2 * Contains CPU feature definitions
4 * Copyright (C) 2015 ARM Ltd.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 #define pr_fmt(fmt) "CPU features: " fmt
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/crash_dump.h>
24 #include <linux/sort.h>
25 #include <linux/stop_machine.h>
26 #include <linux/types.h>
28 #include <linux/cpu.h>
30 #include <asm/cpufeature.h>
31 #include <asm/cpu_ops.h>
32 #include <asm/fpsimd.h>
33 #include <asm/mmu_context.h>
34 #include <asm/processor.h>
35 #include <asm/sysreg.h>
36 #include <asm/traps.h>
39 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
40 static unsigned long elf_hwcap __read_mostly
;
43 #define COMPAT_ELF_HWCAP_DEFAULT \
44 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
45 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
46 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
47 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
48 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
50 unsigned int compat_elf_hwcap __read_mostly
= COMPAT_ELF_HWCAP_DEFAULT
;
51 unsigned int compat_elf_hwcap2 __read_mostly
;
54 DECLARE_BITMAP(cpu_hwcaps
, ARM64_NCAPS
);
55 EXPORT_SYMBOL(cpu_hwcaps
);
56 static struct arm64_cpu_capabilities
const __ro_after_init
*cpu_hwcaps_ptrs
[ARM64_NCAPS
];
58 /* Need also bit for ARM64_CB_PATCH */
59 DECLARE_BITMAP(boot_capabilities
, ARM64_NPATCHABLE
);
62 * Flag to indicate if we have computed the system wide
63 * capabilities based on the boot time active CPUs. This
64 * will be used to determine if a new booting CPU should
65 * go through the verification process to make sure that it
66 * supports the system capabilities, without using a hotplug
69 static bool sys_caps_initialised
;
71 static inline void set_sys_caps_initialised(void)
73 sys_caps_initialised
= true;
76 static int dump_cpu_hwcaps(struct notifier_block
*self
, unsigned long v
, void *p
)
78 /* file-wide pr_fmt adds "CPU features: " prefix */
79 pr_emerg("0x%*pb\n", ARM64_NCAPS
, &cpu_hwcaps
);
83 static struct notifier_block cpu_hwcaps_notifier
= {
84 .notifier_call
= dump_cpu_hwcaps
87 static int __init
register_cpu_hwcaps_dumper(void)
89 atomic_notifier_chain_register(&panic_notifier_list
,
90 &cpu_hwcaps_notifier
);
93 __initcall(register_cpu_hwcaps_dumper
);
95 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys
, ARM64_NCAPS
);
96 EXPORT_SYMBOL(cpu_hwcap_keys
);
98 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
101 .visible = VISIBLE, \
106 .safe_val = SAFE_VAL, \
109 /* Define a feature with unsigned values */
110 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
111 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
113 /* Define a feature with a signed value */
114 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
115 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
117 #define ARM64_FTR_END \
122 /* meta feature for alternatives */
123 static bool __maybe_unused
124 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities
*entry
, int __unused
);
126 static void cpu_enable_cnp(struct arm64_cpu_capabilities
const *cap
);
129 * NOTE: Any changes to the visibility of features should be kept in
130 * sync with the documentation of the CPU feature register ABI.
132 static const struct arm64_ftr_bits ftr_id_aa64isar0
[] = {
133 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_TS_SHIFT
, 4, 0),
134 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_FHM_SHIFT
, 4, 0),
135 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_DP_SHIFT
, 4, 0),
136 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SM4_SHIFT
, 4, 0),
137 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SM3_SHIFT
, 4, 0),
138 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SHA3_SHIFT
, 4, 0),
139 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_RDM_SHIFT
, 4, 0),
140 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_ATOMICS_SHIFT
, 4, 0),
141 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_CRC32_SHIFT
, 4, 0),
142 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SHA2_SHIFT
, 4, 0),
143 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SHA1_SHIFT
, 4, 0),
144 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_AES_SHIFT
, 4, 0),
148 static const struct arm64_ftr_bits ftr_id_aa64isar1
[] = {
149 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_SB_SHIFT
, 4, 0),
150 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH
),
151 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_GPI_SHIFT
, 4, 0),
152 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH
),
153 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_GPA_SHIFT
, 4, 0),
154 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_LRCPC_SHIFT
, 4, 0),
155 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_FCMA_SHIFT
, 4, 0),
156 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_JSCVT_SHIFT
, 4, 0),
157 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH
),
158 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_API_SHIFT
, 4, 0),
159 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH
),
160 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_APA_SHIFT
, 4, 0),
161 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_DPB_SHIFT
, 4, 0),
165 static const struct arm64_ftr_bits ftr_id_aa64pfr0
[] = {
166 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_CSV3_SHIFT
, 4, 0),
167 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_CSV2_SHIFT
, 4, 0),
168 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_DIT_SHIFT
, 4, 0),
169 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE
),
170 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_SVE_SHIFT
, 4, 0),
171 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_RAS_SHIFT
, 4, 0),
172 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_GIC_SHIFT
, 4, 0),
173 S_ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_ASIMD_SHIFT
, 4, ID_AA64PFR0_ASIMD_NI
),
174 S_ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_FP_SHIFT
, 4, ID_AA64PFR0_FP_NI
),
175 /* Linux doesn't care about the EL3 */
176 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL3_SHIFT
, 4, 0),
177 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL2_SHIFT
, 4, 0),
178 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL1_SHIFT
, 4, ID_AA64PFR0_EL1_64BIT_ONLY
),
179 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL0_SHIFT
, 4, ID_AA64PFR0_EL0_64BIT_ONLY
),
183 static const struct arm64_ftr_bits ftr_id_aa64pfr1
[] = {
184 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR1_SSBS_SHIFT
, 4, ID_AA64PFR1_SSBS_PSTATE_NI
),
188 static const struct arm64_ftr_bits ftr_id_aa64zfr0
[] = {
189 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_SM4_SHIFT
, 4, 0),
190 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_SHA3_SHIFT
, 4, 0),
191 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_BITPERM_SHIFT
, 4, 0),
192 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_AES_SHIFT
, 4, 0),
193 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_SVEVER_SHIFT
, 4, 0),
197 static const struct arm64_ftr_bits ftr_id_aa64mmfr0
[] = {
198 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_TGRAN4_SHIFT
, 4, ID_AA64MMFR0_TGRAN4_NI
),
199 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_TGRAN64_SHIFT
, 4, ID_AA64MMFR0_TGRAN64_NI
),
200 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_TGRAN16_SHIFT
, 4, ID_AA64MMFR0_TGRAN16_NI
),
201 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_BIGENDEL0_SHIFT
, 4, 0),
202 /* Linux shouldn't care about secure memory */
203 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_SNSMEM_SHIFT
, 4, 0),
204 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_BIGENDEL_SHIFT
, 4, 0),
205 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_ASID_SHIFT
, 4, 0),
207 * Differing PARange is fine as long as all peripherals and memory are mapped
208 * within the minimum PARange of all CPUs
210 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_PARANGE_SHIFT
, 4, 0),
214 static const struct arm64_ftr_bits ftr_id_aa64mmfr1
[] = {
215 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_PAN_SHIFT
, 4, 0),
216 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_LOR_SHIFT
, 4, 0),
217 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_HPD_SHIFT
, 4, 0),
218 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_VHE_SHIFT
, 4, 0),
219 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_VMIDBITS_SHIFT
, 4, 0),
220 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_HADBS_SHIFT
, 4, 0),
224 static const struct arm64_ftr_bits ftr_id_aa64mmfr2
[] = {
225 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_FWB_SHIFT
, 4, 0),
226 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_AT_SHIFT
, 4, 0),
227 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_LVA_SHIFT
, 4, 0),
228 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_IESB_SHIFT
, 4, 0),
229 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_LSM_SHIFT
, 4, 0),
230 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_UAO_SHIFT
, 4, 0),
231 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_CNP_SHIFT
, 4, 0),
235 static const struct arm64_ftr_bits ftr_ctr
[] = {
236 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_EXACT
, 31, 1, 1), /* RES1 */
237 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, CTR_DIC_SHIFT
, 1, 1),
238 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, CTR_IDC_SHIFT
, 1, 1),
239 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_HIGHER_SAFE
, CTR_CWG_SHIFT
, 4, 0),
240 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_HIGHER_SAFE
, CTR_ERG_SHIFT
, 4, 0),
241 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, CTR_DMINLINE_SHIFT
, 4, 1),
243 * Linux can handle differing I-cache policies. Userspace JITs will
244 * make use of *minLine.
245 * If we have differing I-cache policies, report it as the weakest - VIPT.
