staging: erofs: fix warning Comparison to bool
[linux/fpc-iii.git] / arch / arm64 / kernel / probes / kprobes.c
blob88ce502c8e6f145431cb5971009641b079387f03
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * arch/arm64/kernel/probes/kprobes.c
5 * Kprobes support for ARM64
7 * Copyright (C) 2013 Linaro Limited.
8 * Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org>
9 */
10 #include <linux/kasan.h>
11 #include <linux/kernel.h>
12 #include <linux/kprobes.h>
13 #include <linux/extable.h>
14 #include <linux/slab.h>
15 #include <linux/stop_machine.h>
16 #include <linux/sched/debug.h>
17 #include <linux/set_memory.h>
18 #include <linux/stringify.h>
19 #include <linux/vmalloc.h>
20 #include <asm/traps.h>
21 #include <asm/ptrace.h>
22 #include <asm/cacheflush.h>
23 #include <asm/debug-monitors.h>
24 #include <asm/system_misc.h>
25 #include <asm/insn.h>
26 #include <linux/uaccess.h>
27 #include <asm/irq.h>
28 #include <asm/sections.h>
30 #include "decode-insn.h"
32 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
33 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
35 static void __kprobes
36 post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
38 static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode)
40 void *addrs[1];
41 u32 insns[1];
43 addrs[0] = addr;
44 insns[0] = opcode;
46 return aarch64_insn_patch_text(addrs, insns, 1);
49 static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
51 /* prepare insn slot */
52 patch_text(p->ainsn.api.insn, p->opcode);
54 flush_icache_range((uintptr_t) (p->ainsn.api.insn),
55 (uintptr_t) (p->ainsn.api.insn) +
56 MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
59 * Needs restoring of return address after stepping xol.
61 p->ainsn.api.restore = (unsigned long) p->addr +
62 sizeof(kprobe_opcode_t);
65 static void __kprobes arch_prepare_simulate(struct kprobe *p)
67 /* This instructions is not executed xol. No need to adjust the PC */
68 p->ainsn.api.restore = 0;
71 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
73 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
75 if (p->ainsn.api.handler)
76 p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs);
78 /* single step simulated, now go for post processing */
79 post_kprobe_handler(kcb, regs);
82 int __kprobes arch_prepare_kprobe(struct kprobe *p)
84 unsigned long probe_addr = (unsigned long)p->addr;
86 if (probe_addr & 0x3)
87 return -EINVAL;
89 /* copy instruction */
90 p->opcode = le32_to_cpu(*p->addr);
92 if (search_exception_tables(probe_addr))
93 return -EINVAL;
95 /* decode instruction */
96 switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) {
97 case INSN_REJECTED: /* insn not supported */
98 return -EINVAL;
100 case INSN_GOOD_NO_SLOT: /* insn need simulation */
101 p->ainsn.api.insn = NULL;
102 break;
104 case INSN_GOOD: /* instruction uses slot */
105 p->ainsn.api.insn = get_insn_slot();
106 if (!p->ainsn.api.insn)
107 return -ENOMEM;
108 break;
111 /* prepare the instruction */
112 if (p->ainsn.api.insn)
113 arch_prepare_ss_slot(p);
114 else
115 arch_prepare_simulate(p);
117 return 0;
120 void *alloc_insn_page(void)
122 void *page;
124 page = vmalloc_exec(PAGE_SIZE);
125 if (page)
126 set_memory_ro((unsigned long)page, 1);
128 return page;
131 /* arm kprobe: install breakpoint in text */
132 void __kprobes arch_arm_kprobe(struct kprobe *p)
134 patch_text(p->addr, BRK64_OPCODE_KPROBES);
137 /* disarm kprobe: remove breakpoint from text */
138 void __kprobes arch_disarm_kprobe(struct kprobe *p)
140 patch_text(p->addr, p->opcode);
143 void __kprobes arch_remove_kprobe(struct kprobe *p)
145 if (p->ainsn.api.insn) {
146 free_insn_slot(p->ainsn.api.insn, 0);
147 p->ainsn.api.insn = NULL;
151 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
153 kcb->prev_kprobe.kp = kprobe_running();
154 kcb->prev_kprobe.status = kcb->kprobe_status;
157 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
159 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
160 kcb->kprobe_status = kcb->prev_kprobe.status;
163 static void __kprobes set_current_kprobe(struct kprobe *p)
165 __this_cpu_write(current_kprobe, p);
169 * When PSTATE.D is set (masked), then software step exceptions can not be
170 * generated.
