ARM: dts: stm32: add gadget fifo sizes to usbotg_hs on stm32f746
[linux/fpc-iii.git] / kernel / sched / sched.h
blobfb5fc458547ff83672dc4265c39a330c74a60e62
1 /* SPDX-License-Identifier: GPL-2.0 */
3 #include <linux/sched.h>
4 #include <linux/sched/autogroup.h>
5 #include <linux/sched/sysctl.h>
6 #include <linux/sched/topology.h>
7 #include <linux/sched/rt.h>
8 #include <linux/sched/deadline.h>
9 #include <linux/sched/clock.h>
10 #include <linux/sched/wake_q.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/sched/mm.h>
14 #include <linux/sched/cpufreq.h>
15 #include <linux/sched/stat.h>
16 #include <linux/sched/nohz.h>
17 #include <linux/sched/debug.h>
18 #include <linux/sched/hotplug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/sched/init.h>
24 #include <linux/u64_stats_sync.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/binfmts.h>
27 #include <linux/mutex.h>
28 #include <linux/spinlock.h>
29 #include <linux/stop_machine.h>
30 #include <linux/irq_work.h>
31 #include <linux/tick.h>
32 #include <linux/slab.h>
33 #include <linux/cgroup.h>
35 #ifdef CONFIG_PARAVIRT
36 #include <asm/paravirt.h>
37 #endif
39 #include "cpupri.h"
40 #include "cpudeadline.h"
42 #ifdef CONFIG_SCHED_DEBUG
43 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
44 #else
45 # define SCHED_WARN_ON(x) ({ (void)(x), 0; })
46 #endif
48 struct rq;
49 struct cpuidle_state;
51 /* task_struct::on_rq states: */
52 #define TASK_ON_RQ_QUEUED 1
53 #define TASK_ON_RQ_MIGRATING 2
55 extern __read_mostly int scheduler_running;
57 extern unsigned long calc_load_update;
58 extern atomic_long_t calc_load_tasks;
60 extern void calc_global_load_tick(struct rq *this_rq);
61 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
63 #ifdef CONFIG_SMP
64 extern void cpu_load_update_active(struct rq *this_rq);
65 #else
66 static inline void cpu_load_update_active(struct rq *this_rq) { }
67 #endif
70 * Helpers for converting nanosecond timing to jiffy resolution
72 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
75 * Increase resolution of nice-level calculations for 64-bit architectures.
76 * The extra resolution improves shares distribution and load balancing of
77 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
78 * hierarchies, especially on larger systems. This is not a user-visible change
79 * and does not change the user-interface for setting shares/weights.
81 * We increase resolution only if we have enough bits to allow this increased
82 * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
83 * pretty high and the returns do not justify the increased costs.
85 * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
86 * increase coverage and consistency always enable it on 64bit platforms.
88 #ifdef CONFIG_64BIT
89 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
90 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
91 # define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
92 #else
93 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
94 # define scale_load(w) (w)
95 # define scale_load_down(w) (w)
96 #endif
99 * Task weight (visible to users) and its load (invisible to users) have
100 * independent resolution, but they should be well calibrated. We use
101 * scale_load() and scale_load_down(w) to convert between them. The
102 * following must be true:
104 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
107 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
110 * Single value that decides SCHED_DEADLINE internal math precision.
111 * 10 -> just above 1us
112 * 9 -> just above 0.5us
114 #define DL_SCALE (10)
117 * These are the 'tuning knobs' of the scheduler:
121 * single value that denotes runtime == period, ie unlimited time.
123 #define RUNTIME_INF ((u64)~0ULL)
125 static inline int idle_policy(int policy)
127 return policy == SCHED_IDLE;
129 static inline int fair_policy(int policy)
131 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
134 static inline int rt_policy(int policy)
136 return policy == SCHED_FIFO || policy == SCHED_RR;
139 static inline int dl_policy(int policy)
141 return policy == SCHED_DEADLINE;
143 static inline bool valid_policy(int policy)
145 return idle_policy(policy) || fair_policy(policy) ||
146 rt_policy(policy) || dl_policy(policy);
149 static inline int task_has_rt_policy(struct task_struct *p)
151 return rt_policy(p->policy);
154 static inline int task_has_dl_policy(struct task_struct *p)
156 return dl_policy(p->policy);
159 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
162 * !! For sched_setattr_nocheck() (kernel) only !!
164 * This is actually gross. :(
166 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
167 * tasks, but still be able to sleep. We need this on platforms that cannot
168 * atomically change clock frequency. Remove once fast switching will be
169 * available on such platforms.
171 * SUGOV stands for SchedUtil GOVernor.
173 #define SCHED_FLAG_SUGOV 0x10000000
175 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
177 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
178 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
179 #else
180 return false;
181 #endif
185 * Tells if entity @a should preempt entity @b.
187 static inline bool
188 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
190 return dl_entity_is_special(a) ||
191 dl_time_before(a->deadline, b->deadline);
195 * This is the priority-queue data structure of the RT scheduling class:
197 struct rt_prio_array {
198 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
199 struct list_head queue[MAX_RT_PRIO];
202 struct rt_bandwidth {
203 /* nests inside the rq lock: */
204 raw_spinlock_t rt_runtime_lock;
205 ktime_t rt_period;
206 u64 rt_runtime;
207 struct hrtimer rt_period_timer;
208 unsigned int rt_period_active;
211 void __dl_clear_params(struct task_struct *p);
214 * To keep the bandwidth of -deadline tasks and groups under control
215 * we need some place where:
216 * - store the maximum -deadline bandwidth of the system (the group);
217 * - cache the fraction of that bandwidth that is currently allocated.
219 * This is all done in the data structure below. It is similar to the
220 * one used for RT-throttling (rt_bandwidth), with the main difference
221 * that, since here we are only interested in admission control, we
222 * do not decrease any runtime while the group "executes", neither we
223 * need a timer to replenish it.
225 * With respect to SMP, the bandwidth is given on a per-CPU basis,
226 * meaning that:
227 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
228 * - dl_total_bw array contains, in the i-eth element, the currently
229 * allocated bandwidth on the i-eth CPU.
230 * Moreover, groups consume bandwidth on each CPU, while tasks only
231 * consume bandwidth on the CPU they're running on.
232 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
233 * that will be shown the next time the proc or cgroup controls will
234 * be red. It on its turn can be changed by writing on its own
235 * control.