247 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_NONSTRICT
, FTR_EXACT
, 14, 2, ICACHE_POLICY_VIPT
), /* L1Ip */
248 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, CTR_IMINLINE_SHIFT
, 4, 0),
252 struct arm64_ftr_reg arm64_ftr_reg_ctrel0
= {
253 .name
= "SYS_CTR_EL0",
257 static const struct arm64_ftr_bits ftr_id_mmfr0
[] = {
258 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 28, 4, 0xf), /* InnerShr */
259 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 24, 4, 0), /* FCSE */
260 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, 20, 4, 0), /* AuxReg */
261 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 16, 4, 0), /* TCM */
262 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 12, 4, 0), /* ShareLvl */
263 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 8, 4, 0xf), /* OuterShr */
264 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0), /* PMSA */
265 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* VMSA */
269 static const struct arm64_ftr_bits ftr_id_aa64dfr0
[] = {
270 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 36, 28, 0),
271 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_PMSVER_SHIFT
, 4, 0),
272 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_CTX_CMPS_SHIFT
, 4, 0),
273 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_WRPS_SHIFT
, 4, 0),
274 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_BRPS_SHIFT
, 4, 0),
276 * We can instantiate multiple PMU instances with different levels
279 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_EXACT
, ID_AA64DFR0_PMUVER_SHIFT
, 4, 0),
280 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64DFR0_TRACEVER_SHIFT
, 4, 0),
281 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64DFR0_DEBUGVER_SHIFT
, 4, 0x6),
285 static const struct arm64_ftr_bits ftr_mvfr2
[] = {
286 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0), /* FPMisc */
287 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* SIMDMisc */
291 static const struct arm64_ftr_bits ftr_dczid
[] = {
292 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_EXACT
, 4, 1, 1), /* DZP */
293 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* BS */
298 static const struct arm64_ftr_bits ftr_id_isar5
[] = {
299 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_RDM_SHIFT
, 4, 0),
300 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_CRC32_SHIFT
, 4, 0),
301 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_SHA2_SHIFT
, 4, 0),
302 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_SHA1_SHIFT
, 4, 0),
303 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_AES_SHIFT
, 4, 0),
304 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_SEVL_SHIFT
, 4, 0),
308 static const struct arm64_ftr_bits ftr_id_mmfr4
[] = {
309 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0), /* ac2 */
313 static const struct arm64_ftr_bits ftr_id_pfr0
[] = {
314 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 12, 4, 0), /* State3 */
315 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 8, 4, 0), /* State2 */
316 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0), /* State1 */
317 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* State0 */
321 static const struct arm64_ftr_bits ftr_id_dfr0
[] = {
322 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 28, 4, 0),
323 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 24, 4, 0xf), /* PerfMon */
324 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 20, 4, 0),
325 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 16, 4, 0),
326 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 12, 4, 0),
327 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 8, 4, 0),
328 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0),
329 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0),
333 static const struct arm64_ftr_bits ftr_zcr
[] = {
334 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
,
335 ZCR_ELx_LEN_SHIFT
, ZCR_ELx_LEN_SIZE
, 0), /* LEN */
340 * Common ftr bits for a 32bit register with all hidden, strict
341 * attributes, with 4bit feature fields and a default safe value of
342 * 0. Covers the following 32bit registers:
343 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
345 static const struct arm64_ftr_bits ftr_generic_32bits
[] = {
346 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 28, 4, 0),
347 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 24, 4, 0),
348 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 20, 4, 0),
349 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 16, 4, 0),
350 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 12, 4, 0),
351 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 8, 4, 0),
352 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0),
353 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0),
357 /* Table for a single 32bit feature value */
358 static const struct arm64_ftr_bits ftr_single32
[] = {
359 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 0, 32, 0),
363 static const struct arm64_ftr_bits ftr_raz
[] = {
367 #define ARM64_FTR_REG(id, table) { \
369 .reg = &(struct arm64_ftr_reg){ \
371 .ftr_bits = &((table)[0]), \
374 static const struct __ftr_reg_entry
{
376 struct arm64_ftr_reg
*reg
;
377 } arm64_ftr_regs
[] = {
379 /* Op1 = 0, CRn = 0, CRm = 1 */
380 ARM64_FTR_REG(SYS_ID_PFR0_EL1
, ftr_id_pfr0
),
381 ARM64_FTR_REG(SYS_ID_PFR1_EL1
, ftr_generic_32bits
),
382 ARM64_FTR_REG(SYS_ID_DFR0_EL1
, ftr_id_dfr0
),
383 ARM64_FTR_REG(SYS_ID_MMFR0_EL1
, ftr_id_mmfr0
),
384 ARM64_FTR_REG(SYS_ID_MMFR1_EL1
, ftr_generic_32bits
),
385 ARM64_FTR_REG(SYS_ID_MMFR2_EL1
, ftr_generic_32bits
),
386 ARM64_FTR_REG(SYS_ID_MMFR3_EL1
, ftr_generic_32bits
),
388 /* Op1 = 0, CRn = 0, CRm = 2 */
389 ARM64_FTR_REG(SYS_ID_ISAR0_EL1
, ftr_generic_32bits
),
390 ARM64_FTR_REG(SYS_ID_ISAR1_EL1
, ftr_generic_32bits
),
391 ARM64_FTR_REG(SYS_ID_ISAR2_EL1
, ftr_generic_32bits
),
392 ARM64_FTR_REG(SYS_ID_ISAR3_EL1
, ftr_generic_32bits
),
393 ARM64_FTR_REG(SYS_ID_ISAR4_EL1
, ftr_generic_32bits
),
394 ARM64_FTR_REG(SYS_ID_ISAR5_EL1
, ftr_id_isar5
),
395 ARM64_FTR_REG(SYS_ID_MMFR4_EL1
, ftr_id_mmfr4
),
397 /* Op1 = 0, CRn = 0, CRm = 3 */
398 ARM64_FTR_REG(SYS_MVFR0_EL1
, ftr_generic_32bits
),
399 ARM64_FTR_REG(SYS_MVFR1_EL1
, ftr_generic_32bits
),
400 ARM64_FTR_REG(SYS_MVFR2_EL1
, ftr_mvfr2
),
402 /* Op1 = 0, CRn = 0, CRm = 4 */
403 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1
, ftr_id_aa64pfr0
),
404 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1
, ftr_id_aa64pfr1
),
405 ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1
, ftr_id_aa64zfr0
),
407 /* Op1 = 0, CRn = 0, CRm = 5 */
408 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1
, ftr_id_aa64dfr0
),
409 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1
, ftr_raz
),
411 /* Op1 = 0, CRn = 0, CRm = 6 */
412 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1
, ftr_id_aa64isar0
),
413 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1
, ftr_id_aa64isar1
),
415 /* Op1 = 0, CRn = 0, CRm = 7 */
416 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1
, ftr_id_aa64mmfr0
),
417 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1
, ftr_id_aa64mmfr1
),
418 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1
, ftr_id_aa64mmfr2
),
420 /* Op1 = 0, CRn = 1, CRm = 2 */
421 ARM64_FTR_REG(SYS_ZCR_EL1
, ftr_zcr
),
423 /* Op1 = 3, CRn = 0, CRm = 0 */
424 { SYS_CTR_EL0
, &arm64_ftr_reg_ctrel0
},
425 ARM64_FTR_REG(SYS_DCZID_EL0
, ftr_dczid
),
427 /* Op1 = 3, CRn = 14, CRm = 0 */
428 ARM64_FTR_REG(SYS_CNTFRQ_EL0
, ftr_single32
),
431 static int search_cmp_ftr_reg(const void *id
, const void *regp
)
433 return (int)(unsigned long)id
- (int)((const struct __ftr_reg_entry
*)regp
)->sys_id
;
437 * get_arm64_ftr_reg - Lookup a feature register entry using its
438 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
439 * ascending order of sys_id , we use binary search to find a matching
442 * returns - Upon success, matching ftr_reg entry for id.
443 * - NULL on failure. It is upto the caller to decide
444 * the impact of a failure.
446 static struct arm64_ftr_reg
*get_arm64_ftr_reg(u32 sys_id
)
448 const struct __ftr_reg_entry
*ret
;
450 ret
= bsearch((const void *)(unsigned long)sys_id
,
452 ARRAY_SIZE(arm64_ftr_regs
),
453 sizeof(arm64_ftr_regs
[0]),
460 static u64
arm64_ftr_set_value(const struct arm64_ftr_bits
*ftrp
, s64 reg
,
463 u64 mask
= arm64_ftr_mask(ftrp
);
466 reg
|= (ftr_val
<< ftrp
->shift
) & mask
;
470 static s64
arm64_ftr_safe_value(const struct arm64_ftr_bits
*ftrp
, s64
new,
475 switch (ftrp
->type
) {
477 ret
= ftrp
->safe_val
;
480 ret
= new < cur
? new : cur
;
482 case FTR_HIGHER_SAFE
:
483 ret
= new > cur
? new : cur
;
492 static void __init
sort_ftr_regs(void)
496 /* Check that the array is sorted so that we can do the binary search */
497 for (i
= 1; i
< ARRAY_SIZE(arm64_ftr_regs
); i
++)
498 BUG_ON(arm64_ftr_regs
[i
].sys_id
< arm64_ftr_regs
[i
- 1].sys_id
);
502 * Initialise the CPU feature register from Boot CPU values.
503 * Also initiliases the strict_mask for the register.
504 * Any bits that are not covered by an arm64_ftr_bits entry are considered
505 * RES0 for the system-wide value, and must strictly match.
