1 // SPDX-License-Identifier: GPL-2.0+
3 * linux/fs/jbd2/revoke.c
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
7 * Copyright 2000 Red Hat corp --- All Rights Reserved
9 * Journal revoke routines for the generic filesystem journaling code;
10 * part of the ext2fs journaling system.
12 * Revoke is the mechanism used to prevent old log records for deleted
13 * metadata from being replayed on top of newer data using the same
14 * blocks. The revoke mechanism is used in two separate places:
16 * + Commit: during commit we write the entire list of the current
17 * transaction's revoked blocks to the journal
19 * + Recovery: during recovery we record the transaction ID of all
20 * revoked blocks. If there are multiple revoke records in the log
21 * for a single block, only the last one counts, and if there is a log
22 * entry for a block beyond the last revoke, then that log entry still
25 * We can get interactions between revokes and new log data within a
28 * Block is revoked and then journaled:
29 * The desired end result is the journaling of the new block, so we
30 * cancel the revoke before the transaction commits.
32 * Block is journaled and then revoked:
33 * The revoke must take precedence over the write of the block, so we
34 * need either to cancel the journal entry or to write the revoke
35 * later in the log than the log block. In this case, we choose the
36 * latter: journaling a block cancels any revoke record for that block
37 * in the current transaction, so any revoke for that block in the
38 * transaction must have happened after the block was journaled and so
39 * the revoke must take precedence.
41 * Block is revoked and then written as data:
42 * The data write is allowed to succeed, but the revoke is _not_
43 * cancelled. We still need to prevent old log records from
44 * overwriting the new data. We don't even need to clear the revoke
47 * We cache revoke status of a buffer in the current transaction in b_states
48 * bits. As the name says, revokevalid flag indicates that the cached revoke
49 * status of a buffer is valid and we can rely on the cached status.
51 * Revoke information on buffers is a tri-state value:
53 * RevokeValid clear: no cached revoke status, need to look it up
54 * RevokeValid set, Revoked clear:
55 * buffer has not been revoked, and cancel_revoke
57 * RevokeValid set, Revoked set:
58 * buffer has been revoked.
61 * We keep two hash tables of revoke records. One hashtable belongs to the
62 * running transaction (is pointed to by journal->j_revoke), the other one
63 * belongs to the committing transaction. Accesses to the second hash table
64 * happen only from the kjournald and no other thread touches this table. Also
65 * journal_switch_revoke_table() which switches which hashtable belongs to the
66 * running and which to the committing transaction is called only from
67 * kjournald. Therefore we need no locks when accessing the hashtable belonging
68 * to the committing transaction.
70 * All users operating on the hash table belonging to the running transaction
71 * have a handle to the transaction. Therefore they are safe from kjournald
72 * switching hash tables under them. For operations on the lists of entries in
73 * the hash table j_revoke_lock is used.
75 * Finally, also replay code uses the hash tables but at this moment no one else
76 * can touch them (filesystem isn't mounted yet) and hence no locking is
83 #include <linux/time.h>
85 #include <linux/jbd2.h>
86 #include <linux/errno.h>
87 #include <linux/slab.h>
88 #include <linux/list.h>
89 #include <linux/init.h>
90 #include <linux/bio.h>
91 #include <linux/log2.h>
92 #include <linux/hash.h>
95 static struct kmem_cache
*jbd2_revoke_record_cache
;
96 static struct kmem_cache
*jbd2_revoke_table_cache
;
98 /* Each revoke record represents one single revoked block. During
99 journal replay, this involves recording the transaction ID of the
100 last transaction to revoke this block. */
102 struct jbd2_revoke_record_s
104 struct list_head hash
;
105 tid_t sequence
; /* Used for recovery only */
106 unsigned long long blocknr
;
110 /* The revoke table is just a simple hash table of revoke records. */
111 struct jbd2_revoke_table_s
113 /* It is conceivable that we might want a larger hash table
114 * for recovery. Must be a power of two. */
117 struct list_head
*hash_table
;
122 static void write_one_revoke_record(transaction_t
*,
124 struct buffer_head
**, int *,
125 struct jbd2_revoke_record_s
*);
126 static void flush_descriptor(journal_t
*, struct buffer_head
*, int);
129 /* Utility functions to maintain the revoke table */
131 static inline int hash(journal_t
*journal
, unsigned long long block
)
133 return hash_64(block
, journal
->j_revoke
->hash_shift
);
136 static int insert_revoke_hash(journal_t
*journal
