ARM: dts: stm32: add gadget fifo sizes to usbotg_hs on stm32f746
[linux/fpc-iii.git] / kernel / sched / deadline.c
blob9bb0e0c412ec6617c5ef6cfa0b4f703a6a536a23
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Deadline Scheduling Class (SCHED_DEADLINE)
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
18 #include "sched.h"
20 #include <linux/slab.h>
21 #include <uapi/linux/sched/types.h>
23 struct dl_bandwidth def_dl_bandwidth;
25 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
27 return container_of(dl_se, struct task_struct, dl);
30 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
32 return container_of(dl_rq, struct rq, dl);
35 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
37 struct task_struct *p = dl_task_of(dl_se);
38 struct rq *rq = task_rq(p);
40 return &rq->dl;
43 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
45 return !RB_EMPTY_NODE(&dl_se->rb_node);
48 #ifdef CONFIG_SMP
49 static inline struct dl_bw *dl_bw_of(int i)
51 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
52 "sched RCU must be held");
53 return &cpu_rq(i)->rd->dl_bw;
56 static inline int dl_bw_cpus(int i)
58 struct root_domain *rd = cpu_rq(i)->rd;
59 int cpus = 0;
61 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
62 "sched RCU must be held");
63 for_each_cpu_and(i, rd->span, cpu_active_mask)
64 cpus++;
66 return cpus;
68 #else
69 static inline struct dl_bw *dl_bw_of(int i)
71 return &cpu_rq(i)->dl.dl_bw;
74 static inline int dl_bw_cpus(int i)
76 return 1;
78 #endif
80 static inline
81 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
83 u64 old = dl_rq->running_bw;
85 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
86 dl_rq->running_bw += dl_bw;
87 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
88 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
89 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
90 cpufreq_update_util(rq_of_dl_rq(dl_rq), SCHED_CPUFREQ_DL);
93 static inline
94 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
96 u64 old = dl_rq->running_bw;
98 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
99 dl_rq->running_bw -= dl_bw;
100 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
101 if (dl_rq->running_bw > old)
102 dl_rq->running_bw = 0;
103 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
104 cpufreq_update_util(rq_of_dl_rq(dl_rq), SCHED_CPUFREQ_DL);
107 static inline
108 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
110 u64 old = dl_rq->this_bw;
112 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
113 dl_rq->this_bw += dl_bw;
114 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
117 static inline
118 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
120 u64 old = dl_rq->this_bw;
122 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
123 dl_rq->this_bw -= dl_bw;
124 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
125 if (dl_rq->this_bw > old)
126 dl_rq->this_bw = 0;
127 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
130 static inline
131 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
133 if (!dl_entity_is_special(dl_se))
134 __add_rq_bw(dl_se->dl_bw, dl_rq);
137 static inline
138 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
140 if (!dl_entity_is_special(dl_se))
141 __sub_rq_bw(dl_se->dl_bw, dl_rq);
144 static inline
145 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
147 if (!dl_entity_is_special(dl_se))
148 __add_running_bw(dl_se->dl_bw, dl_rq);
151 static inline
152 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
154 if (!dl_entity_is_special(dl_se))
155 __sub_running_bw(dl_se->dl_bw, dl_rq);
158 void dl_change_utilization(struct task_struct *p, u64 new_bw)
160 struct rq *rq;
162 BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
164 if (task_on_rq_queued(p))
165 return;
167 rq = task_rq(p);
168 if (p->dl.dl_non_contending) {
169 sub_running_bw(&p->dl, &rq->dl);
170 p->dl.dl_non_contending = 0;
172 * If the timer handler is currently running and the
173 * timer cannot be cancelled, inactive_task_timer()
174 * will see that dl_not_contending is not set, and
175 * will not touch the rq's active utilization,
176 * so we are still safe.
178 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
179 put_task_struct(p);
181 __sub_rq_bw(p->dl.dl_bw, &rq->dl);
182 __add_rq_bw(new_bw, &rq->dl);
186 * The utilization of a task cannot be immediately removed from
187 * the rq active utilization (running_bw) when the task blocks.
188 * Instead, we have to wait for the so called "0-lag time".
190 * If a task blocks before the "0-lag time", a timer (the inactive
191 * timer) is armed, and running_bw is decreased when the timer
192 * fires.
194 * If the task wakes up again before the inactive timer fires,
195 * the timer is cancelled, whereas if the task wakes up after the
196 * inactive timer fired (and running_bw has been decreased) the
197 * task's utilization has to be added to running_bw again.
198 * A flag in the deadline scheduling entity (dl_non_contending)
199 * is used to avoid race conditions between the inactive timer handler
200 * and task wakeups.
202 * The following diagram shows how running_bw is updated. A task is
203 * "ACTIVE" when its utilization contributes to running_bw; an
204 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
205 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
206 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
207 * time already passed, which does not contribute to running_bw anymore.
208 * +------------------+
209 * wakeup | ACTIVE |
210 * +------------------>+ contending |
211 * | add_running_bw | |
212 * | +----+------+------+
213 * | | ^
214 * | dequeue | |
215 * +--------+-------+ | |
216 * | | t >= 0-lag | | wakeup
217 * | INACTIVE |<---------------+ |
218 * | | sub_running_bw | |
219 * +--------+-------+ | |
220 * ^ | |
221 * | t < 0-lag | |
222 * | | |
223 * | V |
224 * | +----+------+------+
225 * | sub_running_bw | ACTIVE |
226 * +-------------------+ |
227 * inactive timer | non contending |
228 * fired +------------------+
230 * The task_non_contending() function is invoked when a task
231 * blocks, and checks if the 0-lag time already passed or
232 * not (in the first case, it directly updates running_bw;
233 * in the second case, it arms the inactive timer).
235 * The task_contending() function is invoked when a task wakes
236 * up, and checks if the task is still in the "ACTIVE non contending"
237 * state or not (in the second case, it updates running_bw).
239 static void task_non_contending(struct task_struct *p)
241 struct sched_dl_entity *dl_se = &p->dl;
242 struct hrtimer *timer = &dl_se->inactive_timer;
243 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
244 struct rq *rq = rq_of_dl_rq(dl_rq);
245 s64 zerolag_time;
248 * If this is a non-deadline task that has been boosted,
249 * do nothing
251 if (dl_se->dl_runtime == 0)
252 return;
254 if (dl_entity_is_special(dl_se))
255 return;
257 WARN_ON(hrtimer_active(&dl_se->inactive_timer));
258 WARN_ON(dl_se->dl_non_contending);
260 zerolag_time = dl_se->deadline -
261 div64_long((dl_se->runtime * dl_se->dl_period),
262 dl_se->dl_runtime);
265 * Using relative times instead of the absolute "0-lag time"
266 * allows to simplify the code
268 zerolag_time -= rq_clock(rq);
271 * If the "0-lag time" already passed, decrease the active
272 * utilization now, instead of starting a timer
274 if (zerolag_time < 0) {
275 if (dl_task(p))
276 sub_running_bw(dl_se, dl_rq);
277 if (!dl_task(p) || p->state == TASK_DEAD) {
278 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
280 if (p->state == TASK_DEAD)
281 sub_rq_bw(&p->dl, &rq->dl);
282 raw_spin_lock(&dl_b->lock);
283 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
284 __dl_clear_params(p);
285 raw_spin_unlock(&dl_b->lock);
288 return;
291 dl_se->dl_non_contending = 1;
292 get_task_struct(p);
293 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL);
296 static void task_contending(struct sched_dl_entity *dl_se, int flags)
298 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
301 * If this is a non-deadline task that has been boosted,
302 * do nothing
304 if (dl_se->dl_runtime == 0)
305 return;
307 if (flags & ENQUEUE_MIGRATED)
308 add_rq_bw(dl_se, dl_rq);
310 if (dl_se->dl_non_contending) {
311 dl_se->dl_non_contending = 0;
313 * If the timer handler is currently running and the
314 * timer cannot be cancelled, inactive_task_timer()
315 * will see that dl_not_contending is not set, and
316 * will not touch the rq's active utilization,
317 * so we are still safe.
319 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
320 put_task_struct(dl_task_of(dl_se));
321 } else {
323 * Since "dl_non_contending" is not set, the
324 * task's utilization has already been removed from
325 * active utilization (either when the task blocked,
326 * when the "inactive timer" fired).
327 * So, add it back.