237 struct dl_bandwidth {
238 raw_spinlock_t dl_runtime_lock;
239 u64 dl_runtime;
240 u64 dl_period;
243 static inline int dl_bandwidth_enabled(void)
245 return sysctl_sched_rt_runtime >= 0;
248 struct dl_bw {
249 raw_spinlock_t lock;
250 u64 bw, total_bw;
253 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
255 static inline
256 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
258 dl_b->total_bw -= tsk_bw;
259 __dl_update(dl_b, (s32)tsk_bw / cpus);
262 static inline
263 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
265 dl_b->total_bw += tsk_bw;
266 __dl_update(dl_b, -((s32)tsk_bw / cpus));
269 static inline
270 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
272 return dl_b->bw != -1 &&
273 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
276 void dl_change_utilization(struct task_struct *p, u64 new_bw);
277 extern void init_dl_bw(struct dl_bw *dl_b);
278 extern int sched_dl_global_validate(void);
279 extern void sched_dl_do_global(void);
280 extern int sched_dl_overflow(struct task_struct *p, int policy,
281 const struct sched_attr *attr);
282 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
283 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
284 extern bool __checkparam_dl(const struct sched_attr *attr);
285 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
286 extern int dl_task_can_attach(struct task_struct *p,
287 const struct cpumask *cs_cpus_allowed);
288 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
289 const struct cpumask *trial);
290 extern bool dl_cpu_busy(unsigned int cpu);
292 #ifdef CONFIG_CGROUP_SCHED
294 #include <linux/cgroup.h>
296 struct cfs_rq;
297 struct rt_rq;
299 extern struct list_head task_groups;
301 struct cfs_bandwidth {
302 #ifdef CONFIG_CFS_BANDWIDTH
303 raw_spinlock_t lock;
304 ktime_t period;
305 u64 quota, runtime;
306 s64 hierarchical_quota;
307 u64 runtime_expires;
309 int idle, period_active;
310 struct hrtimer period_timer, slack_timer;
311 struct list_head throttled_cfs_rq;
313 /* statistics */
314 int nr_periods, nr_throttled;
315 u64 throttled_time;
316 #endif
319 /* task group related information */
320 struct task_group {
321 struct cgroup_subsys_state css;
323 #ifdef CONFIG_FAIR_GROUP_SCHED
324 /* schedulable entities of this group on each cpu */
325 struct sched_entity **se;
326 /* runqueue "owned" by this group on each cpu */
327 struct cfs_rq **cfs_rq;
328 unsigned long shares;
330 #ifdef CONFIG_SMP
332 * load_avg can be heavily contended at clock tick time, so put
333 * it in its own cacheline separated from the fields above which
334 * will also be accessed at each tick.
336 atomic_long_t load_avg ____cacheline_aligned;
337 #endif
338 #endif
340 #ifdef CONFIG_RT_GROUP_SCHED
341 struct sched_rt_entity **rt_se;
342 struct rt_rq **rt_rq;
344 struct rt_bandwidth rt_bandwidth;
345 #endif
347 struct rcu_head rcu;
348 struct list_head list;
350 struct task_group *parent;
351 struct list_head siblings;
352 struct list_head children;
354 #ifdef CONFIG_SCHED_AUTOGROUP
355 struct autogroup *autogroup;
356 #endif
358 struct cfs_bandwidth cfs_bandwidth;
361 #ifdef CONFIG_FAIR_GROUP_SCHED
362 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
365 * A weight of 0 or 1 can cause arithmetics problems.
366 * A weight of a cfs_rq is the sum of weights of which entities
367 * are queued on this cfs_rq, so a weight of a entity should not be
368 * too large, so as the shares value of a task group.
369 * (The default weight is 1024 - so there's no practical
370 * limitation from this.)
372 #define MIN_SHARES (1UL << 1)
373 #define MAX_SHARES (1UL << 18)
374 #endif
376 typedef int (*tg_visitor)(struct task_group *, void *);
378 extern int walk_tg_tree_from(struct task_group *from,
379 tg_visitor down, tg_visitor up, void *data);
382 * Iterate the full tree, calling @down when first entering a node and @up when
383 * leaving it for the final time.
385 * Caller must hold rcu_lock or sufficient equivalent.
387 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
389 return walk_tg_tree_from(&root_task_group, down, up, data);
392 extern int tg_nop(struct task_group *tg, void *data);
394 extern void free_fair_sched_group(struct task_group *tg);
395 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
396 extern void online_fair_sched_group(struct task_group *tg);
397 extern void unregister_fair_sched_group(struct task_group *tg);
398 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
399 struct sched_entity *se, int cpu,
400 struct sched_entity *parent);
401 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
403 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
404 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
405 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
407 extern void free_rt_sched_group(struct task_group *tg);
408 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
409 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
410 struct sched_rt_entity *rt_se, int cpu,
411 struct sched_rt_entity *parent);
412 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
413 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
414 extern long sched_group_rt_runtime(struct task_group *tg);
415 extern long sched_group_rt_period(struct task_group *tg);
416 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
418 extern struct task_group *sched_create_group(struct task_group *parent);
419 extern void sched_online_group(struct task_group *tg,
420 struct task_group *parent);
421 extern void sched_destroy_group(struct task_group *tg);
422 extern void sched_offline_group(struct task_group *tg);
424 extern void sched_move_task(struct task_struct *tsk);
426 #ifdef CONFIG_FAIR_GROUP_SCHED
427 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
429 #ifdef CONFIG_SMP
430 extern void set_task_rq_fair(struct sched_entity *se,
431 struct cfs_rq *prev, struct cfs_rq *next);
432 #else /* !CONFIG_SMP */
433 static inline void set_task_rq_fair(struct sched_entity *se,
434 struct cfs_rq *prev, struct cfs_rq *next) { }
435 #endif /* CONFIG_SMP */
436 #endif /* CONFIG_FAIR_GROUP_SCHED */
438 #else /* CONFIG_CGROUP_SCHED */
440 struct cfs_bandwidth { };
442 #endif /* CONFIG_CGROUP_SCHED */
444 /* CFS-related fields in a runqueue */
445 struct cfs_rq {
446 struct load_weight load;
447 unsigned long runnable_weight;
448 unsigned int nr_running, h_nr_running;
450 u64 exec_clock;
451 u64 min_vruntime;
452 #ifndef CONFIG_64BIT
453 u64 min_vruntime_copy;
454 #endif
456 struct rb_root_cached tasks_timeline;
459 * 'curr' points to currently running entity on this cfs_rq.
460 * It is set to NULL otherwise (i.e when none are currently running).
462 struct sched_entity *curr, *next, *last, *skip;
464 #ifdef CONFIG_SCHED_DEBUG
465 unsigned int nr_spread_over;
466 #endif
468 #ifdef CONFIG_SMP
470 * CFS load tracking
472 struct sched_avg avg;
473 #ifndef CONFIG_64BIT
474 u64 load_last_update_time_copy;
475 #endif
476 struct {
477 raw_spinlock_t lock ____cacheline_aligned;
478 int nr;
479 unsigned long load_avg;
480 unsigned long util_avg;
481 unsigned long runnable_sum;
482 } removed;
484 #ifdef CONFIG_FAIR_GROUP_SCHED
485 unsigned long tg_load_avg_contrib;
486 long propagate;
487 long prop_runnable_sum;
490 * h_load = weight * f(tg)
492 * Where f(tg) is the recursive weight fraction assigned to
493 * this group.
495 unsigned long h_load;
496 u64 last_h_load_update;
497 struct sched_entity *h_load_next;
498 #endif /* CONFIG_FAIR_GROUP_SCHED */
499 #endif /* CONFIG_SMP */
501 #ifdef CONFIG_FAIR_GROUP_SCHED
502 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
505 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
506 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
507 * (like users, containers etc.)
509 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
510 * list is used during load balance.
