the argument nodemask, or
1840 * initialize the argument nodemask to contain the single node for
1841 * 'preferred' or 'local' policy and return 'true' to indicate presence
1842 * of non-default mempolicy.
1844 * We don't bother with reference counting the mempolicy [mpol_get/put]
1845 * because the current task is examining it's own mempolicy and a task's
1846 * mempolicy is only ever changed by the task itself.
1848 * N.B., it is the caller's responsibility to free a returned nodemask.
1850 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1852 struct mempolicy *mempolicy;
1853 int nid;
1855 if (!(mask && current->mempolicy))
1856 return false;
1858 task_lock(current);
1859 mempolicy = current->mempolicy;
1860 switch (mempolicy->mode) {
1861 case MPOL_PREFERRED:
1862 if (mempolicy->flags & MPOL_F_LOCAL)
1863 nid = numa_node_id();
1864 else
1865 nid = mempolicy->v.preferred_node;
1866 init_nodemask_of_node(mask, nid);
1867 break;
1869 case MPOL_BIND:
1870 /* Fall through */
1871 case MPOL_INTERLEAVE:
1872 *mask = mempolicy->v.nodes;
1873 break;
1875 default:
1876 BUG();
1878 task_unlock(current);
1880 return true;
1882 #endif
1885 * mempolicy_nodemask_intersects
1887 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1888 * policy. Otherwise, check for intersection between mask and the policy
1889 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1890 * policy, always return true since it may allocate elsewhere on fallback.
1892 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1894 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1895 const nodemask_t *mask)
1897 struct mempolicy *mempolicy;
1898 bool ret = true;
1900 if (!mask)
1901 return ret;
1902 task_lock(tsk);
1903 mempolicy = tsk->mempolicy;
1904 if (!mempolicy)
1905 goto out;
1907 switch (mempolicy->mode) {
1908 case MPOL_PREFERRED:
1910 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1911 * allocate from, they may fallback to other nodes when oom.
1912 * Thus, it's possible for tsk to have allocated memory from
1913 * nodes in mask.
1915 break;
1916 case MPOL_BIND:
1917 case MPOL_INTERLEAVE:
1918 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1919 break;
1920 default:
1921 BUG();
1923 out:
1924 task_unlock(tsk);
1925 return ret;
1928 /* Allocate a page in interleaved policy.
1929 Own path because it needs to do special accounting. */
1930 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1931 unsigned nid)
1933 struct zonelist *zl;
1934 struct page *page;
1936 zl = node_zonelist(nid, gfp);
1937 page = __alloc_pages(gfp, order, zl);
1938 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1939 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1940 return page;
1944 * alloc_pages_vma - Allocate a page for a VMA.
1946 * @gfp:
1947 * %GFP_USER user allocation.
1948 * %GFP_KERNEL kernel allocations,
1949 * %GFP_HIGHMEM highmem/user allocations,
1950 * %GFP_FS allocation should not call back into a file system.
1951 * %GFP_ATOMIC don't sleep.
1953 * @order:Order of the GFP allocation.
1954 * @vma: Pointer to VMA or NULL if not available.
1955 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1956 * @node: Which node to prefer for allocation (modulo policy).
1957 * @hugepage: for hugepages try only the preferred node if possible
1959 * This function allocates a page from the kernel page pool and applies
1960 * a NUMA policy associated with the VMA or the current process.
1961 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1962 * mm_struct of the VMA to prevent it from going away. Should be used for
1963 * all allocations for pages that will be mapped into user space. Returns
1964 * NULL when no page can be allocated.
