2 * Low-level CPU initialisation
3 * Based on arch/arm/kernel/head.S
5 * Copyright (C) 1994-2002 Russell King
6 * Copyright (C) 2003-2012 ARM Ltd.
7 * Authors: Catalin Marinas <catalin.marinas@arm.com>
8 * Will Deacon <will.deacon@arm.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
23 #include <linux/linkage.h>
24 #include <linux/init.h>
25 #include <linux/irqchip/arm-gic-v3.h>
27 #include <asm/assembler.h>
29 #include <asm/ptrace.h>
30 #include <asm/asm-offsets.h>
31 #include <asm/cache.h>
32 #include <asm/cputype.h>
34 #include <asm/image.h>
35 #include <asm/kernel-pgtable.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/memory.h>
38 #include <asm/pgtable-hwdef.h>
39 #include <asm/pgtable.h>
42 #include <asm/sysreg.h>
43 #include <asm/thread_info.h>
46 #include "efi-header.S"
48 #define __PHYS_OFFSET (KERNEL_START - TEXT_OFFSET)
50 #if (TEXT_OFFSET & 0xfff) != 0
51 #error TEXT_OFFSET must be at least 4KB aligned
52 #elif (PAGE_OFFSET & 0x1fffff) != 0
53 #error PAGE_OFFSET must be at least 2MB aligned
54 #elif TEXT_OFFSET > 0x1fffff
55 #error TEXT_OFFSET must be less than 2MB
59 * Kernel startup entry point.
60 * ---------------------------
62 * The requirements are:
63 * MMU = off, D-cache = off, I-cache = on or off,
64 * x0 = physical address to the FDT blob.
66 * This code is mostly position independent so you call this at
67 * __pa(PAGE_OFFSET + TEXT_OFFSET).
69 * Note that the callee-saved registers are used for storing variables
70 * that are useful before the MMU is enabled. The allocations are described
71 * in the entry routines.
76 * DO NOT MODIFY. Image header expected by Linux boot-loaders.
80 * This add instruction has no meaningful effect except that
81 * its opcode forms the magic "MZ" signature required by UEFI.
86 b stext // branch to kernel start, magic
89 le64sym _kernel_offset_le // Image load offset from start of RAM, little-endian
90 le64sym _kernel_size_le // Effective size of kernel image, little-endian
91 le64sym _kernel_flags_le // Informative flags, little-endian
95 .ascii ARM64_IMAGE_MAGIC // Magic number
97 .long pe_header - _head // Offset to the PE header.
108 * The following callee saved general purpose registers are used on the
109 * primary lowlevel boot path:
111 * Register Scope Purpose
112 * x21 stext() .. start_kernel() FDT pointer passed at boot in x0
113 * x23 stext() .. start_kernel() physical misalignment/KASLR offset
114 * x28 __create_page_tables() callee preserved temp register
115 * x19/x20 __primary_switch() callee preserved temp registers
118 bl preserve_boot_args
119 bl el2_setup // Drop to EL1, w0=cpu_boot_mode
120 adrp x23, __PHYS_OFFSET
121 and x23, x23, MIN_KIMG_ALIGN - 1 // KASLR offset, defaults to 0
122 bl set_cpu_boot_mode_flag
123 bl __create_page_tables
125 * The following calls CPU setup code, see arch/arm64/mm/proc.S for
127 * On return, the CPU will be ready for the MMU to be turned on and
128 * the TCR will have been set.
130 bl __cpu_setup // initialise processor
135 * Preserve the arguments passed by the bootloader in x0 .. x3
138 mov x21, x0 // x21=FDT
140 adr_l x0, boot_args // record the contents of
141 stp x21, x1, [x0] // x0 .. x3 at kernel entry
142 stp x2, x3, [x0, #16]
144 dmb sy // needed before dc ivac with
147 mov x1, #0x20 // 4 x 8 bytes
148 b __inval_dcache_area // tail call
149 ENDPROC(preserve_boot_args)
152 * Macro to create a table entry to the next page.
154 * tbl: page table address
155 * virt: virtual address
156 * shift: #imm page table shift
157 * ptrs: #imm pointers per table page
160 * Corrupts: ptrs, tmp1, tmp2
161 * Returns: tbl -> next level table page address
163 .macro create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2
164 add \tmp1, \tbl, #PAGE_SIZE
165 phys_to_pte \tmp2, \tmp1
166 orr \tmp2, \tmp2, #PMD_TYPE_TABLE // address of next table and entry type
167 lsr \tmp1, \virt, #\shift
169 and \tmp1, \tmp1, \ptrs // table index
170 str \tmp2, [\tbl, \tmp1, lsl #3]
171 add \tbl, \tbl, #PAGE_SIZE // next level table page
175 * Macro to populate page table entries, these entries can be pointers to the next level
176 * or last level entries pointing to physical memory.