507 static void __init
init_cpu_ftr_reg(u32 sys_reg
, u64
new)
510 u64 strict_mask
= ~0x0ULL
;
514 const struct arm64_ftr_bits
*ftrp
;
515 struct arm64_ftr_reg
*reg
= get_arm64_ftr_reg(sys_reg
);
519 for (ftrp
= reg
->ftr_bits
; ftrp
->width
; ftrp
++) {
520 u64 ftr_mask
= arm64_ftr_mask(ftrp
);
521 s64 ftr_new
= arm64_ftr_value(ftrp
, new);
523 val
= arm64_ftr_set_value(ftrp
, val
, ftr_new
);
525 valid_mask
|= ftr_mask
;
527 strict_mask
&= ~ftr_mask
;
529 user_mask
|= ftr_mask
;
531 reg
->user_val
= arm64_ftr_set_value(ftrp
,
539 reg
->strict_mask
= strict_mask
;
540 reg
->user_mask
= user_mask
;
543 extern const struct arm64_cpu_capabilities arm64_errata
[];
544 static const struct arm64_cpu_capabilities arm64_features
[];
547 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities
*caps
)
549 for (; caps
->matches
; caps
++) {
550 if (WARN(caps
->capability
>= ARM64_NCAPS
,
551 "Invalid capability %d\n", caps
->capability
))
553 if (WARN(cpu_hwcaps_ptrs
[caps
->capability
],
554 "Duplicate entry for capability %d\n",
557 cpu_hwcaps_ptrs
[caps
->capability
] = caps
;
561 static void __init
init_cpu_hwcaps_indirect_list(void)
563 init_cpu_hwcaps_indirect_list_from_array(arm64_features
);
564 init_cpu_hwcaps_indirect_list_from_array(arm64_errata
);
567 static void __init
setup_boot_cpu_capabilities(void);
569 void __init
init_cpu_features(struct cpuinfo_arm64
*info
)
571 /* Before we start using the tables, make sure it is sorted */
574 init_cpu_ftr_reg(SYS_CTR_EL0
, info
->reg_ctr
);
575 init_cpu_ftr_reg(SYS_DCZID_EL0
, info
->reg_dczid
);
576 init_cpu_ftr_reg(SYS_CNTFRQ_EL0
, info
->reg_cntfrq
);
577 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1
, info
->reg_id_aa64dfr0
);
578 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1
, info
->reg_id_aa64dfr1
);
579 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1
, info
->reg_id_aa64isar0
);
580 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1
, info
->reg_id_aa64isar1
);
581 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1
, info
->reg_id_aa64mmfr0
);
582 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1
, info
->reg_id_aa64mmfr1
);
583 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1
, info
->reg_id_aa64mmfr2
);
584 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1
, info
->reg_id_aa64pfr0
);
585 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1
, info
->reg_id_aa64pfr1
);
586 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1
, info
->reg_id_aa64zfr0
);
588 if (id_aa64pfr0_32bit_el0(info
->reg_id_aa64pfr0
)) {
589 init_cpu_ftr_reg(SYS_ID_DFR0_EL1
, info
->reg_id_dfr0
);
590 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1
, info
->reg_id_isar0
);
591 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1
, info
->reg_id_isar1
);
592 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1
, info
->reg_id_isar2
);
593 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1
, info
->reg_id_isar3
);
594 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1
, info
->reg_id_isar4
);
595 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1
, info
->reg_id_isar5
);
596 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1
, info
->reg_id_mmfr0
);
597 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1
, info
->reg_id_mmfr1
);
598 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1
, info
->reg_id_mmfr2
);
599 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1
, info
->reg_id_mmfr3
);
600 init_cpu_ftr_reg(SYS_ID_PFR0_EL1
, info
->reg_id_pfr0
);
601 init_cpu_ftr_reg(SYS_ID_PFR1_EL1
, info
->reg_id_pfr1
);
602 init_cpu_ftr_reg(SYS_MVFR0_EL1
, info
->reg_mvfr0
);
603 init_cpu_ftr_reg(SYS_MVFR1_EL1
, info
->reg_mvfr1
);
604 init_cpu_ftr_reg(SYS_MVFR2_EL1
, info
->reg_mvfr2
);
607 if (id_aa64pfr0_sve(info
->reg_id_aa64pfr0
)) {
608 init_cpu_ftr_reg(SYS_ZCR_EL1
, info
->reg_zcr
);
613 * Initialize the indirect array of CPU hwcaps capabilities pointers
614 * before we handle the boot CPU below.
616 init_cpu_hwcaps_indirect_list();
619 * Detect and enable early CPU capabilities based on the boot CPU,
620 * after we have initialised the CPU feature infrastructure.
622 setup_boot_cpu_capabilities();
625 static void update_cpu_ftr_reg(struct arm64_ftr_reg
*reg
, u64
new)
627 const struct arm64_ftr_bits
*ftrp
;
629 for (ftrp
= reg
->ftr_bits
; ftrp
->width
; ftrp
++) {
630 s64 ftr_cur
= arm64_ftr_value(ftrp
, reg
->sys_val
);
631 s64 ftr_new
= arm64_ftr_value(ftrp
, new);
633 if (ftr_cur
== ftr_new
)
635 /* Find a safe value */
636 ftr_new
= arm64_ftr_safe_value(ftrp
, ftr_new
, ftr_cur
);
637 reg
->sys_val
= arm64_ftr_set_value(ftrp
, reg
->sys_val
, ftr_new
);
642 static int check_update_ftr_reg(u32 sys_id
, int cpu
, u64 val
, u64 boot
)
644 struct arm64_ftr_reg
*regp
= get_arm64_ftr_reg(sys_id
);
647 update_cpu_ftr_reg(regp
, val
);
648 if ((boot
& regp
->strict_mask
) == (val
& regp
->strict_mask
))
650 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
651 regp
->name
, boot
, cpu
, val
);
656 * Update system wide CPU feature registers with the values from a
657 * non-boot CPU. Also performs SANITY checks to make sure that there
658 * aren't any insane variations from that of the boot CPU.
660 void update_cpu_features(int cpu
,
661 struct cpuinfo_arm64
*info
,
662 struct cpuinfo_arm64
*boot
)
667 * The kernel can handle differing I-cache policies, but otherwise
668 * caches should look identical. Userspace JITs will make use of
671 taint
|= check_update_ftr_reg(SYS_CTR_EL0
, cpu
,
672 info
->reg_ctr
, boot
->reg_ctr
);
675 * Userspace may perform DC ZVA instructions. Mismatched block sizes
676 * could result in too much or too little memory being zeroed if a
677 * process is preempted and migrated between CPUs.
679 taint
|= check_update_ftr_reg(SYS_DCZID_EL0
, cpu
,
680 info
->reg_dczid
, boot
->reg_dczid
);
682 /* If different, timekeeping will be broken (especially with KVM) */
683 taint
|= check_update_ftr_reg(SYS_CNTFRQ_EL0
, cpu
,
684 info
->reg_cntfrq
, boot
->reg_cntfrq
);
687 * The kernel uses self-hosted debug features and expects CPUs to
688 * support identical debug features. We presently need CTX_CMPs, WRPs,
689 * and BRPs to be identical.
690 * ID_AA64DFR1 is currently RES0.
692 taint
|= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1
, cpu
,
693 info
->reg_id_aa64dfr0
, boot
->reg_id_aa64dfr0
);
694 taint
|= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1
, cpu
,
695 info
->reg_id_aa64dfr1
, boot
->reg_id_aa64dfr1
);
697 * Even in big.LITTLE, processors should be identical instruction-set
700 taint
|= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1
, cpu
,
701 info
->reg_id_aa64isar0
, boot
->reg_id_aa64isar0
);
702 taint
|= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1
, cpu
,
703 info
->reg_id_aa64isar1
, boot
->reg_id_aa64isar1
);
706 * Differing PARange support is fine as long as all peripherals and
707 * memory are mapped within the minimum PARange of all CPUs.
708 * Linux should not care about secure memory.
710 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1
, cpu
,
711 info
->reg_id_aa64mmfr0
, boot
->reg_id_aa64mmfr0
);
712 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1
, cpu
,
713 info
->reg_id_aa64mmfr1
, boot
->reg_id_aa64mmfr1
);
714 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1
, cpu
,
715 info
->reg_id_aa64mmfr2
, boot
->reg_id_aa64mmfr2
);
718 * EL3 is not our concern.
720 taint
|= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1
, cpu
,
721 info
->reg_id_aa64pfr0
, boot
->reg_id_aa64pfr0
);
722 taint
|= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1
, cpu
,
723 info
->reg_id_aa64pfr1
, boot
->reg_id_aa64pfr1
);
725 taint
|= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1
, cpu
,
726 info
->reg_id_aa64zfr0
, boot
->reg_id_aa64zfr0
);
729 * If we have AArch32, we care about 32-bit features for compat.
730 * If the system doesn't support AArch32, don't update them.
732 if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1
)) &&
733 id_aa64pfr0_32bit_el0(info
->reg_id_aa64pfr0
)) {
735 taint
|= check_update_ftr_reg(SYS_ID_DFR0_EL1
, cpu
,
736 info
->reg_id_dfr0
, boot
->reg_id_dfr0
);
737 taint
|= check_update_ftr_reg(SYS_ID_ISAR0_EL1
, cpu
,
738 info
->reg_id_isar0
, boot
->reg_id_isar0
);
739 taint
|= check_update_ftr_reg(SYS_ID_ISAR1_EL1
, cpu
,
740 info
->reg_id_isar1
, boot
->reg_id_isar1
);
741 taint
|= check_update_ftr_reg(SYS_ID_ISAR2_EL1
, cpu
,
742 info
->reg_id_isar2
, boot
->reg_id_isar2
);
743 taint
|= check_update_ftr_reg(SYS_ID_ISAR3_EL1
, cpu
,
744 info
->reg_id_isar3
, boot
->reg_id_isar3
);
745 taint
|= check_update_ftr_reg(SYS_ID_ISAR4_EL1
, cpu
,
746 info
->reg_id_isar4
, boot
->reg_id_isar4
);
747 taint
|= check_update_ftr_reg(SYS_ID_ISAR5_EL1
, cpu
,
748 info
->reg_id_isar5
, boot
->reg_id_isar5
);
751 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
752 * ACTLR formats could differ across CPUs and therefore would have to
753 * be trapped for virtualization anyway.
755 taint
|= check_update_ftr_reg(SYS_ID_MMFR0_EL1
, cpu
,
756 info
->reg_id_mmfr0
, boot
->reg_id_mmfr0
);
757 taint
|= check_update_ftr_reg(SYS_ID_MMFR1_EL1
, cpu
,
758 info
->reg_id_mmfr1
, boot
->reg_id_mmfr1
);
759 taint
|= check_update_ftr_reg(SYS_ID_MMFR2_EL1
, cpu
,
760 info
->reg_id_mmfr2
, boot
->reg_id_mmfr2
);
761 taint
|= check_update_ftr_reg(SYS_ID_MMFR3_EL1
, cpu
,
762 info
->reg_id_mmfr3
, boot
->reg_id_mmfr3
);
763 taint
|= check_update_ftr_reg(SYS_ID_PFR0_EL1
, cpu
,
764 info
->reg_id_pfr0
, boot
->reg_id_pfr0
);
765 taint
|= check_update_ftr_reg(SYS_ID_PFR1_EL1
, cpu
,
766 info
->reg_id_pfr1
, boot
->reg_id_pfr1
);
767 taint
|= check_update_ftr_reg(SYS_MVFR0_EL1
, cpu
,
768 info
->reg_mvfr0
, boot
->reg_mvfr0
);
769 taint
|= check_update_ftr_reg(SYS_MVFR1_EL1
, cpu
,
770 info
->reg_mvfr1
, boot
->reg_mvfr1
);
771 taint
|= check_update_ftr_reg(SYS_MVFR2_EL1
, cpu
,
772 info
->reg_mvfr2
, boot
->reg_mvfr2
);
775 if (id_aa64pfr0_sve(info
->reg_id_aa64pfr0
)) {
776 taint
|= check_update_ftr_reg(SYS_ZCR_EL1
, cpu
,
777 info
->reg_zcr
, boot
->reg_zcr
);
779 /* Probe vector lengths, unless we already gave up on SVE */
780 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1
)) &&
781 !sys_caps_initialised
)
786 * Mismatched CPU features are a recipe for disaster. Don't even
787 * pretend to support them.
