1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/fs/binfmt_elf.c
5 * These are the functions used to load ELF format executables as used
6 * on SVr4 machines. Information on the format may be found in the book
7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
13 #include <linux/module.h>
14 #include <linux/kernel.h>
17 #include <linux/mman.h>
18 #include <linux/errno.h>
19 #include <linux/signal.h>
20 #include <linux/binfmts.h>
21 #include <linux/string.h>
22 #include <linux/file.h>
23 #include <linux/slab.h>
24 #include <linux/personality.h>
25 #include <linux/elfcore.h>
26 #include <linux/init.h>
27 #include <linux/highuid.h>
28 #include <linux/compiler.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/random.h>
34 #include <linux/elf.h>
35 #include <linux/elf-randomize.h>
36 #include <linux/utsname.h>
37 #include <linux/coredump.h>
38 #include <linux/sched.h>
39 #include <linux/sched/coredump.h>
40 #include <linux/sched/task_stack.h>
41 #include <linux/sched/cputime.h>
42 #include <linux/cred.h>
43 #include <linux/dax.h>
44 #include <linux/uaccess.h>
45 #include <asm/param.h>
49 #define user_long_t long
51 #ifndef user_siginfo_t
52 #define user_siginfo_t siginfo_t
55 /* That's for binfmt_elf_fdpic to deal with */
56 #ifndef elf_check_fdpic
57 #define elf_check_fdpic(ex) false
60 static int load_elf_binary(struct linux_binprm
*bprm
);
63 static int load_elf_library(struct file
*);
65 #define load_elf_library NULL
69 * If we don't support core dumping, then supply a NULL so we
72 #ifdef CONFIG_ELF_CORE
73 static int elf_core_dump(struct coredump_params
*cprm
);
75 #define elf_core_dump NULL
78 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
79 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
81 #define ELF_MIN_ALIGN PAGE_SIZE
84 #ifndef ELF_CORE_EFLAGS
85 #define ELF_CORE_EFLAGS 0
88 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
89 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
90 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
92 static struct linux_binfmt elf_format
= {
93 .module
= THIS_MODULE
,
94 .load_binary
= load_elf_binary
,
95 .load_shlib
= load_elf_library
,
96 .core_dump
= elf_core_dump
,
97 .min_coredump
= ELF_EXEC_PAGESIZE
,
100 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
102 static int set_brk(unsigned long start
, unsigned long end
, int prot
)
104 start
= ELF_PAGEALIGN(start
);
105 end
= ELF_PAGEALIGN(end
);
108 * Map the last of the bss segment.
109 * If the header is requesting these pages to be
110 * executable, honour that (ppc32 needs this).
112 int error
= vm_brk_flags(start
, end
- start
,
113 prot
& PROT_EXEC
? VM_EXEC
: 0);
117 current
->mm
->start_brk
= current
->mm
->brk
= end
;
121 /* We need to explicitly zero any fractional pages
122 after the data section (i.e. bss). This would
123 contain the junk from the file that should not
126 static int padzero(unsigned long elf_bss
)
130 nbyte
= ELF_PAGEOFFSET(elf_bss
);
132 nbyte
= ELF_MIN_ALIGN
- nbyte
;
133 if (clear_user((void __user
*) elf_bss
, nbyte
))
139 /* Let's use some macros to make this stack manipulation a little clearer */
140 #ifdef CONFIG_STACK_GROWSUP
141 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
142 #define STACK_ROUND(sp, items) \
143 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
144 #define STACK_ALLOC(sp, len) ({ \
145 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
148 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
149 #define STACK_ROUND(sp, items) \
150 (((unsigned long) (sp - items)) &~ 15UL)
151 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
154 #ifndef ELF_BASE_PLATFORM
156 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
157 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
158 * will be copied to the user stack in the same manner as AT_PLATFORM.
160 #define ELF_BASE_PLATFORM NULL
164 create_elf_tables(struct linux_binprm
*bprm
, struct elfhdr
*exec
,
165 unsigned long load_addr
, unsigned long interp_load_addr
)
167 unsigned long p
= bprm
->p
;
168 int argc
= bprm
->argc
;
169 int envc
= bprm
->envc
;
170 elf_addr_t __user
*sp
;
171 elf_addr_t __user
*u_platform
;
172 elf_addr_t __user
*u_base_platform
;
173 elf_addr_t __user
*u_rand_bytes
;
174 const char *k_platform
= ELF_PLATFORM
;
175 const char *k_base_platform
= ELF_BASE_PLATFORM
;
176 unsigned char k_rand_bytes
[16];
178 elf_addr_t
*elf_info
;
180 const struct cred
*cred
= current_cred();
181 struct vm_area_struct
*vma
;
184 * In some cases (e.g. Hyper-Threading), we want to avoid L1
185 * evictions by the processes running on the same package. One
186 * thing we can do is to shuffle the initial stack for them.
189 p
= arch_align_stack(p
);
192 * If this architecture has a platform capability string, copy it
193 * to userspace. In some cases (Sparc), this info is impossible
194 * for userspace to get any other way, in others (i386) it is
199 size_t len
= strlen(k_platform
) + 1;
201 u_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
202 if (__copy_to_user(u_platform
, k_platform
, len
))
207 * If this architecture has a "base" platform capability
208 * string, copy it to userspace.
210 u_base_platform
= NULL
;
211 if (k_base_platform
) {
212 size_t len
= strlen(k_base_platform
) + 1;
214 u_base_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
215 if (__copy_to_user(u_base_platform
, k_base_platform
, len
))
220 * Generate 16 random bytes for userspace PRNG seeding.
222 get_random_bytes(k_rand_bytes
, sizeof(k_rand_bytes
));
223 u_rand_bytes
= (elf_addr_t __user
*)
224 STACK_ALLOC(p
, sizeof(k_rand_bytes
));
225 if (__copy_to_user(u_rand_bytes
, k_rand_bytes
, sizeof(k_rand_bytes
)))
228 /* Create the ELF interpreter info */
229 elf_info
= (elf_addr_t
*)current
->mm
->saved_auxv
;
230 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
231 #define NEW_AUX_ENT(id, val) \
233 elf_info[ei_index++] = id; \
234 elf_info[ei_index++] = val; \
239 * ARCH_DLINFO must come first so PPC can do its special alignment of
241 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
242 * ARCH_DLINFO changes
246 NEW_AUX_ENT(AT_HWCAP
, ELF_HWCAP
);
247 NEW_AUX_ENT(AT_PAGESZ
, ELF_EXEC_PAGESIZE
);
248 NEW_AUX_ENT(AT_CLKTCK
, CLOCKS_PER_SEC
);
249 NEW_AUX_ENT(AT_PHDR
, load_addr
+ exec
->e_phoff
);
250 NEW_AUX_ENT(AT_PHENT
, sizeof(struct elf_phdr
));
251 NEW_AUX_ENT(AT_PHNUM
, exec
->e_phnum
);
252 NEW_AUX_ENT(AT_BASE
, interp_load_addr
);
253 NEW_AUX_ENT(AT_FLAGS
, 0);
254 NEW_AUX_ENT(AT_ENTRY
, exec
->e_entry
);
255 NEW_AUX_ENT(AT_UID
, from_kuid_munged(cred
->user_ns
, cred
->uid
));
256 NEW_AUX_ENT(AT_EUID
, from_kuid_munged(cred
->user_ns
, cred
->euid
));
257 NEW_AUX_ENT(AT_GID
, from_kgid_munged(cred
->user_ns
, cred
->gid
));
258 NEW_AUX_ENT(AT_EGID
, from_kgid_munged(cred
->user_ns
, cred
->egid
));
259 NEW_AUX_ENT(AT_SECURE
, bprm
->secureexec
);
260 NEW_AUX_ENT(AT_RANDOM
, (elf_addr_t
)(unsigned long)u_rand_bytes
);
262 NEW_AUX_ENT(AT_HWCAP2
, ELF_HWCAP2
);
264 NEW_AUX_ENT(AT_EXECFN
, bprm
->exec
);
266 NEW_AUX_ENT(AT_PLATFORM
,
267 (elf_addr_t
)(unsigned long)u_platform
);
269 if (k_base_platform
) {
270 NEW_AUX_ENT(AT_BASE_PLATFORM
,
271 (elf_addr_t
)(unsigned long)u_base_platform
);
273 if (bprm
->interp_flags
& BINPRM_FLAGS_EXECFD
) {
274 NEW_AUX_ENT(AT_EXECFD
, bprm
->interp_data
);
277 /* AT_NULL is zero; clear the rest too */
278 memset(&elf_info
[ei_index
], 0,
279 sizeof current
->mm
->saved_auxv
- ei_index
* sizeof elf_info
[0]);
281 /* And advance past the AT_NULL entry. */
284 sp
= STACK_ADD(p
, ei_index
);
286 items
= (argc
+ 1) + (envc
+ 1) + 1;
287 bprm
->p
= STACK_ROUND(sp
, items
);
289 /* Point sp at the lowest address on the stack */
290 #ifdef CONFIG_STACK_GROWSUP
291 sp
= (elf_addr_t __user
*)bprm
->p
- items
- ei_index
;
292 bprm
->exec
= (unsigned long)sp
; /* XXX: PARISC HACK */
294 sp
= (elf_addr_t __user
*)bprm
->p
;
299 * Grow the stack manually; some architectures have a limit on how
300 * far ahead a user-space access may be in order to grow the stack.