178 * tbl: page table address
179 * rtbl: pointer to page table or physical memory
180 * index: start index to write
181 * eindex: end index to write - [index, eindex] written to
182 * flags: flags for pagetable entry to or in
183 * inc: increment to rtbl between each entry
184 * tmp1: temporary variable
186 * Preserves: tbl, eindex, flags, inc
187 * Corrupts: index, tmp1
190 .macro populate_entries, tbl, rtbl, index, eindex, flags, inc, tmp1
191 .Lpe\@: phys_to_pte \tmp1, \rtbl
192 orr \tmp1, \tmp1, \flags // tmp1 = table entry
193 str \tmp1, [\tbl, \index, lsl #3]
194 add \rtbl, \rtbl, \inc // rtbl = pa next level
195 add \index, \index, #1
201 * Compute indices of table entries from virtual address range. If multiple entries
202 * were needed in the previous page table level then the next page table level is assumed
203 * to be composed of multiple pages. (This effectively scales the end index).
205 * vstart: virtual address of start of range
206 * vend: virtual address of end of range
207 * shift: shift used to transform virtual address into index
208 * ptrs: number of entries in page table
209 * istart: index in table corresponding to vstart
210 * iend: index in table corresponding to vend
211 * count: On entry: how many extra entries were required in previous level, scales
213 * On exit: returns how many extra entries required for next page table level
215 * Preserves: vstart, vend, shift, ptrs
216 * Returns: istart, iend, count
218 .macro compute_indices, vstart, vend, shift, ptrs, istart, iend, count
219 lsr \iend, \vend, \shift
221 sub \istart, \istart, #1
222 and \iend, \iend, \istart // iend = (vend >> shift) & (ptrs - 1)
224 mul \istart, \istart, \count
225 add \iend, \iend, \istart // iend += (count - 1) * ptrs
226 // our entries span multiple tables
228 lsr \istart, \vstart, \shift
230 sub \count, \count, #1
231 and \istart, \istart, \count
233 sub \count, \iend, \istart
237 * Map memory for specified virtual address range. Each level of page table needed supports
238 * multiple entries. If a level requires n entries the next page table level is assumed to be
239 * formed from n pages.
241 * tbl: location of page table
242 * rtbl: address to be used for first level page table entry (typically tbl + PAGE_SIZE)
243 * vstart: start address to map
244 * vend: end address to map - we map [vstart, vend]
245 * flags: flags to use to map last level entries
246 * phys: physical address corresponding to vstart - physical memory is contiguous
247 * pgds: the number of pgd entries
249 * Temporaries: istart, iend, tmp, count, sv - these need to be different registers
250 * Preserves: vstart, vend, flags
251 * Corrupts: tbl, rtbl, istart, iend, tmp, count, sv
253 .macro map_memory, tbl, rtbl, vstart, vend, flags, phys, pgds, istart, iend, tmp, count, sv
254 add \rtbl, \tbl, #PAGE_SIZE
257 compute_indices \vstart, \vend, #PGDIR_SHIFT, \pgds, \istart, \iend, \count
258 populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
262 #if SWAPPER_PGTABLE_LEVELS > 3
263 compute_indices \vstart, \vend, #PUD_SHIFT, #PTRS_PER_PUD, \istart, \iend, \count
264 populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
269 #if SWAPPER_PGTABLE_LEVELS > 2
270 compute_indices \vstart, \vend, #SWAPPER_TABLE_SHIFT, #PTRS_PER_PMD, \istart, \iend, \count
271 populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
275 compute_indices \vstart, \vend, #SWAPPER_BLOCK_SHIFT, #PTRS_PER_PTE, \istart, \iend, \count
276 bic \count, \phys, #SWAPPER_BLOCK_SIZE - 1
277 populate_entries \tbl, \count, \istart, \iend, \flags, #SWAPPER_BLOCK_SIZE, \tmp
281 * Setup the initial page tables. We only setup the barest amount which is
282 * required to get the kernel running. The following sections are required:
283 * - identity mapping to enable the MMU (low address, TTBR0)
284 * - first few MB of the kernel linear mapping to jump to once the MMU has
287 __create_page_tables:
291 * Invalidate the init page tables to avoid potential dirty cache lines
292 * being evicted. Other page tables are allocated in rodata as part of
293 * the kernel image, and thus are clean to the PoC per the boot
299 bl __inval_dcache_area
302 * Clear the init page tables.