, unsigned long long blocknr
,
139 struct list_head
*hash_list
;
140 struct jbd2_revoke_record_s
*record
;
141 gfp_t gfp_mask
= GFP_NOFS
;
143 if (journal_oom_retry
)
144 gfp_mask
|= __GFP_NOFAIL
;
145 record
= kmem_cache_alloc(jbd2_revoke_record_cache
, gfp_mask
);
149 record
->sequence
= seq
;
150 record
->blocknr
= blocknr
;
151 hash_list
= &journal
->j_revoke
->hash_table
[hash(journal
, blocknr
)];
152 spin_lock(&journal
->j_revoke_lock
);
153 list_add(&record
->hash
, hash_list
);
154 spin_unlock(&journal
->j_revoke_lock
);
158 /* Find a revoke record in the journal's hash table. */
160 static struct jbd2_revoke_record_s
*find_revoke_record(journal_t
*journal
,
161 unsigned long long blocknr
)
163 struct list_head
*hash_list
;
164 struct jbd2_revoke_record_s
*record
;
166 hash_list
= &journal
->j_revoke
->hash_table
[hash(journal
, blocknr
)];
168 spin_lock(&journal
->j_revoke_lock
);
169 record
= (struct jbd2_revoke_record_s
*) hash_list
->next
;
170 while (&(record
->hash
) != hash_list
) {
171 if (record
->blocknr
== blocknr
) {
172 spin_unlock(&journal
->j_revoke_lock
);
175 record
= (struct jbd2_revoke_record_s
*) record
->hash
.next
;
177 spin_unlock(&journal
->j_revoke_lock
);
181 void jbd2_journal_destroy_revoke_record_cache(void)
183 kmem_cache_destroy(jbd2_revoke_record_cache
);
184 jbd2_revoke_record_cache
= NULL
;
187 void jbd2_journal_destroy_revoke_table_cache(void)
189 kmem_cache_destroy(jbd2_revoke_table_cache
);
190 jbd2_revoke_table_cache
= NULL
;
193 int __init
jbd2_journal_init_revoke_record_cache(void)
195 J_ASSERT(!jbd2_revoke_record_cache
);
196 jbd2_revoke_record_cache
= KMEM_CACHE(jbd2_revoke_record_s
,
197 SLAB_HWCACHE_ALIGN
|SLAB_TEMPORARY
);
199 if (!jbd2_revoke_record_cache
) {
200 pr_emerg("JBD2: failed to create revoke_record cache\n");
206 int __init
jbd2_journal_init_revoke_table_cache(void)
208 J_ASSERT(!jbd2_revoke_table_cache
);
209 jbd2_revoke_table_cache
= KMEM_CACHE(jbd2_revoke_table_s
,
211 if (!jbd2_revoke_table_cache
) {
212 pr_emerg("JBD2: failed to create revoke_table cache\n");
218 static struct jbd2_revoke_table_s
*jbd2_journal_init_revoke_table(int hash_size
)
222 struct jbd2_revoke_table_s
*table
;
224 table
= kmem_cache_alloc(jbd2_revoke_table_cache
, GFP_KERNEL
);
228 while((tmp
>>= 1UL) != 0UL)
231 table
->hash_size
= hash_size
;
232 table
->hash_shift
= shift
;
234 kmalloc_array(hash_size
, sizeof(struct list_head
), GFP_KERNEL
);
235 if (!table
->hash_table
) {
236 kmem_cache_free(jbd2_revoke_table_cache
, table
);
241 for (tmp
= 0; tmp
< hash_size
; tmp
++)
242 INIT_LIST_HEAD(&table
->hash_table
[tmp
]);
248 static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s
*table
)
251 struct list_head
*hash_list
;
253 for (i
= 0; i
< table
->hash_size
; i
++) {
254 hash_list
= &table
->hash_table
[i
];
255 J_ASSERT(list_empty(hash_list
));
258 kfree(table
->hash_table
);
259 kmem_cache_free(jbd2_revoke_table_cache
, table
);
262 /* Initialise the revoke table for a given journal to a given size. */
263 int jbd2_journal_init_revoke(journal_t
*journal
, int hash_size
)
265 J_ASSERT(journal
->j_revoke_table
[0] == NULL
);
266 J_ASSERT(is_power_of_2(hash_size
));
268 journal
->j_revoke_table
[0] = jbd2_journal_init_revoke_table(hash_size
);
269 if (!journal
->j_revoke_table
[0])
272 journal
->j_revoke_table
[1] = jbd2_journal_init_revoke_table(hash_size
);
273 if (!journal
->j_revoke_table
[1])
276 journal
->j_revoke
= journal
->j_revoke_table
[1];
278 spin_lock_init(&journal
->j_revoke_lock
);
283 jbd2_journal_destroy_revoke_table(journal
->j_revoke_table
[0]);
284 journal
->j_revoke_table
[0] = NULL
;
289 /* Destroy a journal's revoke table. The table must already be empty! */
290 void jbd2_journal_destroy_revoke(journal_t
*journal
)
292 journal
->j_revoke
= NULL
;
293 if (journal
->j_revoke_table
[0])
294 jbd2_journal_destroy_revoke_table(journal
->j_revoke_table
[0]);
295 if (journal
->j_revoke_table
[1])
296 jbd2_journal_destroy_revoke_table(journal
->j_revoke_table
[1]);
303 * jbd2_journal_revoke: revoke a given buffer_head from the journal. This
304 * prevents the block from being replayed during recovery if we take a
305 * crash after this current transaction commits. Any subsequent
306 * metadata writes of the buffer in this transaction cancel the
309 * Note that this call may block --- it is up to the caller to make
310 * sure that there are no further calls to journal_write_metadata
311 * before the revoke is complete. In ext3, this implies calling the
312 * revoke before clearing the block bitmap when we are deleting
315 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
316 * parameter, but does _not_ forget the buffer_head if the bh was only
319 * bh_in may not be a journalled buffer - it may have come off
320 * the hash tables without an attached journal_head.
