2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2006, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/interrupt.h>
42 #include <asm/uaccess.h>
45 * ktime_get - get the monotonic time in ktime_t format
47 * returns the time in ktime_t format
49 static ktime_t
ktime_get(void)
55 return timespec_to_ktime(now
);
59 * ktime_get_real - get the real (wall-) time in ktime_t format
61 * returns the time in ktime_t format
63 static ktime_t
ktime_get_real(void)
69 return timespec_to_ktime(now
);
72 EXPORT_SYMBOL_GPL(ktime_get_real
);
77 * Note: If we want to add new timer bases, we have to skip the two
78 * clock ids captured by the cpu-timers. We do this by holding empty
79 * entries rather than doing math adjustment of the clock ids.
80 * This ensures that we capture erroneous accesses to these clock ids
81 * rather than moving them into the range of valid clock id's.
83 static DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
89 .index
= CLOCK_REALTIME
,
90 .get_time
= &ktime_get_real
,
91 .resolution
= KTIME_REALTIME_RES
,
94 .index
= CLOCK_MONOTONIC
,
95 .get_time
= &ktime_get
,
96 .resolution
= KTIME_MONOTONIC_RES
,
102 * ktime_get_ts - get the monotonic clock in timespec format
103 * @ts: pointer to timespec variable
105 * The function calculates the monotonic clock from the realtime
106 * clock and the wall_to_monotonic offset and stores the result
107 * in normalized timespec format in the variable pointed to by @ts.
109 void ktime_get_ts(struct timespec
*ts
)
111 struct timespec tomono
;
115 seq
= read_seqbegin(&xtime_lock
);
117 tomono
= wall_to_monotonic
;
119 } while (read_seqretry(&xtime_lock
, seq
));
121 set_normalized_timespec(ts
, ts
->tv_sec
+ tomono
.tv_sec
,
122 ts
->tv_nsec
+ tomono
.tv_nsec
);
124 EXPORT_SYMBOL_GPL(ktime_get_ts
);
127 * Get the coarse grained time at the softirq based on xtime and
130 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base
*base
)
132 ktime_t xtim
, tomono
;
137 seq
= read_seqbegin(&xtime_lock
);
139 getnstimeofday(&xts
);
143 } while (read_seqretry(&xtime_lock
, seq
));
145 xtim
= timespec_to_ktime(xts
);
146 tomono
= timespec_to_ktime(wall_to_monotonic
);
147 base
->clock_base
[CLOCK_REALTIME
].softirq_time
= xtim
;
148 base
->clock_base
[CLOCK_MONOTONIC
].softirq_time
=
149 ktime_add(xtim
, tomono
);
153 * Helper function to check, whether the timer is on one of the queues
155 static inline int hrtimer_is_queued(struct hrtimer
*timer
)
157 return timer
->state
& HRTIMER_STATE_ENQUEUED
;
161 * Helper function to check, whether the timer is running the callback
164 static inline int hrtimer_callback_running(struct hrtimer
*timer
)
166 return timer
->state
& HRTIMER_STATE_CALLBACK
;
170 * Functions and macros which are different for UP/SMP systems are kept in a
175 #define set_curr_timer(b, t) do { (b)->curr_timer = (t); } while (0)
178 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
179 * means that all timers which are tied to this base via timer->base are
180 * locked, and the base itself is locked too.
182 * So __run_timers/migrate_timers can safely modify all timers which could
183 * be found on the lists/queues.
185 * When the timer's base is locked, and the timer removed from list, it is
186 * possible to set timer->base = NULL and drop the lock: the timer remains
190 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
191 unsigned long *flags
)
193 struct hrtimer_clock_base
*base
;
197 if (likely(base
!= NULL
)) {
198 spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
199 if (likely(base
== timer
->base
))
201 /* The timer has migrated to another CPU: */
202 spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
209 * Switch the timer base to the current CPU when possible.
211 static inline struct hrtimer_clock_base
*
212 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
214 struct hrtimer_clock_base
*new_base
;
215 struct hrtimer_cpu_base
*new_cpu_base
;
217 new_cpu_base
= &__get_cpu_var(hrtimer_bases
);
218 new_base
= &new_cpu_base
->clock_base
[base
->index
];
220 if (base
!= new_base
) {
222 * We are trying to schedule the timer on the local CPU.