302 vma
= find_extend_vma(current
->mm
, bprm
->p
);
306 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
307 if (__put_user(argc
, sp
++))
310 /* Populate list of argv pointers back to argv strings. */
311 p
= current
->mm
->arg_end
= current
->mm
->arg_start
;
314 if (__put_user((elf_addr_t
)p
, sp
++))
316 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
317 if (!len
|| len
> MAX_ARG_STRLEN
)
321 if (__put_user(0, sp
++))
323 current
->mm
->arg_end
= p
;
325 /* Populate list of envp pointers back to envp strings. */
326 current
->mm
->env_end
= current
->mm
->env_start
= p
;
329 if (__put_user((elf_addr_t
)p
, sp
++))
331 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
332 if (!len
|| len
> MAX_ARG_STRLEN
)
336 if (__put_user(0, sp
++))
338 current
->mm
->env_end
= p
;
340 /* Put the elf_info on the stack in the right place. */
341 if (copy_to_user(sp
, elf_info
, ei_index
* sizeof(elf_addr_t
)))
348 static unsigned long elf_map(struct file
*filep
, unsigned long addr
,
349 const struct elf_phdr
*eppnt
, int prot
, int type
,
350 unsigned long total_size
)
352 unsigned long map_addr
;
353 unsigned long size
= eppnt
->p_filesz
+ ELF_PAGEOFFSET(eppnt
->p_vaddr
);
354 unsigned long off
= eppnt
->p_offset
- ELF_PAGEOFFSET(eppnt
->p_vaddr
);
355 addr
= ELF_PAGESTART(addr
);
356 size
= ELF_PAGEALIGN(size
);
358 /* mmap() will return -EINVAL if given a zero size, but a
359 * segment with zero filesize is perfectly valid */
364 * total_size is the size of the ELF (interpreter) image.
365 * The _first_ mmap needs to know the full size, otherwise
366 * randomization might put this image into an overlapping
367 * position with the ELF binary image. (since size < total_size)
368 * So we first map the 'big' image - and unmap the remainder at
369 * the end. (which unmap is needed for ELF images with holes.)
372 total_size
= ELF_PAGEALIGN(total_size
);
373 map_addr
= vm_mmap(filep
, addr
, total_size
, prot
, type
, off
);
374 if (!BAD_ADDR(map_addr
))
375 vm_munmap(map_addr
+size
, total_size
-size
);
377 map_addr
= vm_mmap(filep
, addr
, size
, prot
, type
, off
);
379 if ((type
& MAP_FIXED_NOREPLACE
) &&
380 PTR_ERR((void *)map_addr
) == -EEXIST
)
381 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
382 task_pid_nr(current
), current
->comm
, (void *)addr
);
387 #endif /* !elf_map */
389 static unsigned long total_mapping_size(const struct elf_phdr
*cmds
, int nr
)
391 int i
, first_idx
= -1, last_idx
= -1;
393 for (i
= 0; i
< nr
; i
++) {
394 if (cmds
[i
].p_type
== PT_LOAD
) {
403 return cmds
[last_idx
].p_vaddr
+ cmds
[last_idx
].p_memsz
-
404 ELF_PAGESTART(cmds
[first_idx
].p_vaddr
);
408 * load_elf_phdrs() - load ELF program headers
409 * @elf_ex: ELF header of the binary whose program headers should be loaded
410 * @elf_file: the opened ELF binary file
412 * Loads ELF program headers from the binary file elf_file, which has the ELF
413 * header pointed to by elf_ex, into a newly allocated array. The caller is
414 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
416 static struct elf_phdr
*load_elf_phdrs(const struct elfhdr
*elf_ex
,
417 struct file
*elf_file
)
419 struct elf_phdr
*elf_phdata
= NULL
;
420 int retval
, err
= -1;
421 loff_t pos
= elf_ex
->e_phoff
;
425 * If the size of this structure has changed, then punt, since
426 * we will be doing the wrong thing.
428 if (elf_ex
->e_phentsize
!= sizeof(struct elf_phdr
))
431 /* Sanity check the number of program headers... */
432 /* ...and their total size. */
433 size
= sizeof(struct elf_phdr
) * elf_ex
->e_phnum
;
434 if (size
== 0 || size
> 65536 || size
> ELF_MIN_ALIGN
)
437 elf_phdata
= kmalloc(size
, GFP_KERNEL
);
441 /* Read in the program headers */
442 retval
= kernel_read(elf_file
, elf_phdata
, size
, &pos
);
443 if (retval
!= size
) {
444 err
= (retval
< 0) ? retval
: -EIO
;
458 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
461 * struct arch_elf_state - arch-specific ELF loading state
463 * This structure is used to preserve architecture specific data during
464 * the loading of an ELF file, throughout the checking of architecture
465 * specific ELF headers & through to the point where the ELF load is
466 * known to be proceeding (ie. SET_PERSONALITY).
468 * This implementation is a dummy for architectures which require no
471 struct arch_elf_state
{
474 #define INIT_ARCH_ELF_STATE {}
477 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
478 * @ehdr: The main ELF header
479 * @phdr: The program header to check
480 * @elf: The open ELF file
481 * @is_interp: True if the phdr is from the interpreter of the ELF being
482 * loaded, else false.
483 * @state: Architecture-specific state preserved throughout the process
484 * of loading the ELF.
486 * Inspects the program header phdr to validate its correctness and/or
487 * suitability for the system. Called once per ELF program header in the
488 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
491 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
492 * with that return code.
494 static inline int arch_elf_pt_proc(struct elfhdr
*ehdr
,
495 struct elf_phdr
*phdr
,
496 struct file
*elf
, bool is_interp
,
497 struct arch_elf_state
*state
)
499 /* Dummy implementation, always proceed */
504 * arch_check_elf() - check an ELF executable
505 * @ehdr: The main ELF header
506 * @has_interp: True if the ELF has an interpreter, else false.
507 * @interp_ehdr: The interpreter's ELF header
508 * @state: Architecture-specific state preserved throughout the process
509 * of loading the ELF.
511 * Provides a final opportunity for architecture code to reject the loading
512 * of the ELF & cause an exec syscall to return an error. This is called after
513 * all program headers to be checked by arch_elf_pt_proc have been.
515 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
516 * with that return code.
518 static inline int arch_check_elf(struct elfhdr
*ehdr
, bool has_interp
,
519 struct elfhdr
*interp_ehdr
,
520 struct arch_elf_state
*state
)
522 /* Dummy implementation, always proceed */
526 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
528 static inline int make_prot(u32 p_flags
)
541 /* This is much more generalized than the library routine read function,
542 so we keep this separate. Technically the library read function
543 is only provided so that we can read a.out libraries that have
546 static unsigned long load_elf_interp(struct elfhdr
*interp_elf_ex
,
547 struct file
*interpreter
, unsigned long *interp_map_addr
,
548 unsigned long no_base
, struct elf_phdr
*interp_elf_phdata
)
550 struct elf_phdr
*eppnt
;
551 unsigned long load_addr
= 0;
552 int load_addr_set
= 0;
553 unsigned long last_bss
= 0, elf_bss
= 0;
555 unsigned long error
= ~0UL;
556 unsigned long total_size
;
559 /* First of all, some simple consistency checks */
560 if (interp_elf_ex
->e_type
!= ET_EXEC
&&
561 interp_elf_ex
->e_type
!= ET_DYN
)
563 if (!elf_check_arch(interp_elf_ex
) ||
564 elf_check_fdpic(interp_elf_ex
))
566 if (!interpreter
->f_op
->mmap
)
569 total_size
= total_mapping_size(interp_elf_phdata
,
570 interp_elf_ex
->e_phnum
);
576 eppnt
= interp_elf_phdata
;
577 for (i
= 0; i
< interp_elf_ex
->e_phnum
; i
++, eppnt
++) {
578 if (eppnt
->p_type
== PT_LOAD
) {
579 int elf_type
= MAP_PRIVATE
| MAP_DENYWRITE
;
580 int elf_prot
= make_prot(eppnt
->p_flags
);
581 unsigned long vaddr
= 0;
582 unsigned long k
, map_addr
;
584 vaddr
= eppnt
->p_vaddr
;
585 if (interp_elf_ex
->e_type
== ET_EXEC
|| load_addr_set
)
586 elf_type
|= MAP_FIXED_NOREPLACE
;
587 else if (no_base
&& interp_elf_ex
->e_type
== ET_DYN
)
590 map_addr
= elf_map(interpreter
, load_addr
+ vaddr
,
591 eppnt
, elf_prot
, elf_type
, total_size
);
593 if (!*interp_map_addr
)
594 *interp_map_addr
= map_addr
;
596 if (BAD_ADDR(map_addr
))
599 if (!load_addr_set
&&
600 interp_elf_ex
->e_type
== ET_DYN
) {
601 load_addr
= map_addr
- ELF_PAGESTART(vaddr
);
606 * Check to see if the section's size will overflow the
607 * allowed task size. Note that p_filesz must always be
608 * <= p_memsize so it's only necessary to check p_memsz.
