[PATCH] hrtimers; add state tracking
[linux/fpc-iii.git] / kernel / hrtimer.c
blobfee18b27252f955d5ec83e60b1d0137e30660c46
1 /*
2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2006, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
22 * Credits:
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/interrupt.h>
42 #include <asm/uaccess.h>
44 /**
45 * ktime_get - get the monotonic time in ktime_t format
47 * returns the time in ktime_t format
49 static ktime_t ktime_get(void)
51 struct timespec now;
53 ktime_get_ts(&now);
55 return timespec_to_ktime(now);
58 /**
59 * ktime_get_real - get the real (wall-) time in ktime_t format
61 * returns the time in ktime_t format
63 static ktime_t ktime_get_real(void)
65 struct timespec now;
67 getnstimeofday(&now);
69 return timespec_to_ktime(now);
72 EXPORT_SYMBOL_GPL(ktime_get_real);
75 * The timer bases:
77 * Note: If we want to add new timer bases, we have to skip the two
78 * clock ids captured by the cpu-timers. We do this by holding empty
79 * entries rather than doing math adjustment of the clock ids.
80 * This ensures that we capture erroneous accesses to these clock ids
81 * rather than moving them into the range of valid clock id's.
83 static DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
86 .clock_base =
89 .index = CLOCK_REALTIME,
90 .get_time = &ktime_get_real,
91 .resolution = KTIME_REALTIME_RES,
94 .index = CLOCK_MONOTONIC,
95 .get_time = &ktime_get,
96 .resolution = KTIME_MONOTONIC_RES,
102 * ktime_get_ts - get the monotonic clock in timespec format
103 * @ts: pointer to timespec variable
105 * The function calculates the monotonic clock from the realtime
106 * clock and the wall_to_monotonic offset and stores the result
107 * in normalized timespec format in the variable pointed to by @ts.
109 void ktime_get_ts(struct timespec *ts)
111 struct timespec tomono;
112 unsigned long seq;
114 do {
115 seq = read_seqbegin(&xtime_lock);
116 getnstimeofday(ts);
117 tomono = wall_to_monotonic;
119 } while (read_seqretry(&xtime_lock, seq));
121 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
122 ts->tv_nsec + tomono.tv_nsec);
124 EXPORT_SYMBOL_GPL(ktime_get_ts);
127 * Get the coarse grained time at the softirq based on xtime and
128 * wall_to_monotonic.
130 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
132 ktime_t xtim, tomono;
133 struct timespec xts;
134 unsigned long seq;
136 do {
137 seq = read_seqbegin(&xtime_lock);
138 #ifdef CONFIG_NO_HZ
139 getnstimeofday(&xts);
140 #else
141 xts = xtime;
142 #endif
143 } while (read_seqretry(&xtime_lock, seq));
145 xtim = timespec_to_ktime(xts);
146 tomono = timespec_to_ktime(wall_to_monotonic);
147 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
148 base->clock_base[CLOCK_MONOTONIC].softirq_time =
149 ktime_add(xtim, tomono);
153 * Helper function to check, whether the timer is on one of the queues
155 static inline int hrtimer_is_queued(struct hrtimer *timer)
157 return timer->state & HRTIMER_STATE_ENQUEUED;
161 * Helper function to check, whether the timer is running the callback
162 * function
164 static inline int hrtimer_callback_running(struct hrtimer *timer)
166 return timer->state & HRTIMER_STATE_CALLBACK;
170 * Functions and macros which are different for UP/SMP systems are kept in a
171 * single place
173 #ifdef CONFIG_SMP
175 #define set_curr_timer(b, t) do { (b)->curr_timer = (t); } while (0)
178 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
179 * means that all timers which are tied to this base via timer->base are
180 * locked, and the base itself is locked too.
182 * So __run_timers/migrate_timers can safely modify all timers which could
183 * be found on the lists/queues.
185 * When the timer's base is locked, and the timer removed from list, it is
186 * possible to set timer->base = NULL and drop the lock: the timer remains
187 * locked.
189 static
190 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
191 unsigned long *flags)
193 struct hrtimer_clock_base *base;
195 for (;;) {
196 base = timer->base;
197 if (likely(base != NULL)) {
198 spin_lock_irqsave(&base->cpu_base->lock, *flags);
199 if (likely(base == timer->base))
200 return base;
201 /* The timer has migrated to another CPU: */
202 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
204 cpu_relax();
209 * Switch the timer base to the current CPU when possible.