307 1: stp xzr, xzr, [x0], #16
308 stp xzr, xzr, [x0], #16
309 stp xzr, xzr, [x0], #16
310 stp xzr, xzr, [x0], #16
314 mov x7, SWAPPER_MM_MMUFLAGS
317 * Create the identity mapping.
319 adrp x0, idmap_pg_dir
320 adrp x3, __idmap_text_start // __pa(__idmap_text_start)
322 #ifdef CONFIG_ARM64_USER_VA_BITS_52
323 mrs_s x6, SYS_ID_AA64MMFR2_EL1
324 and x6, x6, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
330 adr_l x6, vabits_user
333 dc ivac, x6 // Invalidate potentially stale cache line
336 * VA_BITS may be too small to allow for an ID mapping to be created
337 * that covers system RAM if that is located sufficiently high in the
338 * physical address space. So for the ID map, use an extended virtual
339 * range in that case, and configure an additional translation level
342 * Calculate the maximum allowed value for TCR_EL1.T0SZ so that the
343 * entire ID map region can be mapped. As T0SZ == (64 - #bits used),
344 * this number conveniently equals the number of leading zeroes in
345 * the physical address of __idmap_text_end.
347 adrp x5, __idmap_text_end
349 cmp x5, TCR_T0SZ(VA_BITS) // default T0SZ small enough?
350 b.ge 1f // .. then skip VA range extension
355 dc ivac, x6 // Invalidate potentially stale cache line
358 #define EXTRA_SHIFT (PGDIR_SHIFT + PAGE_SHIFT - 3)
359 #define EXTRA_PTRS (1 << (PHYS_MASK_SHIFT - EXTRA_SHIFT))
362 * If VA_BITS < 48, we have to configure an additional table level.
363 * First, we have to verify our assumption that the current value of
364 * VA_BITS was chosen such that all translation levels are fully
365 * utilised, and that lowering T0SZ will always result in an additional
366 * translation level to be configured.
368 #if VA_BITS != EXTRA_SHIFT
369 #error "Mismatch between VA_BITS and page size/number of translation levels"
373 create_table_entry x0, x3, EXTRA_SHIFT, x4, x5, x6
376 * If VA_BITS == 48, we don't have to configure an additional
377 * translation level, but the top-level table has more entries.
379 mov x4, #1 << (PHYS_MASK_SHIFT - PGDIR_SHIFT)
380 str_l x4, idmap_ptrs_per_pgd, x5
383 ldr_l x4, idmap_ptrs_per_pgd
384 mov x5, x3 // __pa(__idmap_text_start)
385 adr_l x6, __idmap_text_end // __pa(__idmap_text_end)
387 map_memory x0, x1, x3, x6, x7, x3, x4, x10, x11, x12, x13, x14
390 * Map the kernel image (starting with PHYS_OFFSET).
393 mov_q x5, KIMAGE_VADDR + TEXT_OFFSET // compile time __va(_text)
394 add x5, x5, x23 // add KASLR displacement
396 adrp x6, _end // runtime __pa(_end)
397 adrp x3, _text // runtime __pa(_text)
398 sub x6, x6, x3 // _end - _text
399 add x6, x6, x5 // runtime __va(_end)
401 map_memory x0, x1, x5, x6, x7, x3, x4, x10, x11, x12, x13, x14
404 * Since the page tables have been populated with non-cacheable
405 * accesses (MMU disabled), invalidate the idmap and swapper page
406 * tables again to remove any speculatively loaded cache lines.
408 adrp x0, idmap_pg_dir
412 bl __inval_dcache_area
415 ENDPROC(__create_page_tables)
419 * The following fragment of code is executed with the MMU enabled.
424 adrp x4, init_thread_union
425 add sp, x4, #THREAD_SIZE
427 msr sp_el0, x5 // Save thread_info
429 adr_l x8, vectors // load VBAR_EL1 with virtual
430 msr vbar_el1, x8 // vector table address
433 stp xzr, x30, [sp, #-16]!
