1 #include <linux/kernel.h>
2 #include <linux/errno.h>
4 #include <linux/spinlock.h>
7 #include <linux/pagemap.h>
8 #include <linux/rmap.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
12 #include <linux/sched.h>
13 #include <linux/rwsem.h>
14 #include <linux/hugetlb.h>
15 #include <asm/pgtable.h>
19 static struct page
*no_page_table(struct vm_area_struct
*vma
,
23 * When core dumping an enormous anonymous area that nobody
24 * has touched so far, we don't want to allocate unnecessary pages or
25 * page tables. Return error instead of NULL to skip handle_mm_fault,
26 * then get_dump_page() will return NULL to leave a hole in the dump.
27 * But we can only make this optimization where a hole would surely
28 * be zero-filled if handle_mm_fault() actually did handle it.
30 if ((flags
& FOLL_DUMP
) && (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
31 return ERR_PTR(-EFAULT
);
35 static struct page
*follow_page_pte(struct vm_area_struct
*vma
,
36 unsigned long address
, pmd_t
*pmd
, unsigned int flags
)
38 struct mm_struct
*mm
= vma
->vm_mm
;
44 if (unlikely(pmd_bad(*pmd
)))
45 return no_page_table(vma
, flags
);
47 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
49 if (!pte_present(pte
)) {
52 * KSM's break_ksm() relies upon recognizing a ksm page
53 * even while it is being migrated, so for that case we
54 * need migration_entry_wait().
56 if (likely(!(flags
& FOLL_MIGRATION
)))
60 entry
= pte_to_swp_entry(pte
);
61 if (!is_migration_entry(entry
))
63 pte_unmap_unlock(ptep
, ptl
);
64 migration_entry_wait(mm
, pmd
, address
);
67 if ((flags
& FOLL_NUMA
) && pte_protnone(pte
))
69 if ((flags
& FOLL_WRITE
) && !pte_write(pte
)) {
70 pte_unmap_unlock(ptep
, ptl
);
74 page
= vm_normal_page(vma
, address
, pte
);
75 if (unlikely(!page
)) {
76 if ((flags
& FOLL_DUMP
) ||
77 !is_zero_pfn(pte_pfn(pte
)))
84 if (flags
& FOLL_TOUCH
) {
85 if ((flags
& FOLL_WRITE
) &&
86 !pte_dirty(pte
) && !PageDirty(page
))
89 * pte_mkyoung() would be more correct here, but atomic care
90 * is needed to avoid losing the dirty bit: it is easier to use
91 * mark_page_accessed().
93 mark_page_accessed(page
);
95 if ((flags
& FOLL_POPULATE
) && (vma
->vm_flags
& VM_LOCKED
)) {
97 * The preliminary mapping check is mainly to avoid the
98 * pointless overhead of lock_page on the ZERO_PAGE
99 * which might bounce very badly if there is contention.
101 * If the page is already locked, we don't need to
102 * handle it now - vmscan will handle it later if and
103 * when it attempts to reclaim the page.
105 if (page
->mapping
&& trylock_page(page
)) {
106 lru_add_drain(); /* push cached pages to LRU */
108 * Because we lock page here, and migration is
109 * blocked by the pte's page reference, and we
110 * know the page is still mapped, we don't even
111 * need to check for file-cache page truncation.
113 mlock_vma_page(page
);
117 pte_unmap_unlock(ptep
, ptl
);
120 pte_unmap_unlock(ptep
, ptl
);
121 return ERR_PTR(-EFAULT
);
124 pte_unmap_unlock(ptep
, ptl
);
127 return no_page_table(vma
, flags
);
131 * follow_page_mask - look up a page descriptor from a user-virtual address
132 * @vma: vm_area_struct mapping @address
133 * @address: virtual address to look up
134 * @flags: flags modifying lookup behaviour
135 * @page_mask: on output, *page_mask is set according to the size of the page
137 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
139 * Returns the mapped (struct page *), %NULL if no mapping exists, or
140 * an error pointer if there is a mapping to something not represented
141 * by a page descriptor (see also vm_normal_page()).