211 static inline struct hrtimer_clock_base *
212 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
214 struct hrtimer_clock_base *new_base;
215 struct hrtimer_cpu_base *new_cpu_base;
217 new_cpu_base = &__get_cpu_var(hrtimer_bases);
218 new_base = &new_cpu_base->clock_base[base->index];
220 if (base != new_base) {
222 * We are trying to schedule the timer on the local CPU.
223 * However we can't change timer's base while it is running,
224 * so we keep it on the same CPU. No hassle vs. reprogramming
225 * the event source in the high resolution case. The softirq
226 * code will take care of this when the timer function has
227 * completed. There is no conflict as we hold the lock until
228 * the timer is enqueued.
230 if (unlikely(base->cpu_base->curr_timer == timer))
231 return base;
233 /* See the comment in lock_timer_base() */
234 timer->base = NULL;
235 spin_unlock(&base->cpu_base->lock);
236 spin_lock(&new_base->cpu_base->lock);
237 timer->base = new_base;
239 return new_base;
242 #else /* CONFIG_SMP */
244 #define set_curr_timer(b, t) do { } while (0)
246 static inline struct hrtimer_clock_base *
247 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
249 struct hrtimer_clock_base *base = timer->base;
251 spin_lock_irqsave(&base->cpu_base->lock, *flags);
253 return base;
256 #define switch_hrtimer_base(t, b) (b)
258 #endif /* !CONFIG_SMP */
261 * Functions for the union type storage format of ktime_t which are
262 * too large for inlining:
264 #if BITS_PER_LONG < 64
265 # ifndef CONFIG_KTIME_SCALAR
267 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
268 * @kt: addend
269 * @nsec: the scalar nsec value to add
271 * Returns the sum of kt and nsec in ktime_t format
273 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
275 ktime_t tmp;
277 if (likely(nsec < NSEC_PER_SEC)) {
278 tmp.tv64 = nsec;
279 } else {
280 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
282 tmp = ktime_set((long)nsec, rem);
285 return ktime_add(kt, tmp);
288 #else /* CONFIG_KTIME_SCALAR */
290 # endif /* !CONFIG_KTIME_SCALAR */
293 * Divide a ktime value by a nanosecond value
295 static unsigned long ktime_divns(const ktime_t kt, s64 div)
297 u64 dclc, inc, dns;
298 int sft = 0;
300 dclc = dns = ktime_to_ns(kt);
301 inc = div;
302 /* Make sure the divisor is less than 2^32: */
303 while (div >> 32) {
304 sft++;
305 div >>= 1;
307 dclc >>= sft;
308 do_div(dclc, (unsigned long) div);
310 return (unsigned long) dclc;
313 #else /* BITS_PER_LONG < 64 */
314 # define ktime_divns(kt, div) (unsigned long)((kt).tv64 / (div))
315 #endif /* BITS_PER_LONG >= 64 */
318 * Timekeeping resumed notification
320 void hrtimer_notify_resume(void)
322 clock_was_set();
326 * Counterpart to lock_timer_base above:
328 static inline
329 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
331 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
335 * hrtimer_forward - forward the timer expiry
336 * @timer: hrtimer to forward
337 * @now: forward past this time
338 * @interval: the interval to forward
340 * Forward the timer expiry so it will expire in the future.
341 * Returns the number of overruns.
343 unsigned long
344 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
346 unsigned long orun = 1;
347 ktime_t delta;
349 delta = ktime_sub(now, timer->expires);
351 if (delta.tv64 < 0)
352 return 0;
354 if (interval.tv64 < timer->base->resolution.tv64)
355 interval.tv64 = timer->base->resolution.tv64;
357 if (unlikely(delta.tv64 >= interval.tv64)) {
358 s64 incr = ktime_to_ns(interval);
360 orun = ktime_divns(delta, incr);
361 timer->expires = ktime_add_ns(timer->expires, incr * orun);
362 if (timer->expires.tv64 > now.tv64)
363 return orun;
365 * This (and the ktime_add() below) is the
366 * correction for exact:
368 orun++;
370 timer->expires = ktime_add(timer->expires, interval);
372 return orun;
376 * enqueue_hrtimer - internal function to (re)start a timer
378 * The timer is inserted in expiry order. Insertion into the
379 * red black tree is O(log(n)). Must hold the base lock.