610 k
= load_addr
+ eppnt
->p_vaddr
;
612 eppnt
->p_filesz
> eppnt
->p_memsz
||
613 eppnt
->p_memsz
> TASK_SIZE
||
614 TASK_SIZE
- eppnt
->p_memsz
< k
) {
620 * Find the end of the file mapping for this phdr, and
621 * keep track of the largest address we see for this.
623 k
= load_addr
+ eppnt
->p_vaddr
+ eppnt
->p_filesz
;
628 * Do the same thing for the memory mapping - between
629 * elf_bss and last_bss is the bss section.
631 k
= load_addr
+ eppnt
->p_vaddr
+ eppnt
->p_memsz
;
640 * Now fill out the bss section: first pad the last page from
641 * the file up to the page boundary, and zero it from elf_bss
642 * up to the end of the page.
644 if (padzero(elf_bss
)) {
649 * Next, align both the file and mem bss up to the page size,
650 * since this is where elf_bss was just zeroed up to, and where
651 * last_bss will end after the vm_brk_flags() below.
653 elf_bss
= ELF_PAGEALIGN(elf_bss
);
654 last_bss
= ELF_PAGEALIGN(last_bss
);
655 /* Finally, if there is still more bss to allocate, do it. */
656 if (last_bss
> elf_bss
) {
657 error
= vm_brk_flags(elf_bss
, last_bss
- elf_bss
,
658 bss_prot
& PROT_EXEC
? VM_EXEC
: 0);
669 * These are the functions used to load ELF style executables and shared
670 * libraries. There is no binary dependent code anywhere else.
673 #ifndef STACK_RND_MASK
674 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
677 static unsigned long randomize_stack_top(unsigned long stack_top
)
679 unsigned long random_variable
= 0;
681 if (current
->flags
& PF_RANDOMIZE
) {
682 random_variable
= get_random_long();
683 random_variable
&= STACK_RND_MASK
;
684 random_variable
<<= PAGE_SHIFT
;
686 #ifdef CONFIG_STACK_GROWSUP
687 return PAGE_ALIGN(stack_top
) + random_variable
;
689 return PAGE_ALIGN(stack_top
) - random_variable
;
693 static int load_elf_binary(struct linux_binprm
*bprm
)
695 struct file
*interpreter
= NULL
; /* to shut gcc up */
696 unsigned long load_addr
= 0, load_bias
= 0;
697 int load_addr_set
= 0;
699 struct elf_phdr
*elf_ppnt
, *elf_phdata
, *interp_elf_phdata
= NULL
;
700 unsigned long elf_bss
, elf_brk
;
703 unsigned long elf_entry
;
704 unsigned long interp_load_addr
= 0;
705 unsigned long start_code
, end_code
, start_data
, end_data
;
706 unsigned long reloc_func_desc __maybe_unused
= 0;
707 int executable_stack
= EXSTACK_DEFAULT
;
709 struct elfhdr elf_ex
;
710 struct elfhdr interp_elf_ex
;
712 struct arch_elf_state arch_state
= INIT_ARCH_ELF_STATE
;
713 struct pt_regs
*regs
;
715 loc
= kmalloc(sizeof(*loc
), GFP_KERNEL
);
721 /* Get the exec-header */
722 loc
->elf_ex
= *((struct elfhdr
*)bprm
->buf
);
725 /* First of all, some simple consistency checks */
726 if (memcmp(loc
->elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
729 if (loc
->elf_ex
.e_type
!= ET_EXEC
&& loc
->elf_ex
.e_type
!= ET_DYN
)
731 if (!elf_check_arch(&loc
->elf_ex
))
733 if (elf_check_fdpic(&loc
->elf_ex
))
735 if (!bprm
->file
->f_op
->mmap
)
738 elf_phdata
= load_elf_phdrs(&loc
->elf_ex
, bprm
->file
);
742 elf_ppnt
= elf_phdata
;
743 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++) {
744 char *elf_interpreter
;
747 if (elf_ppnt
->p_type
!= PT_INTERP
)
751 * This is the program interpreter used for shared libraries -
752 * for now assume that this is an a.out format binary.
755 if (elf_ppnt
->p_filesz
> PATH_MAX
|| elf_ppnt
->p_filesz
< 2)
759 elf_interpreter
= kmalloc(elf_ppnt
->p_filesz
, GFP_KERNEL
);
760 if (!elf_interpreter
)
763 pos
= elf_ppnt
->p_offset
;
764 retval
= kernel_read(bprm
->file
, elf_interpreter
,
765 elf_ppnt
->p_filesz
, &pos
);
766 if (retval
!= elf_ppnt
->p_filesz
) {
769 goto out_free_interp
;
771 /* make sure path is NULL terminated */
773 if (elf_interpreter
[elf_ppnt
->p_filesz
- 1] != '\0')
774 goto out_free_interp
;
776 interpreter
= open_exec(elf_interpreter
);
777 kfree(elf_interpreter
);
778 retval
= PTR_ERR(interpreter
);
779 if (IS_ERR(interpreter
))
783 * If the binary is not readable then enforce mm->dumpable = 0
784 * regardless of the interpreter's permissions.
786 would_dump(bprm
, interpreter
);
788 /* Get the exec headers */
790 retval
= kernel_read(interpreter
, &loc
->interp_elf_ex
,
791 sizeof(loc
->interp_elf_ex
), &pos
);
792 if (retval
!= sizeof(loc
->interp_elf_ex
)) {
795 goto out_free_dentry
;
801 kfree(elf_interpreter
);
805 elf_ppnt
= elf_phdata
;
806 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++)
807 switch (elf_ppnt
->p_type
) {
809 if (elf_ppnt
->p_flags
& PF_X
)
810 executable_stack
= EXSTACK_ENABLE_X
;
812 executable_stack
= EXSTACK_DISABLE_X
;
815 case PT_LOPROC
... PT_HIPROC
:
816 retval
= arch_elf_pt_proc(&loc
->elf_ex
, elf_ppnt
,
820 goto out_free_dentry
;
824 /* Some simple consistency checks for the interpreter */
827 /* Not an ELF interpreter */
828 if (memcmp(loc
->interp_elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
829 goto out_free_dentry
;
830 /* Verify the interpreter has a valid arch */
831 if (!elf_check_arch(&loc
->interp_elf_ex
) ||
832 elf_check_fdpic(&loc
->interp_elf_ex
))
833 goto out_free_dentry
;
835 /* Load the interpreter program headers */
836 interp_elf_phdata
= load_elf_phdrs(&loc
->interp_elf_ex
,
838 if (!interp_elf_phdata
)
839 goto out_free_dentry
;
841 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
842 elf_ppnt
= interp_elf_phdata
;
843 for (i
= 0; i
< loc
->interp_elf_ex
.e_phnum
; i
++, elf_ppnt
++)
844 switch (elf_ppnt
->p_type
) {
845 case PT_LOPROC
... PT_HIPROC
:
846 retval
= arch_elf_pt_proc(&loc
->interp_elf_ex
,
847 elf_ppnt
, interpreter
,
850 goto out_free_dentry
;
856 * Allow arch code to reject the ELF at this point, whilst it's
857 * still possible to return an error to the code that invoked
860 retval
= arch_check_elf(&loc
->elf_ex
,
861 !!interpreter
, &loc
->interp_elf_ex
,
864 goto out_free_dentry
;
866 /* Flush all traces of the currently running executable */
867 retval
= flush_old_exec(bprm
);
869 goto out_free_dentry
;
871 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
872 may depend on the personality. */
873 SET_PERSONALITY2(loc
->elf_ex
, &arch_state
);
874 if (elf_read_implies_exec(loc
->elf_ex
, executable_stack
))
875 current
->personality
|= READ_IMPLIES_EXEC
;
877 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
878 current
->flags
|= PF_RANDOMIZE
;
880 setup_new_exec(bprm
);
881 install_exec_creds(bprm
);
883 /* Do this so that we can load the interpreter, if need be. We will
884 change some of these later */
885 retval
= setup_arg_pages(bprm
, randomize_stack_top(STACK_TOP
),
888 goto out_free_dentry
;
898 /* Now we do a little grungy work by mmapping the ELF image into
899 the correct location in memory. */
900 for(i
= 0, elf_ppnt
= elf_phdata
;
901 i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++) {
902 int elf_prot
, elf_flags
, elf_fixed
= MAP_FIXED_NOREPLACE
;
903 unsigned long k
, vaddr
;
904 unsigned long total_size
= 0;
906 if (elf_ppnt
->p_type
!= PT_LOAD
)
909 if (unlikely (elf_brk
> elf_bss
)) {
912 /* There was a PT_LOAD segment with p_memsz > p_filesz
913 before this one. Map anonymous pages, if needed,
914 and clear the area. */
915 retval
= set_brk(elf_bss
+ load_bias
,
919 goto out_free_dentry
;
920 nbyte
= ELF_PAGEOFFSET(elf_bss
);
922 nbyte
= ELF_MIN_ALIGN
- nbyte
;
923 if (nbyte
> elf_brk
- elf_bss
)
924 nbyte
= elf_brk
- elf_bss
;
925 if (clear_user((void __user
*)elf_bss
+
928 * This bss-zeroing can fail if the ELF
929 * file specifies odd protections. So
930 * we don't check the return value
936 * Some binaries have overlapping elf segments and then
937 * we have to forcefully map over an existing mapping
938 * e.g. over this newly established brk mapping.