322 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
326 int jbd2_journal_revoke(handle_t
*handle
, unsigned long long blocknr
,
327 struct buffer_head
*bh_in
)
329 struct buffer_head
*bh
= NULL
;
331 struct block_device
*bdev
;
336 BUFFER_TRACE(bh_in
, "enter");
338 journal
= handle
->h_transaction
->t_journal
;
339 if (!jbd2_journal_set_features(journal
, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE
)){
340 J_ASSERT (!"Cannot set revoke feature!");
344 bdev
= journal
->j_fs_dev
;
348 bh
= __find_get_block(bdev
, blocknr
, journal
->j_blocksize
);
350 BUFFER_TRACE(bh
, "found on hash");
352 #ifdef JBD2_EXPENSIVE_CHECKING
354 struct buffer_head
*bh2
;
356 /* If there is a different buffer_head lying around in
357 * memory anywhere... */
358 bh2
= __find_get_block(bdev
, blocknr
, journal
->j_blocksize
);
360 /* ... and it has RevokeValid status... */
361 if (bh2
!= bh
&& buffer_revokevalid(bh2
))
362 /* ...then it better be revoked too,
363 * since it's illegal to create a revoke
364 * record against a buffer_head which is
365 * not marked revoked --- that would
366 * risk missing a subsequent revoke
368 J_ASSERT_BH(bh2
, buffer_revoked(bh2
));
374 /* We really ought not ever to revoke twice in a row without
375 first having the revoke cancelled: it's illegal to free a
376 block twice without allocating it in between! */
378 if (!J_EXPECT_BH(bh
, !buffer_revoked(bh
),
379 "inconsistent data on disk")) {
384 set_buffer_revoked(bh
);
385 set_buffer_revokevalid(bh
);
387 BUFFER_TRACE(bh_in
, "call jbd2_journal_forget");
388 jbd2_journal_forget(handle
, bh_in
);
390 BUFFER_TRACE(bh
, "call brelse");
395 jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr
, bh_in
);
396 err
= insert_revoke_hash(journal
, blocknr
,
397 handle
->h_transaction
->t_tid
);
398 BUFFER_TRACE(bh_in
, "exit");
403 * Cancel an outstanding revoke. For use only internally by the
404 * journaling code (called from jbd2_journal_get_write_access).
406 * We trust buffer_revoked() on the buffer if the buffer is already
407 * being journaled: if there is no revoke pending on the buffer, then we
408 * don't do anything here.