436 str_l x21, __fdt_pointer, x5 // Save FDT pointer
438 ldr_l x4, kimage_vaddr // Save the offset between
439 sub x4, x4, x0 // the kernel virtual and
440 str_l x4, kimage_voffset, x5 // physical mappings
443 adr_l x0, __bss_start
448 dsb ishst // Make zero page visible to PTW
453 #ifdef CONFIG_RANDOMIZE_BASE
454 tst x23, ~(MIN_KIMG_ALIGN - 1) // already running randomized?
456 mov x0, x21 // pass FDT address in x0
457 bl kaslr_early_init // parse FDT for KASLR options
458 cbz x0, 0f // KASLR disabled? just proceed
459 orr x23, x23, x0 // record KASLR offset
460 ldp x29, x30, [sp], #16 // we must enable KASLR, return
461 ret // to __primary_switch()
468 ENDPROC(__primary_switched)
471 * end early head section, begin head code that is also used for
472 * hotplug and needs to have the same protections as the text region
474 .section ".idmap.text","awx"
477 .quad _text - TEXT_OFFSET
478 EXPORT_SYMBOL(kimage_vaddr)
481 * If we're fortunate enough to boot at EL2, ensure that the world is
482 * sane before dropping to EL1.
484 * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in w0 if
485 * booted in EL1 or EL2 respectively.
488 msr SPsel, #1 // We want to use SP_EL{1,2}
490 cmp x0, #CurrentEL_EL2
492 mov_q x0, (SCTLR_EL1_RES1 | ENDIAN_SET_EL1)
494 mov w0, #BOOT_CPU_MODE_EL1 // This cpu booted in EL1
498 1: mov_q x0, (SCTLR_EL2_RES1 | ENDIAN_SET_EL2)
501 #ifdef CONFIG_ARM64_VHE
503 * Check for VHE being present. For the rest of the EL2 setup,
504 * x2 being non-zero indicates that we do have VHE, and that the
505 * kernel is intended to run at EL2.
507 mrs x2, id_aa64mmfr1_el1
508 ubfx x2, x2, #ID_AA64MMFR1_VHE_SHIFT, #4
513 /* Hyp configuration. */
514 mov_q x0, HCR_HOST_NVHE_FLAGS
516 mov_q x0, HCR_HOST_VHE_FLAGS
522 * Allow Non-secure EL1 and EL0 to access physical timer and counter.
523 * This is not necessary for VHE, since the host kernel runs in EL2,
524 * and EL0 accesses are configured in the later stage of boot process.
525 * Note that when HCR_EL2.E2H == 1, CNTHCTL_EL2 has the same bit layout
526 * as CNTKCTL_EL1, and CNTKCTL_EL1 accessing instructions are redefined
527 * to access CNTHCTL_EL2. This allows the kernel designed to run at EL1
528 * to transparently mess with the EL0 bits via CNTKCTL_EL1 access in
533 orr x0, x0, #3 // Enable EL1 physical timers
536 msr cntvoff_el2, xzr // Clear virtual offset
538 #ifdef CONFIG_ARM_GIC_V3
539 /* GICv3 system register access */
540 mrs x0, id_aa64pfr0_el1
541 ubfx x0, x0, #ID_AA64PFR0_GIC_SHIFT, #4
544 mrs_s x0, SYS_ICC_SRE_EL2
545 orr x0, x0, #ICC_SRE_EL2_SRE // Set ICC_SRE_EL2.SRE==1
546 orr x0, x0, #ICC_SRE_EL2_ENABLE // Set ICC_SRE_EL2.Enable==1
547 msr_s SYS_ICC_SRE_EL2, x0
548 isb // Make sure SRE is now set
549 mrs_s x0, SYS_ICC_SRE_EL2 // Read SRE back,
550 tbz x0, #0, 3f // and check that it sticks
551 msr_s SYS_ICH_HCR_EL2, xzr // Reset ICC_HCR_EL2 to defaults
556 /* Populate ID registers. */
563 msr hstr_el2, xzr // Disable CP15 traps to EL2
567 mrs x1, id_aa64dfr0_el1
568 sbfx x0, x1, #ID_AA64DFR0_PMUVER_SHIFT, #4
570 b.lt 4f // Skip if no PMU present
571 mrs x0, pmcr_el0 // Disable debug access traps
572 ubfx x0, x0, #11, #5 // to EL2 and allow access to
574 csel x3, xzr, x0, lt // all PMU counters from EL1
576 /* Statistical profiling */
577 ubfx x0, x1, #ID_AA64DFR0_PMSVER_SHIFT, #4
578 cbz x0, 7f // Skip if SPE not present
580 mrs_s x4, SYS_PMBIDR_EL1 // If SPE available at EL2,
581 and x4, x4, #(1 << SYS_PMBIDR_EL1_P_SHIFT)
582 cbnz x4, 5f // then permit sampling of physical
583 mov x4, #(1 << SYS_PMSCR_EL2_PCT_SHIFT | \
584 1 << SYS_PMSCR_EL2_PA_SHIFT)
585 msr_s SYS_PMSCR_EL2, x4 // addresses and physical counter
587 mov x1, #(MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT)
588 orr x3, x3, x1 // If we don't have VHE, then
589 b 7f // use EL1&0 translation.