1966 struct page *
1967 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1968 unsigned long addr, int node, bool hugepage)
1970 struct mempolicy *pol;
1971 struct page *page;
1972 unsigned int cpuset_mems_cookie;
1973 struct zonelist *zl;
1974 nodemask_t *nmask;
1976 retry_cpuset:
1977 pol = get_vma_policy(vma, addr);
1978 cpuset_mems_cookie = read_mems_allowed_begin();
1980 if (pol->mode == MPOL_INTERLEAVE) {
1981 unsigned nid;
1983 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1984 mpol_cond_put(pol);
1985 page = alloc_page_interleave(gfp, order, nid);
1986 goto out;
1989 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1990 int hpage_node = node;
1993 * For hugepage allocation and non-interleave policy which
1994 * allows the current node (or other explicitly preferred
1995 * node) we only try to allocate from the current/preferred
1996 * node and don't fall back to other nodes, as the cost of
1997 * remote accesses would likely offset THP benefits.
1999 * If the policy is interleave, or does not allow the current
2000 * node in its nodemask, we allocate the standard way.
2002 if (pol->mode == MPOL_PREFERRED &&
2003 !(pol->flags & MPOL_F_LOCAL))
2004 hpage_node = pol->v.preferred_node;
2006 nmask = policy_nodemask(gfp, pol);
2007 if (!nmask || node_isset(hpage_node, *nmask)) {
2008 mpol_cond_put(pol);
2009 page = __alloc_pages_node(hpage_node,
2010 gfp | __GFP_THISNODE, order);
2011 goto out;
2015 nmask = policy_nodemask(gfp, pol);
2016 zl = policy_zonelist(gfp, pol, node);
2017 page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2018 mpol_cond_put(pol);
2019 out:
2020 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2021 goto retry_cpuset;
2022 return page;
2026 * alloc_pages_current - Allocate pages.
2028 * @gfp:
2029 * %GFP_USER user allocation,
2030 * %GFP_KERNEL kernel allocation,
2031 * %GFP_HIGHMEM highmem allocation,
2032 * %GFP_FS don't call back into a file system.
2033 * %GFP_ATOMIC don't sleep.
2034 * @order: Power of two of allocation size in pages. 0 is a single page.
2036 * Allocate a page from the kernel page pool. When not in
2037 * interrupt context and apply the current process NUMA policy.
2038 * Returns NULL when no page can be allocated.
2040 * Don't call cpuset_update_task_memory_state() unless
2041 * 1) it's ok to take cpuset_sem (can WAIT), and
2042 * 2) allocating for current task (not interrupt).
2044 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2046 struct mempolicy *pol = &default_policy;
2047 struct page *page;
2048 unsigned int cpuset_mems_cookie;
2050 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2051 pol = get_task_policy(current);
2053 retry_cpuset:
2054 cpuset_mems_cookie = read_mems_allowed_begin();
2057 * No reference counting needed for current->mempolicy
2058 * nor system default_policy
2060 if (pol->mode == MPOL_INTERLEAVE)
2061 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2062 else
2063 page = __alloc_pages_nodemask(gfp, order,
2064 policy_zonelist(gfp, pol, numa_node_id()),
2065 policy_nodemask(gfp, pol));
2067 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2068 goto retry_cpuset;
2070 return page;
2072 EXPORT_SYMBOL(alloc_pages_current);
2074 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2076 struct mempolicy *pol = mpol_dup(vma_policy(src));
2078 if (IS_ERR(pol))
2079 return PTR_ERR(pol);
2080 dst->vm_policy = pol;
2081 return 0;
2085 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2086 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2087 * with the mems_allowed returned by cpuset_mems_allowed(). This
2088 * keeps mempolicies cpuset relative after its cpuset moves. See
2089 * further kernel/cpuset.c update_nodemask().
2091 * current's mempolicy may be rebinded by the other task(the task that changes
2092 * cpuset's mems), so we needn't do rebind work for current task.