329 add_running_bw(dl_se, dl_rq);
333 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
335 struct sched_dl_entity *dl_se = &p->dl;
337 return dl_rq->root.rb_leftmost == &dl_se->rb_node;
340 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
342 raw_spin_lock_init(&dl_b->dl_runtime_lock);
343 dl_b->dl_period = period;
344 dl_b->dl_runtime = runtime;
347 void init_dl_bw(struct dl_bw *dl_b)
349 raw_spin_lock_init(&dl_b->lock);
350 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
351 if (global_rt_runtime() == RUNTIME_INF)
352 dl_b->bw = -1;
353 else
354 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
355 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
356 dl_b->total_bw = 0;
359 void init_dl_rq(struct dl_rq *dl_rq)
361 dl_rq->root = RB_ROOT_CACHED;
363 #ifdef CONFIG_SMP
364 /* zero means no -deadline tasks */
365 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
367 dl_rq->dl_nr_migratory = 0;
368 dl_rq->overloaded = 0;
369 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
370 #else
371 init_dl_bw(&dl_rq->dl_bw);
372 #endif
374 dl_rq->running_bw = 0;
375 dl_rq->this_bw = 0;
376 init_dl_rq_bw_ratio(dl_rq);
379 #ifdef CONFIG_SMP
381 static inline int dl_overloaded(struct rq *rq)
383 return atomic_read(&rq->rd->dlo_count);
386 static inline void dl_set_overload(struct rq *rq)
388 if (!rq->online)
389 return;
391 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
393 * Must be visible before the overload count is
394 * set (as in sched_rt.c).
396 * Matched by the barrier in pull_dl_task().
398 smp_wmb();
399 atomic_inc(&rq->rd->dlo_count);
402 static inline void dl_clear_overload(struct rq *rq)
404 if (!rq->online)
405 return;
407 atomic_dec(&rq->rd->dlo_count);
408 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
411 static void update_dl_migration(struct dl_rq *dl_rq)
413 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
414 if (!dl_rq->overloaded) {
415 dl_set_overload(rq_of_dl_rq(dl_rq));
416 dl_rq->overloaded = 1;
418 } else if (dl_rq->overloaded) {
419 dl_clear_overload(rq_of_dl_rq(dl_rq));
420 dl_rq->overloaded = 0;
424 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
426 struct task_struct *p = dl_task_of(dl_se);
428 if (p->nr_cpus_allowed > 1)
429 dl_rq->dl_nr_migratory++;
431 update_dl_migration(dl_rq);
434 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
436 struct task_struct *p = dl_task_of(dl_se);
438 if (p->nr_cpus_allowed > 1)
439 dl_rq->dl_nr_migratory--;
441 update_dl_migration(dl_rq);
445 * The list of pushable -deadline task is not a plist, like in
446 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
448 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
450 struct dl_rq *dl_rq = &rq->dl;
451 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
452 struct rb_node *parent = NULL;
453 struct task_struct *entry;
454 bool leftmost = true;
456 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
458 while (*link) {
459 parent = *link;
460 entry = rb_entry(parent, struct task_struct,
461 pushable_dl_tasks);
462 if (dl_entity_preempt(&p->dl, &entry->dl))
463 link = &parent->rb_left;
464 else {
465 link = &parent->rb_right;
466 leftmost = false;
470 if (leftmost)
471 dl_rq->earliest_dl.next = p->dl.deadline;
473 rb_link_node(&p->pushable_dl_tasks, parent, link);
474 rb_insert_color_cached(&p->pushable_dl_tasks,
475 &dl_rq->pushable_dl_tasks_root, leftmost);
478 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
480 struct dl_rq *dl_rq = &rq->dl;
482 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
483 return;
485 if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
486 struct rb_node *next_node;
488 next_node = rb_next(&p->pushable_dl_tasks);
489 if (next_node) {
490 dl_rq->earliest_dl.next = rb_entry(next_node,
491 struct task_struct, pushable_dl_tasks)->dl.deadline;
495 rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
496 RB_CLEAR_NODE(&p->pushable_dl_tasks);
499 static inline int has_pushable_dl_tasks(struct rq *rq)
501 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
504 static int push_dl_task(struct rq *rq);
506 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
508 return dl_task(prev);
511 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
512 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
514 static void push_dl_tasks(struct rq *);
515 static void pull_dl_task(struct rq *);
517 static inline void queue_push_tasks(struct rq *rq)
519 if (!has_pushable_dl_tasks(rq))
520 return;
522 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
525 static inline void queue_pull_task(struct rq *rq)
527 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
530 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
532 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
534 struct rq *later_rq = NULL;
536 later_rq = find_lock_later_rq(p, rq);
537 if (!later_rq) {
538 int cpu;
541 * If we cannot preempt any rq, fall back to pick any
542 * online cpu.
544 cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
545 if (cpu >= nr_cpu_ids) {
547 * Fail to find any suitable cpu.
548 * The task will never come back!
550 BUG_ON(dl_bandwidth_enabled());
553 * If admission control is disabled we
554 * try a little harder to let the task
555 * run.
557 cpu = cpumask_any(cpu_active_mask);
559 later_rq = cpu_rq(cpu);
560 double_lock_balance(rq, later_rq);
563 set_task_cpu(p, later_rq->cpu);
564 double_unlock_balance(later_rq, rq);
566 return later_rq;
569 #else
571 static inline
572 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
576 static inline
577 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
581 static inline
582 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
586 static inline
587 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
591 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
593 return false;
596 static inline void pull_dl_task(struct rq *rq)
600 static inline void queue_push_tasks(struct rq *rq)
604 static inline void queue_pull_task(struct rq *rq)
607 #endif /* CONFIG_SMP */
609 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
610 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
611 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
612 int flags);
615 * We are being explicitly informed that a new instance is starting,
616 * and this means that:
617 * - the absolute deadline of the entity has to be placed at
618 * current time + relative deadline;
619 * - the runtime of the entity has to be set to the maximum value.
621 * The capability of specifying such event is useful whenever a -deadline
622 * entity wants to (try to!) synchronize its behaviour with the scheduler's
623 * one, and to (try to!) reconcile itself with its own scheduling
624 * parameters.
626 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
628 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
629 struct rq *rq = rq_of_dl_rq(dl_rq);
631 WARN_ON(dl_se->dl_boosted);
632 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
635 * We are racing with the deadline timer. So, do nothing because
636 * the deadline timer handler will take care of properly recharging
637 * the runtime and postponing the deadline
639 if (dl_se->dl_throttled)
640 return;
643 * We use the regular wall clock time to set deadlines in the
644 * future; in fact, we must consider execution overheads (time
645 * spent on hardirq context, etc.).
647 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
648 dl_se->runtime = dl_se->dl_runtime;
652 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
653 * possibility of a entity lasting more than what it declared, and thus
654 * exhausting its runtime.
656 * Here we are interested in making runtime overrun possible, but we do
657 * not want a entity which is misbehaving to affect the scheduling of all
658 * other entities.
659 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
660 * is used, in order to confine each entity within its own bandwidth.
662 * This function deals exactly with that, and ensures that when the runtime
663 * of a entity is replenished, its deadline is also postponed. That ensures
664 * the overrunning entity can't interfere with other entity in the system and
665 * can't make them miss their deadlines. Reasons why this kind of overruns
666 * could happen are, typically, a entity voluntarily trying to overcome its
667 * runtime, or it just underestimated it during sched_setattr().
669 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
670 struct sched_dl_entity *pi_se)
672 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
673 struct rq *rq = rq_of_dl_rq(dl_rq);
675 BUG_ON(pi_se->dl_runtime <= 0);
678 * This could be the case for a !-dl task that is boosted.
679 * Just go with full inherited parameters.
681 if (dl_se->dl_deadline == 0) {
682 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
683 dl_se->runtime = pi_se->dl_runtime;
686 if (dl_se->dl_yielded && dl_se->runtime > 0)
687 dl_se->runtime = 0;
690 * We keep moving the deadline away until we get some
691 * available runtime for the entity. This ensures correct
692 * handling of situations where the runtime overrun is
693 * arbitrary large.
695 while (dl_se->runtime <= 0) {
696 dl_se->deadline += pi_se->dl_period;
697 dl_se->runtime += pi_se->dl_runtime;
701 * At this point, the deadline really should be "in
702 * the future" with respect to rq->clock. If it's
703 * not, we are, for some reason, lagging too much!
704 * Anyway, after having warn userspace abut that,
705 * we still try to keep the things running by
706 * resetting the deadline and the budget of the
707 * entity.
709 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
710 printk_deferred_once("sched: DL replenish lagged too much\n");
711 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
712 dl_se->runtime = pi_se->dl_runtime;
715 if (dl_se->dl_yielded)
716 dl_se->dl_yielded = 0;
717 if (dl_se->dl_throttled)
718 dl_se->dl_throttled = 0;
722 * Here we check if --at time t-- an entity (which is probably being
723 * [re]activated or, in general, enqueued) can use its remaining runtime
724 * and its current deadline _without_ exceeding the bandwidth it is
725 * assigned (function returns true if it can't). We are in fact applying
726 * one of the CBS rules: when a task wakes up, if the residual runtime
727 * over residual deadline fits within the allocated bandwidth, then we
728 * can keep the current (absolute) deadline and residual budget without
729 * disrupting the schedulability of the system. Otherwise, we should
730 * refill the runtime and set the deadline a period in the future,
731 * because keeping the current (absolute) deadline of the task would
732 * result in breaking guarantees promised to other tasks (refer to
733 * Documentation/scheduler/sched-deadline.txt for more informations).
735 * This function returns true if:
737 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
739 * IOW we can't recycle current parameters.
741 * Notice that the bandwidth check is done against the deadline. For
742 * task with deadline equal to period this is the same of using
743 * dl_period instead of dl_deadline in the equation above.