512 int on_list;
513 struct list_head leaf_cfs_rq_list;
514 struct task_group *tg; /* group that "owns" this runqueue */
516 #ifdef CONFIG_CFS_BANDWIDTH
517 int runtime_enabled;
518 u64 runtime_expires;
519 s64 runtime_remaining;
521 u64 throttled_clock, throttled_clock_task;
522 u64 throttled_clock_task_time;
523 int throttled, throttle_count;
524 struct list_head throttled_list;
525 #endif /* CONFIG_CFS_BANDWIDTH */
526 #endif /* CONFIG_FAIR_GROUP_SCHED */
529 static inline int rt_bandwidth_enabled(void)
531 return sysctl_sched_rt_runtime >= 0;
534 /* RT IPI pull logic requires IRQ_WORK */
535 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
536 # define HAVE_RT_PUSH_IPI
537 #endif
539 /* Real-Time classes' related field in a runqueue: */
540 struct rt_rq {
541 struct rt_prio_array active;
542 unsigned int rt_nr_running;
543 unsigned int rr_nr_running;
544 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
545 struct {
546 int curr; /* highest queued rt task prio */
547 #ifdef CONFIG_SMP
548 int next; /* next highest */
549 #endif
550 } highest_prio;
551 #endif
552 #ifdef CONFIG_SMP
553 unsigned long rt_nr_migratory;
554 unsigned long rt_nr_total;
555 int overloaded;
556 struct plist_head pushable_tasks;
557 #endif /* CONFIG_SMP */
558 int rt_queued;
560 int rt_throttled;
561 u64 rt_time;
562 u64 rt_runtime;
563 /* Nests inside the rq lock: */
564 raw_spinlock_t rt_runtime_lock;
566 #ifdef CONFIG_RT_GROUP_SCHED
567 unsigned long rt_nr_boosted;
569 struct rq *rq;
570 struct task_group *tg;
571 #endif
574 /* Deadline class' related fields in a runqueue */
575 struct dl_rq {
576 /* runqueue is an rbtree, ordered by deadline */
577 struct rb_root_cached root;
579 unsigned long dl_nr_running;
581 #ifdef CONFIG_SMP
583 * Deadline values of the currently executing and the
584 * earliest ready task on this rq. Caching these facilitates
585 * the decision wether or not a ready but not running task
586 * should migrate somewhere else.
588 struct {
589 u64 curr;
590 u64 next;
591 } earliest_dl;
593 unsigned long dl_nr_migratory;
594 int overloaded;
597 * Tasks on this rq that can be pushed away. They are kept in
598 * an rb-tree, ordered by tasks' deadlines, with caching
599 * of the leftmost (earliest deadline) element.
601 struct rb_root_cached pushable_dl_tasks_root;
602 #else
603 struct dl_bw dl_bw;
604 #endif
606 * "Active utilization" for this runqueue: increased when a
607 * task wakes up (becomes TASK_RUNNING) and decreased when a
608 * task blocks
610 u64 running_bw;
613 * Utilization of the tasks "assigned" to this runqueue (including
614 * the tasks that are in runqueue and the tasks that executed on this
615 * CPU and blocked). Increased when a task moves to this runqueue, and
616 * decreased when the task moves away (migrates, changes scheduling
617 * policy, or terminates).
618 * This is needed to compute the "inactive utilization" for the
619 * runqueue (inactive utilization = this_bw - running_bw).
621 u64 this_bw;
622 u64 extra_bw;
625 * Inverse of the fraction of CPU utilization that can be reclaimed
626 * by the GRUB algorithm.
628 u64 bw_ratio;
631 #ifdef CONFIG_SMP
633 static inline bool sched_asym_prefer(int a, int b)
635 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
639 * We add the notion of a root-domain which will be used to define per-domain
640 * variables. Each exclusive cpuset essentially defines an island domain by
641 * fully partitioning the member cpus from any other cpuset. Whenever a new
642 * exclusive cpuset is created, we also create and attach a new root-domain
643 * object.
646 struct root_domain {
647 atomic_t refcount;
648 atomic_t rto_count;
649 struct rcu_head rcu;
650 cpumask_var_t span;
651 cpumask_var_t online;
653 /* Indicate more than one runnable task for any CPU */
654 bool overload;
657 * The bit corresponding to a CPU gets set here if such CPU has more
658 * than one runnable -deadline task (as it is below for RT tasks).
660 cpumask_var_t dlo_mask;
661 atomic_t dlo_count;
662 struct dl_bw dl_bw;
663 struct cpudl cpudl;
665 #ifdef HAVE_RT_PUSH_IPI
667 * For IPI pull requests, loop across the rto_mask.
669 struct irq_work rto_push_work;
670 raw_spinlock_t rto_lock;
671 /* These are only updated and read within rto_lock */
672 int rto_loop;
673 int rto_cpu;
674 /* These atomics are updated outside of a lock */
675 atomic_t rto_loop_next;
676 atomic_t rto_loop_start;
677 #endif
679 * The "RT overload" flag: it gets set if a CPU has more than
680 * one runnable RT task.
682 cpumask_var_t rto_mask;
683 struct cpupri cpupri;
685 unsigned long max_cpu_capacity;
688 extern struct root_domain def_root_domain;
689 extern struct mutex sched_domains_mutex;
691 extern void init_defrootdomain(void);
692 extern int sched_init_domains(const struct cpumask *cpu_map);
693 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
694 extern void sched_get_rd(struct root_domain *rd);
695 extern void sched_put_rd(struct root_domain *rd);
697 #ifdef HAVE_RT_PUSH_IPI
698 extern void rto_push_irq_work_func(struct irq_work *work);
699 #endif
700 #endif /* CONFIG_SMP */
703 * This is the main, per-CPU runqueue data structure.
705 * Locking rule: those places that want to lock multiple runqueues
706 * (such as the load balancing or the thread migration code), lock
707 * acquire operations must be ordered by ascending &runqueue.
709 struct rq {
710 /* runqueue lock: */
711 raw_spinlock_t lock;
714 * nr_running and cpu_load should be in the same cacheline because
715 * remote CPUs use both these fields when doing load calculation.