381 static void enqueue_hrtimer(struct hrtimer *timer,
382 struct hrtimer_clock_base *base)
384 struct rb_node **link = &base->active.rb_node;
385 struct rb_node *parent = NULL;
386 struct hrtimer *entry;
389 * Find the right place in the rbtree:
391 while (*link) {
392 parent = *link;
393 entry = rb_entry(parent, struct hrtimer, node);
395 * We dont care about collisions. Nodes with
396 * the same expiry time stay together.
398 if (timer->expires.tv64 < entry->expires.tv64)
399 link = &(*link)->rb_left;
400 else
401 link = &(*link)->rb_right;
405 * Insert the timer to the rbtree and check whether it
406 * replaces the first pending timer
408 rb_link_node(&timer->node, parent, link);
409 rb_insert_color(&timer->node, &base->active);
411 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
412 * state of a possibly running callback.
414 timer->state |= HRTIMER_STATE_ENQUEUED;
416 if (!base->first || timer->expires.tv64 <
417 rb_entry(base->first, struct hrtimer, node)->expires.tv64)
418 base->first = &timer->node;
422 * __remove_hrtimer - internal function to remove a timer
424 * Caller must hold the base lock.
426 static void __remove_hrtimer(struct hrtimer *timer,
427 struct hrtimer_clock_base *base,
428 unsigned long newstate)
431 * Remove the timer from the rbtree and replace the
432 * first entry pointer if necessary.
434 if (base->first == &timer->node)
435 base->first = rb_next(&timer->node);
436 rb_erase(&timer->node, &base->active);
437 timer->state = newstate;
441 * remove hrtimer, called with base lock held
443 static inline int
444 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
446 if (hrtimer_is_queued(timer)) {
447 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE);
448 return 1;
450 return 0;
454 * hrtimer_start - (re)start an relative timer on the current CPU
455 * @timer: the timer to be added
456 * @tim: expiry time
457 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
459 * Returns:
460 * 0 on success
461 * 1 when the timer was active
464 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
466 struct hrtimer_clock_base *base, *new_base;
467 unsigned long flags;
468 int ret;
470 base = lock_hrtimer_base(timer, &flags);
472 /* Remove an active timer from the queue: */
473 ret = remove_hrtimer(timer, base);
475 /* Switch the timer base, if necessary: */
476 new_base = switch_hrtimer_base(timer, base);
478 if (mode == HRTIMER_MODE_REL) {
479 tim = ktime_add(tim, new_base->get_time());
481 * CONFIG_TIME_LOW_RES is a temporary way for architectures
482 * to signal that they simply return xtime in
483 * do_gettimeoffset(). In this case we want to round up by
484 * resolution when starting a relative timer, to avoid short
485 * timeouts. This will go away with the GTOD framework.
487 #ifdef CONFIG_TIME_LOW_RES
488 tim = ktime_add(tim, base->resolution);
489 #endif
491 timer->expires = tim;
493 enqueue_hrtimer(timer, new_base);
495 unlock_hrtimer_base(timer, &flags);
497 return ret;
499 EXPORT_SYMBOL_GPL(hrtimer_start);
502 * hrtimer_try_to_cancel - try to deactivate a timer
503 * @timer: hrtimer to stop
505 * Returns:
506 * 0 when the timer was not active
507 * 1 when the timer was active
508 * -1 when the timer is currently excuting the callback function and
509 * cannot be stopped
511 int hrtimer_try_to_cancel(struct hrtimer *timer)
513 struct hrtimer_clock_base *base;
514 unsigned long flags;
515 int ret = -1;
517 base = lock_hrtimer_base(timer, &flags);
519 if (!hrtimer_callback_running(timer))
520 ret = remove_hrtimer(timer, base);
522 unlock_hrtimer_base(timer, &flags);
524 return ret;
527 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
530 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
531 * @timer: the timer to be cancelled
533 * Returns:
534 * 0 when the timer was not active
535 * 1 when the timer was active
537 int hrtimer_cancel(struct hrtimer *timer)
539 for (;;) {
540 int ret = hrtimer_try_to_cancel(timer);
542 if (ret >= 0)
543 return ret;
544 cpu_relax();
547 EXPORT_SYMBOL_GPL(hrtimer_cancel);
550 * hrtimer_get_remaining - get remaining time for the timer
551 * @timer: the timer to read
553 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
555 struct hrtimer_clock_base *base;
556 unsigned long flags;
557 ktime_t rem;
559 base = lock_hrtimer_base(timer, &flags);
560 rem = ktime_sub(timer->expires, base->get_time());
561 unlock_hrtimer_base(timer, &flags);
563 return rem;
565 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
567 #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
569 * hrtimer_get_next_event - get the time until next expiry event
571 * Returns the delta to the next expiry event or KTIME_MAX if no timer
572 * is pending.