590 6: // For VHE, use EL2 translation
591 orr x3, x3, #MDCR_EL2_TPMS // and disable access from EL1
593 msr mdcr_el2, x3 // Configure debug traps
596 mrs x1, id_aa64mmfr1_el1
597 ubfx x0, x1, #ID_AA64MMFR1_LOR_SHIFT, 4
599 msr_s SYS_LORC_EL1, xzr
602 /* Stage-2 translation */
605 cbz x2, install_el2_stub
607 mov w0, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2
613 * When VHE is not in use, early init of EL2 and EL1 needs to be
615 * When VHE _is_ in use, EL1 will not be used in the host and
616 * requires no configuration, and all non-hyp-specific EL2 setup
617 * will be done via the _EL1 system register aliases in __cpu_setup.
619 mov_q x0, (SCTLR_EL1_RES1 | ENDIAN_SET_EL1)
622 /* Coprocessor traps. */
624 msr cptr_el2, x0 // Disable copro. traps to EL2
626 /* SVE register access */
627 mrs x1, id_aa64pfr0_el1
628 ubfx x1, x1, #ID_AA64PFR0_SVE_SHIFT, #4
631 bic x0, x0, #CPTR_EL2_TZ // Also disable SVE traps
632 msr cptr_el2, x0 // Disable copro. traps to EL2
634 mov x1, #ZCR_ELx_LEN_MASK // SVE: Enable full vector
635 msr_s SYS_ZCR_EL2, x1 // length for EL1.
637 /* Hypervisor stub */
638 7: adr_l x0, __hyp_stub_vectors
642 mov x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\
646 mov w0, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2
651 * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
652 * in w0. See arch/arm64/include/asm/virt.h for more info.
654 set_cpu_boot_mode_flag:
655 adr_l x1, __boot_cpu_mode
656 cmp w0, #BOOT_CPU_MODE_EL2
659 1: str w0, [x1] // This CPU has booted in EL1
661 dc ivac, x1 // Invalidate potentially stale cache line
663 ENDPROC(set_cpu_boot_mode_flag)
666 * These values are written with the MMU off, but read with the MMU on.
667 * Writers will invalidate the corresponding address, discarding up to a
668 * 'Cache Writeback Granule' (CWG) worth of data. The linker script ensures
669 * sufficient alignment that the CWG doesn't overlap another section.
671 .pushsection ".mmuoff.data.write", "aw"
673 * We need to find out the CPU boot mode long after boot, so we need to
674 * store it in a writable variable.
676 * This is not in .bss, because we set it sufficiently early that the boot-time
677 * zeroing of .bss would clobber it.
679 ENTRY(__boot_cpu_mode)
680 .long BOOT_CPU_MODE_EL2
681 .long BOOT_CPU_MODE_EL1
683 * The booting CPU updates the failed status @__early_cpu_boot_status,
684 * with MMU turned off.
686 ENTRY(__early_cpu_boot_status)
692 * This provides a "holding pen" for platforms to hold all secondary
693 * cores are held until we're ready for them to initialise.
695 ENTRY(secondary_holding_pen)
696 bl el2_setup // Drop to EL1, w0=cpu_boot_mode
697 bl set_cpu_boot_mode_flag
699 mov_q x1, MPIDR_HWID_BITMASK
701 adr_l x3, secondary_holding_pen_release
704 b.eq secondary_startup
707 ENDPROC(secondary_holding_pen)
710 * Secondary entry point that jumps straight into the kernel. Only to
711 * be used where CPUs are brought online dynamically by the kernel.
713 ENTRY(secondary_entry)
714 bl el2_setup // Drop to EL1
715 bl set_cpu_boot_mode_flag
717 ENDPROC(secondary_entry)
721 * Common entry point for secondary CPUs.
