staging: erofs: fix warning Comparison to bool
[linux/fpc-iii.git] / arch / arc / mm / cache.c
blob63e6e65046992f1388a3ae44aae5150abb1ee3f7
1 /*
2 * ARC Cache Management
4 * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com)
5 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/sched.h>
15 #include <linux/cache.h>
16 #include <linux/mmu_context.h>
17 #include <linux/syscalls.h>
18 #include <linux/uaccess.h>
19 #include <linux/pagemap.h>
20 #include <asm/cacheflush.h>
21 #include <asm/cachectl.h>
22 #include <asm/setup.h>
24 #ifdef CONFIG_ISA_ARCV2
25 #define USE_RGN_FLSH 1
26 #endif
28 static int l2_line_sz;
29 static int ioc_exists;
30 int slc_enable = 1, ioc_enable = 1;
31 unsigned long perip_base = ARC_UNCACHED_ADDR_SPACE; /* legacy value for boot */
32 unsigned long perip_end = 0xFFFFFFFF; /* legacy value */
34 void (*_cache_line_loop_ic_fn)(phys_addr_t paddr, unsigned long vaddr,
35 unsigned long sz, const int op, const int full_page);
37 void (*__dma_cache_wback_inv)(phys_addr_t start, unsigned long sz);
38 void (*__dma_cache_inv)(phys_addr_t start, unsigned long sz);
39 void (*__dma_cache_wback)(phys_addr_t start, unsigned long sz);
41 char *arc_cache_mumbojumbo(int c, char *buf, int len)
43 int n = 0;
44 struct cpuinfo_arc_cache *p;
46 #define PR_CACHE(p, cfg, str) \
47 if (!(p)->line_len) \
48 n += scnprintf(buf + n, len - n, str"\t\t: N/A\n"); \
49 else \
50 n += scnprintf(buf + n, len - n, \
51 str"\t\t: %uK, %dway/set, %uB Line, %s%s%s\n", \
52 (p)->sz_k, (p)->assoc, (p)->line_len, \
53 (p)->vipt ? "VIPT" : "PIPT", \
54 (p)->alias ? " aliasing" : "", \
55 IS_USED_CFG(cfg));
57 PR_CACHE(&cpuinfo_arc700[c].icache, CONFIG_ARC_HAS_ICACHE, "I-Cache");
58 PR_CACHE(&cpuinfo_arc700[c].dcache, CONFIG_ARC_HAS_DCACHE, "D-Cache");
60 p = &cpuinfo_arc700[c].slc;
61 if (p->line_len)
62 n += scnprintf(buf + n, len - n,
63 "SLC\t\t: %uK, %uB Line%s\n",
64 p->sz_k, p->line_len, IS_USED_RUN(slc_enable));
66 n += scnprintf(buf + n, len - n, "Peripherals\t: %#lx%s%s\n",
67 perip_base,
68 IS_AVAIL3(ioc_exists, ioc_enable, ", IO-Coherency (per-device) "));
70 return buf;
74 * Read the Cache Build Confuration Registers, Decode them and save into
75 * the cpuinfo structure for later use.
76 * No Validation done here, simply read/convert the BCRs
78 static void read_decode_cache_bcr_arcv2(int cpu)
80 struct cpuinfo_arc_cache *p_slc = &cpuinfo_arc700[cpu].slc;
81 struct bcr_generic sbcr;
83 struct bcr_slc_cfg {
84 #ifdef CONFIG_CPU_BIG_ENDIAN
85 unsigned int pad:24, way:2, lsz:2, sz:4;
86 #else
87 unsigned int sz:4, lsz:2, way:2, pad:24;
88 #endif
89 } slc_cfg;
91 struct bcr_clust_cfg {
92 #ifdef CONFIG_CPU_BIG_ENDIAN
93 unsigned int pad:7, c:1, num_entries:8, num_cores:8, ver:8;
94 #else
95 unsigned int ver:8, num_cores:8, num_entries:8, c:1, pad:7;
96 #endif
97 } cbcr;
99 struct bcr_volatile {
100 #ifdef CONFIG_CPU_BIG_ENDIAN
101 unsigned int start:4, limit:4, pad:22, order:1, disable:1;
102 #else
103 unsigned int disable:1, order:1, pad:22, limit:4, start:4;
104 #endif
105 } vol;
108 READ_BCR(ARC_REG_SLC_BCR, sbcr);
109 if (sbcr.ver) {
110 READ_BCR(ARC_REG_SLC_CFG, slc_cfg);
111 p_slc->sz_k = 128 << slc_cfg.sz;
112 l2_line_sz = p_slc->line_len = (slc_cfg.lsz == 0) ? 128 : 64;
115 READ_BCR(ARC_REG_CLUSTER_BCR, cbcr);
116 if (cbcr.c) {
117 ioc_exists = 1;
120 * As for today we don't support both IOC and ZONE_HIGHMEM enabled
121 * simultaneously. This happens because as of today IOC aperture covers
122 * only ZONE_NORMAL (low mem) and any dma transactions outside this
123 * region won't be HW coherent.
124 * If we want to use both IOC and ZONE_HIGHMEM we can use
125 * bounce_buffer to handle dma transactions to HIGHMEM.
126 * Also it is possible to modify dma_direct cache ops or increase IOC
127 * aperture size if we are planning to use HIGHMEM without PAE.
