2 * sched_clock for unstable cpu clocks
4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
6 * Updates and enhancements:
7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
10 * Ingo Molnar <mingo@redhat.com>
11 * Guillaume Chazarain <guichaz@gmail.com>
16 * cpu_clock(i) provides a fast (execution time) high resolution
17 * clock with bounded drift between CPUs. The value of cpu_clock(i)
18 * is monotonic for constant i. The timestamp returned is in nanoseconds.
20 * ######################### BIG FAT WARNING ##########################
21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
23 * ####################################################################
25 * There is no strict promise about the base, although it tends to start
26 * at 0 on boot (but people really shouldn't rely on that).
28 * cpu_clock(i) -- can be used from any context, including NMI.
29 * local_clock() -- is cpu_clock() on the current cpu.
35 * The implementation either uses sched_clock() when
36 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
37 * sched_clock() is assumed to provide these properties (mostly it means
38 * the architecture provides a globally synchronized highres time source).
40 * Otherwise it tries to create a semi stable clock from a mixture of other
43 * - GTOD (clock monotomic)
45 * - explicit idle events
47 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
48 * deltas are filtered to provide monotonicity and keeping it within an
51 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
52 * that is otherwise invisible (TSC gets stopped).
55 #include <linux/spinlock.h>
56 #include <linux/hardirq.h>
57 #include <linux/export.h>
58 #include <linux/percpu.h>
59 #include <linux/ktime.h>
60 #include <linux/sched.h>
61 #include <linux/nmi.h>
62 #include <linux/sched/clock.h>
63 #include <linux/static_key.h>
64 #include <linux/workqueue.h>
65 #include <linux/compiler.h>
66 #include <linux/tick.h>
67 #include <linux/init.h>
70 * Scheduler clock - returns current time in nanosec units.
71 * This is default implementation.
72 * Architectures and sub-architectures can override this.
74 unsigned long long __weak
sched_clock(void)
76 return (unsigned long long)(jiffies
- INITIAL_JIFFIES
)
77 * (NSEC_PER_SEC
/ HZ
);
79 EXPORT_SYMBOL_GPL(sched_clock
);
81 __read_mostly
int sched_clock_running
;
83 void sched_clock_init(void)
85 sched_clock_running
= 1;
88 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
90 * We must start with !__sched_clock_stable because the unstable -> stable
91 * transition is accurate, while the stable -> unstable transition is not.
93 * Similarly we start with __sched_clock_stable_early, thereby assuming we
94 * will become stable, such that there's only a single 1 -> 0 transition.
96 static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable
);
97 static int __sched_clock_stable_early
= 1;
100 * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
102 __read_mostly u64 __sched_clock_offset
;
103 static __read_mostly u64 __gtod_offset
;
105 struct sched_clock_data
{
111 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data
, sched_clock_data
);
113 static inline struct sched_clock_data
*this_scd(void)
115 return this_cpu_ptr(&sched_clock_data
);
118 static inline struct sched_clock_data
*cpu_sdc(int cpu
)
120 return &per_cpu(sched_clock_data
, cpu
);
123 int sched_clock_stable(void)
125 return static_branch_likely(&__sched_clock_stable
);
128 static void __scd_stamp(struct sched_clock_data
*scd
)
130 scd
->tick_gtod
= ktime_get_ns();
131 scd
->tick_raw
= sched_clock();
134 static void __set_sched_clock_stable(void)
136 struct sched_clock_data
*scd
;
139 * Since we're still unstable and the tick is already running, we have
140 * to disable IRQs in order to get a consistent scd->tick* reading.
145 * Attempt to make the (initial) unstable->stable transition continuous.
147 __sched_clock_offset
= (scd
->tick_gtod
+ __gtod_offset
) - (scd
->tick_raw
);
150 printk(KERN_INFO
"sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
151 scd
->tick_gtod
, __gtod_offset
,
152 scd
->tick_raw
, __sched_clock_offset
);
154 static_branch_enable(&__sched_clock_stable
);
155 tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE
);
159 * If we ever get here, we're screwed, because we found out -- typically after
160 * the fact -- that TSC wasn't good. This means all our clocksources (including
161 * ktime) could have reported wrong values.
163 * What we do here is an attempt to fix up and continue sort of where we left
164 * off in a coherent manner.
166 * The only way to fully avoid random clock jumps is to boot with:
169 static void __sched_clock_work(struct work_struct
*work
)
171 struct sched_clock_data
*scd
;
174 /* take a current timestamp and set 'now' */
178 scd
->clock
= scd
->tick_gtod
+ __gtod_offset
;
181 /* clone to all CPUs */
182 for_each_possible_cpu(cpu
)
183 per_cpu(sched_clock_data
, cpu
) = *scd
;
185 printk(KERN_WARNING
"TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n");
186 printk(KERN_INFO
"sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
187 scd
->tick_gtod
, __gtod_offset
,
188 scd
->tick_raw
, __sched_clock_offset
);
190 static_branch_disable(&__sched_clock_stable
);
193 static DECLARE_WORK(sched_clock_work
, __sched_clock_work
);
195 static void __clear_sched_clock_stable(void)
197 if (!sched_clock_stable())
200 tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE
);
201 schedule_work(&sched_clock_work
);
204 void clear_sched_clock_stable(void)
206 __sched_clock_stable_early
= 0;
208 smp_mb(); /* matches sched_clock_init_late() */
210 if (sched_clock_running
== 2)
211 __clear_sched_clock_stable();
215 * We run this as late_initcall() such that it runs after all built-in drivers,
216 * notably: acpi_processor and intel_idle, which can mark the TSC as unstable.
218 static int __init
sched_clock_init_late(void)
220 sched_clock_running
= 2;
222 * Ensure that it is impossible to not do a static_key update.