940 elf_fixed
= MAP_FIXED
;
943 elf_prot
= make_prot(elf_ppnt
->p_flags
);
945 elf_flags
= MAP_PRIVATE
| MAP_DENYWRITE
| MAP_EXECUTABLE
;
947 vaddr
= elf_ppnt
->p_vaddr
;
949 * If we are loading ET_EXEC or we have already performed
950 * the ET_DYN load_addr calculations, proceed normally.
952 if (loc
->elf_ex
.e_type
== ET_EXEC
|| load_addr_set
) {
953 elf_flags
|= elf_fixed
;
954 } else if (loc
->elf_ex
.e_type
== ET_DYN
) {
956 * This logic is run once for the first LOAD Program
957 * Header for ET_DYN binaries to calculate the
958 * randomization (load_bias) for all the LOAD
959 * Program Headers, and to calculate the entire
960 * size of the ELF mapping (total_size). (Note that
961 * load_addr_set is set to true later once the
962 * initial mapping is performed.)
964 * There are effectively two types of ET_DYN
965 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
966 * and loaders (ET_DYN without INTERP, since they
967 * _are_ the ELF interpreter). The loaders must
968 * be loaded away from programs since the program
969 * may otherwise collide with the loader (especially
970 * for ET_EXEC which does not have a randomized
971 * position). For example to handle invocations of
972 * "./ld.so someprog" to test out a new version of
973 * the loader, the subsequent program that the
974 * loader loads must avoid the loader itself, so
975 * they cannot share the same load range. Sufficient
976 * room for the brk must be allocated with the
977 * loader as well, since brk must be available with
980 * Therefore, programs are loaded offset from
981 * ELF_ET_DYN_BASE and loaders are loaded into the
982 * independently randomized mmap region (0 load_bias
983 * without MAP_FIXED).
986 load_bias
= ELF_ET_DYN_BASE
;
987 if (current
->flags
& PF_RANDOMIZE
)
988 load_bias
+= arch_mmap_rnd();
989 elf_flags
|= elf_fixed
;
994 * Since load_bias is used for all subsequent loading
995 * calculations, we must lower it by the first vaddr
996 * so that the remaining calculations based on the
997 * ELF vaddrs will be correctly offset. The result
998 * is then page aligned.
1000 load_bias
= ELF_PAGESTART(load_bias
- vaddr
);
1002 total_size
= total_mapping_size(elf_phdata
,
1003 loc
->elf_ex
.e_phnum
);
1006 goto out_free_dentry
;
1010 error
= elf_map(bprm
->file
, load_bias
+ vaddr
, elf_ppnt
,
1011 elf_prot
, elf_flags
, total_size
);
1012 if (BAD_ADDR(error
)) {
1013 retval
= IS_ERR((void *)error
) ?
1014 PTR_ERR((void*)error
) : -EINVAL
;
1015 goto out_free_dentry
;
1018 if (!load_addr_set
) {
1020 load_addr
= (elf_ppnt
->p_vaddr
- elf_ppnt
->p_offset
);
1021 if (loc
->elf_ex
.e_type
== ET_DYN
) {
1022 load_bias
+= error
-
1023 ELF_PAGESTART(load_bias
+ vaddr
);
1024 load_addr
+= load_bias
;
1025 reloc_func_desc
= load_bias
;
1028 k
= elf_ppnt
->p_vaddr
;
1035 * Check to see if the section's size will overflow the
1036 * allowed task size. Note that p_filesz must always be
1037 * <= p_memsz so it is only necessary to check p_memsz.
1039 if (BAD_ADDR(k
) || elf_ppnt
->p_filesz
> elf_ppnt
->p_memsz
||
1040 elf_ppnt
->p_memsz
> TASK_SIZE
||
1041 TASK_SIZE
- elf_ppnt
->p_memsz
< k
) {
1042 /* set_brk can never work. Avoid overflows. */
1044 goto out_free_dentry
;
1047 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_filesz
;
1051 if ((elf_ppnt
->p_flags
& PF_X
) && end_code
< k
)
1055 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_memsz
;
1057 bss_prot
= elf_prot
;
1062 loc
->elf_ex
.e_entry
+= load_bias
;
1063 elf_bss
+= load_bias
;
1064 elf_brk
+= load_bias
;
1065 start_code
+= load_bias
;
1066 end_code
+= load_bias
;
1067 start_data
+= load_bias
;
1068 end_data
+= load_bias
;
1070 /* Calling set_brk effectively mmaps the pages that we need
1071 * for the bss and break sections. We must do this before
1072 * mapping in the interpreter, to make sure it doesn't wind
1073 * up getting placed where the bss needs to go.
1075 retval
= set_brk(elf_bss
, elf_brk
, bss_prot
);
1077 goto out_free_dentry
;
1078 if (likely(elf_bss
!= elf_brk
) && unlikely(padzero(elf_bss
))) {
1079 retval
= -EFAULT
; /* Nobody gets to see this, but.. */
1080 goto out_free_dentry
;
1084 unsigned long interp_map_addr
= 0;
1086 elf_entry
= load_elf_interp(&loc
->interp_elf_ex
,
1089 load_bias
, interp_elf_phdata
);
1090 if (!IS_ERR((void *)elf_entry
)) {
1092 * load_elf_interp() returns relocation
1095 interp_load_addr
= elf_entry
;
1096 elf_entry
+= loc
->interp_elf_ex
.e_entry
;
1098 if (BAD_ADDR(elf_entry
)) {
1099 retval
= IS_ERR((void *)elf_entry
) ?
1100 (int)elf_entry
: -EINVAL
;
1101 goto out_free_dentry
;
1103 reloc_func_desc
= interp_load_addr
;
1105 allow_write_access(interpreter
);
1108 elf_entry
= loc
->elf_ex
.e_entry
;
1109 if (BAD_ADDR(elf_entry
)) {
1111 goto out_free_dentry
;
1115 kfree(interp_elf_phdata
);
1118 set_binfmt(&elf_format
);
1120 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1121 retval
= arch_setup_additional_pages(bprm
, !!interpreter
);
1124 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1126 retval
= create_elf_tables(bprm
, &loc
->elf_ex
,
1127 load_addr
, interp_load_addr
);
1130 /* N.B. passed_fileno might not be initialized? */
1131 current
->mm
->end_code
= end_code
;
1132 current
->mm
->start_code
= start_code
;
1133 current
->mm
->start_data
= start_data
;
1134 current
->mm
->end_data
= end_data
;
1135 current
->mm
->start_stack
= bprm
->p
;
1137 if ((current
->flags
& PF_RANDOMIZE
) && (randomize_va_space
> 1)) {
1139 * For architectures with ELF randomization, when executing
1140 * a loader directly (i.e. no interpreter listed in ELF
1141 * headers), move the brk area out of the mmap region
1142 * (since it grows up, and may collide early with the stack
1143 * growing down), and into the unused ELF_ET_DYN_BASE region.
1145 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE
) && !interpreter
)
1146 current
->mm
->brk
= current
->mm
->start_brk
=
1149 current
->mm
->brk
= current
->mm
->start_brk
=
1150 arch_randomize_brk(current
->mm
);
1151 #ifdef compat_brk_randomized
1152 current
->brk_randomized
= 1;
1156 if (current
->personality
& MMAP_PAGE_ZERO
) {
1157 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1158 and some applications "depend" upon this behavior.
1159 Since we do not have the power to recompile these, we
1160 emulate the SVr4 behavior. Sigh. */
1161 error
= vm_mmap(NULL
, 0, PAGE_SIZE
, PROT_READ
| PROT_EXEC
,
1162 MAP_FIXED
| MAP_PRIVATE
, 0);
1165 regs
= current_pt_regs();
1166 #ifdef ELF_PLAT_INIT
1168 * The ABI may specify that certain registers be set up in special
1169 * ways (on i386 %edx is the address of a DT_FINI function, for
1170 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1171 * that the e_entry field is the address of the function descriptor
1172 * for the startup routine, rather than the address of the startup
1173 * routine itself. This macro performs whatever initialization to
1174 * the regs structure is required as well as any relocations to the
1175 * function descriptor entries when executing dynamically links apps.