410 * This would break if it were possible for a buffer to be revoked and
411 * discarded, and then reallocated within the same transaction. In such
412 * a case we would have lost the revoked bit, but when we arrived here
413 * the second time we would still have a pending revoke to cancel. So,
414 * do not trust the Revoked bit on buffers unless RevokeValid is also
417 int jbd2_journal_cancel_revoke(handle_t
*handle
, struct journal_head
*jh
)
419 struct jbd2_revoke_record_s
*record
;
420 journal_t
*journal
= handle
->h_transaction
->t_journal
;
422 int did_revoke
= 0; /* akpm: debug */
423 struct buffer_head
*bh
= jh2bh(jh
);
425 jbd_debug(4, "journal_head %p, cancelling revoke\n", jh
);
427 /* Is the existing Revoke bit valid? If so, we trust it, and
428 * only perform the full cancel if the revoke bit is set. If
429 * not, we can't trust the revoke bit, and we need to do the
430 * full search for a revoke record. */
431 if (test_set_buffer_revokevalid(bh
)) {
432 need_cancel
= test_clear_buffer_revoked(bh
);
435 clear_buffer_revoked(bh
);
439 record
= find_revoke_record(journal
, bh
->b_blocknr
);
441 jbd_debug(4, "cancelled existing revoke on "
442 "blocknr %llu\n", (unsigned long long)bh
->b_blocknr
);
443 spin_lock(&journal
->j_revoke_lock
);
444 list_del(&record
->hash
);
445 spin_unlock(&journal
->j_revoke_lock
);
446 kmem_cache_free(jbd2_revoke_record_cache
, record
);
451 #ifdef JBD2_EXPENSIVE_CHECKING
452 /* There better not be one left behind by now! */
453 record
= find_revoke_record(journal
, bh
->b_blocknr
);
454 J_ASSERT_JH(jh
, record
== NULL
);
457 /* Finally, have we just cleared revoke on an unhashed
458 * buffer_head? If so, we'd better make sure we clear the
459 * revoked status on any hashed alias too, otherwise the revoke
460 * state machine will get very upset later on. */
462 struct buffer_head
*bh2
;
463 bh2
= __find_get_block(bh
->b_bdev
, bh
->b_blocknr
, bh
->b_size
);
466 clear_buffer_revoked(bh2
);
474 * journal_clear_revoked_flag clears revoked flag of buffers in
475 * revoke table to reflect there is no revoked buffers in the next
476 * transaction which is going to be started.
478 void jbd2_clear_buffer_revoked_flags(journal_t
*journal
)
480 struct jbd2_revoke_table_s
*revoke
= journal
->j_revoke
;
483 for (i
= 0; i
< revoke
->hash_size
; i
++) {
484 struct list_head
*hash_list
;
485 struct list_head
*list_entry
;
486 hash_list
= &revoke
->hash_table
[i
];
488 list_for_each(list_entry
, hash_list
) {
489 struct jbd2_revoke_record_s
*record
;
490 struct buffer_head
*bh
;
491 record
= (struct jbd2_revoke_record_s
*)list_entry
;
492 bh
= __find_get_block(journal
->j_fs_dev
,
494 journal
->j_blocksize
);
496 clear_buffer_revoked(bh
);
503 /* journal_switch_revoke table select j_revoke for next transaction
504 * we do not want to suspend any processing until all revokes are
507 void jbd2_journal_switch_revoke_table(journal_t
*journal
)
511 if (journal
->j_revoke
== journal
->j_revoke_table
[0])
512 journal
->j_revoke
= journal
->j_revoke_table
[1];
514 journal
->j_revoke
= journal
->j_revoke_table
[0];
516 for (i
= 0; i
< journal
->j_revoke
->hash_size
; i
++)
517 INIT_LIST_HEAD(&journal
->j_revoke
->hash_table
[i
]);
521 * Write revoke records to the journal for all entries in the current
522 * revoke hash, deleting the entries as we go.
524 void jbd2_journal_write_revoke_records(transaction_t
*transaction
,
525 struct list_head
*log_bufs
)
527 journal_t
*journal
= transaction
->t_journal
;
528 struct buffer_head
*descriptor
;
529 struct jbd2_revoke_record_s
*record
;
530 struct jbd2_revoke_table_s
*revoke
;
531 struct list_head
*hash_list
;
532 int i
, offset
, count
;
538 /* select revoke table for committing transaction */
539 revoke
= journal
->j_revoke
== journal
->j_revoke_table
[0] ?
540 journal
->j_revoke_table
[1] : journal
->j_revoke_table
[0];
542 for (i
= 0; i
< revoke
->hash_size
; i
++) {
543 hash_list
= &revoke
->hash_table
[i
];
545 while (!list_empty(hash_list
)) {
546 record
= (struct jbd2_revoke_record_s
*)
548 write_one_revoke_record(transaction
, log_bufs
,
549 &descriptor
, &offset
, record
);
551 list_del(&record
->hash
);
552 kmem_cache_free(jbd2_revoke_record_cache
, record
);
556 flush_descriptor(journal
, descriptor
, offset
);
557 jbd_debug(1, "Wrote %d revoke records\n", count
);
561 * Write out one revoke record. We need to create a new descriptor
562 * block if the old one is full or if we have not already created one.