2095 /* Slow path of a mempolicy duplicate */
2096 struct mempolicy *__mpol_dup(struct mempolicy *old)
2098 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2100 if (!new)
2101 return ERR_PTR(-ENOMEM);
2103 /* task's mempolicy is protected by alloc_lock */
2104 if (old == current->mempolicy) {
2105 task_lock(current);
2106 *new = *old;
2107 task_unlock(current);
2108 } else
2109 *new = *old;
2111 if (current_cpuset_is_being_rebound()) {
2112 nodemask_t mems = cpuset_mems_allowed(current);
2113 if (new->flags & MPOL_F_REBINDING)
2114 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2115 else
2116 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2118 atomic_set(&new->refcnt, 1);
2119 return new;
2122 /* Slow path of a mempolicy comparison */
2123 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2125 if (!a || !b)
2126 return false;
2127 if (a->mode != b->mode)
2128 return false;
2129 if (a->flags != b->flags)
2130 return false;
2131 if (mpol_store_user_nodemask(a))
2132 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2133 return false;
2135 switch (a->mode) {
2136 case MPOL_BIND:
2137 /* Fall through */
2138 case MPOL_INTERLEAVE:
2139 return !!nodes_equal(a->v.nodes, b->v.nodes);
2140 case MPOL_PREFERRED:
2141 return a->v.preferred_node == b->v.preferred_node;
2142 default:
2143 BUG();
2144 return false;
2149 * Shared memory backing store policy support.
2151 * Remember policies even when nobody has shared memory mapped.
2152 * The policies are kept in Red-Black tree linked from the inode.
2153 * They are protected by the sp->lock rwlock, which should be held
2154 * for any accesses to the tree.
2158 * lookup first element intersecting start-end. Caller holds sp->lock for
2159 * reading or for writing
2161 static struct sp_node *
2162 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2164 struct rb_node *n = sp->root.rb_node;
2166 while (n) {
2167 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2169 if (start >= p->end)
2170 n = n->rb_right;
2171 else if (end <= p->start)
2172 n = n->rb_left;
2173 else
2174 break;
2176 if (!n)
2177 return NULL;
2178 for (;;) {
2179 struct sp_node *w = NULL;
2180 struct rb_node *prev = rb_prev(n);
2181 if (!prev)
2182 break;
2183 w = rb_entry(prev, struct sp_node, nd);
2184 if (w->end <= start)
2185 break;
2186 n = prev;
2188 return rb_entry(n, struct sp_node, nd);
2192 * Insert a new shared policy into the list. Caller holds sp->lock for
2193 * writing.
2195 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2197 struct rb_node **p = &sp->root.rb_node;
2198 struct rb_node *parent = NULL;
2199 struct sp_node *nd;
2201 while (*p) {
2202 parent = *p;
2203 nd = rb_entry(parent, struct sp_node, nd);
2204 if (new->start < nd->start)
2205 p = &(*p)->rb_left;
2206 else if (new->end > nd->end)
2207 p = &(*p)->rb_right;
2208 else
2209 BUG();
2211 rb_link_node(&new->nd, parent, p);
2212 rb_insert_color(&new->nd, &sp->root);
2213 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2214 new->policy ? new->policy->mode : 0);
2217 /* Find shared policy intersecting idx */
2218 struct mempolicy *
2219 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2221 struct mempolicy *pol = NULL;
2222 struct sp_node *sn;
2224 if (!sp->root.rb_node)
2225 return NULL;
2226 read_lock(&sp->lock);
2227 sn = sp_lookup(sp, idx, idx+1);
2228 if (sn) {
2229 mpol_get(sn->policy);
2230 pol = sn->policy;
2232 read_unlock(&sp->lock);
2233 return pol;
2236 static void sp_free(struct sp_node *n)
2238 mpol_put(n->policy);
2239 kmem_cache_free(sn_cache, n);
2243 * mpol_misplaced - check whether current page node is valid in policy
2245 * @page: page to be checked
2246 * @vma: vm area where page mapped
2247 * @addr: virtual address where page mapped
2249 * Lookup current policy node id for vma,addr and "compare to" page's
2250 * node id.
2252 * Returns:
2253 * -1 - not misplaced, page is in the right node
2254 * node - node id where the page should be
2256 * Policy determination "mimics" alloc_page_vma().
2257 * Called from fault path where we know the vma and faulting address.