1177 ELF_PLAT_INIT(regs
, reloc_func_desc
);
1180 finalize_exec(bprm
);
1181 start_thread(regs
, elf_entry
, bprm
->p
);
1190 kfree(interp_elf_phdata
);
1191 allow_write_access(interpreter
);
1199 #ifdef CONFIG_USELIB
1200 /* This is really simpleminded and specialized - we are loading an
1201 a.out library that is given an ELF header. */
1202 static int load_elf_library(struct file
*file
)
1204 struct elf_phdr
*elf_phdata
;
1205 struct elf_phdr
*eppnt
;
1206 unsigned long elf_bss
, bss
, len
;
1207 int retval
, error
, i
, j
;
1208 struct elfhdr elf_ex
;
1212 retval
= kernel_read(file
, &elf_ex
, sizeof(elf_ex
), &pos
);
1213 if (retval
!= sizeof(elf_ex
))
1216 if (memcmp(elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
1219 /* First of all, some simple consistency checks */
1220 if (elf_ex
.e_type
!= ET_EXEC
|| elf_ex
.e_phnum
> 2 ||
1221 !elf_check_arch(&elf_ex
) || !file
->f_op
->mmap
)
1223 if (elf_check_fdpic(&elf_ex
))
1226 /* Now read in all of the header information */
1228 j
= sizeof(struct elf_phdr
) * elf_ex
.e_phnum
;
1229 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1232 elf_phdata
= kmalloc(j
, GFP_KERNEL
);
1238 pos
= elf_ex
.e_phoff
;
1239 retval
= kernel_read(file
, eppnt
, j
, &pos
);
1243 for (j
= 0, i
= 0; i
<elf_ex
.e_phnum
; i
++)
1244 if ((eppnt
+ i
)->p_type
== PT_LOAD
)
1249 while (eppnt
->p_type
!= PT_LOAD
)
1252 /* Now use mmap to map the library into memory. */
1253 error
= vm_mmap(file
,
1254 ELF_PAGESTART(eppnt
->p_vaddr
),
1256 ELF_PAGEOFFSET(eppnt
->p_vaddr
)),
1257 PROT_READ
| PROT_WRITE
| PROT_EXEC
,
1258 MAP_FIXED_NOREPLACE
| MAP_PRIVATE
| MAP_DENYWRITE
,
1260 ELF_PAGEOFFSET(eppnt
->p_vaddr
)));
1261 if (error
!= ELF_PAGESTART(eppnt
->p_vaddr
))
1264 elf_bss
= eppnt
->p_vaddr
+ eppnt
->p_filesz
;
1265 if (padzero(elf_bss
)) {
1270 len
= ELF_PAGEALIGN(eppnt
->p_filesz
+ eppnt
->p_vaddr
);
1271 bss
= ELF_PAGEALIGN(eppnt
->p_memsz
+ eppnt
->p_vaddr
);
1273 error
= vm_brk(len
, bss
- len
);
1284 #endif /* #ifdef CONFIG_USELIB */
1286 #ifdef CONFIG_ELF_CORE
1290 * Modelled on fs/exec.c:aout_core_dump()
1291 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1295 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1296 * that are useful for post-mortem analysis are included in every core dump.
1297 * In that way we ensure that the core dump is fully interpretable later
1298 * without matching up the same kernel and hardware config to see what PC values
1299 * meant. These special mappings include - vDSO, vsyscall, and other
1300 * architecture specific mappings
1302 static bool always_dump_vma(struct vm_area_struct
*vma
)
1304 /* Any vsyscall mappings? */
1305 if (vma
== get_gate_vma(vma
->vm_mm
))
1309 * Assume that all vmas with a .name op should always be dumped.
1310 * If this changes, a new vm_ops field can easily be added.
1312 if (vma
->vm_ops
&& vma
->vm_ops
->name
&& vma
->vm_ops
->name(vma
))
1316 * arch_vma_name() returns non-NULL for special architecture mappings,
1317 * such as vDSO sections.
1319 if (arch_vma_name(vma
))
1326 * Decide what to dump of a segment, part, all or none.
1328 static unsigned long vma_dump_size(struct vm_area_struct
*vma
,
1329 unsigned long mm_flags
)
1331 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1333 /* always dump the vdso and vsyscall sections */
1334 if (always_dump_vma(vma
))
1337 if (vma
->vm_flags
& VM_DONTDUMP
)
1340 /* support for DAX */
1341 if (vma_is_dax(vma
)) {
1342 if ((vma
->vm_flags
& VM_SHARED
) && FILTER(DAX_SHARED
))
1344 if (!(vma
->vm_flags
& VM_SHARED
) && FILTER(DAX_PRIVATE
))
1349 /* Hugetlb memory check */
1350 if (vma
->vm_flags
& VM_HUGETLB
) {
1351 if ((vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_SHARED
))
1353 if (!(vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_PRIVATE
))
1358 /* Do not dump I/O mapped devices or special mappings */
1359 if (vma
->vm_flags
& VM_IO
)
1362 /* By default, dump shared memory if mapped from an anonymous file. */
1363 if (vma
->vm_flags
& VM_SHARED
) {
1364 if (file_inode(vma
->vm_file
)->i_nlink
== 0 ?
1365 FILTER(ANON_SHARED
) : FILTER(MAPPED_SHARED
))
1370 /* Dump segments that have been written to. */
1371 if (vma
->anon_vma
&& FILTER(ANON_PRIVATE
))
1373 if (vma
->vm_file
== NULL
)
1376 if (FILTER(MAPPED_PRIVATE
))
1380 * If this looks like the beginning of a DSO or executable mapping,
1381 * check for an ELF header. If we find one, dump the first page to
1382 * aid in determining what was mapped here.
1384 if (FILTER(ELF_HEADERS
) &&
1385 vma
->vm_pgoff
== 0 && (vma
->vm_flags
& VM_READ
)) {
1386 u32 __user
*header
= (u32 __user
*) vma
->vm_start
;
1388 mm_segment_t fs
= get_fs();
1390 * Doing it this way gets the constant folded by GCC.
1394 char elfmag
[SELFMAG
];
1396 BUILD_BUG_ON(SELFMAG
!= sizeof word
);
1397 magic
.elfmag
[EI_MAG0
] = ELFMAG0
;
1398 magic
.elfmag
[EI_MAG1
] = ELFMAG1
;
1399 magic
.elfmag
[EI_MAG2
] = ELFMAG2
;
1400 magic
.elfmag
[EI_MAG3
] = ELFMAG3
;
1402 * Switch to the user "segment" for get_user(),
1403 * then put back what elf_core_dump() had in place.
1406 if (unlikely(get_user(word
, header
)))
1409 if (word
== magic
.cmp
)
1418 return vma
->vm_end
- vma
->vm_start
;
1421 /* An ELF note in memory */
1426 unsigned int datasz
;
1430 static int notesize(struct memelfnote
*en
)
1434 sz
= sizeof(struct elf_note
);
1435 sz
+= roundup(strlen(en
->name
) + 1, 4);
1436 sz
+= roundup(en
->datasz
, 4);
1441 static int writenote(struct memelfnote
*men
, struct coredump_params
*cprm
)
1444 en
.n_namesz
= strlen(men
->name
) + 1;
1445 en
.n_descsz
= men
->datasz
;
1446 en
.n_type
= men
->type
;
1448 return dump_emit(cprm
, &en
, sizeof(en
)) &&
1449 dump_emit(cprm
, men
->name
, en
.n_namesz
) && dump_align(cprm
, 4) &&
1450 dump_emit(cprm
, men
->data
, men
->datasz
) && dump_align(cprm
, 4);
1453 static void fill_elf_header(struct elfhdr
*elf
, int segs
,
1454 u16 machine
, u32 flags
)
1456 memset(elf
, 0, sizeof(*elf
));
1458 memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
1459 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
1460 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
1461 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
1462 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
1464 elf
->e_type
= ET_CORE
;
1465 elf
->e_machine
= machine
;
1466 elf
->e_version
= EV_CURRENT
;
1467 elf
->e_phoff
= sizeof(struct elfhdr
);
1468 elf
->e_flags
= flags
;
1469 elf
->e_ehsize
= sizeof(struct elfhdr
);
1470 elf
->e_phentsize
= sizeof(struct elf_phdr
);
1471 elf
->e_phnum
= segs
;
1474 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, loff_t offset
)
1476 phdr
->p_type
= PT_NOTE
;
1477 phdr
->p_offset
= offset
;
1480 phdr
->p_filesz
= sz
;
1486 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
1487 unsigned int sz
, void *data
)
1496 * fill up all the fields in prstatus from the given task struct, except
1497 * registers which need to be filled up separately.
1499 static void fill_prstatus(struct elf_prstatus
*prstatus
,
1500 struct task_struct
*p
, long signr
)
1502 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
1503 prstatus
->pr_sigpend
= p
->pending
.signal
.sig
[0];
1504 prstatus
->pr_sighold
= p
->blocked
.sig
[0];
1506 prstatus
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1508 prstatus
->pr_pid
= task_pid_vnr(p
);
1509 prstatus
->pr_pgrp
= task_pgrp_vnr(p
);
1510 prstatus
->pr_sid
= task_session_vnr(p
);
1511 if (thread_group_leader(p
)) {
1512 struct task_cputime cputime
;
1515 * This is the record for the group leader. It shows the
1516 * group-wide total, not its individual thread total.