745 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
746 struct sched_dl_entity *pi_se, u64 t)
748 u64 left, right;
751 * left and right are the two sides of the equation above,
752 * after a bit of shuffling to use multiplications instead
753 * of divisions.
755 * Note that none of the time values involved in the two
756 * multiplications are absolute: dl_deadline and dl_runtime
757 * are the relative deadline and the maximum runtime of each
758 * instance, runtime is the runtime left for the last instance
759 * and (deadline - t), since t is rq->clock, is the time left
760 * to the (absolute) deadline. Even if overflowing the u64 type
761 * is very unlikely to occur in both cases, here we scale down
762 * as we want to avoid that risk at all. Scaling down by 10
763 * means that we reduce granularity to 1us. We are fine with it,
764 * since this is only a true/false check and, anyway, thinking
765 * of anything below microseconds resolution is actually fiction
766 * (but still we want to give the user that illusion >;).
768 left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
769 right = ((dl_se->deadline - t) >> DL_SCALE) *
770 (pi_se->dl_runtime >> DL_SCALE);
772 return dl_time_before(right, left);
776 * Revised wakeup rule [1]: For self-suspending tasks, rather then
777 * re-initializing task's runtime and deadline, the revised wakeup
778 * rule adjusts the task's runtime to avoid the task to overrun its
779 * density.
781 * Reasoning: a task may overrun the density if:
782 * runtime / (deadline - t) > dl_runtime / dl_deadline
784 * Therefore, runtime can be adjusted to:
785 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
787 * In such way that runtime will be equal to the maximum density
788 * the task can use without breaking any rule.
790 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
791 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
793 static void
794 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
796 u64 laxity = dl_se->deadline - rq_clock(rq);
799 * If the task has deadline < period, and the deadline is in the past,
800 * it should already be throttled before this check.
802 * See update_dl_entity() comments for further details.
804 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
806 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
810 * Regarding the deadline, a task with implicit deadline has a relative
811 * deadline == relative period. A task with constrained deadline has a
812 * relative deadline <= relative period.
814 * We support constrained deadline tasks. However, there are some restrictions
815 * applied only for tasks which do not have an implicit deadline. See
816 * update_dl_entity() to know more about such restrictions.
818 * The dl_is_implicit() returns true if the task has an implicit deadline.
820 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
822 return dl_se->dl_deadline == dl_se->dl_period;
826 * When a deadline entity is placed in the runqueue, its runtime and deadline
827 * might need to be updated. This is done by a CBS wake up rule. There are two
828 * different rules: 1) the original CBS; and 2) the Revisited CBS.
830 * When the task is starting a new period, the Original CBS is used. In this
831 * case, the runtime is replenished and a new absolute deadline is set.
833 * When a task is queued before the begin of the next period, using the
834 * remaining runtime and deadline could make the entity to overflow, see
835 * dl_entity_overflow() to find more about runtime overflow. When such case
836 * is detected, the runtime and deadline need to be updated.
838 * If the task has an implicit deadline, i.e., deadline == period, the Original
839 * CBS is applied. the runtime is replenished and a new absolute deadline is
840 * set, as in the previous cases.
842 * However, the Original CBS does not work properly for tasks with
843 * deadline < period, which are said to have a constrained deadline. By
844 * applying the Original CBS, a constrained deadline task would be able to run
845 * runtime/deadline in a period. With deadline < period, the task would
846 * overrun the runtime/period allowed bandwidth, breaking the admission test.
848 * In order to prevent this misbehave, the Revisited CBS is used for
849 * constrained deadline tasks when a runtime overflow is detected. In the
850 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
851 * the remaining runtime of the task is reduced to avoid runtime overflow.
852 * Please refer to the comments update_dl_revised_wakeup() function to find
853 * more about the Revised CBS rule.
855 static void update_dl_entity(struct sched_dl_entity *dl_se,
856 struct sched_dl_entity *pi_se)
858 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
859 struct rq *rq = rq_of_dl_rq(dl_rq);
861 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
862 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
864 if (unlikely(!dl_is_implicit(dl_se) &&
865 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
866 !dl_se->dl_boosted)){
867 update_dl_revised_wakeup(dl_se, rq);
868 return;
871 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
872 dl_se->runtime = pi_se->dl_runtime;
876 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
878 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
882 * If the entity depleted all its runtime, and if we want it to sleep
883 * while waiting for some new execution time to become available, we
884 * set the bandwidth replenishment timer to the replenishment instant
885 * and try to activate it.
887 * Notice that it is important for the caller to know if the timer
888 * actually started or not (i.e., the replenishment instant is in
889 * the future or in the past).
891 static int start_dl_timer(struct task_struct *p)
893 struct sched_dl_entity *dl_se = &p->dl;
894 struct hrtimer *timer = &dl_se->dl_timer;
895 struct rq *rq = task_rq(p);
896 ktime_t now, act;
897 s64 delta;
899 lockdep_assert_held(&rq->lock);
902 * We want the timer to fire at the deadline, but considering
903 * that it is actually coming from rq->clock and not from
904 * hrtimer's time base reading.
906 act = ns_to_ktime(dl_next_period(dl_se));
907 now = hrtimer_cb_get_time(timer);
908 delta = ktime_to_ns(now) - rq_clock(rq);
909 act = ktime_add_ns(act, delta);
912 * If the expiry time already passed, e.g., because the value
913 * chosen as the deadline is too small, don't even try to
914 * start the timer in the past!
916 if (ktime_us_delta(act, now) < 0)
917 return 0;
920 * !enqueued will guarantee another callback; even if one is already in
921 * progress. This ensures a balanced {get,put}_task_struct().
923 * The race against __run_timer() clearing the enqueued state is
924 * harmless because we're holding task_rq()->lock, therefore the timer
925 * expiring after we've done the check will wait on its task_rq_lock()
926 * and observe our state.
928 if (!hrtimer_is_queued(timer)) {
929 get_task_struct(p);
930 hrtimer_start(timer, act, HRTIMER_MODE_ABS);
933 return 1;
937 * This is the bandwidth enforcement timer callback. If here, we know
938 * a task is not on its dl_rq, since the fact that the timer was running
939 * means the task is throttled and needs a runtime replenishment.
941 * However, what we actually do depends on the fact the task is active,
942 * (it is on its rq) or has been removed from there by a call to
943 * dequeue_task_dl(). In the former case we must issue the runtime
944 * replenishment and add the task back to the dl_rq; in the latter, we just
945 * do nothing but clearing dl_throttled, so that runtime and deadline
946 * updating (and the queueing back to dl_rq) will be done by the
947 * next call to enqueue_task_dl().
949 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
951 struct sched_dl_entity *dl_se = container_of(timer,
952 struct sched_dl_entity,
953 dl_timer);
954 struct task_struct *p = dl_task_of(dl_se);
955 struct rq_flags rf;
956 struct rq *rq;
958 rq = task_rq_lock(p, &rf);
961 * The task might have changed its scheduling policy to something
962 * different than SCHED_DEADLINE (through switched_from_dl()).
964 if (!dl_task(p))
965 goto unlock;
968 * The task might have been boosted by someone else and might be in the
969 * boosting/deboosting path, its not throttled.
971 if (dl_se->dl_boosted)
972 goto unlock;
975 * Spurious timer due to start_dl_timer() race; or we already received
976 * a replenishment from rt_mutex_setprio().
978 if (!dl_se->dl_throttled)
979 goto unlock;
981 sched_clock_tick();
982 update_rq_clock(rq);
985 * If the throttle happened during sched-out; like:
987 * schedule()
988 * deactivate_task()
989 * dequeue_task_dl()
990 * update_curr_dl()
991 * start_dl_timer()
992 * __dequeue_task_dl()
993 * prev->on_rq = 0;
995 * We can be both throttled and !queued. Replenish the counter
996 * but do not enqueue -- wait for our wakeup to do that.
998 if (!task_on_rq_queued(p)) {
999 replenish_dl_entity(dl_se, dl_se);
1000 goto unlock;
1003 #ifdef CONFIG_SMP
1004 if (unlikely(!rq->online)) {
1006 * If the runqueue is no longer available, migrate the
1007 * task elsewhere. This necessarily changes rq.
1009 lockdep_unpin_lock(&rq->lock, rf.cookie);
1010 rq = dl_task_offline_migration(rq, p);
1011 rf.cookie = lockdep_pin_lock(&rq->lock);
1012 update_rq_clock(rq);
1015 * Now that the task has been migrated to the new RQ and we
1016 * have that locked, proceed as normal and enqueue the task
1017 * there.
1020 #endif
1022 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1023 if (dl_task(rq->curr))
1024 check_preempt_curr_dl(rq, p, 0);
1025 else
1026 resched_curr(rq);
1028 #ifdef CONFIG_SMP
1030 * Queueing this task back might have overloaded rq, check if we need
1031 * to kick someone away.
1033 if (has_pushable_dl_tasks(rq)) {
1035 * Nothing relies on rq->lock after this, so its safe to drop
1036 * rq->lock.