723 bl __cpu_secondary_check52bitva
724 bl __cpu_setup // initialise processor
725 adrp x1, swapper_pg_dir
727 ldr x8, =__secondary_switched
729 ENDPROC(secondary_startup)
731 __secondary_switched:
736 adr_l x0, secondary_data
737 ldr x1, [x0, #CPU_BOOT_STACK] // get secondary_data.stack
739 ldr x2, [x0, #CPU_BOOT_TASK]
743 b secondary_start_kernel
744 ENDPROC(__secondary_switched)
747 * The booting CPU updates the failed status @__early_cpu_boot_status,
748 * with MMU turned off.
750 * update_early_cpu_boot_status tmp, status
751 * - Corrupts tmp1, tmp2
752 * - Writes 'status' to __early_cpu_boot_status and makes sure
753 * it is committed to memory.
756 .macro update_early_cpu_boot_status status, tmp1, tmp2
758 adr_l \tmp1, __early_cpu_boot_status
761 dc ivac, \tmp1 // Invalidate potentially stale cache line
767 * x0 = SCTLR_EL1 value for turning on the MMU.
768 * x1 = TTBR1_EL1 value
770 * Returns to the caller via x30/lr. This requires the caller to be covered
771 * by the .idmap.text section.
773 * Checks if the selected granule size is supported by the CPU.
774 * If it isn't, park the CPU
777 mrs x2, ID_AA64MMFR0_EL1
778 ubfx x2, x2, #ID_AA64MMFR0_TGRAN_SHIFT, 4
779 cmp x2, #ID_AA64MMFR0_TGRAN_SUPPORTED
780 b.ne __no_granule_support
781 update_early_cpu_boot_status 0, x2, x3
782 adrp x2, idmap_pg_dir
785 msr ttbr0_el1, x2 // load TTBR0
787 msr ttbr1_el1, x1 // load TTBR1
792 * Invalidate the local I-cache so that any instructions fetched
793 * speculatively from the PoC are discarded, since they may have
794 * been dynamically patched at the PoU.
800 ENDPROC(__enable_mmu)
802 ENTRY(__cpu_secondary_check52bitva)
803 #ifdef CONFIG_ARM64_USER_VA_BITS_52
804 ldr_l x0, vabits_user
808 mrs_s x0, SYS_ID_AA64MMFR2_EL1
809 and x0, x0, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
812 update_early_cpu_boot_status \
813 CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_52_BIT_VA, x0, x1
820 ENDPROC(__cpu_secondary_check52bitva)
822 __no_granule_support:
823 /* Indicate that this CPU can't boot and is stuck in the kernel */
824 update_early_cpu_boot_status \
825 CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_NO_GRAN, x1, x2
830 ENDPROC(__no_granule_support)
832 #ifdef CONFIG_RELOCATABLE
835 * Iterate over each entry in the relocation table, and apply the
836 * relocations in place.
838 ldr w9, =__rela_offset // offset to reloc table
839 ldr w10, =__rela_size // size of reloc table
841 mov_q x11, KIMAGE_VADDR // default virtual offset
842 add x11, x11, x23 // actual virtual offset
843 add x9, x9, x11 // __va(.rela)
844 add x10, x9, x10 // __va(.rela) + sizeof(.rela)
848 ldp x11, x12, [x9], #24
850 cmp w12, #R_AARCH64_RELATIVE
852 add x13, x13, x23 // relocate
856 ENDPROC(__relocate_kernel)
860 #ifdef CONFIG_RANDOMIZE_BASE
861 mov x19, x0 // preserve new SCTLR_EL1 value
862 mrs x20, sctlr_el1 // preserve old SCTLR_EL1 value
867 #ifdef CONFIG_RELOCATABLE
869 #ifdef CONFIG_RANDOMIZE_BASE
870 ldr x8, =__primary_switched
871 adrp x0, __PHYS_OFFSET
875 * If we return here, we have a KASLR displacement in x23 which we need
876 * to take into account by discarding the current kernel mapping and
877 * creating a new one.
879 pre_disable_mmu_workaround
880 msr sctlr_el1, x20 // disable the MMU
882 bl __create_page_tables // recreate kernel mapping
884 tlbi vmalle1 // Remove any stale TLB entries
887 msr sctlr_el1, x19 // re-enable the MMU
889 ic iallu // flush instructions fetched
890 dsb nsh // via old mapping
896 ldr x8, =__primary_switched
897 adrp x0, __PHYS_OFFSET
899 ENDPROC(__primary_switch)