223 * However we can't change timer's base while it is running,
224 * so we keep it on the same CPU. No hassle vs. reprogramming
225 * the event source in the high resolution case. The softirq
226 * code will take care of this when the timer function has
227 * completed. There is no conflict as we hold the lock until
228 * the timer is enqueued.
230 if (unlikely(base
->cpu_base
->curr_timer
== timer
))
233 /* See the comment in lock_timer_base() */
235 spin_unlock(&base
->cpu_base
->lock
);
236 spin_lock(&new_base
->cpu_base
->lock
);
237 timer
->base
= new_base
;
242 #else /* CONFIG_SMP */
244 #define set_curr_timer(b, t) do { } while (0)
246 static inline struct hrtimer_clock_base
*
247 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
249 struct hrtimer_clock_base
*base
= timer
->base
;
251 spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
256 #define switch_hrtimer_base(t, b) (b)
258 #endif /* !CONFIG_SMP */
261 * Functions for the union type storage format of ktime_t which are
262 * too large for inlining:
264 #if BITS_PER_LONG < 64
265 # ifndef CONFIG_KTIME_SCALAR
267 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
269 * @nsec: the scalar nsec value to add
271 * Returns the sum of kt and nsec in ktime_t format
273 ktime_t
ktime_add_ns(const ktime_t kt
, u64 nsec
)
277 if (likely(nsec
< NSEC_PER_SEC
)) {
280 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
282 tmp
= ktime_set((long)nsec
, rem
);
285 return ktime_add(kt
, tmp
);
288 #else /* CONFIG_KTIME_SCALAR */
290 # endif /* !CONFIG_KTIME_SCALAR */
293 * Divide a ktime value by a nanosecond value
295 static unsigned long ktime_divns(const ktime_t kt
, s64 div
)
300 dclc
= dns
= ktime_to_ns(kt
);
302 /* Make sure the divisor is less than 2^32: */
308 do_div(dclc
, (unsigned long) div
);
310 return (unsigned long) dclc
;
313 #else /* BITS_PER_LONG < 64 */
314 # define ktime_divns(kt, div) (unsigned long)((kt).tv64 / (div))
315 #endif /* BITS_PER_LONG >= 64 */
318 * Timekeeping resumed notification
320 void hrtimer_notify_resume(void)
326 * Counterpart to lock_timer_base above:
329 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
331 spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
335 * hrtimer_forward - forward the timer expiry
336 * @timer: hrtimer to forward
337 * @now: forward past this time
338 * @interval: the interval to forward
340 * Forward the timer expiry so it will expire in the future.
341 * Returns the number of overruns.
344 hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
346 unsigned long orun
= 1;
349 delta
= ktime_sub(now
, timer
->expires
);
354 if (interval
.tv64
< timer
->base
->resolution
.tv64
)
355 interval
.tv64
= timer
->base
->resolution
.tv64
;
357 if (unlikely(delta
.tv64
>= interval
.tv64
)) {
358 s64 incr
= ktime_to_ns(interval
);
360 orun
= ktime_divns(delta
, incr
);
361 timer
->expires
= ktime_add_ns(timer
->expires
, incr
* orun
);
362 if (timer
->expires
.tv64
> now
.tv64
)
365 * This (and the ktime_add() below) is the
366 * correction for exact:
370 timer
->expires
= ktime_add(timer
->expires
, interval
);
376 * enqueue_hrtimer - internal function to (re)start a timer
378 * The timer is inserted in expiry order. Insertion into the
379 * red black tree is O(log(n)). Must hold the base lock.
381 static void enqueue_hrtimer(struct hrtimer
*timer
,
382 struct hrtimer_clock_base
*base
)
384 struct rb_node
**link
= &base
->active
.rb_node
;
385 struct rb_node
*parent
= NULL
;
386 struct hrtimer
*entry
;
389 * Find the right place in the rbtree:
393 entry
= rb_entry(parent
, struct hrtimer
, node
);
395 * We dont care about collisions. Nodes with
396 * the same expiry time stay together.
398 if (timer
->expires
.tv64
< entry
->expires
.tv64
)
399 link
= &(*link
)->rb_left
;
401 link
= &(*link
)->rb_right
;
405 * Insert the timer to the rbtree and check whether it
406 * replaces the first pending timer
408 rb_link_node(&timer
->node
, parent
, link
);
409 rb_insert_color(&timer
->node
, &base
->active
);
411 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
412 * state of a possibly running callback.