790 pr_warn_once("Unsupported CPU feature variation detected.\n");
791 add_taint(TAINT_CPU_OUT_OF_SPEC
, LOCKDEP_STILL_OK
);
795 u64
read_sanitised_ftr_reg(u32 id
)
797 struct arm64_ftr_reg
*regp
= get_arm64_ftr_reg(id
);
799 /* We shouldn't get a request for an unsupported register */
801 return regp
->sys_val
;
804 #define read_sysreg_case(r) \
805 case r: return read_sysreg_s(r)
808 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
809 * Read the system register on the current CPU
811 static u64
__read_sysreg_by_encoding(u32 sys_id
)
814 read_sysreg_case(SYS_ID_PFR0_EL1
);
815 read_sysreg_case(SYS_ID_PFR1_EL1
);
816 read_sysreg_case(SYS_ID_DFR0_EL1
);
817 read_sysreg_case(SYS_ID_MMFR0_EL1
);
818 read_sysreg_case(SYS_ID_MMFR1_EL1
);
819 read_sysreg_case(SYS_ID_MMFR2_EL1
);
820 read_sysreg_case(SYS_ID_MMFR3_EL1
);
821 read_sysreg_case(SYS_ID_ISAR0_EL1
);
822 read_sysreg_case(SYS_ID_ISAR1_EL1
);
823 read_sysreg_case(SYS_ID_ISAR2_EL1
);
824 read_sysreg_case(SYS_ID_ISAR3_EL1
);
825 read_sysreg_case(SYS_ID_ISAR4_EL1
);
826 read_sysreg_case(SYS_ID_ISAR5_EL1
);
827 read_sysreg_case(SYS_MVFR0_EL1
);
828 read_sysreg_case(SYS_MVFR1_EL1
);
829 read_sysreg_case(SYS_MVFR2_EL1
);
831 read_sysreg_case(SYS_ID_AA64PFR0_EL1
);
832 read_sysreg_case(SYS_ID_AA64PFR1_EL1
);
833 read_sysreg_case(SYS_ID_AA64DFR0_EL1
);
834 read_sysreg_case(SYS_ID_AA64DFR1_EL1
);
835 read_sysreg_case(SYS_ID_AA64MMFR0_EL1
);
836 read_sysreg_case(SYS_ID_AA64MMFR1_EL1
);
837 read_sysreg_case(SYS_ID_AA64MMFR2_EL1
);
838 read_sysreg_case(SYS_ID_AA64ISAR0_EL1
);
839 read_sysreg_case(SYS_ID_AA64ISAR1_EL1
);
841 read_sysreg_case(SYS_CNTFRQ_EL0
);
842 read_sysreg_case(SYS_CTR_EL0
);
843 read_sysreg_case(SYS_DCZID_EL0
);
851 #include <linux/irqchip/arm-gic-v3.h>
854 feature_matches(u64 reg
, const struct arm64_cpu_capabilities
*entry
)
856 int val
= cpuid_feature_extract_field(reg
, entry
->field_pos
, entry
->sign
);
858 return val
>= entry
->min_field_value
;
862 has_cpuid_feature(const struct arm64_cpu_capabilities
*entry
, int scope
)
866 WARN_ON(scope
== SCOPE_LOCAL_CPU
&& preemptible());
867 if (scope
== SCOPE_SYSTEM
)
868 val
= read_sanitised_ftr_reg(entry
->sys_reg
);
870 val
= __read_sysreg_by_encoding(entry
->sys_reg
);
872 return feature_matches(val
, entry
);
875 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities
*entry
, int scope
)
879 if (!has_cpuid_feature(entry
, scope
))
882 has_sre
= gic_enable_sre();
884 pr_warn_once("%s present but disabled by higher exception level\n",
890 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities
*entry
, int __unused
)
892 u32 midr
= read_cpuid_id();
894 /* Cavium ThunderX pass 1.x and 2.x */
895 return MIDR_IS_CPU_MODEL_RANGE(midr
, MIDR_THUNDERX
,
896 MIDR_CPU_VAR_REV(0, 0),
897 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK
));
900 static bool has_no_fpsimd(const struct arm64_cpu_capabilities
*entry
, int __unused
)
902 u64 pfr0
= read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1
);
904 return cpuid_feature_extract_signed_field(pfr0
,
905 ID_AA64PFR0_FP_SHIFT
) < 0;
908 static bool has_cache_idc(const struct arm64_cpu_capabilities
*entry
,
913 if (scope
== SCOPE_SYSTEM
)
914 ctr
= arm64_ftr_reg_ctrel0
.sys_val
;
916 ctr
= read_cpuid_effective_cachetype();
918 return ctr
& BIT(CTR_IDC_SHIFT
);
921 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities
*__unused
)
924 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
925 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
926 * to the CTR_EL0 on this CPU and emulate it with the real/safe
929 if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT
)))
930 sysreg_clear_set(sctlr_el1
, SCTLR_EL1_UCT
, 0);
933 static bool has_cache_dic(const struct arm64_cpu_capabilities
*entry
,
938 if (scope
== SCOPE_SYSTEM
)
939 ctr
= arm64_ftr_reg_ctrel0
.sys_val
;
941 ctr
= read_cpuid_cachetype();
943 return ctr
& BIT(CTR_DIC_SHIFT
);
946 static bool __maybe_unused
947 has_useable_cnp(const struct arm64_cpu_capabilities
*entry
, int scope
)
950 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
951 * may share TLB entries with a CPU stuck in the crashed
954 if (is_kdump_kernel())
957 return has_cpuid_feature(entry
, scope
);
960 static bool __meltdown_safe
= true;
961 static int __kpti_forced
; /* 0: not forced, >0: forced on, <0: forced off */
963 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities
*entry
,
966 /* List of CPUs that are not vulnerable and don't need KPTI */
967 static const struct midr_range kpti_safe_list
[] = {
968 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2
),
969 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN
),
970 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35
),
971 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53
),
972 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55
),
973 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57
),
974 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72
),
975 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73
),
976 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110
),
979 char const *str
= "kpti command line option";
982 meltdown_safe
= is_midr_in_range_list(read_cpuid_id(), kpti_safe_list
);
984 /* Defer to CPU feature registers */
985 if (has_cpuid_feature(entry
, scope
))
986 meltdown_safe
= true;
989 __meltdown_safe
= false;
992 * For reasons that aren't entirely clear, enabling KPTI on Cavium
993 * ThunderX leads to apparent I-cache corruption of kernel text, which
994 * ends as well as you might imagine. Don't even try.
996 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456
)) {
997 str
= "ARM64_WORKAROUND_CAVIUM_27456";
1001 /* Useful for KASLR robustness */
1002 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE
) && kaslr_offset() > 0) {
1003 if (!__kpti_forced
) {
1009 if (cpu_mitigations_off() && !__kpti_forced
) {
1010 str
= "mitigations=off";
1014 if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0
)) {
1015 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1020 if (__kpti_forced
) {
1021 pr_info_once("kernel page table isolation forced %s by %s\n",
1022 __kpti_forced
> 0 ? "ON" : "OFF", str
);
1023 return __kpti_forced
> 0;
1026 return !meltdown_safe
;
1029 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1031 kpti_install_ng_mappings(const struct arm64_cpu_capabilities
*__unused
)
1033 typedef void (kpti_remap_fn
)(int, int, phys_addr_t
);
1034 extern kpti_remap_fn idmap_kpti_install_ng_mappings
;
1035 kpti_remap_fn
*remap_fn
;
1037 static bool kpti_applied
= false;
1038 int cpu
= smp_processor_id();
1041 * We don't need to rewrite the page-tables if either we've done
1042 * it already or we have KASLR enabled and therefore have not
1043 * created any global mappings at all.
1045 if (kpti_applied
|| kaslr_offset() > 0)
1048 remap_fn
= (void *)__pa_symbol(idmap_kpti_install_ng_mappings
);
1050 cpu_install_idmap();
1051 remap_fn(cpu
, num_online_cpus(), __pa_symbol(swapper_pg_dir
));
1052 cpu_uninstall_idmap();
1055 kpti_applied
= true;
1061 kpti_install_ng_mappings(const struct arm64_cpu_capabilities
*__unused
)
1064 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1066 static int __init
parse_kpti(char *str
)
1069 int ret
= strtobool(str
, &enabled
);
1074 __kpti_forced
= enabled
? 1 : -1;
1077 early_param("kpti", parse_kpti
);
1079 #ifdef CONFIG_ARM64_HW_AFDBM
1080 static inline void __cpu_enable_hw_dbm(void)
1082 u64 tcr
= read_sysreg(tcr_el1
) | TCR_HD
;
1084 write_sysreg(tcr
, tcr_el1
);
1088 static bool cpu_has_broken_dbm(void)
1090 /* List of CPUs which have broken DBM support. */
1091 static const struct midr_range cpus
[] = {
1092 #ifdef CONFIG_ARM64_ERRATUM_1024718
1093 MIDR_RANGE(MIDR_CORTEX_A55
, 0, 0, 1, 0), // A55 r0p0 -r1p0
1098 return is_midr_in_range_list(read_cpuid_id(), cpus
);
1101 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities
*cap
)
1103 return has_cpuid_feature(cap
, SCOPE_LOCAL_CPU
) &&
1104 !cpu_has_broken_dbm();
1107 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities
const *cap
)
1109 if (cpu_can_use_dbm(cap
))
1110 __cpu_enable_hw_dbm();
1113 static bool has_hw_dbm(const struct arm64_cpu_capabilities
*cap
,
1116 static bool detected
= false;
1118 * DBM is a non-conflicting feature. i.e, the kernel can safely
1119 * run a mix of CPUs with and without the feature. So, we
1120 * unconditionally enable the capability to allow any late CPU
1121 * to use the feature. We only enable the control bits on the
1122 * CPU, if it actually supports.