1038 rq_unpin_lock(rq, &rf);
1039 push_dl_task(rq);
1040 rq_repin_lock(rq, &rf);
1042 #endif
1044 unlock:
1045 task_rq_unlock(rq, p, &rf);
1048 * This can free the task_struct, including this hrtimer, do not touch
1049 * anything related to that after this.
1051 put_task_struct(p);
1053 return HRTIMER_NORESTART;
1056 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1058 struct hrtimer *timer = &dl_se->dl_timer;
1060 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1061 timer->function = dl_task_timer;
1065 * During the activation, CBS checks if it can reuse the current task's
1066 * runtime and period. If the deadline of the task is in the past, CBS
1067 * cannot use the runtime, and so it replenishes the task. This rule
1068 * works fine for implicit deadline tasks (deadline == period), and the
1069 * CBS was designed for implicit deadline tasks. However, a task with
1070 * constrained deadline (deadine < period) might be awakened after the
1071 * deadline, but before the next period. In this case, replenishing the
1072 * task would allow it to run for runtime / deadline. As in this case
1073 * deadline < period, CBS enables a task to run for more than the
1074 * runtime / period. In a very loaded system, this can cause a domino
1075 * effect, making other tasks miss their deadlines.
1077 * To avoid this problem, in the activation of a constrained deadline
1078 * task after the deadline but before the next period, throttle the
1079 * task and set the replenishing timer to the begin of the next period,
1080 * unless it is boosted.
1082 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1084 struct task_struct *p = dl_task_of(dl_se);
1085 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1087 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1088 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1089 if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1090 return;
1091 dl_se->dl_throttled = 1;
1092 if (dl_se->runtime > 0)
1093 dl_se->runtime = 0;
1097 static
1098 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1100 return (dl_se->runtime <= 0);
1103 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1106 * This function implements the GRUB accounting rule:
1107 * according to the GRUB reclaiming algorithm, the runtime is
1108 * not decreased as "dq = -dt", but as
1109 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1110 * where u is the utilization of the task, Umax is the maximum reclaimable
1111 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1112 * as the difference between the "total runqueue utilization" and the
1113 * runqueue active utilization, and Uextra is the (per runqueue) extra
1114 * reclaimable utilization.
1115 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1116 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1117 * BW_SHIFT.
1118 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1119 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1120 * Since delta is a 64 bit variable, to have an overflow its value
1121 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1122 * So, overflow is not an issue here.
1124 u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1126 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1127 u64 u_act;
1128 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1131 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1132 * we compare u_inact + rq->dl.extra_bw with
1133 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1134 * u_inact + rq->dl.extra_bw can be larger than
1135 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1136 * leading to wrong results)
1138 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1139 u_act = u_act_min;
1140 else
1141 u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1143 return (delta * u_act) >> BW_SHIFT;
1147 * Update the current task's runtime statistics (provided it is still
1148 * a -deadline task and has not been removed from the dl_rq).
1150 static void update_curr_dl(struct rq *rq)
1152 struct task_struct *curr = rq->curr;
1153 struct sched_dl_entity *dl_se = &curr->dl;
1154 u64 delta_exec, scaled_delta_exec;
1155 int cpu = cpu_of(rq);
1157 if (!dl_task(curr) || !on_dl_rq(dl_se))
1158 return;
1161 * Consumed budget is computed considering the time as
1162 * observed by schedulable tasks (excluding time spent
1163 * in hardirq context, etc.). Deadlines are instead
1164 * computed using hard walltime. This seems to be the more
1165 * natural solution, but the full ramifications of this
1166 * approach need further study.
1168 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
1169 if (unlikely((s64)delta_exec <= 0)) {
1170 if (unlikely(dl_se->dl_yielded))
1171 goto throttle;
1172 return;
1175 schedstat_set(curr->se.statistics.exec_max,
1176 max(curr->se.statistics.exec_max, delta_exec));
1178 curr->se.sum_exec_runtime += delta_exec;
1179 account_group_exec_runtime(curr, delta_exec);
1181 curr->se.exec_start = rq_clock_task(rq);
1182 cgroup_account_cputime(curr, delta_exec);
1184 sched_rt_avg_update(rq, delta_exec);
1186 if (dl_entity_is_special(dl_se))
1187 return;
1190 * For tasks that participate in GRUB, we implement GRUB-PA: the
1191 * spare reclaimed bandwidth is used to clock down frequency.
1193 * For the others, we still need to scale reservation parameters
1194 * according to current frequency and CPU maximum capacity.
1196 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1197 scaled_delta_exec = grub_reclaim(delta_exec,
1199 &curr->dl);
1200 } else {
1201 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1202 unsigned long scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
1204 scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1205 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1208 dl_se->runtime -= scaled_delta_exec;
1210 throttle:
1211 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1212 dl_se->dl_throttled = 1;
1214 /* If requested, inform the user about runtime overruns. */
1215 if (dl_runtime_exceeded(dl_se) &&
1216 (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1217 dl_se->dl_overrun = 1;
1219 __dequeue_task_dl(rq, curr, 0);
1220 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
1221 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1223 if (!is_leftmost(curr, &rq->dl))
1224 resched_curr(rq);
1228 * Because -- for now -- we share the rt bandwidth, we need to
1229 * account our runtime there too, otherwise actual rt tasks
1230 * would be able to exceed the shared quota.
1232 * Account to the root rt group for now.
1234 * The solution we're working towards is having the RT groups scheduled
1235 * using deadline servers -- however there's a few nasties to figure
1236 * out before that can happen.
1238 if (rt_bandwidth_enabled()) {
1239 struct rt_rq *rt_rq = &rq->rt;
1241 raw_spin_lock(&rt_rq->rt_runtime_lock);
1243 * We'll let actual RT tasks worry about the overflow here, we
1244 * have our own CBS to keep us inline; only account when RT
1245 * bandwidth is relevant.
1247 if (sched_rt_bandwidth_account(rt_rq))
1248 rt_rq->rt_time += delta_exec;
1249 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1253 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1255 struct sched_dl_entity *dl_se = container_of(timer,
1256 struct sched_dl_entity,
1257 inactive_timer);
1258 struct task_struct *p = dl_task_of(dl_se);
1259 struct rq_flags rf;
1260 struct rq *rq;
1262 rq = task_rq_lock(p, &rf);
1264 if (!dl_task(p) || p->state == TASK_DEAD) {
1265 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1267 if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1268 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1269 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1270 dl_se->dl_non_contending = 0;
1273 raw_spin_lock(&dl_b->lock);
1274 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1275 raw_spin_unlock(&dl_b->lock);
1276 __dl_clear_params(p);
1278 goto unlock;
1280 if (dl_se->dl_non_contending == 0)
1281 goto unlock;
1283 sched_clock_tick();
1284 update_rq_clock(rq);
1286 sub_running_bw(dl_se, &rq->dl);
1287 dl_se->dl_non_contending = 0;
1288 unlock:
1289 task_rq_unlock(rq, p, &rf);
1290 put_task_struct(p);
1292 return HRTIMER_NORESTART;
1295 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1297 struct hrtimer *timer = &dl_se->inactive_timer;
1299 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1300 timer->function = inactive_task_timer;
1303 #ifdef CONFIG_SMP
1305 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1307 struct rq *rq = rq_of_dl_rq(dl_rq);
1309 if (dl_rq->earliest_dl.curr == 0 ||
1310 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1311 dl_rq->earliest_dl.curr = deadline;
1312 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1316 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1318 struct rq *rq = rq_of_dl_rq(dl_rq);
1321 * Since we may have removed our earliest (and/or next earliest)
1322 * task we must recompute them.
1324 if (!dl_rq->dl_nr_running) {
1325 dl_rq->earliest_dl.curr = 0;
1326 dl_rq->earliest_dl.next = 0;
1327 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1328 } else {
1329 struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1330 struct sched_dl_entity *entry;
1332 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1333 dl_rq->earliest_dl.curr = entry->deadline;
1334 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1338 #else
1340 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1341 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1343 #endif /* CONFIG_SMP */
1345 static inline
1346 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1348 int prio = dl_task_of(dl_se)->prio;
1349 u64 deadline = dl_se->deadline;
1351 WARN_ON(!dl_prio(prio));
1352 dl_rq->dl_nr_running++;
1353 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1355 inc_dl_deadline(dl_rq, deadline);
1356 inc_dl_migration(dl_se, dl_rq);
1359 static inline
1360 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1362 int prio = dl_task_of(dl_se)->prio;
1364 WARN_ON(!dl_prio(prio));
1365 WARN_ON(!dl_rq->dl_nr_running);
1366 dl_rq->dl_nr_running--;
1367 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1369 dec_dl_deadline(dl_rq, dl_se->deadline);
1370 dec_dl_migration(dl_se, dl_rq);
1373 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1375 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1376 struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1377 struct rb_node *parent = NULL;
1378 struct sched_dl_entity *entry;
1379 int leftmost = 1;
1381 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1383 while (*link) {
1384 parent = *link;
1385 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1386 if (dl_time_before(dl_se->deadline, entry->deadline))
1387 link = &parent->rb_left;
1388 else {
1389 link = &parent->rb_right;
1390 leftmost = 0;
1394 rb_link_node(&dl_se->rb_node, parent, link);
1395 rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
1397 inc_dl_tasks(dl_se, dl_rq);
1400 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1402 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1404 if (RB_EMPTY_NODE(&dl_se->rb_node))
1405 return;
1407 rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1408 RB_CLEAR_NODE(&dl_se->rb_node);
1410 dec_dl_tasks(dl_se, dl_rq);
1413 static void
1414 enqueue_dl_entity(struct sched_dl_entity *dl_se,
1415 struct sched_dl_entity *pi_se, int flags)
1417 BUG_ON(on_dl_rq(dl_se));
1420 * If this is a wakeup or a new instance, the scheduling
1421 * parameters of the task might need updating. Otherwise,
1422 * we want a replenishment of its runtime.