224 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
225 * and do the update, or we must see their __sched_clock_stable_early
226 * and do the update, or both.
228 smp_mb(); /* matches {set,clear}_sched_clock_stable() */
230 if (__sched_clock_stable_early
)
231 __set_sched_clock_stable();
235 late_initcall(sched_clock_init_late
);
238 * min, max except they take wrapping into account
241 static inline u64
wrap_min(u64 x
, u64 y
)
243 return (s64
)(x
- y
) < 0 ? x
: y
;
246 static inline u64
wrap_max(u64 x
, u64 y
)
248 return (s64
)(x
- y
) > 0 ? x
: y
;
252 * update the percpu scd from the raw @now value
254 * - filter out backward motion
255 * - use the GTOD tick value to create a window to filter crazy TSC values
257 static u64
sched_clock_local(struct sched_clock_data
*scd
)
259 u64 now
, clock
, old_clock
, min_clock
, max_clock
, gtod
;
264 delta
= now
- scd
->tick_raw
;
265 if (unlikely(delta
< 0))
268 old_clock
= scd
->clock
;
271 * scd->clock = clamp(scd->tick_gtod + delta,
272 * max(scd->tick_gtod, scd->clock),
273 * scd->tick_gtod + TICK_NSEC);
276 gtod
= scd
->tick_gtod
+ __gtod_offset
;
277 clock
= gtod
+ delta
;
278 min_clock
= wrap_max(gtod
, old_clock
);
279 max_clock
= wrap_max(old_clock
, gtod
+ TICK_NSEC
);
281 clock
= wrap_max(clock
, min_clock
);
282 clock
= wrap_min(clock
, max_clock
);
284 if (cmpxchg64(&scd
->clock
, old_clock
, clock
) != old_clock
)
290 static u64
sched_clock_remote(struct sched_clock_data
*scd
)
292 struct sched_clock_data
*my_scd
= this_scd();
293 u64 this_clock
, remote_clock
;
294 u64
*ptr
, old_val
, val
;
296 #if BITS_PER_LONG != 64
299 * Careful here: The local and the remote clock values need to
300 * be read out atomic as we need to compare the values and
301 * then update either the local or the remote side. So the
302 * cmpxchg64 below only protects one readout.
304 * We must reread via sched_clock_local() in the retry case on
305 * 32bit as an NMI could use sched_clock_local() via the
306 * tracer and hit between the readout of
307 * the low32bit and the high 32bit portion.
309 this_clock
= sched_clock_local(my_scd
);
311 * We must enforce atomic readout on 32bit, otherwise the
312 * update on the remote cpu can hit inbetween the readout of
313 * the low32bit and the high 32bit portion.
315 remote_clock
= cmpxchg64(&scd
->clock
, 0, 0);
318 * On 64bit the read of [my]scd->clock is atomic versus the
319 * update, so we can avoid the above 32bit dance.
321 sched_clock_local(my_scd
);
323 this_clock
= my_scd
->clock
;
324 remote_clock
= scd
->clock
;
328 * Use the opportunity that we have both locks
329 * taken to couple the two clocks: we take the
330 * larger time as the latest time for both
331 * runqueues. (this creates monotonic movement)
333 if (likely((s64
)(remote_clock
- this_clock
) < 0)) {
335 old_val
= remote_clock
;
339 * Should be rare, but possible:
341 ptr
= &my_scd
->clock
;
342 old_val
= this_clock
;
346 if (cmpxchg64(ptr
, old_val
, val
) != old_val
)
353 * Similar to cpu_clock(), but requires local IRQs to be disabled.
357 u64
sched_clock_cpu(int cpu
)
359 struct sched_clock_data
*scd
;
362 if (sched_clock_stable())
363 return sched_clock() + __sched_clock_offset
;
365 if (unlikely(!sched_clock_running
))
368 preempt_disable_notrace();
371 if (cpu
!= smp_processor_id())
372 clock
= sched_clock_remote(scd
);
374 clock
= sched_clock_local(scd
);
375 preempt_enable_notrace();
379 EXPORT_SYMBOL_GPL(sched_clock_cpu
);
381 void sched_clock_tick(void)
383 struct sched_clock_data
*scd
;
385 if (sched_clock_stable())
388 if (unlikely(!sched_clock_running
))
391 lockdep_assert_irqs_disabled();
395 sched_clock_local(scd
);
398 void sched_clock_tick_stable(void)
402 if (!sched_clock_stable())
406 * Called under watchdog_lock.
408 * The watchdog just found this TSC to (still) be stable, so now is a
409 * good moment to update our __gtod_offset. Because once we find the
410 * TSC to be unstable, any computation will be computing crap.
413 gtod
= ktime_get_ns();
414 clock
= sched_clock();
415 __gtod_offset
= (clock
+ __sched_clock_offset
) - gtod
;
420 * We are going deep-idle (irqs are disabled):
422 void sched_clock_idle_sleep_event(void)
424 sched_clock_cpu(smp_processor_id());
426 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
429 * We just idled; resync with ktime.
431 void sched_clock_idle_wakeup_event(void)
435 if (sched_clock_stable())
438 if (unlikely(timekeeping_suspended
))
441 local_irq_save(flags
);
443 local_irq_restore(flags
);
445 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
447 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
449 u64
sched_clock_cpu(int cpu
)
451 if (unlikely(!sched_clock_running
))
454 return sched_clock();
457 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
460 * Running clock - returns the time that has elapsed while a guest has been
462 * On a guest this value should be local_clock minus the time the guest was
463 * suspended by the hypervisor (for any reason).
464 * On bare metal this function should return the same as local_clock.
465 * Architectures and sub-architectures can override this.
467 u64 __weak
running_clock(void)
469 return local_clock();