717 unsigned int nr_running;
718 #ifdef CONFIG_NUMA_BALANCING
719 unsigned int nr_numa_running;
720 unsigned int nr_preferred_running;
721 #endif
722 #define CPU_LOAD_IDX_MAX 5
723 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
724 #ifdef CONFIG_NO_HZ_COMMON
725 #ifdef CONFIG_SMP
726 unsigned long last_load_update_tick;
727 #endif /* CONFIG_SMP */
728 unsigned long nohz_flags;
729 #endif /* CONFIG_NO_HZ_COMMON */
730 #ifdef CONFIG_NO_HZ_FULL
731 unsigned long last_sched_tick;
732 #endif
733 /* capture load from *all* tasks on this cpu: */
734 struct load_weight load;
735 unsigned long nr_load_updates;
736 u64 nr_switches;
738 struct cfs_rq cfs;
739 struct rt_rq rt;
740 struct dl_rq dl;
742 #ifdef CONFIG_FAIR_GROUP_SCHED
743 /* list of leaf cfs_rq on this cpu: */
744 struct list_head leaf_cfs_rq_list;
745 struct list_head *tmp_alone_branch;
746 #endif /* CONFIG_FAIR_GROUP_SCHED */
749 * This is part of a global counter where only the total sum
750 * over all CPUs matters. A task can increase this counter on
751 * one CPU and if it got migrated afterwards it may decrease
752 * it on another CPU. Always updated under the runqueue lock:
754 unsigned long nr_uninterruptible;
756 struct task_struct *curr, *idle, *stop;
757 unsigned long next_balance;
758 struct mm_struct *prev_mm;
760 unsigned int clock_update_flags;
761 u64 clock;
762 u64 clock_task;
764 atomic_t nr_iowait;
766 #ifdef CONFIG_SMP
767 struct root_domain *rd;
768 struct sched_domain *sd;
770 unsigned long cpu_capacity;
771 unsigned long cpu_capacity_orig;
773 struct callback_head *balance_callback;
775 unsigned char idle_balance;
776 /* For active balancing */
777 int active_balance;
778 int push_cpu;
779 struct cpu_stop_work active_balance_work;
780 /* cpu of this runqueue: */
781 int cpu;
782 int online;
784 struct list_head cfs_tasks;
786 u64 rt_avg;
787 u64 age_stamp;
788 u64 idle_stamp;
789 u64 avg_idle;
791 /* This is used to determine avg_idle's max value */
792 u64 max_idle_balance_cost;
793 #endif
795 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
796 u64 prev_irq_time;
797 #endif
798 #ifdef CONFIG_PARAVIRT
799 u64 prev_steal_time;
800 #endif
801 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
802 u64 prev_steal_time_rq;
803 #endif
805 /* calc_load related fields */
806 unsigned long calc_load_update;
807 long calc_load_active;
809 #ifdef CONFIG_SCHED_HRTICK
810 #ifdef CONFIG_SMP
811 int hrtick_csd_pending;
812 call_single_data_t hrtick_csd;
813 #endif
814 struct hrtimer hrtick_timer;
815 #endif
817 #ifdef CONFIG_SCHEDSTATS
818 /* latency stats */
819 struct sched_info rq_sched_info;
820 unsigned long long rq_cpu_time;
821 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
823 /* sys_sched_yield() stats */
824 unsigned int yld_count;
826 /* schedule() stats */
827 unsigned int sched_count;
828 unsigned int sched_goidle;
830 /* try_to_wake_up() stats */
831 unsigned int ttwu_count;
832 unsigned int ttwu_local;
833 #endif
835 #ifdef CONFIG_SMP
836 struct llist_head wake_list;
837 #endif
839 #ifdef CONFIG_CPU_IDLE
840 /* Must be inspected within a rcu lock section */
841 struct cpuidle_state *idle_state;
842 #endif
845 static inline int cpu_of(struct rq *rq)
847 #ifdef CONFIG_SMP
848 return rq->cpu;
849 #else
850 return 0;
851 #endif
855 #ifdef CONFIG_SCHED_SMT
857 extern struct static_key_false sched_smt_present;
859 extern void __update_idle_core(struct rq *rq);
861 static inline void update_idle_core(struct rq *rq)
863 if (static_branch_unlikely(&sched_smt_present))
864 __update_idle_core(rq);
867 #else
868 static inline void update_idle_core(struct rq *rq) { }
869 #endif
871 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
873 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
874 #define this_rq() this_cpu_ptr(&runqueues)
875 #define task_rq(p) cpu_rq(task_cpu(p))
876 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
877 #define raw_rq() raw_cpu_ptr(&runqueues)
879 static inline u64 __rq_clock_broken(struct rq *rq)
881 return READ_ONCE(rq->clock);
885 * rq::clock_update_flags bits
887 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
888 * call to __schedule(). This is an optimisation to avoid
889 * neighbouring rq clock updates.
891 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
892 * in effect and calls to update_rq_clock() are being ignored.
894 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
895 * made to update_rq_clock() since the last time rq::lock was pinned.
897 * If inside of __schedule(), clock_update_flags will have been
898 * shifted left (a left shift is a cheap operation for the fast path
899 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
901 * if (rq-clock_update_flags >= RQCF_UPDATED)
903 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
904 * one position though, because the next rq_unpin_lock() will shift it
905 * back.
907 #define RQCF_REQ_SKIP 0x01
908 #define RQCF_ACT_SKIP 0x02
909 #define RQCF_UPDATED 0x04
911 static inline void assert_clock_updated(struct rq *rq)
914 * The only reason for not seeing a clock update since the
915 * last rq_pin_lock() is if we're currently skipping updates.
917 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
920 static inline u64 rq_clock(struct rq *rq)
922 lockdep_assert_held(&rq->lock);
923 assert_clock_updated(rq);
925 return rq->clock;
928 static inline u64 rq_clock_task(struct rq *rq)
930 lockdep_assert_held(&rq->lock);
931 assert_clock_updated(rq);
933 return rq->clock_task;
936 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
938 lockdep_assert_held(&rq->lock);
939 if (skip)
940 rq->clock_update_flags |= RQCF_REQ_SKIP;
941 else
942 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
945 struct rq_flags {
946 unsigned long flags;
947 struct pin_cookie cookie;
948 #ifdef CONFIG_SCHED_DEBUG
950 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
951 * current pin context is stashed here in case it needs to be
952 * restored in rq_repin_lock().
954 unsigned int clock_update_flags;
955 #endif
958 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
960 rf->cookie = lockdep_pin_lock(&rq->lock);
962 #ifdef CONFIG_SCHED_DEBUG
963 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
964 rf->clock_update_flags = 0;
965 #endif
968 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
970 #ifdef CONFIG_SCHED_DEBUG
971 if (rq->clock_update_flags > RQCF_ACT_SKIP)
972 rf->clock_update_flags = RQCF_UPDATED;
973 #endif
975 lockdep_unpin_lock(&rq->lock, rf->cookie);
978 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
980 lockdep_repin_lock(&rq->lock, rf->cookie);
982 #ifdef CONFIG_SCHED_DEBUG
984 * Restore the value we stashed in @rf for this pin context.