171 * SPSR's D bit shows the value of PSTATE.D immediately before the
172 * exception was taken. PSTATE.D is set while entering into any exception
173 * mode, however software clears it for any normal (none-debug-exception)
174 * mode in the exception entry. Therefore, when we are entering into kprobe
175 * breakpoint handler from any normal mode then SPSR.D bit is already
176 * cleared, however it is set when we are entering from any debug exception
177 * mode.
178 * Since we always need to generate single step exception after a kprobe
179 * breakpoint exception therefore we need to clear it unconditionally, when
180 * we become sure that the current breakpoint exception is for kprobe.
182 static void __kprobes
183 spsr_set_debug_flag(struct pt_regs *regs, int mask)
185 unsigned long spsr = regs->pstate;
187 if (mask)
188 spsr |= PSR_D_BIT;
189 else
190 spsr &= ~PSR_D_BIT;
192 regs->pstate = spsr;
196 * Interrupts need to be disabled before single-step mode is set, and not
197 * reenabled until after single-step mode ends.
198 * Without disabling interrupt on local CPU, there is a chance of
199 * interrupt occurrence in the period of exception return and start of
200 * out-of-line single-step, that result in wrongly single stepping
201 * into the interrupt handler.
203 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
204 struct pt_regs *regs)
206 kcb->saved_irqflag = regs->pstate;
207 regs->pstate |= PSR_I_BIT;
210 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
211 struct pt_regs *regs)
213 if (kcb->saved_irqflag & PSR_I_BIT)
214 regs->pstate |= PSR_I_BIT;
215 else
216 regs->pstate &= ~PSR_I_BIT;
219 static void __kprobes
220 set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr)
222 kcb->ss_ctx.ss_pending = true;
223 kcb->ss_ctx.match_addr = addr + sizeof(kprobe_opcode_t);
226 static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
228 kcb->ss_ctx.ss_pending = false;
229 kcb->ss_ctx.match_addr = 0;
232 static void __kprobes setup_singlestep(struct kprobe *p,
233 struct pt_regs *regs,
234 struct kprobe_ctlblk *kcb, int reenter)
236 unsigned long slot;
238 if (reenter) {
239 save_previous_kprobe(kcb);
240 set_current_kprobe(p);
241 kcb->kprobe_status = KPROBE_REENTER;
242 } else {
243 kcb->kprobe_status = KPROBE_HIT_SS;
247 if (p->ainsn.api.insn) {
248 /* prepare for single stepping */
249 slot = (unsigned long)p->ainsn.api.insn;
251 set_ss_context(kcb, slot); /* mark pending ss */
253 spsr_set_debug_flag(regs, 0);
255 /* IRQs and single stepping do not mix well. */
256 kprobes_save_local_irqflag(kcb, regs);
257 kernel_enable_single_step(regs);
258 instruction_pointer_set(regs, slot);
259 } else {
260 /* insn simulation */
261 arch_simulate_insn(p, regs);
265 static int __kprobes reenter_kprobe(struct kprobe *p,
266 struct pt_regs *regs,
267 struct kprobe_ctlblk *kcb)
269 switch (kcb->kprobe_status) {
270 case KPROBE_HIT_SSDONE:
271 case KPROBE_HIT_ACTIVE:
272 kprobes_inc_nmissed_count(p);
273 setup_singlestep(p, regs, kcb, 1);
274 break;
275 case KPROBE_HIT_SS:
276 case KPROBE_REENTER:
277 pr_warn("Unrecoverable kprobe detected.\n");
278 dump_kprobe(p);
279 BUG();
280 break;
281 default:
282 WARN_ON(1);
283 return 0;
286 return 1;
289 static void __kprobes
290 post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
292 struct kprobe *cur = kprobe_running();
294 if (!cur)
295 return;
297 /* return addr restore if non-branching insn */
298 if (cur->ainsn.api.restore != 0)
299 instruction_pointer_set(regs, cur->ainsn.api.restore);
301 /* restore back original saved kprobe variables and continue */
302 if (kcb->kprobe_status == KPROBE_REENTER) {
303 restore_previous_kprobe(kcb);
304 return;
306 /* call post handler */
307 kcb->kprobe_status = KPROBE_HIT_SSDONE;
308 if (cur->post_handler) {
309 /* post_handler can hit breakpoint and single step
310 * again, so we enable D-flag for recursive exception.