143 struct page
*follow_page_mask(struct vm_area_struct
*vma
,
144 unsigned long address
, unsigned int flags
,
145 unsigned int *page_mask
)
152 struct mm_struct
*mm
= vma
->vm_mm
;
156 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
158 BUG_ON(flags
& FOLL_GET
);
162 pgd
= pgd_offset(mm
, address
);
163 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
164 return no_page_table(vma
, flags
);
166 pud
= pud_offset(pgd
, address
);
168 return no_page_table(vma
, flags
);
169 if (pud_huge(*pud
) && vma
->vm_flags
& VM_HUGETLB
) {
170 page
= follow_huge_pud(mm
, address
, pud
, flags
);
173 return no_page_table(vma
, flags
);
175 if (unlikely(pud_bad(*pud
)))
176 return no_page_table(vma
, flags
);
178 pmd
= pmd_offset(pud
, address
);
180 return no_page_table(vma
, flags
);
181 if (pmd_huge(*pmd
) && vma
->vm_flags
& VM_HUGETLB
) {
182 page
= follow_huge_pmd(mm
, address
, pmd
, flags
);
185 return no_page_table(vma
, flags
);
187 if ((flags
& FOLL_NUMA
) && pmd_protnone(*pmd
))
188 return no_page_table(vma
, flags
);
189 if (pmd_trans_huge(*pmd
)) {
190 if (flags
& FOLL_SPLIT
) {
191 split_huge_page_pmd(vma
, address
, pmd
);
192 return follow_page_pte(vma
, address
, pmd
, flags
);
194 ptl
= pmd_lock(mm
, pmd
);
195 if (likely(pmd_trans_huge(*pmd
))) {
196 if (unlikely(pmd_trans_splitting(*pmd
))) {
198 wait_split_huge_page(vma
->anon_vma
, pmd
);
200 page
= follow_trans_huge_pmd(vma
, address
,
203 *page_mask
= HPAGE_PMD_NR
- 1;
209 return follow_page_pte(vma
, address
, pmd
, flags
);
212 static int get_gate_page(struct mm_struct
*mm
, unsigned long address
,
213 unsigned int gup_flags
, struct vm_area_struct
**vma
,
222 /* user gate pages are read-only */
223 if (gup_flags
& FOLL_WRITE
)
225 if (address
> TASK_SIZE
)
226 pgd
= pgd_offset_k(address
);
228 pgd
= pgd_offset_gate(mm
, address
);
229 BUG_ON(pgd_none(*pgd
));
230 pud
= pud_offset(pgd
, address
);
231 BUG_ON(pud_none(*pud
));
232 pmd
= pmd_offset(pud
, address
);
235 VM_BUG_ON(pmd_trans_huge(*pmd
));
236 pte
= pte_offset_map(pmd
, address
);
239 *vma
= get_gate_vma(mm
);
242 *page
= vm_normal_page(*vma
, address
, *pte
);
244 if ((gup_flags
& FOLL_DUMP
) || !is_zero_pfn(pte_pfn(*pte
)))
246 *page
= pte_page(*pte
);
257 * mmap_sem must be held on entry. If @nonblocking != NULL and
258 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
259 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
261 static int faultin_page(struct task_struct
*tsk
, struct vm_area_struct
*vma
,
262 unsigned long address
, unsigned int *flags
, int *nonblocking
)
264 struct mm_struct
*mm
= vma
->vm_mm
;
265 unsigned int fault_flags
= 0;
268 /* For mm_populate(), just skip the stack guard page. */
269 if ((*flags
& FOLL_POPULATE
) &&
270 (stack_guard_page_start(vma
, address
) ||
271 stack_guard_page_end(vma
, address
+ PAGE_SIZE
)))
273 if (*flags
& FOLL_WRITE
)
274 fault_flags
|= FAULT_FLAG_WRITE
;
276 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
277 if (*flags
& FOLL_NOWAIT
)
278 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
;
279 if (*flags
& FOLL_TRIED
) {
280 VM_WARN_ON_ONCE(fault_flags
& FAULT_FLAG_ALLOW_RETRY
);
281 fault_flags
|= FAULT_FLAG_TRIED
;
284 ret
= handle_mm_fault(mm
, vma
, address
, fault_flags
);
285 if (ret
& VM_FAULT_ERROR
) {
286 if (ret
& VM_FAULT_OOM
)
288 if (ret
& (VM_FAULT_HWPOISON
| VM_FAULT_HWPOISON_LARGE
))
289 return *flags
& FOLL_HWPOISON
? -EHWPOISON
: -EFAULT
;
290 if (ret
& (VM_FAULT_SIGBUS
| VM_FAULT_SIGSEGV
))
296 if (ret
& VM_FAULT_MAJOR
)
302 if (ret
& VM_FAULT_RETRY
) {
309 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
310 * necessary, even if maybe_mkwrite decided not to set pte_write. We
311 * can thus safely do subsequent page lookups as if they were reads.
312 * But only do so when looping for pte_write is futile: in some cases
313 * userspace may also be wanting to write to the gotten user page,
314 * which a read fault here might prevent (a readonly page might get
315 * reCOWed by userspace write).