1124 * We have to make sure we print the "feature" detection only
1125 * when at least one CPU actually uses it. So check if this CPU
1126 * can actually use it and print the message exactly once.
1128 * This is safe as all CPUs (including secondary CPUs - due to the
1129 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1130 * goes through the "matches" check exactly once. Also if a CPU
1131 * matches the criteria, it is guaranteed that the CPU will turn
1132 * the DBM on, as the capability is unconditionally enabled.
1134 if (!detected
&& cpu_can_use_dbm(cap
)) {
1136 pr_info("detected: Hardware dirty bit management\n");
1144 #ifdef CONFIG_ARM64_VHE
1145 static bool runs_at_el2(const struct arm64_cpu_capabilities
*entry
, int __unused
)
1147 return is_kernel_in_hyp_mode();
1150 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities
*__unused
)
1153 * Copy register values that aren't redirected by hardware.
1155 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1156 * this value to tpidr_el2 before we patch the code. Once we've done
1157 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1160 if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN
))
1161 write_sysreg(read_sysreg(tpidr_el1
), tpidr_el2
);
1165 static void cpu_has_fwb(const struct arm64_cpu_capabilities
*__unused
)
1167 u64 val
= read_sysreg_s(SYS_CLIDR_EL1
);
1169 /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1170 WARN_ON(val
& (7 << 27 | 7 << 21));
1173 #ifdef CONFIG_ARM64_SSBD
1174 static int ssbs_emulation_handler(struct pt_regs
*regs
, u32 instr
)
1176 if (user_mode(regs
))
1179 if (instr
& BIT(PSTATE_Imm_shift
))
1180 regs
->pstate
|= PSR_SSBS_BIT
;
1182 regs
->pstate
&= ~PSR_SSBS_BIT
;
1184 arm64_skip_faulting_instruction(regs
, 4);
1188 static struct undef_hook ssbs_emulation_hook
= {
1189 .instr_mask
= ~(1U << PSTATE_Imm_shift
),
1190 .instr_val
= 0xd500401f | PSTATE_SSBS
,
1191 .fn
= ssbs_emulation_handler
,
1194 static void cpu_enable_ssbs(const struct arm64_cpu_capabilities
*__unused
)
1196 static bool undef_hook_registered
= false;
1197 static DEFINE_SPINLOCK(hook_lock
);
1199 spin_lock(&hook_lock
);
1200 if (!undef_hook_registered
) {
1201 register_undef_hook(&ssbs_emulation_hook
);
1202 undef_hook_registered
= true;
1204 spin_unlock(&hook_lock
);
1206 if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE
) {
1207 sysreg_clear_set(sctlr_el1
, 0, SCTLR_ELx_DSSBS
);
1208 arm64_set_ssbd_mitigation(false);
1210 arm64_set_ssbd_mitigation(true);
1213 #endif /* CONFIG_ARM64_SSBD */
1215 #ifdef CONFIG_ARM64_PAN
1216 static void cpu_enable_pan(const struct arm64_cpu_capabilities
*__unused
)
1219 * We modify PSTATE. This won't work from irq context as the PSTATE
1220 * is discarded once we return from the exception.
1222 WARN_ON_ONCE(in_interrupt());
1224 sysreg_clear_set(sctlr_el1
, SCTLR_EL1_SPAN
, 0);
1225 asm(SET_PSTATE_PAN(1));
1227 #endif /* CONFIG_ARM64_PAN */
1229 #ifdef CONFIG_ARM64_RAS_EXTN
1230 static void cpu_clear_disr(const struct arm64_cpu_capabilities
*__unused
)
1232 /* Firmware may have left a deferred SError in this register. */
1233 write_sysreg_s(0, SYS_DISR_EL1
);
1235 #endif /* CONFIG_ARM64_RAS_EXTN */
1237 #ifdef CONFIG_ARM64_PTR_AUTH
1238 static void cpu_enable_address_auth(struct arm64_cpu_capabilities
const *cap
)
1240 sysreg_clear_set(sctlr_el1
, 0, SCTLR_ELx_ENIA
| SCTLR_ELx_ENIB
|
1241 SCTLR_ELx_ENDA
| SCTLR_ELx_ENDB
);
1243 #endif /* CONFIG_ARM64_PTR_AUTH */
1245 #ifdef CONFIG_ARM64_PSEUDO_NMI
1246 static bool enable_pseudo_nmi
;
1248 static int __init
early_enable_pseudo_nmi(char *p
)
1250 return strtobool(p
, &enable_pseudo_nmi
);
1252 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi
);
1254 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities
*entry
,
1257 return enable_pseudo_nmi
&& has_useable_gicv3_cpuif(entry
, scope
);
1261 static const struct arm64_cpu_capabilities arm64_features
[] = {
1263 .desc
= "GIC system register CPU interface",
1264 .capability
= ARM64_HAS_SYSREG_GIC_CPUIF
,
1265 .type
= ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE
,
1266 .matches
= has_useable_gicv3_cpuif
,
1267 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
1268 .field_pos
= ID_AA64PFR0_GIC_SHIFT
,
1269 .sign
= FTR_UNSIGNED
,
1270 .min_field_value
= 1,
1272 #ifdef CONFIG_ARM64_PAN
1274 .desc
= "Privileged Access Never",
1275 .capability
= ARM64_HAS_PAN
,
1276 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1277 .matches
= has_cpuid_feature
,
1278 .sys_reg
= SYS_ID_AA64MMFR1_EL1
,
1279 .field_pos
= ID_AA64MMFR1_PAN_SHIFT
,
1280 .sign
= FTR_UNSIGNED
,
1281 .min_field_value
= 1,
1282 .cpu_enable
= cpu_enable_pan
,
1284 #endif /* CONFIG_ARM64_PAN */
1285 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
1287 .desc
= "LSE atomic instructions",
1288 .capability
= ARM64_HAS_LSE_ATOMICS
,
1289 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1290 .matches
= has_cpuid_feature
,
1291 .sys_reg
= SYS_ID_AA64ISAR0_EL1
,
1292 .field_pos
= ID_AA64ISAR0_ATOMICS_SHIFT
,
1293 .sign
= FTR_UNSIGNED
,
1294 .min_field_value
= 2,
1296 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
1298 .desc
= "Software prefetching using PRFM",
1299 .capability
= ARM64_HAS_NO_HW_PREFETCH
,
1300 .type
= ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE
,
1301 .matches
= has_no_hw_prefetch
,
1303 #ifdef CONFIG_ARM64_UAO
1305 .desc
= "User Access Override",
1306 .capability
= ARM64_HAS_UAO
,
1307 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1308 .matches
= has_cpuid_feature
,
1309 .sys_reg
= SYS_ID_AA64MMFR2_EL1
,
1310 .field_pos
= ID_AA64MMFR2_UAO_SHIFT
,
1311 .min_field_value
= 1,
1313 * We rely on stop_machine() calling uao_thread_switch() to set
1314 * UAO immediately after patching.