2259 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2261 struct mempolicy *pol;
2262 struct zoneref *z;
2263 int curnid = page_to_nid(page);
2264 unsigned long pgoff;
2265 int thiscpu = raw_smp_processor_id();
2266 int thisnid = cpu_to_node(thiscpu);
2267 int polnid = -1;
2268 int ret = -1;
2270 BUG_ON(!vma);
2272 pol = get_vma_policy(vma, addr);
2273 if (!(pol->flags & MPOL_F_MOF))
2274 goto out;
2276 switch (pol->mode) {
2277 case MPOL_INTERLEAVE:
2278 BUG_ON(addr >= vma->vm_end);
2279 BUG_ON(addr < vma->vm_start);
2281 pgoff = vma->vm_pgoff;
2282 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2283 polnid = offset_il_node(pol, vma, pgoff);
2284 break;
2286 case MPOL_PREFERRED:
2287 if (pol->flags & MPOL_F_LOCAL)
2288 polnid = numa_node_id();
2289 else
2290 polnid = pol->v.preferred_node;
2291 break;
2293 case MPOL_BIND:
2296 * allows binding to multiple nodes.
2297 * use current page if in policy nodemask,
2298 * else select nearest allowed node, if any.
2299 * If no allowed nodes, use current [!misplaced].
2301 if (node_isset(curnid, pol->v.nodes))
2302 goto out;
2303 z = first_zones_zonelist(
2304 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2305 gfp_zone(GFP_HIGHUSER),
2306 &pol->v.nodes);
2307 polnid = z->zone->node;
2308 break;
2310 default:
2311 BUG();
2314 /* Migrate the page towards the node whose CPU is referencing it */
2315 if (pol->flags & MPOL_F_MORON) {
2316 polnid = thisnid;
2318 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2319 goto out;
2322 if (curnid != polnid)
2323 ret = polnid;
2324 out:
2325 mpol_cond_put(pol);
2327 return ret;
2331 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2332 * dropped after task->mempolicy is set to NULL so that any allocation done as
2333 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2334 * policy.
2336 void mpol_put_task_policy(struct task_struct *task)
2338 struct mempolicy *pol;
2340 task_lock(task);
2341 pol = task->mempolicy;
2342 task->mempolicy = NULL;
2343 task_unlock(task);
2344 mpol_put(pol);
2347 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2349 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2350 rb_erase(&n->nd, &sp->root);
2351 sp_free(n);
2354 static void sp_node_init(struct sp_node *node, unsigned long start,
2355 unsigned long end, struct mempolicy *pol)
2357 node->start = start;
2358 node->end = end;
2359 node->policy = pol;
2362 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2363 struct mempolicy *pol)
2365 struct sp_node *n;
2366 struct mempolicy *newpol;
2368 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2369 if (!n)
2370 return NULL;
2372 newpol = mpol_dup(pol);
2373 if (IS_ERR(newpol)) {
2374 kmem_cache_free(sn_cache, n);
2375 return NULL;
2377 newpol->flags |= MPOL_F_SHARED;
2378 sp_node_init(n, start, end, newpol);
2380 return n;
2383 /* Replace a policy range. */
2384 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2385 unsigned long end, struct sp_node *new)
2387 struct sp_node *n;
2388 struct sp_node *n_new = NULL;
2389 struct mempolicy *mpol_new = NULL;
2390 int ret = 0;
2392 restart:
2393 write_lock(&sp->lock);
2394 n = sp_lookup(sp, start, end);
2395 /* Take care of old policies in the same range. */
2396 while (n && n->start < end) {
2397 struct rb_node *next = rb_next(&n->nd);
2398 if (n->start >= start) {
2399 if (n->end <= end)
2400 sp_delete(sp, n);
2401 else
2402 n->start = end;
2403 } else {
2404 /* Old policy spanning whole new range. */
2405 if (n->end > end) {
2406 if (!n_new)
2407 goto alloc_new;
2409 *mpol_new = *n->policy;
2410 atomic_set(&mpol_new->refcnt, 1);
2411 sp_node_init(n_new, end, n->end, mpol_new);
2412 n->end = start;
2413 sp_insert(sp, n_new);
2414 n_new = NULL;
2415 mpol_new = NULL;
2416 break;
2417 } else
2418 n->end = start;
2420 if (!next)
2421 break;
2422 n = rb_entry(next, struct sp_node, nd);
2424 if (new)
2425 sp_insert(sp, new);
2426 write_unlock(&sp->lock);
2427 ret = 0;
2429 err_out:
2430 if (mpol_new)
2431 mpol_put(mpol_new);
2432 if (n_new)
2433 kmem_cache_free(sn_cache, n_new);
2435 return ret;
2437 alloc_new:
2438 write_unlock(&sp->lock);
2439 ret = -ENOMEM;
2440 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2441 if (!n_new)
2442 goto err_out;
2443 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2444 if (!mpol_new)
2445 goto err_out;
2446 goto restart;
2450 * mpol_shared_policy_init - initialize shared policy for inode
2451 * @sp: pointer to inode shared policy
2452 * @mpol: struct mempolicy to install
2454 * Install non-NULL @mpol in inode's shared policy rb-tree.