1424 if (flags & ENQUEUE_WAKEUP) {
1425 task_contending(dl_se, flags);
1426 update_dl_entity(dl_se, pi_se);
1427 } else if (flags & ENQUEUE_REPLENISH) {
1428 replenish_dl_entity(dl_se, pi_se);
1429 } else if ((flags & ENQUEUE_RESTORE) &&
1430 dl_time_before(dl_se->deadline,
1431 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1432 setup_new_dl_entity(dl_se);
1435 __enqueue_dl_entity(dl_se);
1438 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1440 __dequeue_dl_entity(dl_se);
1443 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1445 struct task_struct *pi_task = rt_mutex_get_top_task(p);
1446 struct sched_dl_entity *pi_se = &p->dl;
1449 * Use the scheduling parameters of the top pi-waiter task if:
1450 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1451 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1452 * smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1453 * boosted due to a SCHED_DEADLINE pi-waiter).
1454 * Otherwise we keep our runtime and deadline.
1456 if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
1457 pi_se = &pi_task->dl;
1458 } else if (!dl_prio(p->normal_prio)) {
1460 * Special case in which we have a !SCHED_DEADLINE task
1461 * that is going to be deboosted, but exceeds its
1462 * runtime while doing so. No point in replenishing
1463 * it, as it's going to return back to its original
1464 * scheduling class after this.
1466 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1467 return;
1471 * Check if a constrained deadline task was activated
1472 * after the deadline but before the next period.
1473 * If that is the case, the task will be throttled and
1474 * the replenishment timer will be set to the next period.
1476 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1477 dl_check_constrained_dl(&p->dl);
1479 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1480 add_rq_bw(&p->dl, &rq->dl);
1481 add_running_bw(&p->dl, &rq->dl);
1485 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1486 * its budget it needs a replenishment and, since it now is on
1487 * its rq, the bandwidth timer callback (which clearly has not
1488 * run yet) will take care of this.
1489 * However, the active utilization does not depend on the fact
1490 * that the task is on the runqueue or not (but depends on the
1491 * task's state - in GRUB parlance, "inactive" vs "active contending").
1492 * In other words, even if a task is throttled its utilization must
1493 * be counted in the active utilization; hence, we need to call
1494 * add_running_bw().
1496 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1497 if (flags & ENQUEUE_WAKEUP)
1498 task_contending(&p->dl, flags);
1500 return;
1503 enqueue_dl_entity(&p->dl, pi_se, flags);
1505 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1506 enqueue_pushable_dl_task(rq, p);
1509 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1511 dequeue_dl_entity(&p->dl);
1512 dequeue_pushable_dl_task(rq, p);
1515 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1517 update_curr_dl(rq);
1518 __dequeue_task_dl(rq, p, flags);
1520 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1521 sub_running_bw(&p->dl, &rq->dl);
1522 sub_rq_bw(&p->dl, &rq->dl);
1526 * This check allows to start the inactive timer (or to immediately
1527 * decrease the active utilization, if needed) in two cases:
1528 * when the task blocks and when it is terminating
1529 * (p->state == TASK_DEAD). We can handle the two cases in the same
1530 * way, because from GRUB's point of view the same thing is happening
1531 * (the task moves from "active contending" to "active non contending"
1532 * or "inactive")
1534 if (flags & DEQUEUE_SLEEP)
1535 task_non_contending(p);
1539 * Yield task semantic for -deadline tasks is:
1541 * get off from the CPU until our next instance, with
1542 * a new runtime. This is of little use now, since we
1543 * don't have a bandwidth reclaiming mechanism. Anyway,
1544 * bandwidth reclaiming is planned for the future, and
1545 * yield_task_dl will indicate that some spare budget
1546 * is available for other task instances to use it.
1548 static void yield_task_dl(struct rq *rq)
1551 * We make the task go to sleep until its current deadline by
1552 * forcing its runtime to zero. This way, update_curr_dl() stops
1553 * it and the bandwidth timer will wake it up and will give it
1554 * new scheduling parameters (thanks to dl_yielded=1).
1556 rq->curr->dl.dl_yielded = 1;
1558 update_rq_clock(rq);
1559 update_curr_dl(rq);
1561 * Tell update_rq_clock() that we've just updated,
1562 * so we don't do microscopic update in schedule()
1563 * and double the fastpath cost.
1565 rq_clock_skip_update(rq, true);
1568 #ifdef CONFIG_SMP
1570 static int find_later_rq(struct task_struct *task);
1572 static int
1573 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1575 struct task_struct *curr;
1576 struct rq *rq;
1578 if (sd_flag != SD_BALANCE_WAKE)
1579 goto out;
1581 rq = cpu_rq(cpu);
1583 rcu_read_lock();
1584 curr = READ_ONCE(rq->curr); /* unlocked access */
1587 * If we are dealing with a -deadline task, we must
1588 * decide where to wake it up.
1589 * If it has a later deadline and the current task
1590 * on this rq can't move (provided the waking task
1591 * can!) we prefer to send it somewhere else. On the
1592 * other hand, if it has a shorter deadline, we
1593 * try to make it stay here, it might be important.
1595 if (unlikely(dl_task(curr)) &&
1596 (curr->nr_cpus_allowed < 2 ||
1597 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1598 (p->nr_cpus_allowed > 1)) {
1599 int target = find_later_rq(p);
1601 if (target != -1 &&
1602 (dl_time_before(p->dl.deadline,
1603 cpu_rq(target)->dl.earliest_dl.curr) ||
1604 (cpu_rq(target)->dl.dl_nr_running == 0)))
1605 cpu = target;
1607 rcu_read_unlock();
1609 out:
1610 return cpu;
1613 static void migrate_task_rq_dl(struct task_struct *p)
1615 struct rq *rq;
1617 if (p->state != TASK_WAKING)
1618 return;
1620 rq = task_rq(p);
1622 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1623 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1624 * rq->lock is not... So, lock it
1626 raw_spin_lock(&rq->lock);
1627 if (p->dl.dl_non_contending) {
1628 sub_running_bw(&p->dl, &rq->dl);
1629 p->dl.dl_non_contending = 0;
1631 * If the timer handler is currently running and the
1632 * timer cannot be cancelled, inactive_task_timer()
1633 * will see that dl_not_contending is not set, and
1634 * will not touch the rq's active utilization,
1635 * so we are still safe.
1637 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1638 put_task_struct(p);
1640 sub_rq_bw(&p->dl, &rq->dl);
1641 raw_spin_unlock(&rq->lock);
1644 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1647 * Current can't be migrated, useless to reschedule,
1648 * let's hope p can move out.
1650 if (rq->curr->nr_cpus_allowed == 1 ||
1651 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1652 return;
1655 * p is migratable, so let's not schedule it and
1656 * see if it is pushed or pulled somewhere else.
1658 if (p->nr_cpus_allowed != 1 &&
1659 cpudl_find(&rq->rd->cpudl, p, NULL))
1660 return;
1662 resched_curr(rq);
1665 #endif /* CONFIG_SMP */
1668 * Only called when both the current and waking task are -deadline
1669 * tasks.
1671 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1672 int flags)
1674 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1675 resched_curr(rq);
1676 return;
1679 #ifdef CONFIG_SMP
1681 * In the unlikely case current and p have the same deadline
1682 * let us try to decide what's the best thing to do...
1684 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1685 !test_tsk_need_resched(rq->curr))
1686 check_preempt_equal_dl(rq, p);
1687 #endif /* CONFIG_SMP */
1690 #ifdef CONFIG_SCHED_HRTICK
1691 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1693 hrtick_start(rq, p->dl.runtime);
1695 #else /* !CONFIG_SCHED_HRTICK */
1696 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1699 #endif
1701 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1702 struct dl_rq *dl_rq)
1704 struct rb_node *left = rb_first_cached(&dl_rq->root);
1706 if (!left)
1707 return NULL;
1709 return rb_entry(left, struct sched_dl_entity, rb_node);
1712 static struct task_struct *
1713 pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1715 struct sched_dl_entity *dl_se;
1716 struct task_struct *p;
1717 struct dl_rq *dl_rq;
1719 dl_rq = &rq->dl;
1721 if (need_pull_dl_task(rq, prev)) {
1723 * This is OK, because current is on_cpu, which avoids it being
1724 * picked for load-balance and preemption/IRQs are still
1725 * disabled avoiding further scheduler activity on it and we're
1726 * being very careful to re-start the picking loop.