414 timer
->state
|= HRTIMER_STATE_ENQUEUED
;
416 if (!base
->first
|| timer
->expires
.tv64
<
417 rb_entry(base
->first
, struct hrtimer
, node
)->expires
.tv64
)
418 base
->first
= &timer
->node
;
422 * __remove_hrtimer - internal function to remove a timer
424 * Caller must hold the base lock.
426 static void __remove_hrtimer(struct hrtimer
*timer
,
427 struct hrtimer_clock_base
*base
,
428 unsigned long newstate
)
431 * Remove the timer from the rbtree and replace the
432 * first entry pointer if necessary.
434 if (base
->first
== &timer
->node
)
435 base
->first
= rb_next(&timer
->node
);
436 rb_erase(&timer
->node
, &base
->active
);
437 timer
->state
= newstate
;
441 * remove hrtimer, called with base lock held
444 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
446 if (hrtimer_is_queued(timer
)) {
447 __remove_hrtimer(timer
, base
, HRTIMER_STATE_INACTIVE
);
454 * hrtimer_start - (re)start an relative timer on the current CPU
455 * @timer: the timer to be added
457 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
461 * 1 when the timer was active
464 hrtimer_start(struct hrtimer
*timer
, ktime_t tim
, const enum hrtimer_mode mode
)
466 struct hrtimer_clock_base
*base
, *new_base
;
470 base
= lock_hrtimer_base(timer
, &flags
);
472 /* Remove an active timer from the queue: */
473 ret
= remove_hrtimer(timer
, base
);
475 /* Switch the timer base, if necessary: */
476 new_base
= switch_hrtimer_base(timer
, base
);
478 if (mode
== HRTIMER_MODE_REL
) {
479 tim
= ktime_add(tim
, new_base
->get_time());
481 * CONFIG_TIME_LOW_RES is a temporary way for architectures
482 * to signal that they simply return xtime in
483 * do_gettimeoffset(). In this case we want to round up by
484 * resolution when starting a relative timer, to avoid short
485 * timeouts. This will go away with the GTOD framework.
487 #ifdef CONFIG_TIME_LOW_RES
488 tim
= ktime_add(tim
, base
->resolution
);
491 timer
->expires
= tim
;
493 enqueue_hrtimer(timer
, new_base
);
495 unlock_hrtimer_base(timer
, &flags
);
499 EXPORT_SYMBOL_GPL(hrtimer_start
);
502 * hrtimer_try_to_cancel - try to deactivate a timer
503 * @timer: hrtimer to stop
506 * 0 when the timer was not active
507 * 1 when the timer was active
508 * -1 when the timer is currently excuting the callback function and
511 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
513 struct hrtimer_clock_base
*base
;
517 base
= lock_hrtimer_base(timer
, &flags
);
519 if (!hrtimer_callback_running(timer
))
520 ret
= remove_hrtimer(timer
, base
);
522 unlock_hrtimer_base(timer
, &flags
);
527 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
530 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
531 * @timer: the timer to be cancelled
534 * 0 when the timer was not active
535 * 1 when the timer was active
537 int hrtimer_cancel(struct hrtimer
*timer
)
540 int ret
= hrtimer_try_to_cancel(timer
);
547 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
550 * hrtimer_get_remaining - get remaining time for the timer
551 * @timer: the timer to read
553 ktime_t
hrtimer_get_remaining(const struct hrtimer
*timer
)
555 struct hrtimer_clock_base
*base
;
559 base
= lock_hrtimer_base(timer
, &flags
);
560 rem
= ktime_sub(timer
->expires
, base
->get_time());
561 unlock_hrtimer_base(timer
, &flags
);
565 EXPORT_SYMBOL_GPL(hrtimer_get_remaining
);
567 #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
569 * hrtimer_get_next_event - get the time until next expiry event
571 * Returns the delta to the next expiry event or KTIME_MAX if no timer
574 ktime_t
hrtimer_get_next_event(void)
576 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
577 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
578 ktime_t delta
, mindelta
= { .tv64
= KTIME_MAX
};
582 spin_lock_irqsave(&cpu_base
->lock
, flags
);
584 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
585 struct hrtimer
*timer
;
590 timer
= rb_entry(base
->first
, struct hrtimer
, node
);
591 delta
.tv64
= timer
->expires
.tv64
;
592 delta
= ktime_sub(delta
, base
->get_time());
593 if (delta
.tv64
< mindelta
.tv64
)
594 mindelta
.tv64
= delta
.tv64
;
597 spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
599 if (mindelta
.tv64
< 0)
606 * hrtimer_init - initialize a timer to the given clock
607 * @timer: the timer to be initialized
608 * @clock_id: the clock to be used
609 * @mode: timer mode abs/rel
611 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
612 enum hrtimer_mode mode
)
614 struct hrtimer_cpu_base
*cpu_base
;
616 memset(timer
, 0, sizeof(struct hrtimer
));
618 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
620 if (clock_id
== CLOCK_REALTIME
&& mode
!= HRTIMER_MODE_ABS
)
621 clock_id
= CLOCK_MONOTONIC
;
623 timer
->base
= &cpu_base
->clock_base
[clock_id
];
625 EXPORT_SYMBOL_GPL(hrtimer_init
);
628 * hrtimer_get_res - get the timer resolution for a clock
629 * @which_clock: which clock to query
630 * @tp: pointer to timespec variable to store the resolution
632 * Store the resolution of the clock selected by @which_clock in the
633 * variable pointed to by @tp.