1317 #endif /* CONFIG_ARM64_UAO */
1318 #ifdef CONFIG_ARM64_PAN
1320 .capability
= ARM64_ALT_PAN_NOT_UAO
,
1321 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1322 .matches
= cpufeature_pan_not_uao
,
1324 #endif /* CONFIG_ARM64_PAN */
1325 #ifdef CONFIG_ARM64_VHE
1327 .desc
= "Virtualization Host Extensions",
1328 .capability
= ARM64_HAS_VIRT_HOST_EXTN
,
1329 .type
= ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE
,
1330 .matches
= runs_at_el2
,
1331 .cpu_enable
= cpu_copy_el2regs
,
1333 #endif /* CONFIG_ARM64_VHE */
1335 .desc
= "32-bit EL0 Support",
1336 .capability
= ARM64_HAS_32BIT_EL0
,
1337 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1338 .matches
= has_cpuid_feature
,
1339 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
1340 .sign
= FTR_UNSIGNED
,
1341 .field_pos
= ID_AA64PFR0_EL0_SHIFT
,
1342 .min_field_value
= ID_AA64PFR0_EL0_32BIT_64BIT
,
1345 .desc
= "Kernel page table isolation (KPTI)",
1346 .capability
= ARM64_UNMAP_KERNEL_AT_EL0
,
1347 .type
= ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE
,
1349 * The ID feature fields below are used to indicate that
1350 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1353 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
1354 .field_pos
= ID_AA64PFR0_CSV3_SHIFT
,
1355 .min_field_value
= 1,
1356 .matches
= unmap_kernel_at_el0
,
1357 .cpu_enable
= kpti_install_ng_mappings
,
1360 /* FP/SIMD is not implemented */
1361 .capability
= ARM64_HAS_NO_FPSIMD
,
1362 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1363 .min_field_value
= 0,
1364 .matches
= has_no_fpsimd
,
1366 #ifdef CONFIG_ARM64_PMEM
1368 .desc
= "Data cache clean to Point of Persistence",
1369 .capability
= ARM64_HAS_DCPOP
,
1370 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1371 .matches
= has_cpuid_feature
,
1372 .sys_reg
= SYS_ID_AA64ISAR1_EL1
,
1373 .field_pos
= ID_AA64ISAR1_DPB_SHIFT
,
1374 .min_field_value
= 1,
1377 .desc
= "Data cache clean to Point of Deep Persistence",
1378 .capability
= ARM64_HAS_DCPODP
,
1379 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1380 .matches
= has_cpuid_feature
,
1381 .sys_reg
= SYS_ID_AA64ISAR1_EL1
,
1382 .sign
= FTR_UNSIGNED
,
1383 .field_pos
= ID_AA64ISAR1_DPB_SHIFT
,
1384 .min_field_value
= 2,
1387 #ifdef CONFIG_ARM64_SVE
1389 .desc
= "Scalable Vector Extension",
1390 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1391 .capability
= ARM64_SVE
,
1392 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
1393 .sign
= FTR_UNSIGNED
,
1394 .field_pos
= ID_AA64PFR0_SVE_SHIFT
,
1395 .min_field_value
= ID_AA64PFR0_SVE
,
1396 .matches
= has_cpuid_feature
,
1397 .cpu_enable
= sve_kernel_enable
,
1399 #endif /* CONFIG_ARM64_SVE */
1400 #ifdef CONFIG_ARM64_RAS_EXTN
1402 .desc
= "RAS Extension Support",
1403 .capability
= ARM64_HAS_RAS_EXTN
,
1404 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1405 .matches
= has_cpuid_feature
,
1406 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
1407 .sign
= FTR_UNSIGNED
,
1408 .field_pos
= ID_AA64PFR0_RAS_SHIFT
,
1409 .min_field_value
= ID_AA64PFR0_RAS_V1
,
1410 .cpu_enable
= cpu_clear_disr
,
1412 #endif /* CONFIG_ARM64_RAS_EXTN */
1414 .desc
= "Data cache clean to the PoU not required for I/D coherence",
1415 .capability
= ARM64_HAS_CACHE_IDC
,
1416 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1417 .matches
= has_cache_idc
,
1418 .cpu_enable
= cpu_emulate_effective_ctr
,
1421 .desc
= "Instruction cache invalidation not required for I/D coherence",
1422 .capability
= ARM64_HAS_CACHE_DIC
,
1423 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1424 .matches
= has_cache_dic
,
1427 .desc
= "Stage-2 Force Write-Back",
1428 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1429 .capability
= ARM64_HAS_STAGE2_FWB
,
1430 .sys_reg
= SYS_ID_AA64MMFR2_EL1
,
1431 .sign
= FTR_UNSIGNED
,
1432 .field_pos
= ID_AA64MMFR2_FWB_SHIFT
,
1433 .min_field_value
= 1,
1434 .matches
= has_cpuid_feature
,
1435 .cpu_enable
= cpu_has_fwb
,
1437 #ifdef CONFIG_ARM64_HW_AFDBM
1440 * Since we turn this on always, we don't want the user to
1441 * think that the feature is available when it may not be.
1442 * So hide the description.
1444 * .desc = "Hardware pagetable Dirty Bit Management",
1447 .type
= ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE
,
1448 .capability
= ARM64_HW_DBM
,
1449 .sys_reg
= SYS_ID_AA64MMFR1_EL1
,
1450 .sign
= FTR_UNSIGNED
,
1451 .field_pos
= ID_AA64MMFR1_HADBS_SHIFT
,
1452 .min_field_value
= 2,
1453 .matches
= has_hw_dbm
,
1454 .cpu_enable
= cpu_enable_hw_dbm
,
1458 .desc
= "CRC32 instructions",
1459 .capability
= ARM64_HAS_CRC32
,
1460 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1461 .matches
= has_cpuid_feature
,
1462 .sys_reg
= SYS_ID_AA64ISAR0_EL1
,
1463 .field_pos
= ID_AA64ISAR0_CRC32_SHIFT
,
1464 .min_field_value
= 1,
1466 #ifdef CONFIG_ARM64_SSBD
1468 .desc
= "Speculative Store Bypassing Safe (SSBS)",
1469 .capability
= ARM64_SSBS
,
1470 .type
= ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE
,
1471 .matches
= has_cpuid_feature
,
1472 .sys_reg
= SYS_ID_AA64PFR1_EL1
,
1473 .field_pos
= ID_AA64PFR1_SSBS_SHIFT
,
1474 .sign
= FTR_UNSIGNED
,
1475 .min_field_value
= ID_AA64PFR1_SSBS_PSTATE_ONLY
,
1476 .cpu_enable
= cpu_enable_ssbs
,
1479 #ifdef CONFIG_ARM64_CNP
1481 .desc
= "Common not Private translations",
1482 .capability
= ARM64_HAS_CNP
,
1483 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1484 .matches
= has_useable_cnp
,
1485 .sys_reg
= SYS_ID_AA64MMFR2_EL1
,
1486 .sign
= FTR_UNSIGNED
,
1487 .field_pos
= ID_AA64MMFR2_CNP_SHIFT
,
1488 .min_field_value
= 1,
1489 .cpu_enable
= cpu_enable_cnp
,
1493 .desc
= "Speculation barrier (SB)",
1494 .capability
= ARM64_HAS_SB
,
1495 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1496 .matches
= has_cpuid_feature
,
1497 .sys_reg
= SYS_ID_AA64ISAR1_EL1
,
1498 .field_pos
= ID_AA64ISAR1_SB_SHIFT
,
1499 .sign
= FTR_UNSIGNED
,
1500 .min_field_value
= 1,
1502 #ifdef CONFIG_ARM64_PTR_AUTH
1504 .desc
= "Address authentication (architected algorithm)",
1505 .capability
= ARM64_HAS_ADDRESS_AUTH_ARCH
,
1506 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1507 .sys_reg
= SYS_ID_AA64ISAR1_EL1
,
1508 .sign
= FTR_UNSIGNED
,
1509 .field_pos
= ID_AA64ISAR1_APA_SHIFT
,
1510 .min_field_value
= ID_AA64ISAR1_APA_ARCHITECTED
,
1511 .matches
= has_cpuid_feature
,
1512 .cpu_enable
= cpu_enable_address_auth
,
1515 .desc
= "Address authentication (IMP DEF algorithm)",
1516 .capability
= ARM64_HAS_ADDRESS_AUTH_IMP_DEF
,
1517 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1518 .sys_reg
= SYS_ID_AA64ISAR1_EL1
,
1519 .sign
= FTR_UNSIGNED
,
1520 .field_pos
= ID_AA64ISAR1_API_SHIFT
,
1521 .min_field_value
= ID_AA64ISAR1_API_IMP_DEF
,
1522 .matches
= has_cpuid_feature
,
1523 .cpu_enable
= cpu_enable_address_auth
,
1526 .desc
= "Generic authentication (architected algorithm)",
1527 .capability
= ARM64_HAS_GENERIC_AUTH_ARCH
,
1528 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1529 .sys_reg
= SYS_ID_AA64ISAR1_EL1
,
1530 .sign
= FTR_UNSIGNED
,
1531 .field_pos
= ID_AA64ISAR1_GPA_SHIFT
,
1532 .min_field_value
= ID_AA64ISAR1_GPA_ARCHITECTED
,
1533 .matches
= has_cpuid_feature
,
1536 .desc
= "Generic authentication (IMP DEF algorithm)",
1537 .capability
= ARM64_HAS_GENERIC_AUTH_IMP_DEF
,
1538 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1539 .sys_reg
= SYS_ID_AA64ISAR1_EL1
,
1540 .sign
= FTR_UNSIGNED
,
1541 .field_pos
= ID_AA64ISAR1_GPI_SHIFT
,
1542 .min_field_value
= ID_AA64ISAR1_GPI_IMP_DEF
,
1543 .matches
= has_cpuid_feature
,
1545 #endif /* CONFIG_ARM64_PTR_AUTH */
1546 #ifdef CONFIG_ARM64_PSEUDO_NMI
1549 * Depends on having GICv3
1551 .desc
= "IRQ priority masking",
1552 .capability
= ARM64_HAS_IRQ_PRIO_MASKING
,
1553 .type
= ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE
,
1554 .matches
= can_use_gic_priorities
,
1555 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
1556 .field_pos
= ID_AA64PFR0_GIC_SHIFT
,
1557 .sign
= FTR_UNSIGNED
,
1558 .min_field_value
= 1,
1564 #define HWCAP_CPUID_MATCH(reg, field, s, min_value) \
1565 .matches = has_cpuid_feature, \
1567 .field_pos = field, \
1569 .min_field_value = min_value,
1571 #define __HWCAP_CAP(name, cap_type, cap) \
1573 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \
1574 .hwcap_type = cap_type, \
1577 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap) \
1579 __HWCAP_CAP(#cap, cap_type, cap) \
1580 HWCAP_CPUID_MATCH(reg, field, s, min_value) \
1583 #define HWCAP_MULTI_CAP(list, cap_type, cap) \
1585 __HWCAP_CAP(#cap, cap_type, cap) \
1586 .matches = cpucap_multi_entry_cap_matches, \
1587 .match_list = list, \
1590 #ifdef CONFIG_ARM64_PTR_AUTH
1591 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches
[] = {
1593 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_APA_SHIFT
,
1594 FTR_UNSIGNED
, ID_AA64ISAR1_APA_ARCHITECTED
)
1597 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_API_SHIFT
,
1598 FTR_UNSIGNED
, ID_AA64ISAR1_API_IMP_DEF
)
1603 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches
[] = {
1605 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_GPA_SHIFT
,
1606 FTR_UNSIGNED
, ID_AA64ISAR1_GPA_ARCHITECTED
)
1609 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_GPI_SHIFT
,
1610 FTR_UNSIGNED
, ID_AA64ISAR1_GPI_IMP_DEF
)
1616 static const struct arm64_cpu_capabilities arm64_elf_hwcaps
[] = {
1617 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_AES_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, KERNEL_HWCAP_PMULL
),
1618 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_AES_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_AES
),
1619 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SHA1_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_SHA1