1728 rq_unpin_lock(rq, rf);
1729 pull_dl_task(rq);
1730 rq_repin_lock(rq, rf);
1732 * pull_dl_task() can drop (and re-acquire) rq->lock; this
1733 * means a stop task can slip in, in which case we need to
1734 * re-start task selection.
1736 if (rq->stop && task_on_rq_queued(rq->stop))
1737 return RETRY_TASK;
1741 * When prev is DL, we may throttle it in put_prev_task().
1742 * So, we update time before we check for dl_nr_running.
1744 if (prev->sched_class == &dl_sched_class)
1745 update_curr_dl(rq);
1747 if (unlikely(!dl_rq->dl_nr_running))
1748 return NULL;
1750 put_prev_task(rq, prev);
1752 dl_se = pick_next_dl_entity(rq, dl_rq);
1753 BUG_ON(!dl_se);
1755 p = dl_task_of(dl_se);
1756 p->se.exec_start = rq_clock_task(rq);
1758 /* Running task will never be pushed. */
1759 dequeue_pushable_dl_task(rq, p);
1761 if (hrtick_enabled(rq))
1762 start_hrtick_dl(rq, p);
1764 queue_push_tasks(rq);
1766 return p;
1769 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1771 update_curr_dl(rq);
1773 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1774 enqueue_pushable_dl_task(rq, p);
1777 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1779 update_curr_dl(rq);
1782 * Even when we have runtime, update_curr_dl() might have resulted in us
1783 * not being the leftmost task anymore. In that case NEED_RESCHED will
1784 * be set and schedule() will start a new hrtick for the next task.
1786 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1787 is_leftmost(p, &rq->dl))
1788 start_hrtick_dl(rq, p);
1791 static void task_fork_dl(struct task_struct *p)
1794 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1795 * sched_fork()
1799 static void set_curr_task_dl(struct rq *rq)
1801 struct task_struct *p = rq->curr;
1803 p->se.exec_start = rq_clock_task(rq);
1805 /* You can't push away the running task */
1806 dequeue_pushable_dl_task(rq, p);
1809 #ifdef CONFIG_SMP
1811 /* Only try algorithms three times */
1812 #define DL_MAX_TRIES 3
1814 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1816 if (!task_running(rq, p) &&
1817 cpumask_test_cpu(cpu, &p->cpus_allowed))
1818 return 1;
1819 return 0;
1823 * Return the earliest pushable rq's task, which is suitable to be executed
1824 * on the CPU, NULL otherwise:
1826 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1828 struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1829 struct task_struct *p = NULL;
1831 if (!has_pushable_dl_tasks(rq))
1832 return NULL;
1834 next_node:
1835 if (next_node) {
1836 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1838 if (pick_dl_task(rq, p, cpu))
1839 return p;
1841 next_node = rb_next(next_node);
1842 goto next_node;
1845 return NULL;
1848 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1850 static int find_later_rq(struct task_struct *task)
1852 struct sched_domain *sd;
1853 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1854 int this_cpu = smp_processor_id();
1855 int cpu = task_cpu(task);
1857 /* Make sure the mask is initialized first */
1858 if (unlikely(!later_mask))
1859 return -1;
1861 if (task->nr_cpus_allowed == 1)
1862 return -1;
1865 * We have to consider system topology and task affinity
1866 * first, then we can look for a suitable cpu.
1868 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1869 return -1;
1872 * If we are here, some targets have been found, including
1873 * the most suitable which is, among the runqueues where the
1874 * current tasks have later deadlines than the task's one, the
1875 * rq with the latest possible one.
1877 * Now we check how well this matches with task's
1878 * affinity and system topology.
1880 * The last cpu where the task run is our first
1881 * guess, since it is most likely cache-hot there.
1883 if (cpumask_test_cpu(cpu, later_mask))
1884 return cpu;
1886 * Check if this_cpu is to be skipped (i.e., it is
1887 * not in the mask) or not.
1889 if (!cpumask_test_cpu(this_cpu, later_mask))
1890 this_cpu = -1;
1892 rcu_read_lock();
1893 for_each_domain(cpu, sd) {
1894 if (sd->flags & SD_WAKE_AFFINE) {
1895 int best_cpu;
1898 * If possible, preempting this_cpu is
1899 * cheaper than migrating.
1901 if (this_cpu != -1 &&
1902 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1903 rcu_read_unlock();
1904 return this_cpu;
1907 best_cpu = cpumask_first_and(later_mask,
1908 sched_domain_span(sd));
1910 * Last chance: if a cpu being in both later_mask
1911 * and current sd span is valid, that becomes our
1912 * choice. Of course, the latest possible cpu is
1913 * already under consideration through later_mask.
1915 if (best_cpu < nr_cpu_ids) {
1916 rcu_read_unlock();
1917 return best_cpu;
1921 rcu_read_unlock();
1924 * At this point, all our guesses failed, we just return
1925 * 'something', and let the caller sort the things out.
1927 if (this_cpu != -1)
1928 return this_cpu;
1930 cpu = cpumask_any(later_mask);
1931 if (cpu < nr_cpu_ids)
1932 return cpu;
1934 return -1;
1937 /* Locks the rq it finds */
1938 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1940 struct rq *later_rq = NULL;
1941 int tries;
1942 int cpu;
1944 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1945 cpu = find_later_rq(task);
1947 if ((cpu == -1) || (cpu == rq->cpu))
1948 break;
1950 later_rq = cpu_rq(cpu);
1952 if (later_rq->dl.dl_nr_running &&
1953 !dl_time_before(task->dl.deadline,
1954 later_rq->dl.earliest_dl.curr)) {
1956 * Target rq has tasks of equal or earlier deadline,
1957 * retrying does not release any lock and is unlikely
1958 * to yield a different result.
1960 later_rq = NULL;
1961 break;
1964 /* Retry if something changed. */
1965 if (double_lock_balance(rq, later_rq)) {
1966 if (unlikely(task_rq(task) != rq ||
1967 !cpumask_test_cpu(later_rq->cpu, &task->cpus_allowed) ||
1968 task_running(rq, task) ||
1969 !dl_task(task) ||
1970 !task_on_rq_queued(task))) {
1971 double_unlock_balance(rq, later_rq);
1972 later_rq = NULL;
1973 break;
1978 * If the rq we found has no -deadline task, or
1979 * its earliest one has a later deadline than our
1980 * task, the rq is a good one.
1982 if (!later_rq->dl.dl_nr_running ||
1983 dl_time_before(task->dl.deadline,
1984 later_rq->dl.earliest_dl.curr))
1985 break;
1987 /* Otherwise we try again. */
1988 double_unlock_balance(rq, later_rq);
1989 later_rq = NULL;
1992 return later_rq;
1995 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1997 struct task_struct *p;
1999 if (!has_pushable_dl_tasks(rq))
2000 return NULL;
2002 p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2003 struct task_struct, pushable_dl_tasks);
2005 BUG_ON(rq->cpu != task_cpu(p));
2006 BUG_ON(task_current(rq, p));
2007 BUG_ON(p->nr_cpus_allowed <= 1);
2009 BUG_ON(!task_on_rq_queued(p));
2010 BUG_ON(!dl_task(p));
2012 return p;
2016 * See if the non running -deadline tasks on this rq
2017 * can be sent to some other CPU where they can preempt
2018 * and start executing.
2020 static int push_dl_task(struct rq *rq)
2022 struct task_struct *next_task;
2023 struct rq *later_rq;
2024 int ret = 0;
2026 if (!rq->dl.overloaded)
2027 return 0;
2029 next_task = pick_next_pushable_dl_task(rq);
2030 if (!next_task)
2031 return 0;
2033 retry:
2034 if (unlikely(next_task == rq->curr)) {
2035 WARN_ON(1);
2036 return 0;
2040 * If next_task preempts rq->curr, and rq->curr
2041 * can move away, it makes sense to just reschedule
2042 * without going further in pushing next_task.
2044 if (dl_task(rq->curr) &&
2045 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2046 rq->curr->nr_cpus_allowed > 1) {
2047 resched_curr(rq);
2048 return 0;
2051 /* We might release rq lock */
2052 get_task_struct(next_task);
2054 /* Will lock the rq it'll find */
2055 later_rq = find_lock_later_rq(next_task, rq);
2056 if (!later_rq) {
2057 struct task_struct *task;
2060 * We must check all this again, since
2061 * find_lock_later_rq releases rq->lock and it is
2062 * then possible that next_task has migrated.
2064 task = pick_next_pushable_dl_task(rq);
2065 if (task == next_task) {
2067 * The task is still there. We don't try
2068 * again, some other cpu will pull it when ready.