317 if ((ret
& VM_FAULT_WRITE
) && !(vma
->vm_flags
& VM_WRITE
))
318 *flags
&= ~FOLL_WRITE
;
322 static int check_vma_flags(struct vm_area_struct
*vma
, unsigned long gup_flags
)
324 vm_flags_t vm_flags
= vma
->vm_flags
;
326 if (vm_flags
& (VM_IO
| VM_PFNMAP
))
329 if (gup_flags
& FOLL_WRITE
) {
330 if (!(vm_flags
& VM_WRITE
)) {
331 if (!(gup_flags
& FOLL_FORCE
))
334 * We used to let the write,force case do COW in a
335 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
336 * set a breakpoint in a read-only mapping of an
337 * executable, without corrupting the file (yet only
338 * when that file had been opened for writing!).
339 * Anon pages in shared mappings are surprising: now
342 if (!is_cow_mapping(vm_flags
)) {
343 WARN_ON_ONCE(vm_flags
& VM_MAYWRITE
);
347 } else if (!(vm_flags
& VM_READ
)) {
348 if (!(gup_flags
& FOLL_FORCE
))
351 * Is there actually any vma we can reach here which does not
352 * have VM_MAYREAD set?
354 if (!(vm_flags
& VM_MAYREAD
))
361 * __get_user_pages() - pin user pages in memory
362 * @tsk: task_struct of target task
363 * @mm: mm_struct of target mm
364 * @start: starting user address
365 * @nr_pages: number of pages from start to pin
366 * @gup_flags: flags modifying pin behaviour
367 * @pages: array that receives pointers to the pages pinned.
368 * Should be at least nr_pages long. Or NULL, if caller
369 * only intends to ensure the pages are faulted in.
370 * @vmas: array of pointers to vmas corresponding to each page.
371 * Or NULL if the caller does not require them.
372 * @nonblocking: whether waiting for disk IO or mmap_sem contention
374 * Returns number of pages pinned. This may be fewer than the number
375 * requested. If nr_pages is 0 or negative, returns 0. If no pages
376 * were pinned, returns -errno. Each page returned must be released
377 * with a put_page() call when it is finished with. vmas will only
378 * remain valid while mmap_sem is held.
380 * Must be called with mmap_sem held. It may be released. See below.
382 * __get_user_pages walks a process's page tables and takes a reference to
383 * each struct page that each user address corresponds to at a given
384 * instant. That is, it takes the page that would be accessed if a user
385 * thread accesses the given user virtual address at that instant.
387 * This does not guarantee that the page exists in the user mappings when
388 * __get_user_pages returns, and there may even be a completely different
389 * page there in some cases (eg. if mmapped pagecache has been invalidated
390 * and subsequently re faulted). However it does guarantee that the page
391 * won't be freed completely. And mostly callers simply care that the page
392 * contains data that was valid *at some point in time*. Typically, an IO
393 * or similar operation cannot guarantee anything stronger anyway because
394 * locks can't be held over the syscall boundary.
396 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
397 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
398 * appropriate) must be called after the page is finished with, and
399 * before put_page is called.
401 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
402 * or mmap_sem contention, and if waiting is needed to pin all pages,
403 * *@nonblocking will be set to 0. Further, if @gup_flags does not
404 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
407 * A caller using such a combination of @nonblocking and @gup_flags
408 * must therefore hold the mmap_sem for reading only, and recognize
409 * when it's been released. Otherwise, it must be held for either
410 * reading or writing and will not be released.
412 * In most cases, get_user_pages or get_user_pages_fast should be used
413 * instead of __get_user_pages. __get_user_pages should be used only if
414 * you need some special @gup_flags.
416 long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
417 unsigned long start
, unsigned long nr_pages
,
418 unsigned int gup_flags
, struct page
**pages
,
419 struct vm_area_struct
**vmas
, int *nonblocking
)
422 unsigned int page_mask
;
423 struct vm_area_struct
*vma
= NULL
;
428 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
431 * If FOLL_FORCE is set then do not force a full fault as the hinting
432 * fault information is unrelated to the reference behaviour of a task
433 * using the address space
435 if (!(gup_flags
& FOLL_FORCE
))
436 gup_flags
|= FOLL_NUMA
;
440 unsigned int foll_flags
= gup_flags
;
441 unsigned int page_increm
;
443 /* first iteration or cross vma bound */
444 if (!vma
|| start
>= vma
->vm_end
) {
445 vma
= find_extend_vma(mm
, start
);
446 if (!vma
&& in_gate_area(mm
, start
)) {
448 ret
= get_gate_page(mm
, start
& PAGE_MASK
,
450 pages
? &pages
[i
] : NULL
);
457 if (!vma
|| check_vma_flags(vma
, gup_flags
))
458 return i
? : -EFAULT
;
459 if (is_vm_hugetlb_page(vma
)) {
460 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
461 &start
, &nr_pages
, i
,
468 * If we have a pending SIGKILL, don't keep faulting pages and
469 * potentially allocating memory.