129 if (IS_ENABLED(CONFIG_HIGHMEM) || is_pae40_enabled())
130 ioc_enable = 0;
131 } else {
132 ioc_enable = 0;
135 /* HS 2.0 didn't have AUX_VOL */
136 if (cpuinfo_arc700[cpu].core.family > 0x51) {
137 READ_BCR(AUX_VOL, vol);
138 perip_base = vol.start << 28;
139 /* HS 3.0 has limit and strict-ordering fields */
140 if (cpuinfo_arc700[cpu].core.family > 0x52)
141 perip_end = (vol.limit << 28) - 1;
145 void read_decode_cache_bcr(void)
147 struct cpuinfo_arc_cache *p_ic, *p_dc;
148 unsigned int cpu = smp_processor_id();
149 struct bcr_cache {
150 #ifdef CONFIG_CPU_BIG_ENDIAN
151 unsigned int pad:12, line_len:4, sz:4, config:4, ver:8;
152 #else
153 unsigned int ver:8, config:4, sz:4, line_len:4, pad:12;
154 #endif
155 } ibcr, dbcr;
157 p_ic = &cpuinfo_arc700[cpu].icache;
158 READ_BCR(ARC_REG_IC_BCR, ibcr);
160 if (!ibcr.ver)
161 goto dc_chk;
163 if (ibcr.ver <= 3) {
164 BUG_ON(ibcr.config != 3);
165 p_ic->assoc = 2; /* Fixed to 2w set assoc */
166 } else if (ibcr.ver >= 4) {
167 p_ic->assoc = 1 << ibcr.config; /* 1,2,4,8 */
170 p_ic->line_len = 8 << ibcr.line_len;
171 p_ic->sz_k = 1 << (ibcr.sz - 1);
172 p_ic->vipt = 1;
173 p_ic->alias = p_ic->sz_k/p_ic->assoc/TO_KB(PAGE_SIZE) > 1;
175 dc_chk:
176 p_dc = &cpuinfo_arc700[cpu].dcache;
177 READ_BCR(ARC_REG_DC_BCR, dbcr);
179 if (!dbcr.ver)
180 goto slc_chk;
182 if (dbcr.ver <= 3) {
183 BUG_ON(dbcr.config != 2);
184 p_dc->assoc = 4; /* Fixed to 4w set assoc */
185 p_dc->vipt = 1;
186 p_dc->alias = p_dc->sz_k/p_dc->assoc/TO_KB(PAGE_SIZE) > 1;
187 } else if (dbcr.ver >= 4) {
188 p_dc->assoc = 1 << dbcr.config; /* 1,2,4,8 */
189 p_dc->vipt = 0;
190 p_dc->alias = 0; /* PIPT so can't VIPT alias */
193 p_dc->line_len = 16 << dbcr.line_len;
194 p_dc->sz_k = 1 << (dbcr.sz - 1);
196 slc_chk:
197 if (is_isa_arcv2())
198 read_decode_cache_bcr_arcv2(cpu);
202 * Line Operation on {I,D}-Cache
205 #define OP_INV 0x1
206 #define OP_FLUSH 0x2
207 #define OP_FLUSH_N_INV 0x3
208 #define OP_INV_IC 0x4
211 * I-Cache Aliasing in ARC700 VIPT caches (MMU v1-v3)
213 * ARC VIPT I-cache uses vaddr to index into cache and paddr to match the tag.
214 * The orig Cache Management Module "CDU" only required paddr to invalidate a
215 * certain line since it sufficed as index in Non-Aliasing VIPT cache-geometry.
216 * Infact for distinct V1,V2,P: all of {V1-P},{V2-P},{P-P} would end up fetching
217 * the exact same line.
219 * However for larger Caches (way-size > page-size) - i.e. in Aliasing config,
220 * paddr alone could not be used to correctly index the cache.
222 * ------------------
223 * MMU v1/v2 (Fixed Page Size 8k)
224 * ------------------
225 * The solution was to provide CDU with these additonal vaddr bits. These
226 * would be bits [x:13], x would depend on cache-geometry, 13 comes from
227 * standard page size of 8k.
228 * H/w folks chose [17:13] to be a future safe range, and moreso these 5 bits
229 * of vaddr could easily be "stuffed" in the paddr as bits [4:0] since the
230 * orig 5 bits of paddr were anyways ignored by CDU line ops, as they
231 * represent the offset within cache-line. The adv of using this "clumsy"
232 * interface for additional info was no new reg was needed in CDU programming
233 * model.
235 * 17:13 represented the max num of bits passable, actual bits needed were
236 * fewer, based on the num-of-aliases possible.
237 * -for 2 alias possibility, only bit 13 needed (32K cache)
238 * -for 4 alias possibility, bits 14:13 needed (64K cache)
240 * ------------------
241 * MMU v3
242 * ------------------
243 * This ver of MMU supports variable page sizes (1k-16k): although Linux will
244 * only support 8k (default), 16k and 4k.
245 * However from hardware perspective, smaller page sizes aggravate aliasing
246 * meaning more vaddr bits needed to disambiguate the cache-line-op ;
247 * the existing scheme of piggybacking won't work for certain configurations.
248 * Two new registers IC_PTAG and DC_PTAG inttoduced.
249 * "tag" bits are provided in PTAG, index bits in existing IVIL/IVDL/FLDL regs
252 static inline
253 void __cache_line_loop_v2(phys_addr_t paddr, unsigned long vaddr,
254 unsigned long sz, const int op, const int full_page)
256 unsigned int aux_cmd;
257 int num_lines;
259 if (op == OP_INV_IC) {
260 aux_cmd = ARC_REG_IC_IVIL;
261 } else {
262 /* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
263 aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
266 /* Ensure we properly floor/ceil the non-line aligned/sized requests
267 * and have @paddr - aligned to cache line and integral @num_lines.
268 * This however can be avoided for page sized since:
269 * -@paddr will be cache-line aligned already (being page aligned)
270 * -@sz will be integral multiple of line size (being page sized).
272 if (!full_page) {
273 sz += paddr & ~CACHE_LINE_MASK;
274 paddr &= CACHE_LINE_MASK;
275 vaddr &= CACHE_LINE_MASK;
278 num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
280 /* MMUv2 and before: paddr contains stuffed vaddrs bits */
281 paddr |= (vaddr >> PAGE_SHIFT) & 0x1F;
283 while (num_lines-- > 0) {
284 write_aux_reg(aux_cmd, paddr);
285 paddr += L1_CACHE_BYTES;
290 * For ARC700 MMUv3 I-cache and D-cache flushes
291 * - ARC700 programming model requires paddr and vaddr be passed in seperate
292 * AUX registers (*_IV*L and *_PTAG respectively) irrespective of whether the
293 * caches actually alias or not.