2455 * On entry, the current task has a reference on a non-NULL @mpol.
2456 * This must be released on exit.
2457 * This is called at get_inode() calls and we can use GFP_KERNEL.
2459 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2461 int ret;
2463 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2464 rwlock_init(&sp->lock);
2466 if (mpol) {
2467 struct vm_area_struct pvma;
2468 struct mempolicy *new;
2469 NODEMASK_SCRATCH(scratch);
2471 if (!scratch)
2472 goto put_mpol;
2473 /* contextualize the tmpfs mount point mempolicy */
2474 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2475 if (IS_ERR(new))
2476 goto free_scratch; /* no valid nodemask intersection */
2478 task_lock(current);
2479 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2480 task_unlock(current);
2481 if (ret)
2482 goto put_new;
2484 /* Create pseudo-vma that contains just the policy */
2485 memset(&pvma, 0, sizeof(struct vm_area_struct));
2486 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2487 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2489 put_new:
2490 mpol_put(new); /* drop initial ref */
2491 free_scratch:
2492 NODEMASK_SCRATCH_FREE(scratch);
2493 put_mpol:
2494 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2498 int mpol_set_shared_policy(struct shared_policy *info,
2499 struct vm_area_struct *vma, struct mempolicy *npol)
2501 int err;
2502 struct sp_node *new = NULL;
2503 unsigned long sz = vma_pages(vma);
2505 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2506 vma->vm_pgoff,
2507 sz, npol ? npol->mode : -1,
2508 npol ? npol->flags : -1,
2509 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2511 if (npol) {
2512 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2513 if (!new)
2514 return -ENOMEM;
2516 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2517 if (err && new)
2518 sp_free(new);
2519 return err;
2522 /* Free a backing policy store on inode delete. */
2523 void mpol_free_shared_policy(struct shared_policy *p)
2525 struct sp_node *n;
2526 struct rb_node *next;
2528 if (!p->root.rb_node)
2529 return;
2530 write_lock(&p->lock);
2531 next = rb_first(&p->root);
2532 while (next) {
2533 n = rb_entry(next, struct sp_node, nd);
2534 next = rb_next(&n->nd);
2535 sp_delete(p, n);
2537 write_unlock(&p->lock);
2540 #ifdef CONFIG_NUMA_BALANCING
2541 static int __initdata numabalancing_override;
2543 static void __init check_numabalancing_enable(void)
2545 bool numabalancing_default = false;
2547 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2548 numabalancing_default = true;
2550 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2551 if (numabalancing_override)
2552 set_numabalancing_state(numabalancing_override == 1);
2554 if (num_online_nodes() > 1 && !numabalancing_override) {
2555 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2556 numabalancing_default ? "Enabling" : "Disabling");
2557 set_numabalancing_state(numabalancing_default);
2561 static int __init setup_numabalancing(char *str)
2563 int ret = 0;
2564 if (!str)
2565 goto out;
2567 if (!strcmp(str, "enable")) {
2568 numabalancing_override = 1;
2569 ret = 1;
2570 } else if (!strcmp(str, "disable")) {
2571 numabalancing_override = -1;
2572 ret = 1;
2574 out:
2575 if (!ret)
2576 pr_warn("Unable to parse numa_balancing=\n");
2578 return ret;
2580 __setup("numa_balancing=", setup_numabalancing);
2581 #else
2582 static inline void __init check_numabalancing_enable(void)
2585 #endif /* CONFIG_NUMA_BALANCING */
2587 /* assumes fs == KERNEL_DS */
2588 void __init numa_policy_init(void)
2590 nodemask_t interleave_nodes;
2591 unsigned long largest = 0;
2592 int nid, prefer = 0;