471 if (unlikely(fatal_signal_pending(current
)))
472 return i
? i
: -ERESTARTSYS
;
474 page
= follow_page_mask(vma
, start
, foll_flags
, &page_mask
);
477 ret
= faultin_page(tsk
, vma
, start
, &foll_flags
,
494 return i
? i
: PTR_ERR(page
);
497 flush_anon_page(vma
, page
, start
);
498 flush_dcache_page(page
);
506 page_increm
= 1 + (~(start
>> PAGE_SHIFT
) & page_mask
);
507 if (page_increm
> nr_pages
)
508 page_increm
= nr_pages
;
510 start
+= page_increm
* PAGE_SIZE
;
511 nr_pages
-= page_increm
;
515 EXPORT_SYMBOL(__get_user_pages
);
518 * fixup_user_fault() - manually resolve a user page fault
519 * @tsk: the task_struct to use for page fault accounting, or
520 * NULL if faults are not to be recorded.
521 * @mm: mm_struct of target mm
522 * @address: user address
523 * @fault_flags:flags to pass down to handle_mm_fault()
525 * This is meant to be called in the specific scenario where for locking reasons
526 * we try to access user memory in atomic context (within a pagefault_disable()
527 * section), this returns -EFAULT, and we want to resolve the user fault before
530 * Typically this is meant to be used by the futex code.
532 * The main difference with get_user_pages() is that this function will
533 * unconditionally call handle_mm_fault() which will in turn perform all the
534 * necessary SW fixup of the dirty and young bits in the PTE, while
535 * handle_mm_fault() only guarantees to update these in the struct page.
537 * This is important for some architectures where those bits also gate the
538 * access permission to the page because they are maintained in software. On
539 * such architectures, gup() will not be enough to make a subsequent access
542 * This has the same semantics wrt the @mm->mmap_sem as does filemap_fault().
544 int fixup_user_fault(struct task_struct
*tsk
, struct mm_struct
*mm
,
545 unsigned long address
, unsigned int fault_flags
)
547 struct vm_area_struct
*vma
;
551 vma
= find_extend_vma(mm
, address
);
552 if (!vma
|| address
< vma
->vm_start
)
555 vm_flags
= (fault_flags
& FAULT_FLAG_WRITE
) ? VM_WRITE
: VM_READ
;
556 if (!(vm_flags
& vma
->vm_flags
))
559 ret
= handle_mm_fault(mm
, vma
, address
, fault_flags
);
560 if (ret
& VM_FAULT_ERROR
) {
561 if (ret
& VM_FAULT_OOM
)
563 if (ret
& (VM_FAULT_HWPOISON
| VM_FAULT_HWPOISON_LARGE
))
565 if (ret
& (VM_FAULT_SIGBUS
| VM_FAULT_SIGSEGV
))
570 if (ret
& VM_FAULT_MAJOR
)
578 static __always_inline
long __get_user_pages_locked(struct task_struct
*tsk
,
579 struct mm_struct
*mm
,
581 unsigned long nr_pages
,
582 int write
, int force
,
584 struct vm_area_struct
**vmas
,
585 int *locked
, bool notify_drop
,
588 long ret
, pages_done
;
592 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
594 /* check caller initialized locked */
595 BUG_ON(*locked
!= 1);
606 lock_dropped
= false;
608 ret
= __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
,
611 /* VM_FAULT_RETRY couldn't trigger, bypass */
614 /* VM_FAULT_RETRY cannot return errors */
617 BUG_ON(ret
>= nr_pages
);
621 /* If it's a prefault don't insist harder */
631 /* VM_FAULT_RETRY didn't trigger */
636 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
638 start
+= ret
<< PAGE_SHIFT
;
641 * Repeat on the address that fired VM_FAULT_RETRY
642 * without FAULT_FLAG_ALLOW_RETRY but with
647 down_read(&mm
->mmap_sem
);
648 ret
= __get_user_pages(tsk
, mm
, start
, 1, flags
| FOLL_TRIED
,
663 if (notify_drop
&& lock_dropped
&& *locked
) {
665 * We must let the caller know we temporarily dropped the lock
666 * and so the critical section protected by it was lost.
668 up_read(&mm
->mmap_sem
);
675 * We can leverage the VM_FAULT_RETRY functionality in the page fault
676 * paths better by using either get_user_pages_locked() or
677 * get_user_pages_unlocked().