986 rq->clock_update_flags |= rf->clock_update_flags;
987 #endif
990 #ifdef CONFIG_NUMA
991 enum numa_topology_type {
992 NUMA_DIRECT,
993 NUMA_GLUELESS_MESH,
994 NUMA_BACKPLANE,
996 extern enum numa_topology_type sched_numa_topology_type;
997 extern int sched_max_numa_distance;
998 extern bool find_numa_distance(int distance);
999 #endif
1001 #ifdef CONFIG_NUMA
1002 extern void sched_init_numa(void);
1003 extern void sched_domains_numa_masks_set(unsigned int cpu);
1004 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1005 #else
1006 static inline void sched_init_numa(void) { }
1007 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1008 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1009 #endif
1011 #ifdef CONFIG_NUMA_BALANCING
1012 /* The regions in numa_faults array from task_struct */
1013 enum numa_faults_stats {
1014 NUMA_MEM = 0,
1015 NUMA_CPU,
1016 NUMA_MEMBUF,
1017 NUMA_CPUBUF
1019 extern void sched_setnuma(struct task_struct *p, int node);
1020 extern int migrate_task_to(struct task_struct *p, int cpu);
1021 extern int migrate_swap(struct task_struct *, struct task_struct *);
1022 #endif /* CONFIG_NUMA_BALANCING */
1024 #ifdef CONFIG_SMP
1026 static inline void
1027 queue_balance_callback(struct rq *rq,
1028 struct callback_head *head,
1029 void (*func)(struct rq *rq))
1031 lockdep_assert_held(&rq->lock);
1033 if (unlikely(head->next))
1034 return;
1036 head->func = (void (*)(struct callback_head *))func;
1037 head->next = rq->balance_callback;
1038 rq->balance_callback = head;
1041 extern void sched_ttwu_pending(void);
1043 #define rcu_dereference_check_sched_domain(p) \
1044 rcu_dereference_check((p), \
1045 lockdep_is_held(&sched_domains_mutex))
1048 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1049 * See detach_destroy_domains: synchronize_sched for details.
1051 * The domain tree of any CPU may only be accessed from within
1052 * preempt-disabled sections.
1054 #define for_each_domain(cpu, __sd) \
1055 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1056 __sd; __sd = __sd->parent)
1058 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1061 * highest_flag_domain - Return highest sched_domain containing flag.
1062 * @cpu: The cpu whose highest level of sched domain is to
1063 * be returned.
1064 * @flag: The flag to check for the highest sched_domain
1065 * for the given cpu.
1067 * Returns the highest sched_domain of a cpu which contains the given flag.
1069 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1071 struct sched_domain *sd, *hsd = NULL;
1073 for_each_domain(cpu, sd) {
1074 if (!(sd->flags & flag))
1075 break;
1076 hsd = sd;
1079 return hsd;
1082 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1084 struct sched_domain *sd;
1086 for_each_domain(cpu, sd) {
1087 if (sd->flags & flag)
1088 break;
1091 return sd;
1094 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
1095 DECLARE_PER_CPU(int, sd_llc_size);
1096 DECLARE_PER_CPU(int, sd_llc_id);
1097 DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
1098 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
1099 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
1101 struct sched_group_capacity {
1102 atomic_t ref;
1104 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1105 * for a single CPU.
1107 unsigned long capacity;
1108 unsigned long min_capacity; /* Min per-CPU capacity in group */
1109 unsigned long next_update;
1110 int imbalance; /* XXX unrelated to capacity but shared group state */
1112 #ifdef CONFIG_SCHED_DEBUG
1113 int id;
1114 #endif
1116 unsigned long cpumask[0]; /* balance mask */
1119 struct sched_group {
1120 struct sched_group *next; /* Must be a circular list */
1121 atomic_t ref;
1123 unsigned int group_weight;
1124 struct sched_group_capacity *sgc;
1125 int asym_prefer_cpu; /* cpu of highest priority in group */
1128 * The CPUs this group covers.
1130 * NOTE: this field is variable length. (Allocated dynamically
1131 * by attaching extra space to the end of the structure,
1132 * depending on how many CPUs the kernel has booted up with)
1134 unsigned long cpumask[0];
1137 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1139 return to_cpumask(sg->cpumask);
1143 * See build_balance_mask().
1145 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1147 return to_cpumask(sg->sgc->cpumask);
1151 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
1152 * @group: The group whose first cpu is to be returned.
1154 static inline unsigned int group_first_cpu(struct sched_group *group)
1156 return cpumask_first(sched_group_span(group));
1159 extern int group_balance_cpu(struct sched_group *sg);
1161 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1162 void register_sched_domain_sysctl(void);
1163 void dirty_sched_domain_sysctl(int cpu);
1164 void unregister_sched_domain_sysctl(void);
1165 #else
1166 static inline void register_sched_domain_sysctl(void)
1169 static inline void dirty_sched_domain_sysctl(int cpu)
1172 static inline void unregister_sched_domain_sysctl(void)
1175 #endif
1177 #else
1179 static inline void sched_ttwu_pending(void) { }
1181 #endif /* CONFIG_SMP */
1183 #include "stats.h"
1184 #include "autogroup.h"
1186 #ifdef CONFIG_CGROUP_SCHED
1189 * Return the group to which this tasks belongs.
1191 * We cannot use task_css() and friends because the cgroup subsystem
1192 * changes that value before the cgroup_subsys::attach() method is called,
1193 * therefore we cannot pin it and might observe the wrong value.
1195 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1196 * core changes this before calling sched_move_task().
1198 * Instead we use a 'copy' which is updated from sched_move_task() while
1199 * holding both task_struct::pi_lock and rq::lock.
1201 static inline struct task_group *task_group(struct task_struct *p)
1203 return p->sched_task_group;
1206 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1207 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1209 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1210 struct task_group *tg = task_group(p);
1211 #endif
1213 #ifdef CONFIG_FAIR_GROUP_SCHED
1214 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1215 p->se.cfs_rq = tg->cfs_rq[cpu];
1216 p->se.parent = tg->se[cpu];
1217 #endif
1219 #ifdef CONFIG_RT_GROUP_SCHED
1220 p->rt.rt_rq = tg->rt_rq[cpu];
1221 p->rt.parent = tg->rt_se[cpu];
1222 #endif
1225 #else /* CONFIG_CGROUP_SCHED */
1227 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1228 static inline struct task_group *task_group(struct task_struct *p)
1230 return NULL;
1233 #endif /* CONFIG_CGROUP_SCHED */
1235 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1237 set_task_rq(p, cpu);
1238 #ifdef CONFIG_SMP
1240 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1241 * successfuly executed on another CPU. We must ensure that updates of
1242 * per-task data have been completed by this moment.
1244 smp_wmb();
1245 #ifdef CONFIG_THREAD_INFO_IN_TASK
1246 p->cpu = cpu;
1247 #else
1248 task_thread_info(p)->cpu = cpu;
1249 #endif
1250 p->wake_cpu = cpu;
1251 #endif
1255 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1257 #ifdef CONFIG_SCHED_DEBUG
1258 # include <linux/static_key.h>
1259 # define const_debug __read_mostly
1260 #else
1261 # define const_debug const
1262 #endif
1264 #define SCHED_FEAT(name, enabled) \
1265 __SCHED_FEAT_##name ,
1267 enum {
1268 #include "features.h"
1269 __SCHED_FEAT_NR,
1272 #undef SCHED_FEAT
1274 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1277 * To support run-time toggling of sched features, all the translation units
1278 * (but core.c) reference the sysctl_sched_features defined in core.c.
1280 extern const_debug unsigned int sysctl_sched_features;
1282 #define SCHED_FEAT(name, enabled) \
1283 static __always_inline bool static_branch_##name(struct static_key *key) \
1285 return static_key_##enabled(key); \
1288 #include "features.h"
1289 #undef SCHED_FEAT
1291 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1292 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1294 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1297 * Each translation unit has its own copy of sysctl_sched_features to allow
1298 * constants propagation at compile time and compiler optimization based on
1299 * features default.