),
1620 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SHA2_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_SHA2
),
1621 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SHA2_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, KERNEL_HWCAP_SHA512
),
1622 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_CRC32_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_CRC32
),
1623 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_ATOMICS_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, KERNEL_HWCAP_ATOMICS
),
1624 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_RDM_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_ASIMDRDM
),
1625 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SHA3_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_SHA3
),
1626 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SM3_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_SM3
),
1627 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SM4_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_SM4
),
1628 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_DP_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_ASIMDDP
),
1629 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_FHM_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_ASIMDFHM
),
1630 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_TS_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_FLAGM
),
1631 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_FP_SHIFT
, FTR_SIGNED
, 0, CAP_HWCAP
, KERNEL_HWCAP_FP
),
1632 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_FP_SHIFT
, FTR_SIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_FPHP
),
1633 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_ASIMD_SHIFT
, FTR_SIGNED
, 0, CAP_HWCAP
, KERNEL_HWCAP_ASIMD
),
1634 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_ASIMD_SHIFT
, FTR_SIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_ASIMDHP
),
1635 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_DIT_SHIFT
, FTR_SIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_DIT
),
1636 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_DPB_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_DCPOP
),
1637 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_DPB_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, KERNEL_HWCAP_DCPODP
),
1638 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_JSCVT_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_JSCVT
),
1639 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_FCMA_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_FCMA
),
1640 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_LRCPC_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_LRCPC
),
1641 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_LRCPC_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, KERNEL_HWCAP_ILRCPC
),
1642 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_SB_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_SB
),
1643 HWCAP_CAP(SYS_ID_AA64MMFR2_EL1
, ID_AA64MMFR2_AT_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_USCAT
),
1644 #ifdef CONFIG_ARM64_SVE
1645 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_SVE_SHIFT
, FTR_UNSIGNED
, ID_AA64PFR0_SVE
, CAP_HWCAP
, KERNEL_HWCAP_SVE
),
1646 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1
, ID_AA64ZFR0_SVEVER_SHIFT
, FTR_UNSIGNED
, ID_AA64ZFR0_SVEVER_SVE2
, CAP_HWCAP
, KERNEL_HWCAP_SVE2
),
1647 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1
, ID_AA64ZFR0_AES_SHIFT
, FTR_UNSIGNED
, ID_AA64ZFR0_AES
, CAP_HWCAP
, KERNEL_HWCAP_SVEAES
),
1648 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1
, ID_AA64ZFR0_AES_SHIFT
, FTR_UNSIGNED
, ID_AA64ZFR0_AES_PMULL
, CAP_HWCAP
, KERNEL_HWCAP_SVEPMULL
),
1649 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1
, ID_AA64ZFR0_BITPERM_SHIFT
, FTR_UNSIGNED
, ID_AA64ZFR0_BITPERM
, CAP_HWCAP
, KERNEL_HWCAP_SVEBITPERM
),
1650 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1
, ID_AA64ZFR0_SHA3_SHIFT
, FTR_UNSIGNED
, ID_AA64ZFR0_SHA3
, CAP_HWCAP
, KERNEL_HWCAP_SVESHA3
),
1651 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1
, ID_AA64ZFR0_SM4_SHIFT
, FTR_UNSIGNED
, ID_AA64ZFR0_SM4
, CAP_HWCAP
, KERNEL_HWCAP_SVESM4
),
1653 HWCAP_CAP(SYS_ID_AA64PFR1_EL1
, ID_AA64PFR1_SSBS_SHIFT
, FTR_UNSIGNED
, ID_AA64PFR1_SSBS_PSTATE_INSNS
, CAP_HWCAP
, KERNEL_HWCAP_SSBS
),
1654 #ifdef CONFIG_ARM64_PTR_AUTH
1655 HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches
, CAP_HWCAP
, KERNEL_HWCAP_PACA
),
1656 HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches
, CAP_HWCAP
, KERNEL_HWCAP_PACG
),
1661 static const struct arm64_cpu_capabilities compat_elf_hwcaps
[] = {
1662 #ifdef CONFIG_COMPAT
1663 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_AES_SHIFT
, FTR_UNSIGNED
, 2, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_PMULL
),
1664 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_AES_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_AES
),
1665 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_SHA1_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_SHA1
),
1666 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_SHA2_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_SHA2
),
1667 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_CRC32_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_CRC32
),
1672 static void __init
cap_set_elf_hwcap(const struct arm64_cpu_capabilities
*cap
)
1674 switch (cap
->hwcap_type
) {
1676 cpu_set_feature(cap
->hwcap
);
1678 #ifdef CONFIG_COMPAT
1679 case CAP_COMPAT_HWCAP
:
1680 compat_elf_hwcap
|= (u32
)cap
->hwcap
;
1682 case CAP_COMPAT_HWCAP2
:
1683 compat_elf_hwcap2
|= (u32
)cap
->hwcap
;
1692 /* Check if we have a particular HWCAP enabled */
1693 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities
*cap
)
1697 switch (cap
->hwcap_type
) {
1699 rc
= cpu_have_feature(cap
->hwcap
);
1701 #ifdef CONFIG_COMPAT
1702 case CAP_COMPAT_HWCAP
:
1703 rc
= (compat_elf_hwcap
& (u32
)cap
->hwcap
) != 0;
1705 case CAP_COMPAT_HWCAP2
:
1706 rc
= (compat_elf_hwcap2
& (u32
)cap
->hwcap
) != 0;
1717 static void __init
setup_elf_hwcaps(const struct arm64_cpu_capabilities
*hwcaps
)
1719 /* We support emulation of accesses to CPU ID feature registers */
1720 cpu_set_named_feature(CPUID
);
1721 for (; hwcaps
->matches
; hwcaps
++)
1722 if (hwcaps
->matches(hwcaps
, cpucap_default_scope(hwcaps
)))
1723 cap_set_elf_hwcap(hwcaps
);
1726 static void update_cpu_capabilities(u16 scope_mask
)
1729 const struct arm64_cpu_capabilities
*caps
;
1731 scope_mask
&= ARM64_CPUCAP_SCOPE_MASK
;
1732 for (i
= 0; i
< ARM64_NCAPS
; i
++) {
1733 caps
= cpu_hwcaps_ptrs
[i
];
1734 if (!caps
|| !(caps
->type
& scope_mask
) ||
1735 cpus_have_cap(caps
->capability
) ||
1736 !caps
->matches(caps
, cpucap_default_scope(caps
)))
1740 pr_info("detected: %s\n", caps
->desc
);
1741 cpus_set_cap(caps
->capability
);
1743 if ((scope_mask
& SCOPE_BOOT_CPU
) && (caps
->type
& SCOPE_BOOT_CPU
))
1744 set_bit(caps
->capability
, boot_capabilities
);
1749 * Enable all the available capabilities on this CPU. The capabilities
1750 * with BOOT_CPU scope are handled separately and hence skipped here.
1752 static int cpu_enable_non_boot_scope_capabilities(void *__unused
)
1755 u16 non_boot_scope
= SCOPE_ALL
& ~SCOPE_BOOT_CPU
;
1757 for_each_available_cap(i
) {
1758 const struct arm64_cpu_capabilities
*cap
= cpu_hwcaps_ptrs
[i
];
1763 if (!(cap
->type
& non_boot_scope
))
1766 if (cap
->cpu_enable
)
1767 cap
->cpu_enable(cap
);
1773 * Run through the enabled capabilities and enable() it on all active
1776 static void __init
enable_cpu_capabilities(u16 scope_mask
)
1779 const struct arm64_cpu_capabilities
*caps
;
1782 scope_mask
&= ARM64_CPUCAP_SCOPE_MASK
;
1783 boot_scope
= !!(scope_mask
& SCOPE_BOOT_CPU
);
1785 for (i
= 0; i
< ARM64_NCAPS
; i
++) {
1788 caps
= cpu_hwcaps_ptrs
[i
];
1789 if (!caps
|| !(caps
->type
& scope_mask
))
1791 num
= caps
->capability
;
1792 if (!cpus_have_cap(num
))
1795 /* Ensure cpus_have_const_cap(num) works */
1796 static_branch_enable(&cpu_hwcap_keys
[num
]);
1798 if (boot_scope
&& caps
->cpu_enable
)
1800 * Capabilities with SCOPE_BOOT_CPU scope are finalised
1801 * before any secondary CPU boots. Thus, each secondary
1802 * will enable the capability as appropriate via
1803 * check_local_cpu_capabilities(). The only exception is
1804 * the boot CPU, for which the capability must be
1805 * enabled here. This approach avoids costly
1806 * stop_machine() calls for this case.
1808 caps
->cpu_enable(caps
);
1812 * For all non-boot scope capabilities, use stop_machine()
1813 * as it schedules the work allowing us to modify PSTATE,
1814 * instead of on_each_cpu() which uses an IPI, giving us a
1815 * PSTATE that disappears when we return.
1818 stop_machine(cpu_enable_non_boot_scope_capabilities
,
1819 NULL
, cpu_online_mask
);
1823 * Run through the list of capabilities to check for conflicts.
1824 * If the system has already detected a capability, take necessary
1825 * action on this CPU.
1827 * Returns "false" on conflicts.
1829 static bool verify_local_cpu_caps(u16 scope_mask
)
1832 bool cpu_has_cap
, system_has_cap
;
1833 const struct arm64_cpu_capabilities
*caps
;
1835 scope_mask
&= ARM64_CPUCAP_SCOPE_MASK
;
1837 for (i
= 0; i
< ARM64_NCAPS
; i
++) {
1838 caps
= cpu_hwcaps_ptrs
[i
];
1839 if (!caps
|| !(caps
->type
& scope_mask
))
1842 cpu_has_cap
= caps
->matches(caps
, SCOPE_LOCAL_CPU
);
1843 system_has_cap
= cpus_have_cap(caps
->capability
);
1845 if (system_has_cap
) {
1847 * Check if the new CPU misses an advertised feature,
1848 * which is not safe to miss.