2070 goto out;
2073 if (!task)
2074 /* No more tasks */
2075 goto out;
2077 put_task_struct(next_task);
2078 next_task = task;
2079 goto retry;
2082 deactivate_task(rq, next_task, 0);
2083 sub_running_bw(&next_task->dl, &rq->dl);
2084 sub_rq_bw(&next_task->dl, &rq->dl);
2085 set_task_cpu(next_task, later_rq->cpu);
2086 add_rq_bw(&next_task->dl, &later_rq->dl);
2087 add_running_bw(&next_task->dl, &later_rq->dl);
2088 activate_task(later_rq, next_task, 0);
2089 ret = 1;
2091 resched_curr(later_rq);
2093 double_unlock_balance(rq, later_rq);
2095 out:
2096 put_task_struct(next_task);
2098 return ret;
2101 static void push_dl_tasks(struct rq *rq)
2103 /* push_dl_task() will return true if it moved a -deadline task */
2104 while (push_dl_task(rq))
2108 static void pull_dl_task(struct rq *this_rq)
2110 int this_cpu = this_rq->cpu, cpu;
2111 struct task_struct *p;
2112 bool resched = false;
2113 struct rq *src_rq;
2114 u64 dmin = LONG_MAX;
2116 if (likely(!dl_overloaded(this_rq)))
2117 return;
2120 * Match the barrier from dl_set_overloaded; this guarantees that if we
2121 * see overloaded we must also see the dlo_mask bit.
2123 smp_rmb();
2125 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2126 if (this_cpu == cpu)
2127 continue;
2129 src_rq = cpu_rq(cpu);
2132 * It looks racy, abd it is! However, as in sched_rt.c,
2133 * we are fine with this.
2135 if (this_rq->dl.dl_nr_running &&
2136 dl_time_before(this_rq->dl.earliest_dl.curr,
2137 src_rq->dl.earliest_dl.next))
2138 continue;
2140 /* Might drop this_rq->lock */
2141 double_lock_balance(this_rq, src_rq);
2144 * If there are no more pullable tasks on the
2145 * rq, we're done with it.
2147 if (src_rq->dl.dl_nr_running <= 1)
2148 goto skip;
2150 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2153 * We found a task to be pulled if:
2154 * - it preempts our current (if there's one),
2155 * - it will preempt the last one we pulled (if any).
2157 if (p && dl_time_before(p->dl.deadline, dmin) &&
2158 (!this_rq->dl.dl_nr_running ||
2159 dl_time_before(p->dl.deadline,
2160 this_rq->dl.earliest_dl.curr))) {
2161 WARN_ON(p == src_rq->curr);
2162 WARN_ON(!task_on_rq_queued(p));
2165 * Then we pull iff p has actually an earlier
2166 * deadline than the current task of its runqueue.
2168 if (dl_time_before(p->dl.deadline,
2169 src_rq->curr->dl.deadline))
2170 goto skip;
2172 resched = true;
2174 deactivate_task(src_rq, p, 0);
2175 sub_running_bw(&p->dl, &src_rq->dl);
2176 sub_rq_bw(&p->dl, &src_rq->dl);
2177 set_task_cpu(p, this_cpu);
2178 add_rq_bw(&p->dl, &this_rq->dl);
2179 add_running_bw(&p->dl, &this_rq->dl);
2180 activate_task(this_rq, p, 0);
2181 dmin = p->dl.deadline;
2183 /* Is there any other task even earlier? */
2185 skip:
2186 double_unlock_balance(this_rq, src_rq);
2189 if (resched)
2190 resched_curr(this_rq);
2194 * Since the task is not running and a reschedule is not going to happen
2195 * anytime soon on its runqueue, we try pushing it away now.
2197 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2199 if (!task_running(rq, p) &&
2200 !test_tsk_need_resched(rq->curr) &&
2201 p->nr_cpus_allowed > 1 &&
2202 dl_task(rq->curr) &&
2203 (rq->curr->nr_cpus_allowed < 2 ||
2204 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2205 push_dl_tasks(rq);
2209 static void set_cpus_allowed_dl(struct task_struct *p,
2210 const struct cpumask *new_mask)
2212 struct root_domain *src_rd;
2213 struct rq *rq;
2215 BUG_ON(!dl_task(p));
2217 rq = task_rq(p);
2218 src_rd = rq->rd;
2220 * Migrating a SCHED_DEADLINE task between exclusive
2221 * cpusets (different root_domains) entails a bandwidth
2222 * update. We already made space for us in the destination
2223 * domain (see cpuset_can_attach()).
2225 if (!cpumask_intersects(src_rd->span, new_mask)) {
2226 struct dl_bw *src_dl_b;
2228 src_dl_b = dl_bw_of(cpu_of(rq));
2230 * We now free resources of the root_domain we are migrating
2231 * off. In the worst case, sched_setattr() may temporary fail
2232 * until we complete the update.
2234 raw_spin_lock(&src_dl_b->lock);
2235 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2236 raw_spin_unlock(&src_dl_b->lock);
2239 set_cpus_allowed_common(p, new_mask);
2242 /* Assumes rq->lock is held */
2243 static void rq_online_dl(struct rq *rq)
2245 if (rq->dl.overloaded)
2246 dl_set_overload(rq);
2248 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2249 if (rq->dl.dl_nr_running > 0)
2250 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2253 /* Assumes rq->lock is held */
2254 static void rq_offline_dl(struct rq *rq)
2256 if (rq->dl.overloaded)
2257 dl_clear_overload(rq);
2259 cpudl_clear(&rq->rd->cpudl, rq->cpu);
2260 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2263 void __init init_sched_dl_class(void)
2265 unsigned int i;
2267 for_each_possible_cpu(i)
2268 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2269 GFP_KERNEL, cpu_to_node(i));
2272 #endif /* CONFIG_SMP */
2274 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2277 * task_non_contending() can start the "inactive timer" (if the 0-lag
2278 * time is in the future). If the task switches back to dl before
2279 * the "inactive timer" fires, it can continue to consume its current
2280 * runtime using its current deadline. If it stays outside of
2281 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2282 * will reset the task parameters.
2284 if (task_on_rq_queued(p) && p->dl.dl_runtime)
2285 task_non_contending(p);
2287 if (!task_on_rq_queued(p))
2288 sub_rq_bw(&p->dl, &rq->dl);
2291 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2292 * at the 0-lag time, because the task could have been migrated
2293 * while SCHED_OTHER in the meanwhile.
2295 if (p->dl.dl_non_contending)
2296 p->dl.dl_non_contending = 0;
2299 * Since this might be the only -deadline task on the rq,
2300 * this is the right place to try to pull some other one
2301 * from an overloaded cpu, if any.
2303 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2304 return;
2306 queue_pull_task(rq);
2310 * When switching to -deadline, we may overload the rq, then
2311 * we try to push someone off, if possible.
2313 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2315 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2316 put_task_struct(p);
2318 /* If p is not queued we will update its parameters at next wakeup. */
2319 if (!task_on_rq_queued(p)) {
2320 add_rq_bw(&p->dl, &rq->dl);
2322 return;
2325 if (rq->curr != p) {
2326 #ifdef CONFIG_SMP
2327 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2328 queue_push_tasks(rq);
2329 #endif
2330 if (dl_task(rq->curr))
2331 check_preempt_curr_dl(rq, p, 0);
2332 else
2333 resched_curr(rq);
2338 * If the scheduling parameters of a -deadline task changed,
2339 * a push or pull operation might be needed.
2341 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2342 int oldprio)
2344 if (task_on_rq_queued(p) || rq->curr == p) {
2345 #ifdef CONFIG_SMP
2347 * This might be too much, but unfortunately
2348 * we don't have the old deadline value, and
2349 * we can't argue if the task is increasing
2350 * or lowering its prio, so...
2352 if (!rq->dl.overloaded)
2353 queue_pull_task(rq);
2356 * If we now have a earlier deadline task than p,
2357 * then reschedule, provided p is still on this
2358 * runqueue.
2360 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2361 resched_curr(rq);
2362 #else
2364 * Again, we don't know if p has a earlier
2365 * or later deadline, so let's blindly set a
2366 * (maybe not needed) rescheduling point.
2368 resched_curr(rq);
2369 #endif /* CONFIG_SMP */
2373 const struct sched_class dl_sched_class = {
2374 .next = &rt_sched_class,
2375 .enqueue_task = enqueue_task_dl,
2376 .dequeue_task = dequeue_task_dl,
2377 .yield_task = yield_task_dl,
2379 .check_preempt_curr = check_preempt_curr_dl,
2381 .pick_next_task = pick_next_task_dl,
2382 .put_prev_task = put_prev_task_dl,
2384 #ifdef CONFIG_SMP
2385 .select_task_rq = select_task_rq_dl,
2386 .migrate_task_rq = migrate_task_rq_dl,
2387 .set_cpus_allowed = set_cpus_allowed_dl,
2388 .rq_online = rq_online_dl,
2389 .rq_offline = rq_offline_dl,
2390 .task_woken = task_woken_dl,
2391 #endif
2393 .set_curr_task = set_curr_task_dl,
2394 .task_tick = task_tick_dl,
2395 .task_fork = task_fork_dl,
2397 .prio_changed = prio_changed_dl,
2398 .switched_from = switched_from_dl,
2399 .switched_to = switched_to_dl,
2401 .update_curr = update_curr_dl,
2404 int sched_dl_global_validate(void)
2406 u64 runtime = global_rt_runtime();
2407 u64 period = global_rt_period();
2408 u64 new_bw = to_ratio(period, runtime);
2409 struct dl_bw *dl_b;
2410 int cpu, ret = 0;
2411 unsigned long flags;
2414 * Here we want to check the bandwidth not being set to some
2415 * value smaller than the currently allocated bandwidth in
2416 * any of the root_domains.