1301 #define SCHED_FEAT(name, enabled) \
1302 (1UL << __SCHED_FEAT_##name) * enabled |
1303 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1304 #include "features.h"
1306 #undef SCHED_FEAT
1308 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1310 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1312 extern struct static_key_false sched_numa_balancing;
1313 extern struct static_key_false sched_schedstats;
1315 static inline u64 global_rt_period(void)
1317 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1320 static inline u64 global_rt_runtime(void)
1322 if (sysctl_sched_rt_runtime < 0)
1323 return RUNTIME_INF;
1325 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1328 static inline int task_current(struct rq *rq, struct task_struct *p)
1330 return rq->curr == p;
1333 static inline int task_running(struct rq *rq, struct task_struct *p)
1335 #ifdef CONFIG_SMP
1336 return p->on_cpu;
1337 #else
1338 return task_current(rq, p);
1339 #endif
1342 static inline int task_on_rq_queued(struct task_struct *p)
1344 return p->on_rq == TASK_ON_RQ_QUEUED;
1347 static inline int task_on_rq_migrating(struct task_struct *p)
1349 return p->on_rq == TASK_ON_RQ_MIGRATING;
1352 #ifndef prepare_arch_switch
1353 # define prepare_arch_switch(next) do { } while (0)
1354 #endif
1355 #ifndef finish_arch_post_lock_switch
1356 # define finish_arch_post_lock_switch() do { } while (0)
1357 #endif
1360 * wake flags
1362 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1363 #define WF_FORK 0x02 /* child wakeup after fork */
1364 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1367 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1368 * of tasks with abnormal "nice" values across CPUs the contribution that
1369 * each task makes to its run queue's load is weighted according to its
1370 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1371 * scaled version of the new time slice allocation that they receive on time
1372 * slice expiry etc.
1375 #define WEIGHT_IDLEPRIO 3
1376 #define WMULT_IDLEPRIO 1431655765
1378 extern const int sched_prio_to_weight[40];
1379 extern const u32 sched_prio_to_wmult[40];
1382 * {de,en}queue flags:
1384 * DEQUEUE_SLEEP - task is no longer runnable
1385 * ENQUEUE_WAKEUP - task just became runnable
1387 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1388 * are in a known state which allows modification. Such pairs
1389 * should preserve as much state as possible.
1391 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1392 * in the runqueue.
1394 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1395 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1396 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1400 #define DEQUEUE_SLEEP 0x01
1401 #define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
1402 #define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
1403 #define DEQUEUE_NOCLOCK 0x08 /* matches ENQUEUE_NOCLOCK */
1405 #define ENQUEUE_WAKEUP 0x01
1406 #define ENQUEUE_RESTORE 0x02
1407 #define ENQUEUE_MOVE 0x04
1408 #define ENQUEUE_NOCLOCK 0x08
1410 #define ENQUEUE_HEAD 0x10
1411 #define ENQUEUE_REPLENISH 0x20
1412 #ifdef CONFIG_SMP
1413 #define ENQUEUE_MIGRATED 0x40
1414 #else
1415 #define ENQUEUE_MIGRATED 0x00
1416 #endif
1418 #define RETRY_TASK ((void *)-1UL)
1420 struct sched_class {
1421 const struct sched_class *next;
1423 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1424 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1425 void (*yield_task) (struct rq *rq);
1426 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1428 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1431 * It is the responsibility of the pick_next_task() method that will
1432 * return the next task to call put_prev_task() on the @prev task or
1433 * something equivalent.
1435 * May return RETRY_TASK when it finds a higher prio class has runnable
1436 * tasks.
1438 struct task_struct * (*pick_next_task) (struct rq *rq,
1439 struct task_struct *prev,
1440 struct rq_flags *rf);
1441 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1443 #ifdef CONFIG_SMP
1444 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1445 void (*migrate_task_rq)(struct task_struct *p);
1447 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1449 void (*set_cpus_allowed)(struct task_struct *p,
1450 const struct cpumask *newmask);
1452 void (*rq_online)(struct rq *rq);
1453 void (*rq_offline)(struct rq *rq);
1454 #endif
1456 void (*set_curr_task) (struct rq *rq);
1457 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1458 void (*task_fork) (struct task_struct *p);
1459 void (*task_dead) (struct task_struct *p);
1462 * The switched_from() call is allowed to drop rq->lock, therefore we
1463 * cannot assume the switched_from/switched_to pair is serliazed by
1464 * rq->lock. They are however serialized by p->pi_lock.
1466 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1467 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1468 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1469 int oldprio);
1471 unsigned int (*get_rr_interval) (struct rq *rq,
1472 struct task_struct *task);
1474 void (*update_curr) (struct rq *rq);
1476 #define TASK_SET_GROUP 0
1477 #define TASK_MOVE_GROUP 1
1479 #ifdef CONFIG_FAIR_GROUP_SCHED
1480 void (*task_change_group) (struct task_struct *p, int type);
1481 #endif
1484 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1486 prev->sched_class->put_prev_task(rq, prev);
1489 static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1491 curr->sched_class->set_curr_task(rq);
1494 #ifdef CONFIG_SMP
1495 #define sched_class_highest (&stop_sched_class)
1496 #else
1497 #define sched_class_highest (&dl_sched_class)
1498 #endif
1499 #define for_each_class(class) \
1500 for (class = sched_class_highest; class; class = class->next)
1502 extern const struct sched_class stop_sched_class;
1503 extern const struct sched_class dl_sched_class;
1504 extern const struct sched_class rt_sched_class;
1505 extern const struct sched_class fair_sched_class;
1506 extern const struct sched_class idle_sched_class;
1509 #ifdef CONFIG_SMP
1511 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1513 extern void trigger_load_balance(struct rq *rq);
1515 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1517 #endif
1519 #ifdef CONFIG_CPU_IDLE
1520 static inline void idle_set_state(struct rq *rq,
1521 struct cpuidle_state *idle_state)
1523 rq->idle_state = idle_state;
1526 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1528 SCHED_WARN_ON(!rcu_read_lock_held());
1529 return rq->idle_state;
1531 #else
1532 static inline void idle_set_state(struct rq *rq,
1533 struct cpuidle_state *idle_state)
1537 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1539 return NULL;
1541 #endif
1543 extern void schedule_idle(void);
1545 extern void sysrq_sched_debug_show(void);
1546 extern void sched_init_granularity(void);
1547 extern void update_max_interval(void);
1549 extern void init_sched_dl_class(void);
1550 extern void init_sched_rt_class(void);
1551 extern void init_sched_fair_class(void);
1553 extern void reweight_task(struct task_struct *p, int prio);
1555 extern void resched_curr(struct rq *rq);
1556 extern void resched_cpu(int cpu);
1558 extern struct rt_bandwidth def_rt_bandwidth;
1559 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1561 extern struct dl_bandwidth def_dl_bandwidth;
1562 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1563 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1564 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1565 extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
1567 #define BW_SHIFT 20
1568 #define BW_UNIT (1 << BW_SHIFT)
1569 #define RATIO_SHIFT 8
1570 unsigned long to_ratio(u64 period, u64 runtime);
1572 extern void init_entity_runnable_average(struct sched_entity *se);
1573 extern void post_init_entity_util_avg(struct sched_entity *se);
1575 #ifdef CONFIG_NO_HZ_FULL
1576 extern bool sched_can_stop_tick(struct rq *rq);
1579 * Tick may be needed by tasks in the runqueue depending on their policy and
1580 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1581 * nohz mode if necessary.