294 * - For HS38, only the aliasing I-cache configuration uses the PTAG reg
295 * (non aliasing I-cache version doesn't; while D-cache can't possibly alias)
297 static inline
298 void __cache_line_loop_v3(phys_addr_t paddr, unsigned long vaddr,
299 unsigned long sz, const int op, const int full_page)
301 unsigned int aux_cmd, aux_tag;
302 int num_lines;
304 if (op == OP_INV_IC) {
305 aux_cmd = ARC_REG_IC_IVIL;
306 aux_tag = ARC_REG_IC_PTAG;
307 } else {
308 aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
309 aux_tag = ARC_REG_DC_PTAG;
312 /* Ensure we properly floor/ceil the non-line aligned/sized requests
313 * and have @paddr - aligned to cache line and integral @num_lines.
314 * This however can be avoided for page sized since:
315 * -@paddr will be cache-line aligned already (being page aligned)
316 * -@sz will be integral multiple of line size (being page sized).
318 if (!full_page) {
319 sz += paddr & ~CACHE_LINE_MASK;
320 paddr &= CACHE_LINE_MASK;
321 vaddr &= CACHE_LINE_MASK;
323 num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
326 * MMUv3, cache ops require paddr in PTAG reg
327 * if V-P const for loop, PTAG can be written once outside loop
329 if (full_page)
330 write_aux_reg(aux_tag, paddr);
333 * This is technically for MMU v4, using the MMU v3 programming model
334 * Special work for HS38 aliasing I-cache configuration with PAE40
335 * - upper 8 bits of paddr need to be written into PTAG_HI
336 * - (and needs to be written before the lower 32 bits)
337 * Note that PTAG_HI is hoisted outside the line loop
339 if (is_pae40_enabled() && op == OP_INV_IC)
340 write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
342 while (num_lines-- > 0) {
343 if (!full_page) {
344 write_aux_reg(aux_tag, paddr);
345 paddr += L1_CACHE_BYTES;
348 write_aux_reg(aux_cmd, vaddr);
349 vaddr += L1_CACHE_BYTES;
353 #ifndef USE_RGN_FLSH
356 * In HS38x (MMU v4), I-cache is VIPT (can alias), D-cache is PIPT
357 * Here's how cache ops are implemented
359 * - D-cache: only paddr needed (in DC_IVDL/DC_FLDL)
360 * - I-cache Non Aliasing: Despite VIPT, only paddr needed (in IC_IVIL)
361 * - I-cache Aliasing: Both vaddr and paddr needed (in IC_IVIL, IC_PTAG
362 * respectively, similar to MMU v3 programming model, hence
363 * __cache_line_loop_v3() is used)
365 * If PAE40 is enabled, independent of aliasing considerations, the higher bits
366 * needs to be written into PTAG_HI
368 static inline
369 void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
370 unsigned long sz, const int op, const int full_page)
372 unsigned int aux_cmd;
373 int num_lines;
375 if (op == OP_INV_IC) {
376 aux_cmd = ARC_REG_IC_IVIL;
377 } else {
378 /* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
379 aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
382 /* Ensure we properly floor/ceil the non-line aligned/sized requests
383 * and have @paddr - aligned to cache line and integral @num_lines.
384 * This however can be avoided for page sized since:
385 * -@paddr will be cache-line aligned already (being page aligned)
386 * -@sz will be integral multiple of line size (being page sized).
388 if (!full_page) {
389 sz += paddr & ~CACHE_LINE_MASK;
390 paddr &= CACHE_LINE_MASK;
393 num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
396 * For HS38 PAE40 configuration
397 * - upper 8 bits of paddr need to be written into PTAG_HI
398 * - (and needs to be written before the lower 32 bits)
400 if (is_pae40_enabled()) {
401 if (op == OP_INV_IC)
403 * Non aliasing I-cache in HS38,
404 * aliasing I-cache handled in __cache_line_loop_v3()
406 write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
407 else
408 write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
411 while (num_lines-- > 0) {
412 write_aux_reg(aux_cmd, paddr);
413 paddr += L1_CACHE_BYTES;
417 #else
420 * optimized flush operation which takes a region as opposed to iterating per line
422 static inline
423 void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
424 unsigned long sz, const int op, const int full_page)
426 unsigned int s, e;
428 /* Only for Non aliasing I-cache in HS38 */
429 if (op == OP_INV_IC) {
430 s = ARC_REG_IC_IVIR;
431 e = ARC_REG_IC_ENDR;
432 } else {
433 s = ARC_REG_DC_STARTR;
434 e = ARC_REG_DC_ENDR;
437 if (!full_page) {
438 /* for any leading gap between @paddr and start of cache line */
439 sz += paddr & ~CACHE_LINE_MASK;
440 paddr &= CACHE_LINE_MASK;
443 * account for any trailing gap to end of cache line
444 * this is equivalent to DIV_ROUND_UP() in line ops above
446 sz += L1_CACHE_BYTES - 1;
449 if (is_pae40_enabled()) {
450 /* TBD: check if crossing 4TB boundary */
451 if (op == OP_INV_IC)
452 write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
453 else
454 write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
457 /* ENDR needs to be set ahead of START */