1518 thread_group_cputime(p
, &cputime
);
1519 prstatus
->pr_utime
= ns_to_timeval(cputime
.utime
);
1520 prstatus
->pr_stime
= ns_to_timeval(cputime
.stime
);
1524 task_cputime(p
, &utime
, &stime
);
1525 prstatus
->pr_utime
= ns_to_timeval(utime
);
1526 prstatus
->pr_stime
= ns_to_timeval(stime
);
1529 prstatus
->pr_cutime
= ns_to_timeval(p
->signal
->cutime
);
1530 prstatus
->pr_cstime
= ns_to_timeval(p
->signal
->cstime
);
1533 static int fill_psinfo(struct elf_prpsinfo
*psinfo
, struct task_struct
*p
,
1534 struct mm_struct
*mm
)
1536 const struct cred
*cred
;
1537 unsigned int i
, len
;
1539 /* first copy the parameters from user space */
1540 memset(psinfo
, 0, sizeof(struct elf_prpsinfo
));
1542 len
= mm
->arg_end
- mm
->arg_start
;
1543 if (len
>= ELF_PRARGSZ
)
1544 len
= ELF_PRARGSZ
-1;
1545 if (copy_from_user(&psinfo
->pr_psargs
,
1546 (const char __user
*)mm
->arg_start
, len
))
1548 for(i
= 0; i
< len
; i
++)
1549 if (psinfo
->pr_psargs
[i
] == 0)
1550 psinfo
->pr_psargs
[i
] = ' ';
1551 psinfo
->pr_psargs
[len
] = 0;
1554 psinfo
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1556 psinfo
->pr_pid
= task_pid_vnr(p
);
1557 psinfo
->pr_pgrp
= task_pgrp_vnr(p
);
1558 psinfo
->pr_sid
= task_session_vnr(p
);
1560 i
= p
->state
? ffz(~p
->state
) + 1 : 0;
1561 psinfo
->pr_state
= i
;
1562 psinfo
->pr_sname
= (i
> 5) ? '.' : "RSDTZW"[i
];
1563 psinfo
->pr_zomb
= psinfo
->pr_sname
== 'Z';
1564 psinfo
->pr_nice
= task_nice(p
);
1565 psinfo
->pr_flag
= p
->flags
;
1567 cred
= __task_cred(p
);
1568 SET_UID(psinfo
->pr_uid
, from_kuid_munged(cred
->user_ns
, cred
->uid
));
1569 SET_GID(psinfo
->pr_gid
, from_kgid_munged(cred
->user_ns
, cred
->gid
));
1571 strncpy(psinfo
->pr_fname
, p
->comm
, sizeof(psinfo
->pr_fname
));
1576 static void fill_auxv_note(struct memelfnote
*note
, struct mm_struct
*mm
)
1578 elf_addr_t
*auxv
= (elf_addr_t
*) mm
->saved_auxv
;
1582 while (auxv
[i
- 2] != AT_NULL
);
1583 fill_note(note
, "CORE", NT_AUXV
, i
* sizeof(elf_addr_t
), auxv
);
1586 static void fill_siginfo_note(struct memelfnote
*note
, user_siginfo_t
*csigdata
,
1587 const kernel_siginfo_t
*siginfo
)
1589 mm_segment_t old_fs
= get_fs();
1591 copy_siginfo_to_user((user_siginfo_t __user
*) csigdata
, siginfo
);
1593 fill_note(note
, "CORE", NT_SIGINFO
, sizeof(*csigdata
), csigdata
);
1596 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1598 * Format of NT_FILE note:
1600 * long count -- how many files are mapped
1601 * long page_size -- units for file_ofs
1602 * array of [COUNT] elements of
1606 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1608 static int fill_files_note(struct memelfnote
*note
)
1610 struct vm_area_struct
*vma
;
1611 unsigned count
, size
, names_ofs
, remaining
, n
;
1613 user_long_t
*start_end_ofs
;
1614 char *name_base
, *name_curpos
;
1616 /* *Estimated* file count and total data size needed */
1617 count
= current
->mm
->map_count
;
1618 if (count
> UINT_MAX
/ 64)
1622 names_ofs
= (2 + 3 * count
) * sizeof(data
[0]);
1624 if (size
>= MAX_FILE_NOTE_SIZE
) /* paranoia check */
1626 size
= round_up(size
, PAGE_SIZE
);
1627 data
= kvmalloc(size
, GFP_KERNEL
);
1628 if (ZERO_OR_NULL_PTR(data
))
1631 start_end_ofs
= data
+ 2;
1632 name_base
= name_curpos
= ((char *)data
) + names_ofs
;
1633 remaining
= size
- names_ofs
;
1635 for (vma
= current
->mm
->mmap
; vma
!= NULL
; vma
= vma
->vm_next
) {
1637 const char *filename
;
1639 file
= vma
->vm_file
;
1642 filename
= file_path(file
, name_curpos
, remaining
);
1643 if (IS_ERR(filename
)) {
1644 if (PTR_ERR(filename
) == -ENAMETOOLONG
) {
1646 size
= size
* 5 / 4;
1652 /* file_path() fills at the end, move name down */
1653 /* n = strlen(filename) + 1: */
1654 n
= (name_curpos
+ remaining
) - filename
;
1655 remaining
= filename
- name_curpos
;
1656 memmove(name_curpos
, filename
, n
);
1659 *start_end_ofs
++ = vma
->vm_start
;
1660 *start_end_ofs
++ = vma
->vm_end
;
1661 *start_end_ofs
++ = vma
->vm_pgoff
;
1665 /* Now we know exact count of files, can store it */
1667 data
[1] = PAGE_SIZE
;
1669 * Count usually is less than current->mm->map_count,
1670 * we need to move filenames down.
1672 n
= current
->mm
->map_count
- count
;
1674 unsigned shift_bytes
= n
* 3 * sizeof(data
[0]);
1675 memmove(name_base
- shift_bytes
, name_base
,
1676 name_curpos
- name_base
);
1677 name_curpos
-= shift_bytes
;
1680 size
= name_curpos
- (char *)data
;
1681 fill_note(note
, "CORE", NT_FILE
, size
, data
);
1685 #ifdef CORE_DUMP_USE_REGSET
1686 #include <linux/regset.h>
1688 struct elf_thread_core_info
{
1689 struct elf_thread_core_info
*next
;
1690 struct task_struct
*task
;
1691 struct elf_prstatus prstatus
;
1692 struct memelfnote notes
[0];
1695 struct elf_note_info
{
1696 struct elf_thread_core_info
*thread
;
1697 struct memelfnote psinfo
;
1698 struct memelfnote signote
;
1699 struct memelfnote auxv
;
1700 struct memelfnote files
;
1701 user_siginfo_t csigdata
;
1707 * When a regset has a writeback hook, we call it on each thread before
1708 * dumping user memory. On register window machines, this makes sure the
1709 * user memory backing the register data is up to date before we read it.
1711 static void do_thread_regset_writeback(struct task_struct
*task
,
1712 const struct user_regset
*regset
)
1714 if (regset
->writeback
)
1715 regset
->writeback(task
, regset
, 1);
1718 #ifndef PRSTATUS_SIZE
1719 #define PRSTATUS_SIZE(S, R) sizeof(S)
1722 #ifndef SET_PR_FPVALID
1723 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1726 static int fill_thread_core_info(struct elf_thread_core_info
*t
,
1727 const struct user_regset_view
*view
,
1728 long signr
, size_t *total
)
1731 unsigned int regset0_size
= regset_size(t
->task
, &view
->regsets
[0]);
1734 * NT_PRSTATUS is the one special case, because the regset data
1735 * goes into the pr_reg field inside the note contents, rather
1736 * than being the whole note contents. We fill the reset in here.
1737 * We assume that regset 0 is NT_PRSTATUS.
1739 fill_prstatus(&t
->prstatus
, t
->task
, signr
);
1740 (void) view
->regsets
[0].get(t
->task
, &view
->regsets
[0], 0, regset0_size
,
1741 &t
->prstatus
.pr_reg
, NULL
);
1743 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
,
1744 PRSTATUS_SIZE(t
->prstatus
, regset0_size
), &t
->prstatus
);
1745 *total
+= notesize(&t
->notes
[0]);
1747 do_thread_regset_writeback(t
->task
, &view
->regsets
[0]);
1750 * Each other regset might generate a note too. For each regset
1751 * that has no core_note_type or is inactive, we leave t->notes[i]
1752 * all zero and we'll know to skip writing it later.
1754 for (i
= 1; i
< view
->n
; ++i
) {
1755 const struct user_regset
*regset
= &view
->regsets
[i
];
1756 do_thread_regset_writeback(t
->task
, regset
);
1757 if (regset
->core_note_type
&& regset
->get
&&
1758 (!regset
->active
|| regset
->active(t
->task
, regset
) > 0)) {
1760 size_t size
= regset_size(t
->task
, regset
);
1761 void *data
= kmalloc(size
, GFP_KERNEL
);
1762 if (unlikely(!data
))
1764 ret
= regset
->get(t
->task
, regset
,
1765 0, size
, data
, NULL
);
1769 if (regset
->core_note_type
!= NT_PRFPREG
)
1770 fill_note(&t
->notes
[i
], "LINUX",
1771 regset
->core_note_type
,
1774 SET_PR_FPVALID(&t
->prstatus
,
1776 fill_note(&t
->notes
[i
], "CORE",
1777 NT_PRFPREG
, size
, data
);
1779 *total
+= notesize(&t
->notes
[i
]);
1787 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1788 struct elf_note_info
*info
,
1789 const kernel_siginfo_t
*siginfo
, struct pt_regs
*regs
)
1791 struct task_struct
*dump_task
= current
;
1792 const struct user_regset_view
*view
= task_user_regset_view(dump_task
);
1793 struct elf_thread_core_info
*t
;
1794 struct elf_prpsinfo
*psinfo
;
1795 struct core_thread
*ct
;
1799 info
->thread
= NULL
;
1801 psinfo
= kmalloc(sizeof(*psinfo
), GFP_KERNEL
);
1802 if (psinfo
== NULL
) {
1803 info
->psinfo
.data
= NULL
; /* So we don't free this wrongly */
1807 fill_note(&info
->psinfo
, "CORE", NT_PRPSINFO
, sizeof(*psinfo
), psinfo
);
1810 * Figure out how many notes we're going to need for each thread.