312 cur->post_handler(cur, regs, 0);
315 reset_current_kprobe();
318 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
320 struct kprobe *cur = kprobe_running();
321 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
323 switch (kcb->kprobe_status) {
324 case KPROBE_HIT_SS:
325 case KPROBE_REENTER:
327 * We are here because the instruction being single
328 * stepped caused a page fault. We reset the current
329 * kprobe and the ip points back to the probe address
330 * and allow the page fault handler to continue as a
331 * normal page fault.
333 instruction_pointer_set(regs, (unsigned long) cur->addr);
334 if (!instruction_pointer(regs))
335 BUG();
337 kernel_disable_single_step();
339 if (kcb->kprobe_status == KPROBE_REENTER)
340 restore_previous_kprobe(kcb);
341 else
342 reset_current_kprobe();
344 break;
345 case KPROBE_HIT_ACTIVE:
346 case KPROBE_HIT_SSDONE:
348 * We increment the nmissed count for accounting,
349 * we can also use npre/npostfault count for accounting
350 * these specific fault cases.
352 kprobes_inc_nmissed_count(cur);
355 * We come here because instructions in the pre/post
356 * handler caused the page_fault, this could happen
357 * if handler tries to access user space by
358 * copy_from_user(), get_user() etc. Let the
359 * user-specified handler try to fix it first.
361 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
362 return 1;
365 * In case the user-specified fault handler returned
366 * zero, try to fix up.
368 if (fixup_exception(regs))
369 return 1;
371 return 0;
374 static void __kprobes kprobe_handler(struct pt_regs *regs)
376 struct kprobe *p, *cur_kprobe;
377 struct kprobe_ctlblk *kcb;
378 unsigned long addr = instruction_pointer(regs);
380 kcb = get_kprobe_ctlblk();
381 cur_kprobe = kprobe_running();
383 p = get_kprobe((kprobe_opcode_t *) addr);
385 if (p) {
386 if (cur_kprobe) {
387 if (reenter_kprobe(p, regs, kcb))
388 return;
389 } else {
390 /* Probe hit */
391 set_current_kprobe(p);
392 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
395 * If we have no pre-handler or it returned 0, we
396 * continue with normal processing. If we have a
397 * pre-handler and it returned non-zero, it will
398 * modify the execution path and no need to single
399 * stepping. Let's just reset current kprobe and exit.
401 * pre_handler can hit a breakpoint and can step thru
402 * before return, keep PSTATE D-flag enabled until
403 * pre_handler return back.
405 if (!p->pre_handler || !p->pre_handler(p, regs)) {
406 setup_singlestep(p, regs, kcb, 0);
407 } else
408 reset_current_kprobe();
412 * The breakpoint instruction was removed right
413 * after we hit it. Another cpu has removed
414 * either a probepoint or a debugger breakpoint
415 * at this address. In either case, no further
416 * handling of this interrupt is appropriate.
417 * Return back to original instruction, and continue.
421 static int __kprobes
422 kprobe_ss_hit(struct kprobe_ctlblk *kcb, unsigned long addr)
424 if ((kcb->ss_ctx.ss_pending)
425 && (kcb->ss_ctx.match_addr == addr)) {
426 clear_ss_context(kcb); /* clear pending ss */
427 return DBG_HOOK_HANDLED;
429 /* not ours, kprobes should ignore it */
430 return DBG_HOOK_ERROR;
433 static int __kprobes
434 kprobe_single_step_handler(struct pt_regs *regs, unsigned int esr)
436 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
437 int retval;
439 /* return error if this is not our step */
440 retval = kprobe_ss_hit(kcb, instruction_pointer(regs));
442 if (retval == DBG_HOOK_HANDLED) {
443 kprobes_restore_local_irqflag(kcb, regs);
444 kernel_disable_single_step();
446 post_kprobe_handler(kcb, regs);
449 return retval;
452 static struct step_hook kprobes_step_hook = {
453 .fn = kprobe_single_step_handler,
456 static int __kprobes
457 kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr)
459 kprobe_handler(regs);
460 return DBG_HOOK_HANDLED;
463 static struct break_hook kprobes_break_hook = {
464 .imm = KPROBES_BRK_IMM,
465 .fn = kprobe_breakpoint_handler,
469 * Provide a blacklist of symbols identifying ranges which cannot be kprobed.