565 static void write_one_revoke_record(transaction_t
*transaction
,
566 struct list_head
*log_bufs
,
567 struct buffer_head
**descriptorp
,
569 struct jbd2_revoke_record_s
*record
)
571 journal_t
*journal
= transaction
->t_journal
;
573 struct buffer_head
*descriptor
;
576 /* If we are already aborting, this all becomes a noop. We
577 still need to go round the loop in
578 jbd2_journal_write_revoke_records in order to free all of the
579 revoke records: only the IO to the journal is omitted. */
580 if (is_journal_aborted(journal
))
583 descriptor
= *descriptorp
;
586 /* Do we need to leave space at the end for a checksum? */
587 if (jbd2_journal_has_csum_v2or3(journal
))
588 csum_size
= sizeof(struct jbd2_journal_block_tail
);
590 if (jbd2_has_feature_64bit(journal
))
595 /* Make sure we have a descriptor with space left for the record */
597 if (offset
+ sz
> journal
->j_blocksize
- csum_size
) {
598 flush_descriptor(journal
, descriptor
, offset
);
604 descriptor
= jbd2_journal_get_descriptor_buffer(transaction
,
609 /* Record it so that we can wait for IO completion later */
610 BUFFER_TRACE(descriptor
, "file in log_bufs");
611 jbd2_file_log_bh(log_bufs
, descriptor
);
613 offset
= sizeof(jbd2_journal_revoke_header_t
);
614 *descriptorp
= descriptor
;
617 if (jbd2_has_feature_64bit(journal
))
618 * ((__be64
*)(&descriptor
->b_data
[offset
])) =
619 cpu_to_be64(record
->blocknr
);
621 * ((__be32
*)(&descriptor
->b_data
[offset
])) =
622 cpu_to_be32(record
->blocknr
);
629 * Flush a revoke descriptor out to the journal. If we are aborting,
630 * this is a noop; otherwise we are generating a buffer which needs to
631 * be waited for during commit, so it has to go onto the appropriate
632 * journal buffer list.
635 static void flush_descriptor(journal_t
*journal
,
636 struct buffer_head
*descriptor
,
639 jbd2_journal_revoke_header_t
*header
;
641 if (is_journal_aborted(journal
)) {
646 header
= (jbd2_journal_revoke_header_t
*)descriptor
->b_data
;
647 header
->r_count
= cpu_to_be32(offset
);
648 jbd2_descriptor_block_csum_set(journal
, descriptor
);
650 set_buffer_jwrite(descriptor
);
651 BUFFER_TRACE(descriptor
, "write");
652 set_buffer_dirty(descriptor
);
653 write_dirty_buffer(descriptor
, REQ_SYNC
);
658 * Revoke support for recovery.
660 * Recovery needs to be able to:
662 * record all revoke records, including the tid of the latest instance
663 * of each revoke in the journal
665 * check whether a given block in a given transaction should be replayed
666 * (ie. has not been revoked by a revoke record in that or a subsequent
669 * empty the revoke table after recovery.
673 * First, setting revoke records. We create a new revoke record for
674 * every block ever revoked in the log as we scan it for recovery, and
675 * we update the existing records if we find multiple revokes for a
679 int jbd2_journal_set_revoke(journal_t
*journal
,
680 unsigned long long blocknr
,
683 struct jbd2_revoke_record_s
*record
;
685 record
= find_revoke_record(journal
, blocknr
);
687 /* If we have multiple occurrences, only record the
688 * latest sequence number in the hashed record */
689 if (tid_gt(sequence
, record
->sequence
))
690 record
->sequence
= sequence
;
693 return insert_revoke_hash(journal
, blocknr
, sequence
);
697 * Test revoke records. For a given block referenced in the log, has
698 * that block been revoked? A revoke record with a given transaction
699 * sequence number revokes all blocks in that transaction and earlier
700 * ones, but later transactions still need replayed.
703 int jbd2_journal_test_revoke(journal_t
*journal
,
704 unsigned long long blocknr
,
707 struct jbd2_revoke_record_s
*record
;
709 record
= find_revoke_record(journal
, blocknr
);
712 if (tid_gt(sequence
, record
->sequence
))
718 * Finally, once recovery is over, we need to clear the revoke table so
719 * that it can be reused by the running filesystem.
722 void jbd2_journal_clear_revoke(journal_t
*journal
)
725 struct list_head
*hash_list
;
726 struct jbd2_revoke_record_s
*record
;
727 struct jbd2_revoke_table_s
*revoke
;
729 revoke
= journal
->j_revoke
;
731 for (i
= 0; i
< revoke
->hash_size
; i
++) {
732 hash_list
= &revoke
->hash_table
[i
];
733 while (!list_empty(hash_list
)) {
734 record
= (struct jbd2_revoke_record_s
*) hash_list
->next
;
735 list_del(&record
->hash
);
736 kmem_cache_free(jbd2_revoke_record_cache
, record
);