1850 if (!cpu_has_cap
&& !cpucap_late_cpu_optional(caps
))
1853 * We have to issue cpu_enable() irrespective of
1854 * whether the CPU has it or not, as it is enabeld
1855 * system wide. It is upto the call back to take
1856 * appropriate action on this CPU.
1858 if (caps
->cpu_enable
)
1859 caps
->cpu_enable(caps
);
1862 * Check if the CPU has this capability if it isn't
1863 * safe to have when the system doesn't.
1865 if (cpu_has_cap
&& !cpucap_late_cpu_permitted(caps
))
1870 if (i
< ARM64_NCAPS
) {
1871 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
1872 smp_processor_id(), caps
->capability
,
1873 caps
->desc
, system_has_cap
, cpu_has_cap
);
1881 * Check for CPU features that are used in early boot
1882 * based on the Boot CPU value.
1884 static void check_early_cpu_features(void)
1886 verify_cpu_asid_bits();
1888 * Early features are used by the kernel already. If there
1889 * is a conflict, we cannot proceed further.
1891 if (!verify_local_cpu_caps(SCOPE_BOOT_CPU
))
1896 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities
*caps
)
1899 for (; caps
->matches
; caps
++)
1900 if (cpus_have_elf_hwcap(caps
) && !caps
->matches(caps
, SCOPE_LOCAL_CPU
)) {
1901 pr_crit("CPU%d: missing HWCAP: %s\n",
1902 smp_processor_id(), caps
->desc
);
1907 static void verify_sve_features(void)
1909 u64 safe_zcr
= read_sanitised_ftr_reg(SYS_ZCR_EL1
);
1910 u64 zcr
= read_zcr_features();
1912 unsigned int safe_len
= safe_zcr
& ZCR_ELx_LEN_MASK
;
1913 unsigned int len
= zcr
& ZCR_ELx_LEN_MASK
;
1915 if (len
< safe_len
|| sve_verify_vq_map()) {
1916 pr_crit("CPU%d: SVE: vector length support mismatch\n",
1917 smp_processor_id());
1921 /* Add checks on other ZCR bits here if necessary */
1926 * Run through the enabled system capabilities and enable() it on this CPU.
1927 * The capabilities were decided based on the available CPUs at the boot time.
1928 * Any new CPU should match the system wide status of the capability. If the
1929 * new CPU doesn't have a capability which the system now has enabled, we
1930 * cannot do anything to fix it up and could cause unexpected failures. So
1933 static void verify_local_cpu_capabilities(void)
1936 * The capabilities with SCOPE_BOOT_CPU are checked from
1937 * check_early_cpu_features(), as they need to be verified
1938 * on all secondary CPUs.
1940 if (!verify_local_cpu_caps(SCOPE_ALL
& ~SCOPE_BOOT_CPU
))
1943 verify_local_elf_hwcaps(arm64_elf_hwcaps
);
1945 if (system_supports_32bit_el0())
1946 verify_local_elf_hwcaps(compat_elf_hwcaps
);
1948 if (system_supports_sve())
1949 verify_sve_features();
1952 void check_local_cpu_capabilities(void)
1955 * All secondary CPUs should conform to the early CPU features
1956 * in use by the kernel based on boot CPU.
1958 check_early_cpu_features();
1961 * If we haven't finalised the system capabilities, this CPU gets
1962 * a chance to update the errata work arounds and local features.
1963 * Otherwise, this CPU should verify that it has all the system
1964 * advertised capabilities.
1966 if (!sys_caps_initialised
)
1967 update_cpu_capabilities(SCOPE_LOCAL_CPU
);
1969 verify_local_cpu_capabilities();
1972 static void __init
setup_boot_cpu_capabilities(void)
1974 /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
1975 update_cpu_capabilities(SCOPE_BOOT_CPU
| SCOPE_LOCAL_CPU
);
1976 /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
1977 enable_cpu_capabilities(SCOPE_BOOT_CPU
);
1980 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready
);
1981 EXPORT_SYMBOL(arm64_const_caps_ready
);
1983 static void __init
mark_const_caps_ready(void)
1985 static_branch_enable(&arm64_const_caps_ready
);
1988 bool this_cpu_has_cap(unsigned int n
)
1990 if (!WARN_ON(preemptible()) && n
< ARM64_NCAPS
) {
1991 const struct arm64_cpu_capabilities
*cap
= cpu_hwcaps_ptrs
[n
];
1994 return cap
->matches(cap
, SCOPE_LOCAL_CPU
);
2000 void cpu_set_feature(unsigned int num
)
2002 WARN_ON(num
>= MAX_CPU_FEATURES
);
2003 elf_hwcap
|= BIT(num
);
2005 EXPORT_SYMBOL_GPL(cpu_set_feature
);
2007 bool cpu_have_feature(unsigned int num
)
2009 WARN_ON(num
>= MAX_CPU_FEATURES
);
2010 return elf_hwcap
& BIT(num
);
2012 EXPORT_SYMBOL_GPL(cpu_have_feature
);
2014 unsigned long cpu_get_elf_hwcap(void)
2017 * We currently only populate the first 32 bits of AT_HWCAP. Please
2018 * note that for userspace compatibility we guarantee that bits 62
2019 * and 63 will always be returned as 0.
2021 return lower_32_bits(elf_hwcap
);
2024 unsigned long cpu_get_elf_hwcap2(void)
2026 return upper_32_bits(elf_hwcap
);
2029 static void __init
setup_system_capabilities(void)
2032 * We have finalised the system-wide safe feature
2033 * registers, finalise the capabilities that depend
2034 * on it. Also enable all the available capabilities,
2035 * that are not enabled already.
2037 update_cpu_capabilities(SCOPE_SYSTEM
);
2038 enable_cpu_capabilities(SCOPE_ALL
& ~SCOPE_BOOT_CPU
);
2041 void __init
setup_cpu_features(void)
2045 setup_system_capabilities();
2046 mark_const_caps_ready();
2047 setup_elf_hwcaps(arm64_elf_hwcaps
);
2049 if (system_supports_32bit_el0())
2050 setup_elf_hwcaps(compat_elf_hwcaps
);
2052 if (system_uses_ttbr0_pan())
2053 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
2056 minsigstksz_setup();
2058 /* Advertise that we have computed the system capabilities */
2059 set_sys_caps_initialised();
2062 * Check for sane CTR_EL0.CWG value.
2064 cwg
= cache_type_cwg();
2066 pr_warn("No Cache Writeback Granule information, assuming %d\n",
2070 static bool __maybe_unused
2071 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities
*entry
, int __unused
)
2073 return (cpus_have_const_cap(ARM64_HAS_PAN
) && !cpus_have_const_cap(ARM64_HAS_UAO
));
2076 static void __maybe_unused
cpu_enable_cnp(struct arm64_cpu_capabilities
const *cap
)
2078 cpu_replace_ttbr1(lm_alias(swapper_pg_dir
));
2082 * We emulate only the following system register space.
2083 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
2084 * See Table C5-6 System instruction encodings for System register accesses,
2085 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
2087 static inline bool __attribute_const__
is_emulated(u32 id
)
2089 return (sys_reg_Op0(id
) == 0x3 &&
2090 sys_reg_CRn(id
) == 0x0 &&
2091 sys_reg_Op1(id
) == 0x0 &&
2092 (sys_reg_CRm(id
) == 0 ||
2093 ((sys_reg_CRm(id
) >= 4) && (sys_reg_CRm(id
) <= 7))));
2097 * With CRm == 0, reg should be one of :
2098 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
2100 static inline int emulate_id_reg(u32 id
, u64
*valp
)
2104 *valp
= read_cpuid_id();
2107 *valp
= SYS_MPIDR_SAFE_VAL
;
2109 case SYS_REVIDR_EL1
:
2110 /* IMPLEMENTATION DEFINED values are emulated with 0 */
2120 static int emulate_sys_reg(u32 id
, u64
*valp
)
2122 struct arm64_ftr_reg
*regp
;
2124 if (!is_emulated(id
))
2127 if (sys_reg_CRm(id
) == 0)
2128 return emulate_id_reg(id
, valp
);
2130 regp
= get_arm64_ftr_reg(id
);
2132 *valp
= arm64_ftr_reg_user_value(regp
);
2135 * The untracked registers are either IMPLEMENTATION DEFINED
2136 * (e.g, ID_AFR0_EL1) or reserved RAZ.
2142 int do_emulate_mrs(struct pt_regs
*regs
, u32 sys_reg
, u32 rt
)
2147 rc
= emulate_sys_reg(sys_reg
, &val
);
2149 pt_regs_write_reg(regs
, rt
, val
);
2150 arm64_skip_faulting_instruction(regs
, AARCH64_INSN_SIZE
);
2155 static int emulate_mrs(struct pt_regs
*regs
, u32 insn
)
2160 * sys_reg values are defined as used in mrs/msr instruction.
2161 * shift the imm value to get the encoding.
2163 sys_reg
= (u32
)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16
, insn
) << 5;
2164 rt
= aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT
, insn
);
2165 return do_emulate_mrs(regs
, sys_reg
, rt
);
2168 static struct undef_hook mrs_hook
= {
2169 .instr_mask
= 0xfff00000,
2170 .instr_val
= 0xd5300000,
2171 .pstate_mask
= PSR_AA32_MODE_MASK
,
2172 .pstate_val
= PSR_MODE_EL0t
,
2176 static int __init
enable_mrs_emulation(void)
2178 register_undef_hook(&mrs_hook
);
2182 core_initcall(enable_mrs_emulation
);
2184 ssize_t
cpu_show_meltdown(struct device
*dev
, struct device_attribute
*attr
,
2187 if (__meltdown_safe
)
2188 return sprintf(buf
, "Not affected\n");
2190 if (arm64_kernel_unmapped_at_el0())
2191 return sprintf(buf
, "Mitigation: PTI\n");
2193 return sprintf(buf
, "Vulnerable\n");