470 * This blacklist is exposed to userspace via debugfs (kprobes/blacklist).
472 int __init arch_populate_kprobe_blacklist(void)
474 int ret;
476 ret = kprobe_add_area_blacklist((unsigned long)__entry_text_start,
477 (unsigned long)__entry_text_end);
478 if (ret)
479 return ret;
480 ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
481 (unsigned long)__irqentry_text_end);
482 if (ret)
483 return ret;
484 ret = kprobe_add_area_blacklist((unsigned long)__exception_text_start,
485 (unsigned long)__exception_text_end);
486 if (ret)
487 return ret;
488 ret = kprobe_add_area_blacklist((unsigned long)__idmap_text_start,
489 (unsigned long)__idmap_text_end);
490 if (ret)
491 return ret;
492 ret = kprobe_add_area_blacklist((unsigned long)__hyp_text_start,
493 (unsigned long)__hyp_text_end);
494 if (ret || is_kernel_in_hyp_mode())
495 return ret;
496 ret = kprobe_add_area_blacklist((unsigned long)__hyp_idmap_text_start,
497 (unsigned long)__hyp_idmap_text_end);
498 return ret;
501 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
503 struct kretprobe_instance *ri = NULL;
504 struct hlist_head *head, empty_rp;
505 struct hlist_node *tmp;
506 unsigned long flags, orig_ret_address = 0;
507 unsigned long trampoline_address =
508 (unsigned long)&kretprobe_trampoline;
509 kprobe_opcode_t *correct_ret_addr = NULL;
511 INIT_HLIST_HEAD(&empty_rp);
512 kretprobe_hash_lock(current, &head, &flags);
515 * It is possible to have multiple instances associated with a given
516 * task either because multiple functions in the call path have
517 * return probes installed on them, and/or more than one
518 * return probe was registered for a target function.
520 * We can handle this because:
521 * - instances are always pushed into the head of the list
522 * - when multiple return probes are registered for the same
523 * function, the (chronologically) first instance's ret_addr
524 * will be the real return address, and all the rest will
525 * point to kretprobe_trampoline.
527 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
528 if (ri->task != current)
529 /* another task is sharing our hash bucket */
530 continue;
532 orig_ret_address = (unsigned long)ri->ret_addr;
534 if (orig_ret_address != trampoline_address)
536 * This is the real return address. Any other
537 * instances associated with this task are for
538 * other calls deeper on the call stack
540 break;
543 kretprobe_assert(ri, orig_ret_address, trampoline_address);
545 correct_ret_addr = ri->ret_addr;
546 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
547 if (ri->task != current)
548 /* another task is sharing our hash bucket */
549 continue;
551 orig_ret_address = (unsigned long)ri->ret_addr;
552 if (ri->rp && ri->rp->handler) {
553 __this_cpu_write(current_kprobe, &ri->rp->kp);
554 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
555 ri->ret_addr = correct_ret_addr;
556 ri->rp->handler(ri, regs);
557 __this_cpu_write(current_kprobe, NULL);
560 recycle_rp_inst(ri, &empty_rp);
562 if (orig_ret_address != trampoline_address)
564 * This is the real return address. Any other
565 * instances associated with this task are for
566 * other calls deeper on the call stack
568 break;
571 kretprobe_hash_unlock(current, &flags);
573 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
574 hlist_del(&ri->hlist);
575 kfree(ri);
577 return (void *)orig_ret_address;
580 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
581 struct pt_regs *regs)
583 ri->ret_addr = (kprobe_opcode_t *)regs->regs[30];
585 /* replace return addr (x30) with trampoline */
586 regs->regs[30] = (long)&kretprobe_trampoline;
589 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
591 return 0;
594 int __init arch_init_kprobes(void)
596 register_kernel_break_hook(&kprobes_break_hook);
597 register_kernel_step_hook(&kprobes_step_hook);
599 return 0;