458 write_aux_reg(e, paddr + sz); /* ENDR is exclusive */
459 write_aux_reg(s, paddr);
461 /* caller waits on DC_CTRL.FS */
464 #endif
466 #if (CONFIG_ARC_MMU_VER < 3)
467 #define __cache_line_loop __cache_line_loop_v2
468 #elif (CONFIG_ARC_MMU_VER == 3)
469 #define __cache_line_loop __cache_line_loop_v3
470 #elif (CONFIG_ARC_MMU_VER > 3)
471 #define __cache_line_loop __cache_line_loop_v4
472 #endif
474 #ifdef CONFIG_ARC_HAS_DCACHE
476 /***************************************************************
477 * Machine specific helpers for Entire D-Cache or Per Line ops
480 #ifndef USE_RGN_FLSH
482 * this version avoids extra read/write of DC_CTRL for flush or invalid ops
483 * in the non region flush regime (such as for ARCompact)
485 static inline void __before_dc_op(const int op)
487 if (op == OP_FLUSH_N_INV) {
488 /* Dcache provides 2 cmd: FLUSH or INV
489 * INV inturn has sub-modes: DISCARD or FLUSH-BEFORE
490 * flush-n-inv is achieved by INV cmd but with IM=1
491 * So toggle INV sub-mode depending on op request and default
493 const unsigned int ctl = ARC_REG_DC_CTRL;
494 write_aux_reg(ctl, read_aux_reg(ctl) | DC_CTRL_INV_MODE_FLUSH);
498 #else
500 static inline void __before_dc_op(const int op)
502 const unsigned int ctl = ARC_REG_DC_CTRL;
503 unsigned int val = read_aux_reg(ctl);
505 if (op == OP_FLUSH_N_INV) {
506 val |= DC_CTRL_INV_MODE_FLUSH;
509 if (op != OP_INV_IC) {
511 * Flush / Invalidate is provided by DC_CTRL.RNG_OP 0 or 1
512 * combined Flush-n-invalidate uses DC_CTRL.IM = 1 set above
514 val &= ~DC_CTRL_RGN_OP_MSK;
515 if (op & OP_INV)
516 val |= DC_CTRL_RGN_OP_INV;
518 write_aux_reg(ctl, val);
521 #endif
524 static inline void __after_dc_op(const int op)
526 if (op & OP_FLUSH) {
527 const unsigned int ctl = ARC_REG_DC_CTRL;
528 unsigned int reg;
530 /* flush / flush-n-inv both wait */
531 while ((reg = read_aux_reg(ctl)) & DC_CTRL_FLUSH_STATUS)
534 /* Switch back to default Invalidate mode */
535 if (op == OP_FLUSH_N_INV)
536 write_aux_reg(ctl, reg & ~DC_CTRL_INV_MODE_FLUSH);
541 * Operation on Entire D-Cache
542 * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV}
543 * Note that constant propagation ensures all the checks are gone
544 * in generated code
546 static inline void __dc_entire_op(const int op)
548 int aux;
550 __before_dc_op(op);
552 if (op & OP_INV) /* Inv or flush-n-inv use same cmd reg */
553 aux = ARC_REG_DC_IVDC;
554 else
555 aux = ARC_REG_DC_FLSH;
557 write_aux_reg(aux, 0x1);
559 __after_dc_op(op);
562 static inline void __dc_disable(void)
564 const int r = ARC_REG_DC_CTRL;
566 __dc_entire_op(OP_FLUSH_N_INV);
567 write_aux_reg(r, read_aux_reg(r) | DC_CTRL_DIS);
570 static void __dc_enable(void)
572 const int r = ARC_REG_DC_CTRL;
574 write_aux_reg(r, read_aux_reg(r) & ~DC_CTRL_DIS);
577 /* For kernel mappings cache operation: index is same as paddr */
578 #define __dc_line_op_k(p, sz, op) __dc_line_op(p, p, sz, op)
581 * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback)
583 static inline void __dc_line_op(phys_addr_t paddr, unsigned long vaddr,
584 unsigned long sz, const int op)
586 const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
587 unsigned long flags;
589 local_irq_save(flags);
591 __before_dc_op(op);
593 __cache_line_loop(paddr, vaddr, sz, op, full_page);
595 __after_dc_op(op);
597 local_irq_restore(flags);
600 #else
602 #define __dc_entire_op(op)
603 #define __dc_disable()
604 #define __dc_enable()
605 #define __dc_line_op(paddr, vaddr, sz, op)
606 #define __dc_line_op_k(paddr, sz, op)
608 #endif /* CONFIG_ARC_HAS_DCACHE */
610 #ifdef CONFIG_ARC_HAS_ICACHE
612 static inline void __ic_entire_inv(void)
614 write_aux_reg(ARC_REG_IC_IVIC, 1);
615 read_aux_reg(ARC_REG_IC_CTRL); /* blocks */
618 static inline void
619 __ic_line_inv_vaddr_local(phys_addr_t paddr, unsigned long vaddr,
620 unsigned long sz)
622 const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
623 unsigned long flags;
625 local_irq_save(flags);
626 (*_cache_line_loop_ic_fn)(paddr, vaddr, sz, OP_INV_IC, full_page);
627 local_irq_restore(flags);
630 #ifndef CONFIG_SMP
632 #define __ic_line_inv_vaddr(p, v, s) __ic_line_inv_vaddr_local(p, v, s)
634 #else
636 struct ic_inv_args {
637 phys_addr_t paddr, vaddr;
638 int sz;
641 static void __ic_line_inv_vaddr_helper(void *info)
643 struct ic_inv_args *ic_inv = info;
645 __ic_line_inv_vaddr_local(ic_inv->paddr, ic_inv->vaddr, ic_inv->sz);
648 static void __ic_line_inv_vaddr(phys_addr_t paddr, unsigned long vaddr,
649 unsigned long sz)
651 struct ic_inv_args ic_inv = {
652 .paddr = paddr,
653 .vaddr = vaddr,
654 .sz = sz
657 on_each_cpu(__ic_line_inv_vaddr_helper, &ic_inv, 1);
660 #endif /* CONFIG_SMP */
662 #else /* !CONFIG_ARC_HAS_ICACHE */
664 #define __ic_entire_inv()
665 #define __ic_line_inv_vaddr(pstart, vstart, sz)
667 #endif /* CONFIG_ARC_HAS_ICACHE */
669 noinline void slc_op_rgn(phys_addr_t paddr, unsigned long sz, const int op)