1583 static inline void sched_update_tick_dependency(struct rq *rq)
1585 int cpu;
1587 if (!tick_nohz_full_enabled())
1588 return;
1590 cpu = cpu_of(rq);
1592 if (!tick_nohz_full_cpu(cpu))
1593 return;
1595 if (sched_can_stop_tick(rq))
1596 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1597 else
1598 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1600 #else
1601 static inline void sched_update_tick_dependency(struct rq *rq) { }
1602 #endif
1604 static inline void add_nr_running(struct rq *rq, unsigned count)
1606 unsigned prev_nr = rq->nr_running;
1608 rq->nr_running = prev_nr + count;
1610 if (prev_nr < 2 && rq->nr_running >= 2) {
1611 #ifdef CONFIG_SMP
1612 if (!rq->rd->overload)
1613 rq->rd->overload = true;
1614 #endif
1617 sched_update_tick_dependency(rq);
1620 static inline void sub_nr_running(struct rq *rq, unsigned count)
1622 rq->nr_running -= count;
1623 /* Check if we still need preemption */
1624 sched_update_tick_dependency(rq);
1627 static inline void rq_last_tick_reset(struct rq *rq)
1629 #ifdef CONFIG_NO_HZ_FULL
1630 rq->last_sched_tick = jiffies;
1631 #endif
1634 extern void update_rq_clock(struct rq *rq);
1636 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1637 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1639 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1641 extern const_debug unsigned int sysctl_sched_time_avg;
1642 extern const_debug unsigned int sysctl_sched_nr_migrate;
1643 extern const_debug unsigned int sysctl_sched_migration_cost;
1645 static inline u64 sched_avg_period(void)
1647 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1650 #ifdef CONFIG_SCHED_HRTICK
1653 * Use hrtick when:
1654 * - enabled by features
1655 * - hrtimer is actually high res
1657 static inline int hrtick_enabled(struct rq *rq)
1659 if (!sched_feat(HRTICK))
1660 return 0;
1661 if (!cpu_active(cpu_of(rq)))
1662 return 0;
1663 return hrtimer_is_hres_active(&rq->hrtick_timer);
1666 void hrtick_start(struct rq *rq, u64 delay);
1668 #else
1670 static inline int hrtick_enabled(struct rq *rq)
1672 return 0;
1675 #endif /* CONFIG_SCHED_HRTICK */
1677 #ifndef arch_scale_freq_capacity
1678 static __always_inline
1679 unsigned long arch_scale_freq_capacity(int cpu)
1681 return SCHED_CAPACITY_SCALE;
1683 #endif
1685 #ifdef CONFIG_SMP
1686 extern void sched_avg_update(struct rq *rq);
1688 #ifndef arch_scale_cpu_capacity
1689 static __always_inline
1690 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1692 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1693 return sd->smt_gain / sd->span_weight;
1695 return SCHED_CAPACITY_SCALE;
1697 #endif
1699 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1701 rq->rt_avg += rt_delta * arch_scale_freq_capacity(cpu_of(rq));
1702 sched_avg_update(rq);
1704 #else
1705 #ifndef arch_scale_cpu_capacity
1706 static __always_inline
1707 unsigned long arch_scale_cpu_capacity(void __always_unused *sd, int cpu)
1709 return SCHED_CAPACITY_SCALE;
1711 #endif
1712 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1713 static inline void sched_avg_update(struct rq *rq) { }
1714 #endif
1716 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1717 __acquires(rq->lock);
1719 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1720 __acquires(p->pi_lock)
1721 __acquires(rq->lock);
1723 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1724 __releases(rq->lock)
1726 rq_unpin_lock(rq, rf);
1727 raw_spin_unlock(&rq->lock);
1730 static inline void
1731 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1732 __releases(rq->lock)
1733 __releases(p->pi_lock)
1735 rq_unpin_lock(rq, rf);
1736 raw_spin_unlock(&rq->lock);
1737 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1740 static inline void
1741 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1742 __acquires(rq->lock)
1744 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1745 rq_pin_lock(rq, rf);
1748 static inline void
1749 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1750 __acquires(rq->lock)
1752 raw_spin_lock_irq(&rq->lock);
1753 rq_pin_lock(rq, rf);
1756 static inline void
1757 rq_lock(struct rq *rq, struct rq_flags *rf)
1758 __acquires(rq->lock)
1760 raw_spin_lock(&rq->lock);
1761 rq_pin_lock(rq, rf);
1764 static inline void
1765 rq_relock(struct rq *rq, struct rq_flags *rf)
1766 __acquires(rq->lock)
1768 raw_spin_lock(&rq->lock);
1769 rq_repin_lock(rq, rf);
1772 static inline void
1773 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1774 __releases(rq->lock)
1776 rq_unpin_lock(rq, rf);
1777 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1780 static inline void
1781 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1782 __releases(rq->lock)
1784 rq_unpin_lock(rq, rf);
1785 raw_spin_unlock_irq(&rq->lock);
1788 static inline void
1789 rq_unlock(struct rq *rq, struct rq_flags *rf)
1790 __releases(rq->lock)
1792 rq_unpin_lock(rq, rf);
1793 raw_spin_unlock(&rq->lock);
1796 #ifdef CONFIG_SMP
1797 #ifdef CONFIG_PREEMPT
1799 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1802 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1803 * way at the expense of forcing extra atomic operations in all
1804 * invocations. This assures that the double_lock is acquired using the
1805 * same underlying policy as the spinlock_t on this architecture, which
1806 * reduces latency compared to the unfair variant below. However, it
1807 * also adds more overhead and therefore may reduce throughput.
1809 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1810 __releases(this_rq->lock)
1811 __acquires(busiest->lock)
1812 __acquires(this_rq->lock)
1814 raw_spin_unlock(&this_rq->lock);
1815 double_rq_lock(this_rq, busiest);
1817 return 1;
1820 #else
1822 * Unfair double_lock_balance: Optimizes throughput at the expense of
1823 * latency by eliminating extra atomic operations when the locks are
1824 * already in proper order on entry. This favors lower cpu-ids and will
1825 * grant the double lock to lower cpus over higher ids under contention,
1826 * regardless of entry order into the function.