2594 policy_cache = kmem_cache_create("numa_policy",
2595 sizeof(struct mempolicy),
2596 0, SLAB_PANIC, NULL);
2598 sn_cache = kmem_cache_create("shared_policy_node",
2599 sizeof(struct sp_node),
2600 0, SLAB_PANIC, NULL);
2602 for_each_node(nid) {
2603 preferred_node_policy[nid] = (struct mempolicy) {
2604 .refcnt = ATOMIC_INIT(1),
2605 .mode = MPOL_PREFERRED,
2606 .flags = MPOL_F_MOF | MPOL_F_MORON,
2607 .v = { .preferred_node = nid, },
2612 * Set interleaving policy for system init. Interleaving is only
2613 * enabled across suitably sized nodes (default is >= 16MB), or
2614 * fall back to the largest node if they're all smaller.
2616 nodes_clear(interleave_nodes);
2617 for_each_node_state(nid, N_MEMORY) {
2618 unsigned long total_pages = node_present_pages(nid);
2620 /* Preserve the largest node */
2621 if (largest < total_pages) {
2622 largest = total_pages;
2623 prefer = nid;
2626 /* Interleave this node? */
2627 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2628 node_set(nid, interleave_nodes);
2631 /* All too small, use the largest */
2632 if (unlikely(nodes_empty(interleave_nodes)))
2633 node_set(prefer, interleave_nodes);
2635 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2636 pr_err("%s: interleaving failed\n", __func__);
2638 check_numabalancing_enable();
2641 /* Reset policy of current process to default */
2642 void numa_default_policy(void)
2644 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2648 * Parse and format mempolicy from/to strings
2652 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2654 static const char * const policy_modes[] =
2656 [MPOL_DEFAULT] = "default",
2657 [MPOL_PREFERRED] = "prefer",
2658 [MPOL_BIND] = "bind",
2659 [MPOL_INTERLEAVE] = "interleave",
2660 [MPOL_LOCAL] = "local",
2664 #ifdef CONFIG_TMPFS
2666 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2667 * @str: string containing mempolicy to parse
2668 * @mpol: pointer to struct mempolicy pointer, returned on success.
2670 * Format of input:
2671 * <mode>[=<flags>][:<nodelist>]
2673 * On success, returns 0, else 1
2675 int mpol_parse_str(char *str, struct mempolicy **mpol)
2677 struct mempolicy *new = NULL;
2678 unsigned short mode;
2679 unsigned short mode_flags;
2680 nodemask_t nodes;
2681 char *nodelist = strchr(str, ':');
2682 char *flags = strchr(str, '=');
2683 int err = 1;
2685 if (nodelist) {
2686 /* NUL-terminate mode or flags string */
2687 *nodelist++ = '\0';
2688 if (nodelist_parse(nodelist, nodes))
2689 goto out;
2690 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2691 goto out;
2692 } else
2693 nodes_clear(nodes);
2695 if (flags)
2696 *flags++ = '\0'; /* terminate mode string */
2698 for (mode = 0; mode < MPOL_MAX; mode++) {
2699 if (!strcmp(str, policy_modes[mode])) {
2700 break;
2703 if (mode >= MPOL_MAX)
2704 goto out;
2706 switch (mode) {
2707 case MPOL_PREFERRED:
2709 * Insist on a nodelist of one node only
2711 if (nodelist) {
2712 char *rest = nodelist;
2713 while (isdigit(*rest))
2714 rest++;
2715 if (*rest)
2716 goto out;
2718 break;
2719 case MPOL_INTERLEAVE:
2721 * Default to online nodes with memory if no nodelist
2723 if (!nodelist)
2724 nodes = node_states[N_MEMORY];
2725 break;
2726 case MPOL_LOCAL:
2728 * Don't allow a nodelist; mpol_new() checks flags
2730 if (nodelist)
2731 goto out;
2732 mode = MPOL_PREFERRED;
2733 break;
2734 case MPOL_DEFAULT:
2736 * Insist on a empty nodelist
2738 if (!nodelist)
2739 err = 0;
2740 goto out;
2741 case MPOL_BIND:
2743 * Insist on a nodelist
2745 if (!nodelist)
2746 goto out;
2749 mode_flags = 0;
2750 if (flags) {
2752 * Currently, we only support two mutually exclusive
2753 * mode flags.