574 ktime_t hrtimer_get_next_event(void)
576 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
577 struct hrtimer_clock_base *base = cpu_base->clock_base;
578 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
579 unsigned long flags;
580 int i;
582 spin_lock_irqsave(&cpu_base->lock, flags);
584 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
585 struct hrtimer *timer;
587 if (!base->first)
588 continue;
590 timer = rb_entry(base->first, struct hrtimer, node);
591 delta.tv64 = timer->expires.tv64;
592 delta = ktime_sub(delta, base->get_time());
593 if (delta.tv64 < mindelta.tv64)
594 mindelta.tv64 = delta.tv64;
597 spin_unlock_irqrestore(&cpu_base->lock, flags);
599 if (mindelta.tv64 < 0)
600 mindelta.tv64 = 0;
601 return mindelta;
603 #endif
606 * hrtimer_init - initialize a timer to the given clock
607 * @timer: the timer to be initialized
608 * @clock_id: the clock to be used
609 * @mode: timer mode abs/rel
611 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
612 enum hrtimer_mode mode)
614 struct hrtimer_cpu_base *cpu_base;
616 memset(timer, 0, sizeof(struct hrtimer));
618 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
620 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
621 clock_id = CLOCK_MONOTONIC;
623 timer->base = &cpu_base->clock_base[clock_id];
625 EXPORT_SYMBOL_GPL(hrtimer_init);
628 * hrtimer_get_res - get the timer resolution for a clock
629 * @which_clock: which clock to query
630 * @tp: pointer to timespec variable to store the resolution
632 * Store the resolution of the clock selected by @which_clock in the
633 * variable pointed to by @tp.
635 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
637 struct hrtimer_cpu_base *cpu_base;
639 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
640 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
642 return 0;
644 EXPORT_SYMBOL_GPL(hrtimer_get_res);
647 * Expire the per base hrtimer-queue:
649 static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
650 int index)
652 struct rb_node *node;
653 struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
655 if (!base->first)
656 return;
658 if (base->get_softirq_time)
659 base->softirq_time = base->get_softirq_time();
661 spin_lock_irq(&cpu_base->lock);
663 while ((node = base->first)) {
664 struct hrtimer *timer;
665 enum hrtimer_restart (*fn)(struct hrtimer *);
666 int restart;
668 timer = rb_entry(node, struct hrtimer, node);
669 if (base->softirq_time.tv64 <= timer->expires.tv64)
670 break;
672 fn = timer->function;
673 set_curr_timer(cpu_base, timer);
674 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK);
675 spin_unlock_irq(&cpu_base->lock);
677 restart = fn(timer);
679 spin_lock_irq(&cpu_base->lock);
681 timer->state &= ~HRTIMER_STATE_CALLBACK;
682 if (restart != HRTIMER_NORESTART) {
683 BUG_ON(hrtimer_active(timer));
684 enqueue_hrtimer(timer, base);
687 set_curr_timer(cpu_base, NULL);
688 spin_unlock_irq(&cpu_base->lock);
692 * Called from timer softirq every jiffy, expire hrtimers:
694 void hrtimer_run_queues(void)
696 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
697 int i;
699 hrtimer_get_softirq_time(cpu_base);
701 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
702 run_hrtimer_queue(cpu_base, i);
706 * Sleep related functions:
708 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
710 struct hrtimer_sleeper *t =
711 container_of(timer, struct hrtimer_sleeper, timer);
712 struct task_struct *task = t->task;
714 t->task = NULL;
715 if (task)
716 wake_up_process(task);
718 return HRTIMER_NORESTART;
721 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
723 sl->timer.function = hrtimer_wakeup;
724 sl->task = task;
727 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
729 hrtimer_init_sleeper(t, current);
731 do {
732 set_current_state(TASK_INTERRUPTIBLE);
733 hrtimer_start(&t->timer, t->timer.expires, mode);
735 schedule();
737 hrtimer_cancel(&t->timer);
738 mode = HRTIMER_MODE_ABS;
740 } while (t->task && !signal_pending(current));
742 return t->task == NULL;
745 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
747 struct hrtimer_sleeper t;
748 struct timespec __user *rmtp;