671 #ifdef CONFIG_ISA_ARCV2
673 * SLC is shared between all cores and concurrent aux operations from
674 * multiple cores need to be serialized using a spinlock
675 * A concurrent operation can be silently ignored and/or the old/new
676 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
677 * below)
679 static DEFINE_SPINLOCK(lock);
680 unsigned long flags;
681 unsigned int ctrl;
682 phys_addr_t end;
684 spin_lock_irqsave(&lock, flags);
687 * The Region Flush operation is specified by CTRL.RGN_OP[11..9]
688 * - b'000 (default) is Flush,
689 * - b'001 is Invalidate if CTRL.IM == 0
690 * - b'001 is Flush-n-Invalidate if CTRL.IM == 1
692 ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
694 /* Don't rely on default value of IM bit */
695 if (!(op & OP_FLUSH)) /* i.e. OP_INV */
696 ctrl &= ~SLC_CTRL_IM; /* clear IM: Disable flush before Inv */
697 else
698 ctrl |= SLC_CTRL_IM;
700 if (op & OP_INV)
701 ctrl |= SLC_CTRL_RGN_OP_INV; /* Inv or flush-n-inv */
702 else
703 ctrl &= ~SLC_CTRL_RGN_OP_INV;
705 write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
708 * Lower bits are ignored, no need to clip
709 * END needs to be setup before START (latter triggers the operation)
710 * END can't be same as START, so add (l2_line_sz - 1) to sz
712 end = paddr + sz + l2_line_sz - 1;
713 if (is_pae40_enabled())
714 write_aux_reg(ARC_REG_SLC_RGN_END1, upper_32_bits(end));
716 write_aux_reg(ARC_REG_SLC_RGN_END, lower_32_bits(end));
718 if (is_pae40_enabled())
719 write_aux_reg(ARC_REG_SLC_RGN_START1, upper_32_bits(paddr));
721 write_aux_reg(ARC_REG_SLC_RGN_START, lower_32_bits(paddr));
723 /* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
724 read_aux_reg(ARC_REG_SLC_CTRL);
726 while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
728 spin_unlock_irqrestore(&lock, flags);
729 #endif
732 noinline void slc_op_line(phys_addr_t paddr, unsigned long sz, const int op)
734 #ifdef CONFIG_ISA_ARCV2
736 * SLC is shared between all cores and concurrent aux operations from
737 * multiple cores need to be serialized using a spinlock
738 * A concurrent operation can be silently ignored and/or the old/new
739 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
740 * below)
742 static DEFINE_SPINLOCK(lock);
744 const unsigned long SLC_LINE_MASK = ~(l2_line_sz - 1);
745 unsigned int ctrl, cmd;
746 unsigned long flags;
747 int num_lines;
749 spin_lock_irqsave(&lock, flags);
751 ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
753 /* Don't rely on default value of IM bit */
754 if (!(op & OP_FLUSH)) /* i.e. OP_INV */
755 ctrl &= ~SLC_CTRL_IM; /* clear IM: Disable flush before Inv */
756 else
757 ctrl |= SLC_CTRL_IM;
759 write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
761 cmd = op & OP_INV ? ARC_AUX_SLC_IVDL : ARC_AUX_SLC_FLDL;
763 sz += paddr & ~SLC_LINE_MASK;
764 paddr &= SLC_LINE_MASK;
766 num_lines = DIV_ROUND_UP(sz, l2_line_sz);
768 while (num_lines-- > 0) {
769 write_aux_reg(cmd, paddr);
770 paddr += l2_line_sz;
773 /* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
774 read_aux_reg(ARC_REG_SLC_CTRL);
776 while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
778 spin_unlock_irqrestore(&lock, flags);
779 #endif
782 #define slc_op(paddr, sz, op) slc_op_rgn(paddr, sz, op)
784 noinline static void slc_entire_op(const int op)
786 unsigned int ctrl, r = ARC_REG_SLC_CTRL;
788 ctrl = read_aux_reg(r);
790 if (!(op & OP_FLUSH)) /* i.e. OP_INV */
791 ctrl &= ~SLC_CTRL_IM; /* clear IM: Disable flush before Inv */
792 else
793 ctrl |= SLC_CTRL_IM;
795 write_aux_reg(r, ctrl);
797 if (op & OP_INV) /* Inv or flush-n-inv use same cmd reg */
798 write_aux_reg(ARC_REG_SLC_INVALIDATE, 0x1);
799 else
800 write_aux_reg(ARC_REG_SLC_FLUSH, 0x1);
802 /* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
803 read_aux_reg(r);
805 /* Important to wait for flush to complete */
806 while (read_aux_reg(r) & SLC_CTRL_BUSY);
809 static inline void arc_slc_disable(void)
811 const int r = ARC_REG_SLC_CTRL;
813 slc_entire_op(OP_FLUSH_N_INV);
814 write_aux_reg(r, read_aux_reg(r) | SLC_CTRL_DIS);
817 static inline void arc_slc_enable(void)
819 const int r = ARC_REG_SLC_CTRL;
821 write_aux_reg(r, read_aux_reg(r) & ~SLC_CTRL_DIS);
824 /***********************************************************
825 * Exported APIs
829 * Handle cache congruency of kernel and userspace mappings of page when kernel
830 * writes-to/reads-from
832 * The idea is to defer flushing of kernel mapping after a WRITE, possible if:
833 * -dcache is NOT aliasing, hence any U/K-mappings of page are congruent
834 * -U-mapping doesn't exist yet for page (finalised in update_mmu_cache)
835 * -In SMP, if hardware caches are coherent
837 * There's a corollary case, where kernel READs from a userspace mapped page.
838 * If the U-mapping is not congruent to to K-mapping, former needs flushing.