2418 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2419 * cycling on root_domains... Discussion on different/better
2420 * solutions is welcome!
2422 for_each_possible_cpu(cpu) {
2423 rcu_read_lock_sched();
2424 dl_b = dl_bw_of(cpu);
2426 raw_spin_lock_irqsave(&dl_b->lock, flags);
2427 if (new_bw < dl_b->total_bw)
2428 ret = -EBUSY;
2429 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2431 rcu_read_unlock_sched();
2433 if (ret)
2434 break;
2437 return ret;
2440 void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2442 if (global_rt_runtime() == RUNTIME_INF) {
2443 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2444 dl_rq->extra_bw = 1 << BW_SHIFT;
2445 } else {
2446 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2447 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2448 dl_rq->extra_bw = to_ratio(global_rt_period(),
2449 global_rt_runtime());
2453 void sched_dl_do_global(void)
2455 u64 new_bw = -1;
2456 struct dl_bw *dl_b;
2457 int cpu;
2458 unsigned long flags;
2460 def_dl_bandwidth.dl_period = global_rt_period();
2461 def_dl_bandwidth.dl_runtime = global_rt_runtime();
2463 if (global_rt_runtime() != RUNTIME_INF)
2464 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2467 * FIXME: As above...
2469 for_each_possible_cpu(cpu) {
2470 rcu_read_lock_sched();
2471 dl_b = dl_bw_of(cpu);
2473 raw_spin_lock_irqsave(&dl_b->lock, flags);
2474 dl_b->bw = new_bw;
2475 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2477 rcu_read_unlock_sched();
2478 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2483 * We must be sure that accepting a new task (or allowing changing the
2484 * parameters of an existing one) is consistent with the bandwidth
2485 * constraints. If yes, this function also accordingly updates the currently
2486 * allocated bandwidth to reflect the new situation.
2488 * This function is called while holding p's rq->lock.
2490 int sched_dl_overflow(struct task_struct *p, int policy,
2491 const struct sched_attr *attr)
2493 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2494 u64 period = attr->sched_period ?: attr->sched_deadline;
2495 u64 runtime = attr->sched_runtime;
2496 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2497 int cpus, err = -1;
2499 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2500 return 0;
2502 /* !deadline task may carry old deadline bandwidth */
2503 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2504 return 0;
2507 * Either if a task, enters, leave, or stays -deadline but changes
2508 * its parameters, we may need to update accordingly the total
2509 * allocated bandwidth of the container.
2511 raw_spin_lock(&dl_b->lock);
2512 cpus = dl_bw_cpus(task_cpu(p));
2513 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2514 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2515 if (hrtimer_active(&p->dl.inactive_timer))
2516 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2517 __dl_add(dl_b, new_bw, cpus);
2518 err = 0;
2519 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2520 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2522 * XXX this is slightly incorrect: when the task
2523 * utilization decreases, we should delay the total
2524 * utilization change until the task's 0-lag point.
2525 * But this would require to set the task's "inactive
2526 * timer" when the task is not inactive.
2528 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2529 __dl_add(dl_b, new_bw, cpus);
2530 dl_change_utilization(p, new_bw);
2531 err = 0;
2532 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2534 * Do not decrease the total deadline utilization here,
2535 * switched_from_dl() will take care to do it at the correct
2536 * (0-lag) time.
2538 err = 0;
2540 raw_spin_unlock(&dl_b->lock);
2542 return err;
2546 * This function initializes the sched_dl_entity of a newly becoming
2547 * SCHED_DEADLINE task.
2549 * Only the static values are considered here, the actual runtime and the
2550 * absolute deadline will be properly calculated when the task is enqueued
2551 * for the first time with its new policy.
2553 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2555 struct sched_dl_entity *dl_se = &p->dl;
2557 dl_se->dl_runtime = attr->sched_runtime;
2558 dl_se->dl_deadline = attr->sched_deadline;
2559 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2560 dl_se->flags = attr->sched_flags;
2561 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2562 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2565 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2567 struct sched_dl_entity *dl_se = &p->dl;
2569 attr->sched_priority = p->rt_priority;
2570 attr->sched_runtime = dl_se->dl_runtime;
2571 attr->sched_deadline = dl_se->dl_deadline;
2572 attr->sched_period = dl_se->dl_period;
2573 attr->sched_flags = dl_se->flags;
2577 * This function validates the new parameters of a -deadline task.
2578 * We ask for the deadline not being zero, and greater or equal
2579 * than the runtime, as well as the period of being zero or
2580 * greater than deadline. Furthermore, we have to be sure that
2581 * user parameters are above the internal resolution of 1us (we
2582 * check sched_runtime only since it is always the smaller one) and
2583 * below 2^63 ns (we have to check both sched_deadline and
2584 * sched_period, as the latter can be zero).
2586 bool __checkparam_dl(const struct sched_attr *attr)
2588 /* special dl tasks don't actually use any parameter */
2589 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2590 return true;
2592 /* deadline != 0 */
2593 if (attr->sched_deadline == 0)
2594 return false;
2597 * Since we truncate DL_SCALE bits, make sure we're at least
2598 * that big.
2600 if (attr->sched_runtime < (1ULL << DL_SCALE))
2601 return false;
2604 * Since we use the MSB for wrap-around and sign issues, make
2605 * sure it's not set (mind that period can be equal to zero).
2607 if (attr->sched_deadline & (1ULL << 63) ||
2608 attr->sched_period & (1ULL << 63))
2609 return false;
2611 /* runtime <= deadline <= period (if period != 0) */
2612 if ((attr->sched_period != 0 &&
2613 attr->sched_period < attr->sched_deadline) ||
2614 attr->sched_deadline < attr->sched_runtime)
2615 return false;
2617 return true;
2621 * This function clears the sched_dl_entity static params.
2623 void __dl_clear_params(struct task_struct *p)
2625 struct sched_dl_entity *dl_se = &p->dl;
2627 dl_se->dl_runtime = 0;
2628 dl_se->dl_deadline = 0;
2629 dl_se->dl_period = 0;
2630 dl_se->flags = 0;
2631 dl_se->dl_bw = 0;
2632 dl_se->dl_density = 0;
2634 dl_se->dl_throttled = 0;
2635 dl_se->dl_yielded = 0;
2636 dl_se->dl_non_contending = 0;
2637 dl_se->dl_overrun = 0;
2640 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2642 struct sched_dl_entity *dl_se = &p->dl;
2644 if (dl_se->dl_runtime != attr->sched_runtime ||
2645 dl_se->dl_deadline != attr->sched_deadline ||
2646 dl_se->dl_period != attr->sched_period ||
2647 dl_se->flags != attr->sched_flags)
2648 return true;
2650 return false;
2653 #ifdef CONFIG_SMP
2654 int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2656 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
2657 cs_cpus_allowed);
2658 struct dl_bw *dl_b;
2659 bool overflow;
2660 int cpus, ret;
2661 unsigned long flags;
2663 rcu_read_lock_sched();
2664 dl_b = dl_bw_of(dest_cpu);
2665 raw_spin_lock_irqsave(&dl_b->lock, flags);
2666 cpus = dl_bw_cpus(dest_cpu);
2667 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
2668 if (overflow)
2669 ret = -EBUSY;
2670 else {
2672 * We reserve space for this task in the destination
2673 * root_domain, as we can't fail after this point.
2674 * We will free resources in the source root_domain
2675 * later on (see set_cpus_allowed_dl()).
2677 __dl_add(dl_b, p->dl.dl_bw, cpus);
2678 ret = 0;
2680 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2681 rcu_read_unlock_sched();
2682 return ret;
2685 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2686 const struct cpumask *trial)
2688 int ret = 1, trial_cpus;
2689 struct dl_bw *cur_dl_b;
2690 unsigned long flags;
2692 rcu_read_lock_sched();
2693 cur_dl_b = dl_bw_of(cpumask_any(cur));
2694 trial_cpus = cpumask_weight(trial);
2696 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2697 if (cur_dl_b->bw != -1 &&
2698 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2699 ret = 0;
2700 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2701 rcu_read_unlock_sched();
2702 return ret;
2705 bool dl_cpu_busy(unsigned int cpu)
2707 unsigned long flags;
2708 struct dl_bw *dl_b;
2709 bool overflow;
2710 int cpus;
2712 rcu_read_lock_sched();
2713 dl_b = dl_bw_of(cpu);
2714 raw_spin_lock_irqsave(&dl_b->lock, flags);
2715 cpus = dl_bw_cpus(cpu);
2716 overflow = __dl_overflow(dl_b, cpus, 0, 0);
2717 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2718 rcu_read_unlock_sched();
2719 return overflow;
2721 #endif
2723 #ifdef CONFIG_SCHED_DEBUG
2724 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2726 void print_dl_stats(struct seq_file *m, int cpu)
2728 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2730 #endif /* CONFIG_SCHED_DEBUG */