635 int hrtimer_get_res(const clockid_t which_clock
, struct timespec
*tp
)
637 struct hrtimer_cpu_base
*cpu_base
;
639 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
640 *tp
= ktime_to_timespec(cpu_base
->clock_base
[which_clock
].resolution
);
644 EXPORT_SYMBOL_GPL(hrtimer_get_res
);
647 * Expire the per base hrtimer-queue:
649 static inline void run_hrtimer_queue(struct hrtimer_cpu_base
*cpu_base
,
652 struct rb_node
*node
;
653 struct hrtimer_clock_base
*base
= &cpu_base
->clock_base
[index
];
658 if (base
->get_softirq_time
)
659 base
->softirq_time
= base
->get_softirq_time();
661 spin_lock_irq(&cpu_base
->lock
);
663 while ((node
= base
->first
)) {
664 struct hrtimer
*timer
;
665 enum hrtimer_restart (*fn
)(struct hrtimer
*);
668 timer
= rb_entry(node
, struct hrtimer
, node
);
669 if (base
->softirq_time
.tv64
<= timer
->expires
.tv64
)
672 fn
= timer
->function
;
673 set_curr_timer(cpu_base
, timer
);
674 __remove_hrtimer(timer
, base
, HRTIMER_STATE_CALLBACK
);
675 spin_unlock_irq(&cpu_base
->lock
);
679 spin_lock_irq(&cpu_base
->lock
);
681 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
682 if (restart
!= HRTIMER_NORESTART
) {
683 BUG_ON(hrtimer_active(timer
));
684 enqueue_hrtimer(timer
, base
);
687 set_curr_timer(cpu_base
, NULL
);
688 spin_unlock_irq(&cpu_base
->lock
);
692 * Called from timer softirq every jiffy, expire hrtimers:
694 void hrtimer_run_queues(void)
696 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
699 hrtimer_get_softirq_time(cpu_base
);
701 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++)
702 run_hrtimer_queue(cpu_base
, i
);
706 * Sleep related functions:
708 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
710 struct hrtimer_sleeper
*t
=
711 container_of(timer
, struct hrtimer_sleeper
, timer
);
712 struct task_struct
*task
= t
->task
;
716 wake_up_process(task
);
718 return HRTIMER_NORESTART
;
721 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
723 sl
->timer
.function
= hrtimer_wakeup
;
727 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
729 hrtimer_init_sleeper(t
, current
);
732 set_current_state(TASK_INTERRUPTIBLE
);
733 hrtimer_start(&t
->timer
, t
->timer
.expires
, mode
);
737 hrtimer_cancel(&t
->timer
);
738 mode
= HRTIMER_MODE_ABS
;
740 } while (t
->task
&& !signal_pending(current
));
742 return t
->task
== NULL
;
745 long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
747 struct hrtimer_sleeper t
;
748 struct timespec __user
*rmtp
;
752 restart
->fn
= do_no_restart_syscall
;
754 hrtimer_init(&t
.timer
, restart
->arg0
, HRTIMER_MODE_ABS
);
755 t
.timer
.expires
.tv64
= ((u64
)restart
->arg3
<< 32) | (u64
) restart
->arg2
;
757 if (do_nanosleep(&t
, HRTIMER_MODE_ABS
))
760 rmtp
= (struct timespec __user
*) restart
->arg1
;
762 time
= ktime_sub(t
.timer
.expires
, t
.timer
.base
->get_time());
765 tu
= ktime_to_timespec(time
);
766 if (copy_to_user(rmtp
, &tu
, sizeof(tu
)))
770 restart
->fn
= hrtimer_nanosleep_restart
;
772 /* The other values in restart are already filled in */
773 return -ERESTART_RESTARTBLOCK
;
776 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec __user
*rmtp
,