840 void flush_dcache_page(struct page *page)
842 struct address_space *mapping;
844 if (!cache_is_vipt_aliasing()) {
845 clear_bit(PG_dc_clean, &page->flags);
846 return;
849 /* don't handle anon pages here */
850 mapping = page_mapping_file(page);
851 if (!mapping)
852 return;
855 * pagecache page, file not yet mapped to userspace
856 * Make a note that K-mapping is dirty
858 if (!mapping_mapped(mapping)) {
859 clear_bit(PG_dc_clean, &page->flags);
860 } else if (page_mapcount(page)) {
862 /* kernel reading from page with U-mapping */
863 phys_addr_t paddr = (unsigned long)page_address(page);
864 unsigned long vaddr = page->index << PAGE_SHIFT;
866 if (addr_not_cache_congruent(paddr, vaddr))
867 __flush_dcache_page(paddr, vaddr);
870 EXPORT_SYMBOL(flush_dcache_page);
873 * DMA ops for systems with L1 cache only
874 * Make memory coherent with L1 cache by flushing/invalidating L1 lines
876 static void __dma_cache_wback_inv_l1(phys_addr_t start, unsigned long sz)
878 __dc_line_op_k(start, sz, OP_FLUSH_N_INV);
881 static void __dma_cache_inv_l1(phys_addr_t start, unsigned long sz)
883 __dc_line_op_k(start, sz, OP_INV);
886 static void __dma_cache_wback_l1(phys_addr_t start, unsigned long sz)
888 __dc_line_op_k(start, sz, OP_FLUSH);
892 * DMA ops for systems with both L1 and L2 caches, but without IOC
893 * Both L1 and L2 lines need to be explicitly flushed/invalidated
895 static void __dma_cache_wback_inv_slc(phys_addr_t start, unsigned long sz)
897 __dc_line_op_k(start, sz, OP_FLUSH_N_INV);
898 slc_op(start, sz, OP_FLUSH_N_INV);
901 static void __dma_cache_inv_slc(phys_addr_t start, unsigned long sz)
903 __dc_line_op_k(start, sz, OP_INV);
904 slc_op(start, sz, OP_INV);
907 static void __dma_cache_wback_slc(phys_addr_t start, unsigned long sz)
909 __dc_line_op_k(start, sz, OP_FLUSH);
910 slc_op(start, sz, OP_FLUSH);
914 * Exported DMA API
916 void dma_cache_wback_inv(phys_addr_t start, unsigned long sz)
918 __dma_cache_wback_inv(start, sz);
920 EXPORT_SYMBOL(dma_cache_wback_inv);
922 void dma_cache_inv(phys_addr_t start, unsigned long sz)
924 __dma_cache_inv(start, sz);
926 EXPORT_SYMBOL(dma_cache_inv);
928 void dma_cache_wback(phys_addr_t start, unsigned long sz)
930 __dma_cache_wback(start, sz);
932 EXPORT_SYMBOL(dma_cache_wback);
935 * This is API for making I/D Caches consistent when modifying
936 * kernel code (loadable modules, kprobes, kgdb...)
937 * This is called on insmod, with kernel virtual address for CODE of
938 * the module. ARC cache maintenance ops require PHY address thus we
939 * need to convert vmalloc addr to PHY addr
941 void flush_icache_range(unsigned long kstart, unsigned long kend)
943 unsigned int tot_sz;
945 WARN(kstart < TASK_SIZE, "%s() can't handle user vaddr", __func__);
947 /* Shortcut for bigger flush ranges.
948 * Here we don't care if this was kernel virtual or phy addr
950 tot_sz = kend - kstart;
951 if (tot_sz > PAGE_SIZE) {
952 flush_cache_all();
953 return;
956 /* Case: Kernel Phy addr (0x8000_0000 onwards) */
957 if (likely(kstart > PAGE_OFFSET)) {
959 * The 2nd arg despite being paddr will be used to index icache
960 * This is OK since no alternate virtual mappings will exist
961 * given the callers for this case: kprobe/kgdb in built-in
962 * kernel code only.
964 __sync_icache_dcache(kstart, kstart, kend - kstart);
965 return;
969 * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff)
970 * (1) ARC Cache Maintenance ops only take Phy addr, hence special
971 * handling of kernel vaddr.
973 * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already),
974 * it still needs to handle a 2 page scenario, where the range
975 * straddles across 2 virtual pages and hence need for loop
977 while (tot_sz > 0) {
978 unsigned int off, sz;
979 unsigned long phy, pfn;
981 off = kstart % PAGE_SIZE;
982 pfn = vmalloc_to_pfn((void *)kstart);
983 phy = (pfn << PAGE_SHIFT) + off;
984 sz = min_t(unsigned int, tot_sz, PAGE_SIZE - off);
985 __sync_icache_dcache(phy, kstart, sz);
986 kstart += sz;
987 tot_sz -= sz;
990 EXPORT_SYMBOL(flush_icache_range);
993 * General purpose helper to make I and D cache lines consistent.
994 * @paddr is phy addr of region
995 * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc)
996 * However in one instance, when called by kprobe (for a breakpt in
997 * builtin kernel code) @vaddr will be paddr only, meaning CDU operation will
998 * use a paddr to index the cache (despite VIPT). This is fine since since a
999 * builtin kernel page will not have any virtual mappings.
1000 * kprobe on loadable module will be kernel vaddr.