1812 info
->thread_notes
= 0;
1813 for (i
= 0; i
< view
->n
; ++i
)
1814 if (view
->regsets
[i
].core_note_type
!= 0)
1815 ++info
->thread_notes
;
1818 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1819 * since it is our one special case.
1821 if (unlikely(info
->thread_notes
== 0) ||
1822 unlikely(view
->regsets
[0].core_note_type
!= NT_PRSTATUS
)) {
1828 * Initialize the ELF file header.
1830 fill_elf_header(elf
, phdrs
,
1831 view
->e_machine
, view
->e_flags
);
1834 * Allocate a structure for each thread.
1836 for (ct
= &dump_task
->mm
->core_state
->dumper
; ct
; ct
= ct
->next
) {
1837 t
= kzalloc(offsetof(struct elf_thread_core_info
,
1838 notes
[info
->thread_notes
]),
1844 if (ct
->task
== dump_task
|| !info
->thread
) {
1845 t
->next
= info
->thread
;
1849 * Make sure to keep the original task at
1850 * the head of the list.
1852 t
->next
= info
->thread
->next
;
1853 info
->thread
->next
= t
;
1858 * Now fill in each thread's information.
1860 for (t
= info
->thread
; t
!= NULL
; t
= t
->next
)
1861 if (!fill_thread_core_info(t
, view
, siginfo
->si_signo
, &info
->size
))
1865 * Fill in the two process-wide notes.
1867 fill_psinfo(psinfo
, dump_task
->group_leader
, dump_task
->mm
);
1868 info
->size
+= notesize(&info
->psinfo
);
1870 fill_siginfo_note(&info
->signote
, &info
->csigdata
, siginfo
);
1871 info
->size
+= notesize(&info
->signote
);
1873 fill_auxv_note(&info
->auxv
, current
->mm
);
1874 info
->size
+= notesize(&info
->auxv
);
1876 if (fill_files_note(&info
->files
) == 0)
1877 info
->size
+= notesize(&info
->files
);
1882 static size_t get_note_info_size(struct elf_note_info
*info
)
1888 * Write all the notes for each thread. When writing the first thread, the
1889 * process-wide notes are interleaved after the first thread-specific note.
1891 static int write_note_info(struct elf_note_info
*info
,
1892 struct coredump_params
*cprm
)
1895 struct elf_thread_core_info
*t
= info
->thread
;
1900 if (!writenote(&t
->notes
[0], cprm
))
1903 if (first
&& !writenote(&info
->psinfo
, cprm
))
1905 if (first
&& !writenote(&info
->signote
, cprm
))
1907 if (first
&& !writenote(&info
->auxv
, cprm
))
1909 if (first
&& info
->files
.data
&&
1910 !writenote(&info
->files
, cprm
))
1913 for (i
= 1; i
< info
->thread_notes
; ++i
)
1914 if (t
->notes
[i
].data
&&
1915 !writenote(&t
->notes
[i
], cprm
))
1925 static void free_note_info(struct elf_note_info
*info
)
1927 struct elf_thread_core_info
*threads
= info
->thread
;
1930 struct elf_thread_core_info
*t
= threads
;
1932 WARN_ON(t
->notes
[0].data
&& t
->notes
[0].data
!= &t
->prstatus
);
1933 for (i
= 1; i
< info
->thread_notes
; ++i
)
1934 kfree(t
->notes
[i
].data
);
1937 kfree(info
->psinfo
.data
);
1938 kvfree(info
->files
.data
);
1943 /* Here is the structure in which status of each thread is captured. */
1944 struct elf_thread_status
1946 struct list_head list
;
1947 struct elf_prstatus prstatus
; /* NT_PRSTATUS */
1948 elf_fpregset_t fpu
; /* NT_PRFPREG */
1949 struct task_struct
*thread
;
1950 #ifdef ELF_CORE_COPY_XFPREGS
1951 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
1953 struct memelfnote notes
[3];
1958 * In order to add the specific thread information for the elf file format,
1959 * we need to keep a linked list of every threads pr_status and then create
1960 * a single section for them in the final core file.
1962 static int elf_dump_thread_status(long signr
, struct elf_thread_status
*t
)
1965 struct task_struct
*p
= t
->thread
;
1968 fill_prstatus(&t
->prstatus
, p
, signr
);
1969 elf_core_copy_task_regs(p
, &t
->prstatus
.pr_reg
);
1971 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
, sizeof(t
->prstatus
),
1974 sz
+= notesize(&t
->notes
[0]);
1976 if ((t
->prstatus
.pr_fpvalid
= elf_core_copy_task_fpregs(p
, NULL
,
1978 fill_note(&t
->notes
[1], "CORE", NT_PRFPREG
, sizeof(t
->fpu
),
1981 sz
+= notesize(&t
->notes
[1]);
1984 #ifdef ELF_CORE_COPY_XFPREGS
1985 if (elf_core_copy_task_xfpregs(p
, &t
->xfpu
)) {
1986 fill_note(&t
->notes
[2], "LINUX", ELF_CORE_XFPREG_TYPE
,
1987 sizeof(t
->xfpu
), &t
->xfpu
);
1989 sz
+= notesize(&t
->notes
[2]);
1995 struct elf_note_info
{
1996 struct memelfnote
*notes
;
1997 struct memelfnote
*notes_files
;
1998 struct elf_prstatus
*prstatus
; /* NT_PRSTATUS */
1999 struct elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
2000 struct list_head thread_list
;
2001 elf_fpregset_t
*fpu
;
2002 #ifdef ELF_CORE_COPY_XFPREGS
2003 elf_fpxregset_t
*xfpu
;
2005 user_siginfo_t csigdata
;
2006 int thread_status_size
;
2010 static int elf_note_info_init(struct elf_note_info
*info
)
2012 memset(info
, 0, sizeof(*info
));
2013 INIT_LIST_HEAD(&info
->thread_list
);
2015 /* Allocate space for ELF notes */
2016 info
->notes
= kmalloc_array(8, sizeof(struct memelfnote
), GFP_KERNEL
);
2019 info
->psinfo
= kmalloc(sizeof(*info
->psinfo
), GFP_KERNEL
);
2022 info
->prstatus
= kmalloc(sizeof(*info
->prstatus
), GFP_KERNEL
);
2023 if (!info
->prstatus
)
2025 info
->fpu
= kmalloc(sizeof(*info
->fpu
), GFP_KERNEL
);
2028 #ifdef ELF_CORE_COPY_XFPREGS
2029 info
->xfpu
= kmalloc(sizeof(*info
->xfpu
), GFP_KERNEL
);
2036 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
2037 struct elf_note_info
*info
,
2038 const kernel_siginfo_t
*siginfo
, struct pt_regs
*regs
)
2040 struct core_thread
*ct
;
2041 struct elf_thread_status
*ets
;
2043 if (!elf_note_info_init(info
))
2046 for (ct
= current
->mm
->core_state
->dumper
.next
;
2047 ct
; ct
= ct
->next
) {
2048 ets
= kzalloc(sizeof(*ets
), GFP_KERNEL
);
2052 ets
->thread
= ct
->task
;
2053 list_add(&ets
->list
, &info
->thread_list
);
2056 list_for_each_entry(ets
, &info
->thread_list
, list
) {
2059 sz
= elf_dump_thread_status(siginfo
->si_signo
, ets
);
2060 info
->thread_status_size
+= sz
;
2062 /* now collect the dump for the current */
2063 memset(info
->prstatus
, 0, sizeof(*info
->prstatus
));
2064 fill_prstatus(info
->prstatus
, current
, siginfo
->si_signo
);
2065 elf_core_copy_regs(&info
->prstatus
->pr_reg
, regs
);
2068 fill_elf_header(elf
, phdrs
, ELF_ARCH
, ELF_CORE_EFLAGS
);
2071 * Set up the notes in similar form to SVR4 core dumps made
2072 * with info from their /proc.