777 const enum hrtimer_mode mode
, const clockid_t clockid
)
779 struct restart_block
*restart
;
780 struct hrtimer_sleeper t
;
784 hrtimer_init(&t
.timer
, clockid
, mode
);
785 t
.timer
.expires
= timespec_to_ktime(*rqtp
);
786 if (do_nanosleep(&t
, mode
))
789 /* Absolute timers do not update the rmtp value and restart: */
790 if (mode
== HRTIMER_MODE_ABS
)
791 return -ERESTARTNOHAND
;
794 rem
= ktime_sub(t
.timer
.expires
, t
.timer
.base
->get_time());
797 tu
= ktime_to_timespec(rem
);
798 if (copy_to_user(rmtp
, &tu
, sizeof(tu
)))
802 restart
= ¤t_thread_info()->restart_block
;
803 restart
->fn
= hrtimer_nanosleep_restart
;
804 restart
->arg0
= (unsigned long) t
.timer
.base
->index
;
805 restart
->arg1
= (unsigned long) rmtp
;
806 restart
->arg2
= t
.timer
.expires
.tv64
& 0xFFFFFFFF;
807 restart
->arg3
= t
.timer
.expires
.tv64
>> 32;
809 return -ERESTART_RESTARTBLOCK
;
813 sys_nanosleep(struct timespec __user
*rqtp
, struct timespec __user
*rmtp
)
817 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
820 if (!timespec_valid(&tu
))
823 return hrtimer_nanosleep(&tu
, rmtp
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
827 * Functions related to boot-time initialization:
829 static void __devinit
init_hrtimers_cpu(int cpu
)
831 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
834 spin_lock_init(&cpu_base
->lock
);
835 lockdep_set_class(&cpu_base
->lock
, &cpu_base
->lock_key
);
837 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++)
838 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
842 #ifdef CONFIG_HOTPLUG_CPU
844 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
845 struct hrtimer_clock_base
*new_base
)
847 struct hrtimer
*timer
;
848 struct rb_node
*node
;
850 while ((node
= rb_first(&old_base
->active
))) {
851 timer
= rb_entry(node
, struct hrtimer
, node
);
852 BUG_ON(timer
->state
& HRTIMER_STATE_CALLBACK
);
853 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_INACTIVE
);
854 timer
->base
= new_base
;
855 enqueue_hrtimer(timer
, new_base
);
859 static void migrate_hrtimers(int cpu
)
861 struct hrtimer_cpu_base
*old_base
, *new_base
;
864 BUG_ON(cpu_online(cpu
));
865 old_base
= &per_cpu(hrtimer_bases
, cpu
);
866 new_base
= &get_cpu_var(hrtimer_bases
);
870 spin_lock(&new_base
->lock
);
871 spin_lock(&old_base
->lock
);
873 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
874 BUG_ON(old_base
->curr_timer
);
876 migrate_hrtimer_list(&old_base
->clock_base
[i
],
877 &new_base
->clock_base
[i
]);
879 spin_unlock(&old_base
->lock
);
880 spin_unlock(&new_base
->lock
);
883 put_cpu_var(hrtimer_bases
);
885 #endif /* CONFIG_HOTPLUG_CPU */
887 static int __cpuinit
hrtimer_cpu_notify(struct notifier_block
*self
,
888 unsigned long action
, void *hcpu
)
890 long cpu
= (long)hcpu
;
895 init_hrtimers_cpu(cpu
);
898 #ifdef CONFIG_HOTPLUG_CPU
900 migrate_hrtimers(cpu
);
911 static struct notifier_block __cpuinitdata hrtimers_nb
= {
912 .notifier_call
= hrtimer_cpu_notify
,
915 void __init
hrtimers_init(void)
917 hrtimer_cpu_notify(&hrtimers_nb
, (unsigned long)CPU_UP_PREPARE
,
918 (void *)(long)smp_processor_id());
919 register_cpu_notifier(&hrtimers_nb
);