1002 void __sync_icache_dcache(phys_addr_t paddr, unsigned long vaddr, int len)
1004 __dc_line_op(paddr, vaddr, len, OP_FLUSH_N_INV);
1005 __ic_line_inv_vaddr(paddr, vaddr, len);
1008 /* wrapper to compile time eliminate alignment checks in flush loop */
1009 void __inv_icache_page(phys_addr_t paddr, unsigned long vaddr)
1011 __ic_line_inv_vaddr(paddr, vaddr, PAGE_SIZE);
1015 * wrapper to clearout kernel or userspace mappings of a page
1016 * For kernel mappings @vaddr == @paddr
1018 void __flush_dcache_page(phys_addr_t paddr, unsigned long vaddr)
1020 __dc_line_op(paddr, vaddr & PAGE_MASK, PAGE_SIZE, OP_FLUSH_N_INV);
1023 noinline void flush_cache_all(void)
1025 unsigned long flags;
1027 local_irq_save(flags);
1029 __ic_entire_inv();
1030 __dc_entire_op(OP_FLUSH_N_INV);
1032 local_irq_restore(flags);
1036 #ifdef CONFIG_ARC_CACHE_VIPT_ALIASING
1038 void flush_cache_mm(struct mm_struct *mm)
1040 flush_cache_all();
1043 void flush_cache_page(struct vm_area_struct *vma, unsigned long u_vaddr,
1044 unsigned long pfn)
1046 phys_addr_t paddr = pfn << PAGE_SHIFT;
1048 u_vaddr &= PAGE_MASK;
1050 __flush_dcache_page(paddr, u_vaddr);
1052 if (vma->vm_flags & VM_EXEC)
1053 __inv_icache_page(paddr, u_vaddr);
1056 void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1057 unsigned long end)
1059 flush_cache_all();
1062 void flush_anon_page(struct vm_area_struct *vma, struct page *page,
1063 unsigned long u_vaddr)
1065 /* TBD: do we really need to clear the kernel mapping */
1066 __flush_dcache_page((phys_addr_t)page_address(page), u_vaddr);
1067 __flush_dcache_page((phys_addr_t)page_address(page),
1068 (phys_addr_t)page_address(page));
1072 #endif
1074 void copy_user_highpage(struct page *to, struct page *from,
1075 unsigned long u_vaddr, struct vm_area_struct *vma)
1077 void *kfrom = kmap_atomic(from);
1078 void *kto = kmap_atomic(to);
1079 int clean_src_k_mappings = 0;
1082 * If SRC page was already mapped in userspace AND it's U-mapping is
1083 * not congruent with K-mapping, sync former to physical page so that
1084 * K-mapping in memcpy below, sees the right data
1086 * Note that while @u_vaddr refers to DST page's userspace vaddr, it is
1087 * equally valid for SRC page as well
1089 * For !VIPT cache, all of this gets compiled out as
1090 * addr_not_cache_congruent() is 0
1092 if (page_mapcount(from) && addr_not_cache_congruent(kfrom, u_vaddr)) {
1093 __flush_dcache_page((unsigned long)kfrom, u_vaddr);
1094 clean_src_k_mappings = 1;
1097 copy_page(kto, kfrom);
1100 * Mark DST page K-mapping as dirty for a later finalization by
1101 * update_mmu_cache(). Although the finalization could have been done
1102 * here as well (given that both vaddr/paddr are available).
1103 * But update_mmu_cache() already has code to do that for other
1104 * non copied user pages (e.g. read faults which wire in pagecache page
1105 * directly).
1107 clear_bit(PG_dc_clean, &to->flags);
1110 * if SRC was already usermapped and non-congruent to kernel mapping
1111 * sync the kernel mapping back to physical page
1113 if (clean_src_k_mappings) {
1114 __flush_dcache_page((unsigned long)kfrom, (unsigned long)kfrom);
1115 set_bit(PG_dc_clean, &from->flags);
1116 } else {
1117 clear_bit(PG_dc_clean, &from->flags);
1120 kunmap_atomic(kto);
1121 kunmap_atomic(kfrom);
1124 void clear_user_page(void *to, unsigned long u_vaddr, struct page *page)
1126 clear_page(to);
1127 clear_bit(PG_dc_clean, &page->flags);
1131 /**********************************************************************
1132 * Explicit Cache flush request from user space via syscall
1133 * Needed for JITs which generate code on the fly
1135 SYSCALL_DEFINE3(cacheflush, uint32_t, start, uint32_t, sz, uint32_t, flags)
1137 /* TBD: optimize this */
1138 flush_cache_all();
1139 return 0;
1143 * IO-Coherency (IOC) setup rules:
1145 * 1. Needs to be at system level, so only once by Master core
1146 * Non-Masters need not be accessing caches at that time
1147 * - They are either HALT_ON_RESET and kick started much later or
1148 * - if run on reset, need to ensure that arc_platform_smp_wait_to_boot()
1149 * doesn't perturb caches or coherency unit
1151 * 2. caches (L1 and SLC) need to be purged (flush+inv) before setting up IOC,
1152 * otherwise any straggler data might behave strangely post IOC enabling
1154 * 3. All Caches need to be disabled when setting up IOC to elide any in-flight
1155 * Coherency transactions
1157 noinline void __init arc_ioc_setup(void)
1159 unsigned int ioc_base, mem_sz;
1162 * If IOC was already enabled (due to bootloader) it technically needs to
1163 * be reconfigured with aperture base,size corresponding to Linux memory map
1164 * which will certainly be different than uboot's. But disabling and
1165 * reenabling IOC when DMA might be potentially active is tricky business.
1166 * To avoid random memory issues later, just panic here and ask user to
1167 * upgrade bootloader to one which doesn't enable IOC
1169 if (read_aux_reg(ARC_REG_IO_COH_ENABLE) & ARC_IO_COH_ENABLE_BIT)
1170 panic("IOC already enabled, please upgrade bootloader!\n");
1172 if (!ioc_enable)
1173 return;
1175 /* Flush + invalidate + disable L1 dcache */
1176 __dc_disable();
1178 /* Flush + invalidate SLC */
1179 if (read_aux_reg(ARC_REG_SLC_BCR))
1180 slc_entire_op(OP_FLUSH_N_INV);
1183 * currently IOC Aperture covers entire DDR
1184 * TBD: fix for PGU + 1GB of low mem
1185 * TBD: fix for PAE
1187 mem_sz = arc_get_mem_sz();
1189 if (!is_power_of_2(mem_sz) || mem_sz < 4096)
1190 panic("IOC Aperture size must be power of 2 larger than 4KB");
1193 * IOC Aperture size decoded as 2 ^ (SIZE + 2) KB,
1194 * so setting 0x11 implies 512MB, 0x12 implies 1GB...