679 * get_user_pages_locked() is suitable to replace the form:
681 * down_read(&mm->mmap_sem);
683 * get_user_pages(tsk, mm, ..., pages, NULL);
684 * up_read(&mm->mmap_sem);
689 * down_read(&mm->mmap_sem);
691 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
693 * up_read(&mm->mmap_sem);
695 long get_user_pages_locked(struct task_struct
*tsk
, struct mm_struct
*mm
,
696 unsigned long start
, unsigned long nr_pages
,
697 int write
, int force
, struct page
**pages
,
700 return __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, write
, force
,
701 pages
, NULL
, locked
, true, FOLL_TOUCH
);
703 EXPORT_SYMBOL(get_user_pages_locked
);
706 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to
707 * pass additional gup_flags as last parameter (like FOLL_HWPOISON).
709 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
710 * caller if required (just like with __get_user_pages). "FOLL_GET",
711 * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed
712 * according to the parameters "pages", "write", "force"
715 __always_inline
long __get_user_pages_unlocked(struct task_struct
*tsk
, struct mm_struct
*mm
,
716 unsigned long start
, unsigned long nr_pages
,
717 int write
, int force
, struct page
**pages
,
718 unsigned int gup_flags
)
722 down_read(&mm
->mmap_sem
);
723 ret
= __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, write
, force
,
724 pages
, NULL
, &locked
, false, gup_flags
);
726 up_read(&mm
->mmap_sem
);
729 EXPORT_SYMBOL(__get_user_pages_unlocked
);
732 * get_user_pages_unlocked() is suitable to replace the form:
734 * down_read(&mm->mmap_sem);
735 * get_user_pages(tsk, mm, ..., pages, NULL);
736 * up_read(&mm->mmap_sem);
740 * get_user_pages_unlocked(tsk, mm, ..., pages);
742 * It is functionally equivalent to get_user_pages_fast so
743 * get_user_pages_fast should be used instead, if the two parameters
744 * "tsk" and "mm" are respectively equal to current and current->mm,
745 * or if "force" shall be set to 1 (get_user_pages_fast misses the
746 * "force" parameter).
748 long get_user_pages_unlocked(struct task_struct
*tsk
, struct mm_struct
*mm
,
749 unsigned long start
, unsigned long nr_pages
,
750 int write
, int force
, struct page
**pages
)
752 return __get_user_pages_unlocked(tsk
, mm
, start
, nr_pages
, write
,
753 force
, pages
, FOLL_TOUCH
);
755 EXPORT_SYMBOL(get_user_pages_unlocked
);
758 * get_user_pages() - pin user pages in memory
759 * @tsk: the task_struct to use for page fault accounting, or
760 * NULL if faults are not to be recorded.
761 * @mm: mm_struct of target mm
762 * @start: starting user address
763 * @nr_pages: number of pages from start to pin
764 * @write: whether pages will be written to by the caller
765 * @force: whether to force access even when user mapping is currently
766 * protected (but never forces write access to shared mapping).
767 * @pages: array that receives pointers to the pages pinned.
768 * Should be at least nr_pages long. Or NULL, if caller
769 * only intends to ensure the pages are faulted in.
770 * @vmas: array of pointers to vmas corresponding to each page.
771 * Or NULL if the caller does not require them.
773 * Returns number of pages pinned. This may be fewer than the number
774 * requested. If nr_pages is 0 or negative, returns 0. If no pages
775 * were pinned, returns -errno. Each page returned must be released
776 * with a put_page() call when it is finished with. vmas will only
777 * remain valid while mmap_sem is held.
779 * Must be called with mmap_sem held for read or write.
781 * get_user_pages walks a process's page tables and takes a reference to
782 * each struct page that each user address corresponds to at a given
783 * instant. That is, it takes the page that would be accessed if a user
784 * thread accesses the given user virtual address at that instant.
786 * This does not guarantee that the page exists in the user mappings when
787 * get_user_pages returns, and there may even be a completely different
788 * page there in some cases (eg. if mmapped pagecache has been invalidated
789 * and subsequently re faulted). However it does guarantee that the page
790 * won't be freed completely. And mostly callers simply care that the page
791 * contains data that was valid *at some point in time*. Typically, an IO
792 * or similar operation cannot guarantee anything stronger anyway because
793 * locks can't be held over the syscall boundary.
795 * If write=0, the page must not be written to. If the page is written to,
796 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
797 * after the page is finished with, and before put_page is called.
799 * get_user_pages is typically used for fewer-copy IO operations, to get a
800 * handle on the memory by some means other than accesses via the user virtual
801 * addresses. The pages may be submitted for DMA to devices or accessed via
802 * their kernel linear mapping (via the kmap APIs). Care should be taken to
803 * use the correct cache flushing APIs.
805 * See also get_user_pages_fast, for performance critical applications.
807 * get_user_pages should be phased out in favor of
808 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
809 * should use get_user_pages because it cannot pass
810 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
812 long get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
813 unsigned long start
, unsigned long nr_pages
, int write
,
814 int force
, struct page
**pages
, struct vm_area_struct
**vmas
)
816 return __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, write
, force
,
817 pages
, vmas
, NULL
, false, FOLL_TOUCH
);
819 EXPORT_SYMBOL(get_user_pages
);
822 * populate_vma_page_range() - populate a range of pages in the vma.