1828 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1829 __releases(this_rq->lock)
1830 __acquires(busiest->lock)
1831 __acquires(this_rq->lock)
1833 int ret = 0;
1835 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1836 if (busiest < this_rq) {
1837 raw_spin_unlock(&this_rq->lock);
1838 raw_spin_lock(&busiest->lock);
1839 raw_spin_lock_nested(&this_rq->lock,
1840 SINGLE_DEPTH_NESTING);
1841 ret = 1;
1842 } else
1843 raw_spin_lock_nested(&busiest->lock,
1844 SINGLE_DEPTH_NESTING);
1846 return ret;
1849 #endif /* CONFIG_PREEMPT */
1852 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1854 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1856 if (unlikely(!irqs_disabled())) {
1857 /* printk() doesn't work good under rq->lock */
1858 raw_spin_unlock(&this_rq->lock);
1859 BUG_ON(1);
1862 return _double_lock_balance(this_rq, busiest);
1865 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1866 __releases(busiest->lock)
1868 raw_spin_unlock(&busiest->lock);
1869 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1872 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1874 if (l1 > l2)
1875 swap(l1, l2);
1877 spin_lock(l1);
1878 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1881 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1883 if (l1 > l2)
1884 swap(l1, l2);
1886 spin_lock_irq(l1);
1887 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1890 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1892 if (l1 > l2)
1893 swap(l1, l2);
1895 raw_spin_lock(l1);
1896 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1900 * double_rq_lock - safely lock two runqueues
1902 * Note this does not disable interrupts like task_rq_lock,
1903 * you need to do so manually before calling.
1905 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1906 __acquires(rq1->lock)
1907 __acquires(rq2->lock)
1909 BUG_ON(!irqs_disabled());
1910 if (rq1 == rq2) {
1911 raw_spin_lock(&rq1->lock);
1912 __acquire(rq2->lock); /* Fake it out ;) */
1913 } else {
1914 if (rq1 < rq2) {
1915 raw_spin_lock(&rq1->lock);
1916 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1917 } else {
1918 raw_spin_lock(&rq2->lock);
1919 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1925 * double_rq_unlock - safely unlock two runqueues
1927 * Note this does not restore interrupts like task_rq_unlock,
1928 * you need to do so manually after calling.
1930 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1931 __releases(rq1->lock)
1932 __releases(rq2->lock)
1934 raw_spin_unlock(&rq1->lock);
1935 if (rq1 != rq2)
1936 raw_spin_unlock(&rq2->lock);
1937 else
1938 __release(rq2->lock);
1941 extern void set_rq_online (struct rq *rq);
1942 extern void set_rq_offline(struct rq *rq);
1943 extern bool sched_smp_initialized;
1945 #else /* CONFIG_SMP */
1948 * double_rq_lock - safely lock two runqueues
1950 * Note this does not disable interrupts like task_rq_lock,
1951 * you need to do so manually before calling.
1953 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1954 __acquires(rq1->lock)
1955 __acquires(rq2->lock)
1957 BUG_ON(!irqs_disabled());
1958 BUG_ON(rq1 != rq2);
1959 raw_spin_lock(&rq1->lock);
1960 __acquire(rq2->lock); /* Fake it out ;) */
1964 * double_rq_unlock - safely unlock two runqueues
1966 * Note this does not restore interrupts like task_rq_unlock,
1967 * you need to do so manually after calling.
1969 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1970 __releases(rq1->lock)
1971 __releases(rq2->lock)
1973 BUG_ON(rq1 != rq2);
1974 raw_spin_unlock(&rq1->lock);
1975 __release(rq2->lock);
1978 #endif
1980 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1981 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1983 #ifdef CONFIG_SCHED_DEBUG
1984 extern bool sched_debug_enabled;
1986 extern void print_cfs_stats(struct seq_file *m, int cpu);
1987 extern void print_rt_stats(struct seq_file *m, int cpu);
1988 extern void print_dl_stats(struct seq_file *m, int cpu);
1989 extern void
1990 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1991 #ifdef CONFIG_NUMA_BALANCING
1992 extern void
1993 show_numa_stats(struct task_struct *p, struct seq_file *m);
1994 extern void
1995 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1996 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1997 #endif /* CONFIG_NUMA_BALANCING */
1998 #endif /* CONFIG_SCHED_DEBUG */
2000 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2001 extern void init_rt_rq(struct rt_rq *rt_rq);
2002 extern void init_dl_rq(struct dl_rq *dl_rq);
2004 extern void cfs_bandwidth_usage_inc(void);
2005 extern void cfs_bandwidth_usage_dec(void);
2007 #ifdef CONFIG_NO_HZ_COMMON
2008 enum rq_nohz_flag_bits {
2009 NOHZ_TICK_STOPPED,
2010 NOHZ_BALANCE_KICK,
2013 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2015 extern void nohz_balance_exit_idle(unsigned int cpu);
2016 #else
2017 static inline void nohz_balance_exit_idle(unsigned int cpu) { }
2018 #endif
2021 #ifdef CONFIG_SMP
2022 static inline
2023 void __dl_update(struct dl_bw *dl_b, s64 bw)
2025 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2026 int i;
2028 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2029 "sched RCU must be held");
2030 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2031 struct rq *rq = cpu_rq(i);
2033 rq->dl.extra_bw += bw;
2036 #else
2037 static inline
2038 void __dl_update(struct dl_bw *dl_b, s64 bw)
2040 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2042 dl->extra_bw += bw;
2044 #endif
2047 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2048 struct irqtime {
2049 u64 total;
2050 u64 tick_delta;
2051 u64 irq_start_time;
2052 struct u64_stats_sync sync;
2055 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2058 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2059 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2060 * and never move forward.
2062 static inline u64 irq_time_read(int cpu)
2064 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2065 unsigned int seq;
2066 u64 total;
2068 do {
2069 seq = __u64_stats_fetch_begin(&irqtime->sync);
2070 total = irqtime->total;
2071 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2073 return total;
2075 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2077 #ifdef CONFIG_CPU_FREQ
2078 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2081 * cpufreq_update_util - Take a note about CPU utilization changes.
2082 * @rq: Runqueue to carry out the update for.
2083 * @flags: Update reason flags.
2085 * This function is called by the scheduler on the CPU whose utilization is
2086 * being updated.
2088 * It can only be called from RCU-sched read-side critical sections.
2090 * The way cpufreq is currently arranged requires it to evaluate the CPU
2091 * performance state (frequency/voltage) on a regular basis to prevent it from
2092 * being stuck in a completely inadequate performance level for too long.
2093 * That is not guaranteed to happen if the updates are only triggered from CFS
2094 * and DL, though, because they may not be coming in if only RT tasks are
2095 * active all the time (or there are RT tasks only).
2097 * As a workaround for that issue, this function is called periodically by the
2098 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2099 * but that really is a band-aid. Going forward it should be replaced with
2100 * solutions targeted more specifically at RT tasks.
2102 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2104 struct update_util_data *data;
2106 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2107 cpu_of(rq)));
2108 if (data)
2109 data->func(data, rq_clock(rq), flags);
2111 #else
2112 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2113 #endif /* CONFIG_CPU_FREQ */
2115 #ifdef arch_scale_freq_capacity
2116 #ifndef arch_scale_freq_invariant
2117 #define arch_scale_freq_invariant() (true)
2118 #endif
2119 #else /* arch_scale_freq_capacity */
2120 #define arch_scale_freq_invariant() (false)
2121 #endif
2123 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2125 static inline unsigned long cpu_util_dl(struct rq *rq)
2127 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2130 static inline unsigned long cpu_util_cfs(struct rq *rq)
2132 return rq->cfs.avg.util_avg;
2135 #endif