1196 write_aux_reg(ARC_REG_IO_COH_AP0_SIZE, order_base_2(mem_sz >> 10) - 2);
1198 /* for now assume kernel base is start of IOC aperture */
1199 ioc_base = CONFIG_LINUX_RAM_BASE;
1201 if (ioc_base % mem_sz != 0)
1202 panic("IOC Aperture start must be aligned to the size of the aperture");
1204 write_aux_reg(ARC_REG_IO_COH_AP0_BASE, ioc_base >> 12);
1205 write_aux_reg(ARC_REG_IO_COH_PARTIAL, ARC_IO_COH_PARTIAL_BIT);
1206 write_aux_reg(ARC_REG_IO_COH_ENABLE, ARC_IO_COH_ENABLE_BIT);
1208 /* Re-enable L1 dcache */
1209 __dc_enable();
1213 * Cache related boot time checks/setups only needed on master CPU:
1214 * - Geometry checks (kernel build and hardware agree: e.g. L1_CACHE_BYTES)
1215 * Assume SMP only, so all cores will have same cache config. A check on
1216 * one core suffices for all
1217 * - IOC setup / dma callbacks only need to be done once
1219 void __init arc_cache_init_master(void)
1221 unsigned int __maybe_unused cpu = smp_processor_id();
1223 if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE)) {
1224 struct cpuinfo_arc_cache *ic = &cpuinfo_arc700[cpu].icache;
1226 if (!ic->line_len)
1227 panic("cache support enabled but non-existent cache\n");
1229 if (ic->line_len != L1_CACHE_BYTES)
1230 panic("ICache line [%d] != kernel Config [%d]",
1231 ic->line_len, L1_CACHE_BYTES);
1234 * In MMU v4 (HS38x) the aliasing icache config uses IVIL/PTAG
1235 * pair to provide vaddr/paddr respectively, just as in MMU v3
1237 if (is_isa_arcv2() && ic->alias)
1238 _cache_line_loop_ic_fn = __cache_line_loop_v3;
1239 else
1240 _cache_line_loop_ic_fn = __cache_line_loop;
1243 if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE)) {
1244 struct cpuinfo_arc_cache *dc = &cpuinfo_arc700[cpu].dcache;
1246 if (!dc->line_len)
1247 panic("cache support enabled but non-existent cache\n");
1249 if (dc->line_len != L1_CACHE_BYTES)
1250 panic("DCache line [%d] != kernel Config [%d]",
1251 dc->line_len, L1_CACHE_BYTES);
1253 /* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */
1254 if (is_isa_arcompact()) {
1255 int handled = IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING);
1256 int num_colors = dc->sz_k/dc->assoc/TO_KB(PAGE_SIZE);
1258 if (dc->alias) {
1259 if (!handled)
1260 panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
1261 if (CACHE_COLORS_NUM != num_colors)
1262 panic("CACHE_COLORS_NUM not optimized for config\n");
1263 } else if (!dc->alias && handled) {
1264 panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
1270 * Check that SMP_CACHE_BYTES (and hence ARCH_DMA_MINALIGN) is larger
1271 * or equal to any cache line length.
1273 BUILD_BUG_ON_MSG(L1_CACHE_BYTES > SMP_CACHE_BYTES,
1274 "SMP_CACHE_BYTES must be >= any cache line length");
1275 if (is_isa_arcv2() && (l2_line_sz > SMP_CACHE_BYTES))
1276 panic("L2 Cache line [%d] > kernel Config [%d]\n",
1277 l2_line_sz, SMP_CACHE_BYTES);
1279 /* Note that SLC disable not formally supported till HS 3.0 */
1280 if (is_isa_arcv2() && l2_line_sz && !slc_enable)
1281 arc_slc_disable();
1283 if (is_isa_arcv2() && ioc_exists)
1284 arc_ioc_setup();
1286 if (is_isa_arcv2() && l2_line_sz && slc_enable) {
1287 __dma_cache_wback_inv = __dma_cache_wback_inv_slc;
1288 __dma_cache_inv = __dma_cache_inv_slc;
1289 __dma_cache_wback = __dma_cache_wback_slc;
1290 } else {
1291 __dma_cache_wback_inv = __dma_cache_wback_inv_l1;
1292 __dma_cache_inv = __dma_cache_inv_l1;
1293 __dma_cache_wback = __dma_cache_wback_l1;
1296 * In case of IOC (say IOC+SLC case), pointers above could still be set
1297 * but end up not being relevant as the first function in chain is not
1298 * called at all for devices using coherent DMA.
1299 * arch_sync_dma_for_cpu() -> dma_cache_*() -> __dma_cache_*()
1303 void __ref arc_cache_init(void)
1305 unsigned int __maybe_unused cpu = smp_processor_id();
1306 char str[256];
1308 pr_info("%s", arc_cache_mumbojumbo(0, str, sizeof(str)));
1310 if (!cpu)
1311 arc_cache_init_master();
1314 * In PAE regime, TLB and cache maintenance ops take wider addresses
1315 * And even if PAE is not enabled in kernel, the upper 32-bits still need
1316 * to be zeroed to keep the ops sane.
1317 * As an optimization for more common !PAE enabled case, zero them out
1318 * once at init, rather than checking/setting to 0 for every runtime op
1320 if (is_isa_arcv2() && pae40_exist_but_not_enab()) {
1322 if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE))
1323 write_aux_reg(ARC_REG_IC_PTAG_HI, 0);
1325 if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE))
1326 write_aux_reg(ARC_REG_DC_PTAG_HI, 0);
1328 if (l2_line_sz) {
1329 write_aux_reg(ARC_REG_SLC_RGN_END1, 0);
1330 write_aux_reg(ARC_REG_SLC_RGN_START1, 0);