824 * @start: start address
828 * This takes care of mlocking the pages too if VM_LOCKED is set.
830 * return 0 on success, negative error code on error.
832 * vma->vm_mm->mmap_sem must be held.
834 * If @nonblocking is NULL, it may be held for read or write and will
837 * If @nonblocking is non-NULL, it must held for read only and may be
838 * released. If it's released, *@nonblocking will be set to 0.
840 long populate_vma_page_range(struct vm_area_struct
*vma
,
841 unsigned long start
, unsigned long end
, int *nonblocking
)
843 struct mm_struct
*mm
= vma
->vm_mm
;
844 unsigned long nr_pages
= (end
- start
) / PAGE_SIZE
;
847 VM_BUG_ON(start
& ~PAGE_MASK
);
848 VM_BUG_ON(end
& ~PAGE_MASK
);
849 VM_BUG_ON_VMA(start
< vma
->vm_start
, vma
);
850 VM_BUG_ON_VMA(end
> vma
->vm_end
, vma
);
851 VM_BUG_ON_MM(!rwsem_is_locked(&mm
->mmap_sem
), mm
);
853 gup_flags
= FOLL_TOUCH
| FOLL_POPULATE
;
855 * We want to touch writable mappings with a write fault in order
856 * to break COW, except for shared mappings because these don't COW
857 * and we would not want to dirty them for nothing.
859 if ((vma
->vm_flags
& (VM_WRITE
| VM_SHARED
)) == VM_WRITE
)
860 gup_flags
|= FOLL_WRITE
;
863 * We want mlock to succeed for regions that have any permissions
864 * other than PROT_NONE.
866 if (vma
->vm_flags
& (VM_READ
| VM_WRITE
| VM_EXEC
))
867 gup_flags
|= FOLL_FORCE
;
870 * We made sure addr is within a VMA, so the following will
871 * not result in a stack expansion that recurses back here.
873 return __get_user_pages(current
, mm
, start
, nr_pages
, gup_flags
,
874 NULL
, NULL
, nonblocking
);
878 * __mm_populate - populate and/or mlock pages within a range of address space.
880 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
881 * flags. VMAs must be already marked with the desired vm_flags, and
882 * mmap_sem must not be held.
884 int __mm_populate(unsigned long start
, unsigned long len
, int ignore_errors
)
886 struct mm_struct
*mm
= current
->mm
;
887 unsigned long end
, nstart
, nend
;
888 struct vm_area_struct
*vma
= NULL
;
892 VM_BUG_ON(start
& ~PAGE_MASK
);
893 VM_BUG_ON(len
!= PAGE_ALIGN(len
));
896 for (nstart
= start
; nstart
< end
; nstart
= nend
) {
898 * We want to fault in pages for [nstart; end) address range.
899 * Find first corresponding VMA.
903 down_read(&mm
->mmap_sem
);
904 vma
= find_vma(mm
, nstart
);
905 } else if (nstart
>= vma
->vm_end
)
907 if (!vma
|| vma
->vm_start
>= end
)
910 * Set [nstart; nend) to intersection of desired address
911 * range with the first VMA. Also, skip undesirable VMA types.
913 nend
= min(end
, vma
->vm_end
);
914 if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
916 if (nstart
< vma
->vm_start
)
917 nstart
= vma
->vm_start
;
919 * Now fault in a range of pages. populate_vma_page_range()
920 * double checks the vma flags, so that it won't mlock pages
921 * if the vma was already munlocked.
923 ret
= populate_vma_page_range(vma
, nstart
, nend
, &locked
);
927 continue; /* continue at next VMA */
931 nend
= nstart
+ ret
* PAGE_SIZE
;
935 up_read(&mm
->mmap_sem
);
936 return ret
; /* 0 or negative error code */
940 * get_dump_page() - pin user page in memory while writing it to core dump
941 * @addr: user address
943 * Returns struct page pointer of user page pinned for dump,
944 * to be freed afterwards by page_cache_release() or put_page().
946 * Returns NULL on any kind of failure - a hole must then be inserted into
947 * the corefile, to preserve alignment with its headers; and also returns
948 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
949 * allowing a hole to be left in the corefile to save diskspace.
951 * Called without mmap_sem, but after all other threads have been killed.