2075 fill_note(info
->notes
+ 0, "CORE", NT_PRSTATUS
,
2076 sizeof(*info
->prstatus
), info
->prstatus
);
2077 fill_psinfo(info
->psinfo
, current
->group_leader
, current
->mm
);
2078 fill_note(info
->notes
+ 1, "CORE", NT_PRPSINFO
,
2079 sizeof(*info
->psinfo
), info
->psinfo
);
2081 fill_siginfo_note(info
->notes
+ 2, &info
->csigdata
, siginfo
);
2082 fill_auxv_note(info
->notes
+ 3, current
->mm
);
2085 if (fill_files_note(info
->notes
+ info
->numnote
) == 0) {
2086 info
->notes_files
= info
->notes
+ info
->numnote
;
2090 /* Try to dump the FPU. */
2091 info
->prstatus
->pr_fpvalid
= elf_core_copy_task_fpregs(current
, regs
,
2093 if (info
->prstatus
->pr_fpvalid
)
2094 fill_note(info
->notes
+ info
->numnote
++,
2095 "CORE", NT_PRFPREG
, sizeof(*info
->fpu
), info
->fpu
);
2096 #ifdef ELF_CORE_COPY_XFPREGS
2097 if (elf_core_copy_task_xfpregs(current
, info
->xfpu
))
2098 fill_note(info
->notes
+ info
->numnote
++,
2099 "LINUX", ELF_CORE_XFPREG_TYPE
,
2100 sizeof(*info
->xfpu
), info
->xfpu
);
2106 static size_t get_note_info_size(struct elf_note_info
*info
)
2111 for (i
= 0; i
< info
->numnote
; i
++)
2112 sz
+= notesize(info
->notes
+ i
);
2114 sz
+= info
->thread_status_size
;
2119 static int write_note_info(struct elf_note_info
*info
,
2120 struct coredump_params
*cprm
)
2122 struct elf_thread_status
*ets
;
2125 for (i
= 0; i
< info
->numnote
; i
++)
2126 if (!writenote(info
->notes
+ i
, cprm
))
2129 /* write out the thread status notes section */
2130 list_for_each_entry(ets
, &info
->thread_list
, list
) {
2131 for (i
= 0; i
< ets
->num_notes
; i
++)
2132 if (!writenote(&ets
->notes
[i
], cprm
))
2139 static void free_note_info(struct elf_note_info
*info
)
2141 while (!list_empty(&info
->thread_list
)) {
2142 struct list_head
*tmp
= info
->thread_list
.next
;
2144 kfree(list_entry(tmp
, struct elf_thread_status
, list
));
2147 /* Free data possibly allocated by fill_files_note(): */
2148 if (info
->notes_files
)
2149 kvfree(info
->notes_files
->data
);
2151 kfree(info
->prstatus
);
2152 kfree(info
->psinfo
);
2155 #ifdef ELF_CORE_COPY_XFPREGS
2162 static struct vm_area_struct
*first_vma(struct task_struct
*tsk
,
2163 struct vm_area_struct
*gate_vma
)
2165 struct vm_area_struct
*ret
= tsk
->mm
->mmap
;
2172 * Helper function for iterating across a vma list. It ensures that the caller
2173 * will visit `gate_vma' prior to terminating the search.
2175 static struct vm_area_struct
*next_vma(struct vm_area_struct
*this_vma
,
2176 struct vm_area_struct
*gate_vma
)
2178 struct vm_area_struct
*ret
;
2180 ret
= this_vma
->vm_next
;
2183 if (this_vma
== gate_vma
)
2188 static void fill_extnum_info(struct elfhdr
*elf
, struct elf_shdr
*shdr4extnum
,
2189 elf_addr_t e_shoff
, int segs
)
2191 elf
->e_shoff
= e_shoff
;
2192 elf
->e_shentsize
= sizeof(*shdr4extnum
);
2194 elf
->e_shstrndx
= SHN_UNDEF
;
2196 memset(shdr4extnum
, 0, sizeof(*shdr4extnum
));
2198 shdr4extnum
->sh_type
= SHT_NULL
;
2199 shdr4extnum
->sh_size
= elf
->e_shnum
;
2200 shdr4extnum
->sh_link
= elf
->e_shstrndx
;
2201 shdr4extnum
->sh_info
= segs
;
2207 * This is a two-pass process; first we find the offsets of the bits,
2208 * and then they are actually written out. If we run out of core limit
2211 static int elf_core_dump(struct coredump_params
*cprm
)
2216 size_t vma_data_size
= 0;
2217 struct vm_area_struct
*vma
, *gate_vma
;
2218 struct elfhdr
*elf
= NULL
;
2219 loff_t offset
= 0, dataoff
;
2220 struct elf_note_info info
= { };
2221 struct elf_phdr
*phdr4note
= NULL
;
2222 struct elf_shdr
*shdr4extnum
= NULL
;
2225 elf_addr_t
*vma_filesz
= NULL
;
2228 * We no longer stop all VM operations.
2230 * This is because those proceses that could possibly change map_count
2231 * or the mmap / vma pages are now blocked in do_exit on current
2232 * finishing this core dump.
2234 * Only ptrace can touch these memory addresses, but it doesn't change
2235 * the map_count or the pages allocated. So no possibility of crashing
2236 * exists while dumping the mm->vm_next areas to the core file.
2239 /* alloc memory for large data structures: too large to be on stack */
2240 elf
= kmalloc(sizeof(*elf
), GFP_KERNEL
);
2244 * The number of segs are recored into ELF header as 16bit value.
2245 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2247 segs
= current
->mm
->map_count
;
2248 segs
+= elf_core_extra_phdrs();
2250 gate_vma
= get_gate_vma(current
->mm
);
2251 if (gate_vma
!= NULL
)
2254 /* for notes section */
2257 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2258 * this, kernel supports extended numbering. Have a look at
2259 * include/linux/elf.h for further information. */
2260 e_phnum
= segs
> PN_XNUM
? PN_XNUM
: segs
;
2263 * Collect all the non-memory information about the process for the
2264 * notes. This also sets up the file header.
2266 if (!fill_note_info(elf
, e_phnum
, &info
, cprm
->siginfo
, cprm
->regs
))
2274 offset
+= sizeof(*elf
); /* Elf header */
2275 offset
+= segs
* sizeof(struct elf_phdr
); /* Program headers */
2277 /* Write notes phdr entry */
2279 size_t sz
= get_note_info_size(&info
);
2281 sz
+= elf_coredump_extra_notes_size();
2283 phdr4note
= kmalloc(sizeof(*phdr4note
), GFP_KERNEL
);
2287 fill_elf_note_phdr(phdr4note
, sz
, offset
);
2291 dataoff
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
2293 if (segs
- 1 > ULONG_MAX
/ sizeof(*vma_filesz
))
2295 vma_filesz
= kvmalloc(array_size(sizeof(*vma_filesz
), (segs
- 1)),
2297 if (ZERO_OR_NULL_PTR(vma_filesz
))
2300 for (i
= 0, vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2301 vma
= next_vma(vma
, gate_vma
)) {
2302 unsigned long dump_size
;
2304 dump_size
= vma_dump_size(vma
, cprm
->mm_flags
);
2305 vma_filesz
[i
++] = dump_size
;
2306 vma_data_size
+= dump_size
;
2309 offset
+= vma_data_size
;
2310 offset
+= elf_core_extra_data_size();
2313 if (e_phnum
== PN_XNUM
) {
2314 shdr4extnum
= kmalloc(sizeof(*shdr4extnum
), GFP_KERNEL
);
2317 fill_extnum_info(elf
, shdr4extnum
, e_shoff
, segs
);
2322 if (!dump_emit(cprm
, elf
, sizeof(*elf
)))
2325 if (!dump_emit(cprm
, phdr4note
, sizeof(*phdr4note
)))
2328 /* Write program headers for segments dump */
2329 for (i
= 0, vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2330 vma
= next_vma(vma
, gate_vma
)) {
2331 struct elf_phdr phdr
;
2333 phdr
.p_type
= PT_LOAD
;
2334 phdr
.p_offset
= offset
;
2335 phdr
.p_vaddr
= vma
->vm_start
;
2337 phdr
.p_filesz
= vma_filesz
[i
++];
2338 phdr
.p_memsz
= vma
->vm_end
- vma
->vm_start
;
2339 offset
+= phdr
.p_filesz
;
2340 phdr
.p_flags
= vma
->vm_flags
& VM_READ
? PF_R
: 0;
2341 if (vma
->vm_flags
& VM_WRITE
)
2342 phdr
.p_flags
|= PF_W
;
2343 if (vma
->vm_flags
& VM_EXEC
)
2344 phdr
.p_flags
|= PF_X
;
2345 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
2347 if (!dump_emit(cprm
, &phdr
, sizeof(phdr
)))
2351 if (!elf_core_write_extra_phdrs(cprm
, offset
))
2354 /* write out the notes section */
2355 if (!write_note_info(&info
, cprm
))
2358 if (elf_coredump_extra_notes_write(cprm
))
2362 if (!dump_skip(cprm
, dataoff
- cprm
->pos
))
2365 for (i
= 0, vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2366 vma
= next_vma(vma
, gate_vma
)) {
2370 end
= vma
->vm_start
+ vma_filesz
[i
++];
2372 for (addr
= vma
->vm_start
; addr
< end
; addr
+= PAGE_SIZE
) {
2376 page
= get_dump_page(addr
);
2378 void *kaddr
= kmap(page
);
2379 stop
= !dump_emit(cprm
, kaddr
, PAGE_SIZE
);
2383 stop
= !dump_skip(cprm
, PAGE_SIZE
);
2388 dump_truncate(cprm
);
2390 if (!elf_core_write_extra_data(cprm
))
2393 if (e_phnum
== PN_XNUM
) {
2394 if (!dump_emit(cprm
, shdr4extnum
, sizeof(*shdr4extnum
)))
2402 free_note_info(&info
);
2411 #endif /* CONFIG_ELF_CORE */
2413 static int __init
init_elf_binfmt(void)
2415 register_binfmt(&elf_format
);
2419 static void __exit
exit_elf_binfmt(void)
2421 /* Remove the COFF and ELF loaders. */
2422 unregister_binfmt(&elf_format
);
2425 core_initcall(init_elf_binfmt
);
2426 module_exit(exit_elf_binfmt
);
2427 MODULE_LICENSE("GPL");