2755 if (!strcmp(flags, "static"))
2756 mode_flags |= MPOL_F_STATIC_NODES;
2757 else if (!strcmp(flags, "relative"))
2758 mode_flags |= MPOL_F_RELATIVE_NODES;
2759 else
2760 goto out;
2763 new = mpol_new(mode, mode_flags, &nodes);
2764 if (IS_ERR(new))
2765 goto out;
2768 * Save nodes for mpol_to_str() to show the tmpfs mount options
2769 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2771 if (mode != MPOL_PREFERRED)
2772 new->v.nodes = nodes;
2773 else if (nodelist)
2774 new->v.preferred_node = first_node(nodes);
2775 else
2776 new->flags |= MPOL_F_LOCAL;
2779 * Save nodes for contextualization: this will be used to "clone"
2780 * the mempolicy in a specific context [cpuset] at a later time.
2782 new->w.user_nodemask = nodes;
2784 err = 0;
2786 out:
2787 /* Restore string for error message */
2788 if (nodelist)
2789 *--nodelist = ':';
2790 if (flags)
2791 *--flags = '=';
2792 if (!err)
2793 *mpol = new;
2794 return err;
2796 #endif /* CONFIG_TMPFS */
2799 * mpol_to_str - format a mempolicy structure for printing
2800 * @buffer: to contain formatted mempolicy string
2801 * @maxlen: length of @buffer
2802 * @pol: pointer to mempolicy to be formatted
2804 * Convert @pol into a string. If @buffer is too short, truncate the string.
2805 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2806 * longest flag, "relative", and to display at least a few node ids.
2808 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2810 char *p = buffer;
2811 nodemask_t nodes = NODE_MASK_NONE;
2812 unsigned short mode = MPOL_DEFAULT;
2813 unsigned short flags = 0;
2815 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2816 mode = pol->mode;
2817 flags = pol->flags;
2820 switch (mode) {
2821 case MPOL_DEFAULT:
2822 break;
2823 case MPOL_PREFERRED:
2824 if (flags & MPOL_F_LOCAL)
2825 mode = MPOL_LOCAL;
2826 else
2827 node_set(pol->v.preferred_node, nodes);
2828 break;
2829 case MPOL_BIND:
2830 case MPOL_INTERLEAVE:
2831 nodes = pol->v.nodes;
2832 break;
2833 default:
2834 WARN_ON_ONCE(1);
2835 snprintf(p, maxlen, "unknown");
2836 return;
2839 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2841 if (flags & MPOL_MODE_FLAGS) {
2842 p += snprintf(p, buffer + maxlen - p, "=");
2845 * Currently, the only defined flags are mutually exclusive
2847 if (flags & MPOL_F_STATIC_NODES)
2848 p += snprintf(p, buffer + maxlen - p, "static");
2849 else if (flags & MPOL_F_RELATIVE_NODES)
2850 p += snprintf(p, buffer + maxlen - p, "relative");
2853 if (!nodes_empty(nodes))
2854 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2855 nodemask_pr_args(&nodes));