953 #ifdef CONFIG_ELF_CORE
954 struct page
*get_dump_page(unsigned long addr
)
956 struct vm_area_struct
*vma
;
959 if (__get_user_pages(current
, current
->mm
, addr
, 1,
960 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
,
963 flush_cache_page(vma
, addr
, page_to_pfn(page
));
966 #endif /* CONFIG_ELF_CORE */
969 * Generic RCU Fast GUP
971 * get_user_pages_fast attempts to pin user pages by walking the page
972 * tables directly and avoids taking locks. Thus the walker needs to be
973 * protected from page table pages being freed from under it, and should
974 * block any THP splits.
976 * One way to achieve this is to have the walker disable interrupts, and
977 * rely on IPIs from the TLB flushing code blocking before the page table
978 * pages are freed. This is unsuitable for architectures that do not need
979 * to broadcast an IPI when invalidating TLBs.
981 * Another way to achieve this is to batch up page table containing pages
982 * belonging to more than one mm_user, then rcu_sched a callback to free those
983 * pages. Disabling interrupts will allow the fast_gup walker to both block
984 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
985 * (which is a relatively rare event). The code below adopts this strategy.
987 * Before activating this code, please be aware that the following assumptions
988 * are currently made:
990 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
991 * pages containing page tables.
993 * *) THP splits will broadcast an IPI, this can be achieved by overriding
994 * pmdp_splitting_flush.
996 * *) ptes can be read atomically by the architecture.
998 * *) access_ok is sufficient to validate userspace address ranges.
1000 * The last two assumptions can be relaxed by the addition of helper functions.
1002 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1004 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1006 #ifdef __HAVE_ARCH_PTE_SPECIAL
1007 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
1008 int write
, struct page
**pages
, int *nr
)
1013 ptem
= ptep
= pte_offset_map(&pmd
, addr
);
1016 * In the line below we are assuming that the pte can be read
1017 * atomically. If this is not the case for your architecture,
1018 * please wrap this in a helper function!
1020 * for an example see gup_get_pte in arch/x86/mm/gup.c
1022 pte_t pte
= READ_ONCE(*ptep
);
1026 * Similar to the PMD case below, NUMA hinting must take slow
1027 * path using the pte_protnone check.
1029 if (!pte_present(pte
) || pte_special(pte
) ||
1030 pte_protnone(pte
) || (write
&& !pte_write(pte
)))
1033 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
1034 page
= pte_page(pte
);
1036 if (!page_cache_get_speculative(page
))
1039 if (unlikely(pte_val(pte
) != pte_val(*ptep
))) {
1047 } while (ptep
++, addr
+= PAGE_SIZE
, addr
!= end
);
1058 * If we can't determine whether or not a pte is special, then fail immediately
1059 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1062 * For a futex to be placed on a THP tail page, get_futex_key requires a
1063 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1064 * useful to have gup_huge_pmd even if we can't operate on ptes.
1066 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
1067 int write
, struct page
**pages
, int *nr
)
1071 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1073 static int gup_huge_pmd(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
1074 unsigned long end
, int write
, struct page
**pages
, int *nr
)
1076 struct page
*head
, *page
, *tail
;
1079 if (write
&& !pmd_write(orig
))
1083 head
= pmd_page(orig
);
1084 page
= head
+ ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
1087 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1092 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1094 if (!page_cache_add_speculative(head
, refs
)) {
1099 if (unlikely(pmd_val(orig
) != pmd_val(*pmdp
))) {
1107 * Any tail pages need their mapcount reference taken before we
1108 * return. (This allows the THP code to bump their ref count when
1109 * they are split into base pages).
1113 get_huge_page_tail(tail
);
1120 static int gup_huge_pud(pud_t orig
, pud_t
*pudp
, unsigned long addr
,
1121 unsigned long end
, int write
, struct page
**pages
, int *nr
)
1123 struct page
*head
, *page
, *tail
;
1126 if (write
&& !pud_write(orig
))
1130 head
= pud_page(orig
);
1131 page
= head
+ ((addr
& ~PUD_MASK
) >> PAGE_SHIFT
);
1134 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1139 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1141 if (!page_cache_add_speculative(head
, refs
)) {
1146 if (unlikely(pud_val(orig
) != pud_val(*pudp
))) {
1155 get_huge_page_tail(tail
);
1162 static int gup_huge_pgd(pgd_t orig
, pgd_t
*pgdp
, unsigned long addr
,
1163 unsigned long end
, int write
,
1164 struct page
**pages
, int *nr
)
1167 struct page
*head
, *page
, *tail
;
1169 if (write
&& !pgd_write(orig
))
1173 head
= pgd_page(orig
);
1174 page
= head
+ ((addr
& ~PGDIR_MASK
) >> PAGE_SHIFT
);
1177 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1182 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1184 if (!page_cache_add_speculative(head
, refs
)) {
1189 if (unlikely(pgd_val(orig
) != pgd_val(*pgdp
))) {
1198 get_huge_page_tail(tail
);
1205 static int gup_pmd_range(pud_t pud
, unsigned long addr
, unsigned long end
,
1206 int write
, struct page
**pages
, int *nr
)
1211 pmdp
= pmd_offset(&pud
, addr
);
1213 pmd_t pmd
= READ_ONCE(*pmdp
);
1215 next
= pmd_addr_end(addr
, end
);
1216 if (pmd_none(pmd
) || pmd_trans_splitting(pmd
))
1219 if (unlikely(pmd_trans_huge(pmd
) || pmd_huge(pmd
))) {
1221 * NUMA hinting faults need to be handled in the GUP
1222 * slowpath for accounting purposes and so that they
1223 * can be serialised against THP migration.