749 struct timespec tu;
750 ktime_t time;
752 restart->fn = do_no_restart_syscall;
754 hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS);
755 t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
757 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
758 return 0;
760 rmtp = (struct timespec __user *) restart->arg1;
761 if (rmtp) {
762 time = ktime_sub(t.timer.expires, t.timer.base->get_time());
763 if (time.tv64 <= 0)
764 return 0;
765 tu = ktime_to_timespec(time);
766 if (copy_to_user(rmtp, &tu, sizeof(tu)))
767 return -EFAULT;
770 restart->fn = hrtimer_nanosleep_restart;
772 /* The other values in restart are already filled in */
773 return -ERESTART_RESTARTBLOCK;
776 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
777 const enum hrtimer_mode mode, const clockid_t clockid)
779 struct restart_block *restart;
780 struct hrtimer_sleeper t;
781 struct timespec tu;
782 ktime_t rem;
784 hrtimer_init(&t.timer, clockid, mode);
785 t.timer.expires = timespec_to_ktime(*rqtp);
786 if (do_nanosleep(&t, mode))
787 return 0;
789 /* Absolute timers do not update the rmtp value and restart: */
790 if (mode == HRTIMER_MODE_ABS)
791 return -ERESTARTNOHAND;
793 if (rmtp) {
794 rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
795 if (rem.tv64 <= 0)
796 return 0;
797 tu = ktime_to_timespec(rem);
798 if (copy_to_user(rmtp, &tu, sizeof(tu)))
799 return -EFAULT;
802 restart = &current_thread_info()->restart_block;
803 restart->fn = hrtimer_nanosleep_restart;
804 restart->arg0 = (unsigned long) t.timer.base->index;
805 restart->arg1 = (unsigned long) rmtp;
806 restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
807 restart->arg3 = t.timer.expires.tv64 >> 32;
809 return -ERESTART_RESTARTBLOCK;
812 asmlinkage long
813 sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
815 struct timespec tu;
817 if (copy_from_user(&tu, rqtp, sizeof(tu)))
818 return -EFAULT;
820 if (!timespec_valid(&tu))
821 return -EINVAL;
823 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
827 * Functions related to boot-time initialization:
829 static void __devinit init_hrtimers_cpu(int cpu)
831 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
832 int i;
834 spin_lock_init(&cpu_base->lock);
835 lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key);
837 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
838 cpu_base->clock_base[i].cpu_base = cpu_base;
842 #ifdef CONFIG_HOTPLUG_CPU
844 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
845 struct hrtimer_clock_base *new_base)
847 struct hrtimer *timer;
848 struct rb_node *node;
850 while ((node = rb_first(&old_base->active))) {
851 timer = rb_entry(node, struct hrtimer, node);
852 BUG_ON(timer->state & HRTIMER_STATE_CALLBACK);
853 __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE);
854 timer->base = new_base;
855 enqueue_hrtimer(timer, new_base);
859 static void migrate_hrtimers(int cpu)
861 struct hrtimer_cpu_base *old_base, *new_base;
862 int i;
864 BUG_ON(cpu_online(cpu));
865 old_base = &per_cpu(hrtimer_bases, cpu);
866 new_base = &get_cpu_var(hrtimer_bases);
868 local_irq_disable();
870 spin_lock(&new_base->lock);
871 spin_lock(&old_base->lock);
873 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
874 BUG_ON(old_base->curr_timer);
876 migrate_hrtimer_list(&old_base->clock_base[i],
877 &new_base->clock_base[i]);
879 spin_unlock(&old_base->lock);
880 spin_unlock(&new_base->lock);
882 local_irq_enable();
883 put_cpu_var(hrtimer_bases);
885 #endif /* CONFIG_HOTPLUG_CPU */
887 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
888 unsigned long action, void *hcpu)
890 long cpu = (long)hcpu;
892 switch (action) {
894 case CPU_UP_PREPARE:
895 init_hrtimers_cpu(cpu);
896 break;
898 #ifdef CONFIG_HOTPLUG_CPU
899 case CPU_DEAD:
900 migrate_hrtimers(cpu);
901 break;
902 #endif
904 default:
905 break;
908 return NOTIFY_OK;
911 static struct notifier_block __cpuinitdata hrtimers_nb = {
912 .notifier_call = hrtimer_cpu_notify,
915 void __init hrtimers_init(void)
917 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
918 (void *)(long)smp_processor_id());
919 register_cpu_notifier(&hrtimers_nb);