1225 if (pmd_protnone(pmd
))
1228 if (!gup_huge_pmd(pmd
, pmdp
, addr
, next
, write
,
1232 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd
))))) {
1234 * architecture have different format for hugetlbfs
1235 * pmd format and THP pmd format
1237 if (!gup_huge_pd(__hugepd(pmd_val(pmd
)), addr
,
1238 PMD_SHIFT
, next
, write
, pages
, nr
))
1240 } else if (!gup_pte_range(pmd
, addr
, next
, write
, pages
, nr
))
1242 } while (pmdp
++, addr
= next
, addr
!= end
);
1247 static int gup_pud_range(pgd_t pgd
, unsigned long addr
, unsigned long end
,
1248 int write
, struct page
**pages
, int *nr
)
1253 pudp
= pud_offset(&pgd
, addr
);
1255 pud_t pud
= READ_ONCE(*pudp
);
1257 next
= pud_addr_end(addr
, end
);
1260 if (unlikely(pud_huge(pud
))) {
1261 if (!gup_huge_pud(pud
, pudp
, addr
, next
, write
,
1264 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud
))))) {
1265 if (!gup_huge_pd(__hugepd(pud_val(pud
)), addr
,
1266 PUD_SHIFT
, next
, write
, pages
, nr
))
1268 } else if (!gup_pmd_range(pud
, addr
, next
, write
, pages
, nr
))
1270 } while (pudp
++, addr
= next
, addr
!= end
);
1276 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1277 * the regular GUP. It will only return non-negative values.
1279 int __get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
1280 struct page
**pages
)
1282 struct mm_struct
*mm
= current
->mm
;
1283 unsigned long addr
, len
, end
;
1284 unsigned long next
, flags
;
1290 len
= (unsigned long) nr_pages
<< PAGE_SHIFT
;
1293 if (unlikely(!access_ok(write
? VERIFY_WRITE
: VERIFY_READ
,
1298 * Disable interrupts. We use the nested form as we can already have
1299 * interrupts disabled by get_futex_key.
1301 * With interrupts disabled, we block page table pages from being
1302 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1305 * We do not adopt an rcu_read_lock(.) here as we also want to
1306 * block IPIs that come from THPs splitting.
1309 local_irq_save(flags
);
1310 pgdp
= pgd_offset(mm
, addr
);
1312 pgd_t pgd
= READ_ONCE(*pgdp
);
1314 next
= pgd_addr_end(addr
, end
);
1317 if (unlikely(pgd_huge(pgd
))) {
1318 if (!gup_huge_pgd(pgd
, pgdp
, addr
, next
, write
,
1321 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd
))))) {
1322 if (!gup_huge_pd(__hugepd(pgd_val(pgd
)), addr
,
1323 PGDIR_SHIFT
, next
, write
, pages
, &nr
))
1325 } else if (!gup_pud_range(pgd
, addr
, next
, write
, pages
, &nr
))
1327 } while (pgdp
++, addr
= next
, addr
!= end
);
1328 local_irq_restore(flags
);
1334 * get_user_pages_fast() - pin user pages in memory
1335 * @start: starting user address
1336 * @nr_pages: number of pages from start to pin
1337 * @write: whether pages will be written to
1338 * @pages: array that receives pointers to the pages pinned.
1339 * Should be at least nr_pages long.
1341 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1342 * If not successful, it will fall back to taking the lock and
1343 * calling get_user_pages().
1345 * Returns number of pages pinned. This may be fewer than the number
1346 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1347 * were pinned, returns -errno.
1349 int get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
1350 struct page
**pages
)
1352 struct mm_struct
*mm
= current
->mm
;
1356 nr
= __get_user_pages_fast(start
, nr_pages
, write
, pages
);
1359 if (nr
< nr_pages
) {
1360 /* Try to get the remaining pages with get_user_pages */
1361 start
+= nr
<< PAGE_SHIFT
;
1364 ret
= get_user_pages_unlocked(current
, mm
, start
,
1365 nr_pages
- nr
, write
, 0, pages
);
1367 /* Have to be a bit careful with return values */
1379 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */