1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/magic.h>
18 #include <linux/pipe_fs_i.h>
19 #include <linux/uio.h>
20 #include <linux/highmem.h>
21 #include <linux/pagemap.h>
22 #include <linux/audit.h>
23 #include <linux/syscalls.h>
24 #include <linux/fcntl.h>
25 #include <linux/memcontrol.h>
27 #include <linux/uaccess.h>
28 #include <asm/ioctls.h>
33 * The max size that a non-root user is allowed to grow the pipe. Can
34 * be set by root in /proc/sys/fs/pipe-max-size
36 unsigned int pipe_max_size
= 1048576;
39 * Minimum pipe size, as required by POSIX
41 unsigned int pipe_min_size
= PAGE_SIZE
;
43 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
44 * matches default values.
46 unsigned long pipe_user_pages_hard
;
47 unsigned long pipe_user_pages_soft
= PIPE_DEF_BUFFERS
* INR_OPEN_CUR
;
50 * We use a start+len construction, which provides full use of the
52 * -- Florian Coosmann (FGC)
54 * Reads with count = 0 should always return 0.
55 * -- Julian Bradfield 1999-06-07.
57 * FIFOs and Pipes now generate SIGIO for both readers and writers.
58 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
60 * pipe_read & write cleanup
61 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
64 static void pipe_lock_nested(struct pipe_inode_info
*pipe
, int subclass
)
67 mutex_lock_nested(&pipe
->mutex
, subclass
);
70 void pipe_lock(struct pipe_inode_info
*pipe
)
73 * pipe_lock() nests non-pipe inode locks (for writing to a file)
75 pipe_lock_nested(pipe
, I_MUTEX_PARENT
);
77 EXPORT_SYMBOL(pipe_lock
);
79 void pipe_unlock(struct pipe_inode_info
*pipe
)
82 mutex_unlock(&pipe
->mutex
);
84 EXPORT_SYMBOL(pipe_unlock
);
86 static inline void __pipe_lock(struct pipe_inode_info
*pipe
)
88 mutex_lock_nested(&pipe
->mutex
, I_MUTEX_PARENT
);
91 static inline void __pipe_unlock(struct pipe_inode_info
*pipe
)
93 mutex_unlock(&pipe
->mutex
);
96 void pipe_double_lock(struct pipe_inode_info
*pipe1
,
97 struct pipe_inode_info
*pipe2
)
99 BUG_ON(pipe1
== pipe2
);
102 pipe_lock_nested(pipe1
, I_MUTEX_PARENT
);
103 pipe_lock_nested(pipe2
, I_MUTEX_CHILD
);
105 pipe_lock_nested(pipe2
, I_MUTEX_PARENT
);
106 pipe_lock_nested(pipe1
, I_MUTEX_CHILD
);
110 /* Drop the inode semaphore and wait for a pipe event, atomically */
111 void pipe_wait(struct pipe_inode_info
*pipe
)
116 * Pipes are system-local resources, so sleeping on them
117 * is considered a noninteractive wait:
119 prepare_to_wait(&pipe
->wait
, &wait
, TASK_INTERRUPTIBLE
);
122 finish_wait(&pipe
->wait
, &wait
);
126 static void anon_pipe_buf_release(struct pipe_inode_info
*pipe
,
127 struct pipe_buffer
*buf
)
129 struct page
*page
= buf
->page
;
132 * If nobody else uses this page, and we don't already have a
133 * temporary page, let's keep track of it as a one-deep
134 * allocation cache. (Otherwise just release our reference to it)
136 if (page_count(page
) == 1 && !pipe
->tmp_page
)
137 pipe
->tmp_page
= page
;
142 static int anon_pipe_buf_steal(struct pipe_inode_info
*pipe
,
143 struct pipe_buffer
*buf
)
145 struct page
*page
= buf
->page
;
147 if (page_count(page
) == 1) {
148 if (memcg_kmem_enabled())
149 memcg_kmem_uncharge(page
, 0);
150 __SetPageLocked(page
);
157 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
158 * @pipe: the pipe that the buffer belongs to
159 * @buf: the buffer to attempt to steal
162 * This function attempts to steal the &struct page attached to
163 * @buf. If successful, this function returns 0 and returns with
164 * the page locked. The caller may then reuse the page for whatever
165 * he wishes; the typical use is insertion into a different file
168 int generic_pipe_buf_steal(struct pipe_inode_info
*pipe
,
169 struct pipe_buffer
*buf
)
171 struct page
*page
= buf
->page
;
174 * A reference of one is golden, that means that the owner of this
175 * page is the only one holding a reference to it. lock the page
178 if (page_count(page
) == 1) {
185 EXPORT_SYMBOL(generic_pipe_buf_steal
);
188 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
189 * @pipe: the pipe that the buffer belongs to
190 * @buf: the buffer to get a reference to
193 * This function grabs an extra reference to @buf. It's used in
194 * in the tee() system call, when we duplicate the buffers in one
197 void generic_pipe_buf_get(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
)
201 EXPORT_SYMBOL(generic_pipe_buf_get
);
204 * generic_pipe_buf_confirm - verify contents of the pipe buffer
205 * @info: the pipe that the buffer belongs to
206 * @buf: the buffer to confirm
209 * This function does nothing, because the generic pipe code uses
210 * pages that are always good when inserted into the pipe.
212 int generic_pipe_buf_confirm(struct pipe_inode_info
*info
,
213 struct pipe_buffer
*buf
)
217 EXPORT_SYMBOL(generic_pipe_buf_confirm
);
220 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
221 * @pipe: the pipe that the buffer belongs to
222 * @buf: the buffer to put a reference to
225 * This function releases a reference to @buf.
227 void generic_pipe_buf_release(struct pipe_inode_info
*pipe
,
228 struct pipe_buffer
*buf
)
232 EXPORT_SYMBOL(generic_pipe_buf_release
);
234 static const struct pipe_buf_operations anon_pipe_buf_ops
= {
236 .confirm
= generic_pipe_buf_confirm
,
237 .release
= anon_pipe_buf_release
,
238 .steal
= anon_pipe_buf_steal
,
239 .get
= generic_pipe_buf_get
,
242 static const struct pipe_buf_operations packet_pipe_buf_ops
= {
244 .confirm
= generic_pipe_buf_confirm
,
245 .release
= anon_pipe_buf_release
,
246 .steal
= anon_pipe_buf_steal
,
247 .get
= generic_pipe_buf_get
,
251 pipe_read(struct kiocb
*iocb
, struct iov_iter
*to
)
253 size_t total_len
= iov_iter_count(to
);
254 struct file
*filp
= iocb
->ki_filp
;
255 struct pipe_inode_info
*pipe
= filp
->private_data
;
259 /* Null read succeeds. */
260 if (unlikely(total_len
== 0))
267 int bufs
= pipe
->nrbufs
;
269 int curbuf
= pipe
->curbuf
;
270 struct pipe_buffer
*buf
= pipe
->bufs
+ curbuf
;
271 size_t chars
= buf
->len
;
275 if (chars
> total_len
)
278 error
= pipe_buf_confirm(pipe
, buf
);
285 written
= copy_page_to_iter(buf
->page
, buf
->offset
, chars
, to
);
286 if (unlikely(written
< chars
)) {
292 buf
->offset
+= chars
;
295 /* Was it a packet buffer? Clean up and exit */
296 if (buf
->flags
& PIPE_BUF_FLAG_PACKET
) {
302 pipe_buf_release(pipe
, buf
);
303 curbuf
= (curbuf
+ 1) & (pipe
->buffers
- 1);
304 pipe
->curbuf
= curbuf
;
305 pipe
->nrbufs
= --bufs
;
310 break; /* common path: read succeeded */
312 if (bufs
) /* More to do? */
316 if (!pipe
->waiting_writers
) {
317 /* syscall merging: Usually we must not sleep
318 * if O_NONBLOCK is set, or if we got some data.
319 * But if a writer sleeps in kernel space, then
320 * we can wait for that data without violating POSIX.
324 if (filp
->f_flags
& O_NONBLOCK
) {
329 if (signal_pending(current
)) {
335 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLOUT
| POLLWRNORM
);
336 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
342 /* Signal writers asynchronously that there is more room. */
344 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLOUT
| POLLWRNORM
);
345 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
352 static inline int is_packetized(struct file
*file
)
354 return (file
->f_flags
& O_DIRECT
) != 0;
358 pipe_write(struct kiocb
*iocb
, struct iov_iter
*from
)
360 struct file
*filp
= iocb
->ki_filp
;
361 struct pipe_inode_info
*pipe
= filp
->private_data
;
364 size_t total_len
= iov_iter_count(from
);
367 /* Null write succeeds. */
368 if (unlikely(total_len
== 0))
373 if (!pipe
->readers
) {
374 send_sig(SIGPIPE
, current
, 0);
379 /* We try to merge small writes */
380 chars
= total_len
& (PAGE_SIZE
-1); /* size of the last buffer */
381 if (pipe
->nrbufs
&& chars
!= 0) {
382 int lastbuf
= (pipe
->curbuf
+ pipe
->nrbufs
- 1) &
384 struct pipe_buffer
*buf
= pipe
->bufs
+ lastbuf
;
385 int offset
= buf
->offset
+ buf
->len
;
387 if (buf
->ops
->can_merge
&& offset
+ chars
<= PAGE_SIZE
) {
388 ret
= pipe_buf_confirm(pipe
, buf
);
392 ret
= copy_page_from_iter(buf
->page
, offset
, chars
, from
);
393 if (unlikely(ret
< chars
)) {
399 if (!iov_iter_count(from
))
407 if (!pipe
->readers
) {
408 send_sig(SIGPIPE
, current
, 0);
414 if (bufs
< pipe
->buffers
) {
415 int newbuf
= (pipe
->curbuf
+ bufs
) & (pipe
->buffers
-1);
416 struct pipe_buffer
*buf
= pipe
->bufs
+ newbuf
;
417 struct page
*page
= pipe
->tmp_page
;
421 page
= alloc_page(GFP_HIGHUSER
| __GFP_ACCOUNT
);
422 if (unlikely(!page
)) {
423 ret
= ret
? : -ENOMEM
;
426 pipe
->tmp_page
= page
;
428 /* Always wake up, even if the copy fails. Otherwise
429 * we lock up (O_NONBLOCK-)readers that sleep due to
431 * FIXME! Is this really true?
434 copied
= copy_page_from_iter(page
, 0, PAGE_SIZE
, from
);
435 if (unlikely(copied
< PAGE_SIZE
&& iov_iter_count(from
))) {
442 /* Insert it into the buffer array */
444 buf
->ops
= &anon_pipe_buf_ops
;
448 if (is_packetized(filp
)) {
449 buf
->ops
= &packet_pipe_buf_ops
;
450 buf
->flags
= PIPE_BUF_FLAG_PACKET
;
452 pipe
->nrbufs
= ++bufs
;
453 pipe
->tmp_page
= NULL
;
455 if (!iov_iter_count(from
))
458 if (bufs
< pipe
->buffers
)
460 if (filp
->f_flags
& O_NONBLOCK
) {
465 if (signal_pending(current
)) {
471 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLIN
| POLLRDNORM
);
472 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
475 pipe
->waiting_writers
++;
477 pipe
->waiting_writers
--;
482 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLIN
| POLLRDNORM
);
483 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
485 if (ret
> 0 && sb_start_write_trylock(file_inode(filp
)->i_sb
)) {
486 int err
= file_update_time(filp
);
489 sb_end_write(file_inode(filp
)->i_sb
);
494 static long pipe_ioctl(struct file
*filp
, unsigned int cmd
, unsigned long arg
)
496 struct pipe_inode_info
*pipe
= filp
->private_data
;
497 int count
, buf
, nrbufs
;
504 nrbufs
= pipe
->nrbufs
;
505 while (--nrbufs
>= 0) {
506 count
+= pipe
->bufs
[buf
].len
;
507 buf
= (buf
+1) & (pipe
->buffers
- 1);
511 return put_user(count
, (int __user
*)arg
);
517 /* No kernel lock held - fine */
519 pipe_poll(struct file
*filp
, poll_table
*wait
)
522 struct pipe_inode_info
*pipe
= filp
->private_data
;
525 poll_wait(filp
, &pipe
->wait
, wait
);
527 /* Reading only -- no need for acquiring the semaphore. */
528 nrbufs
= pipe
->nrbufs
;
530 if (filp
->f_mode
& FMODE_READ
) {
531 mask
= (nrbufs
> 0) ? POLLIN
| POLLRDNORM
: 0;
532 if (!pipe
->writers
&& filp
->f_version
!= pipe
->w_counter
)
536 if (filp
->f_mode
& FMODE_WRITE
) {
537 mask
|= (nrbufs
< pipe
->buffers
) ? POLLOUT
| POLLWRNORM
: 0;
539 * Most Unices do not set POLLERR for FIFOs but on Linux they
540 * behave exactly like pipes for poll().
549 static void put_pipe_info(struct inode
*inode
, struct pipe_inode_info
*pipe
)
553 spin_lock(&inode
->i_lock
);
554 if (!--pipe
->files
) {
555 inode
->i_pipe
= NULL
;
558 spin_unlock(&inode
->i_lock
);
561 free_pipe_info(pipe
);
565 pipe_release(struct inode
*inode
, struct file
*file
)
567 struct pipe_inode_info
*pipe
= file
->private_data
;
570 if (file
->f_mode
& FMODE_READ
)
572 if (file
->f_mode
& FMODE_WRITE
)
575 if (pipe
->readers
|| pipe
->writers
) {
576 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLIN
| POLLOUT
| POLLRDNORM
| POLLWRNORM
| POLLERR
| POLLHUP
);
577 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
578 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
582 put_pipe_info(inode
, pipe
);
587 pipe_fasync(int fd
, struct file
*filp
, int on
)
589 struct pipe_inode_info
*pipe
= filp
->private_data
;
593 if (filp
->f_mode
& FMODE_READ
)
594 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_readers
);
595 if ((filp
->f_mode
& FMODE_WRITE
) && retval
>= 0) {
596 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_writers
);
597 if (retval
< 0 && (filp
->f_mode
& FMODE_READ
))
598 /* this can happen only if on == T */
599 fasync_helper(-1, filp
, 0, &pipe
->fasync_readers
);
605 static unsigned long account_pipe_buffers(struct user_struct
*user
,
606 unsigned long old
, unsigned long new)
608 return atomic_long_add_return(new - old
, &user
->pipe_bufs
);
611 static bool too_many_pipe_buffers_soft(unsigned long user_bufs
)
613 return pipe_user_pages_soft
&& user_bufs
>= pipe_user_pages_soft
;
616 static bool too_many_pipe_buffers_hard(unsigned long user_bufs
)
618 return pipe_user_pages_hard
&& user_bufs
>= pipe_user_pages_hard
;
621 struct pipe_inode_info
*alloc_pipe_info(void)
623 struct pipe_inode_info
*pipe
;
624 unsigned long pipe_bufs
= PIPE_DEF_BUFFERS
;
625 struct user_struct
*user
= get_current_user();
626 unsigned long user_bufs
;
628 pipe
= kzalloc(sizeof(struct pipe_inode_info
), GFP_KERNEL_ACCOUNT
);
632 if (pipe_bufs
* PAGE_SIZE
> pipe_max_size
&& !capable(CAP_SYS_RESOURCE
))
633 pipe_bufs
= pipe_max_size
>> PAGE_SHIFT
;
635 user_bufs
= account_pipe_buffers(user
, 0, pipe_bufs
);
637 if (too_many_pipe_buffers_soft(user_bufs
)) {
638 user_bufs
= account_pipe_buffers(user
, pipe_bufs
, 1);
642 if (too_many_pipe_buffers_hard(user_bufs
))
643 goto out_revert_acct
;
645 pipe
->bufs
= kcalloc(pipe_bufs
, sizeof(struct pipe_buffer
),
649 init_waitqueue_head(&pipe
->wait
);
650 pipe
->r_counter
= pipe
->w_counter
= 1;
651 pipe
->buffers
= pipe_bufs
;
653 mutex_init(&pipe
->mutex
);
658 (void) account_pipe_buffers(user
, pipe_bufs
, 0);
665 void free_pipe_info(struct pipe_inode_info
*pipe
)
669 (void) account_pipe_buffers(pipe
->user
, pipe
->buffers
, 0);
670 free_uid(pipe
->user
);
671 for (i
= 0; i
< pipe
->buffers
; i
++) {
672 struct pipe_buffer
*buf
= pipe
->bufs
+ i
;
674 pipe_buf_release(pipe
, buf
);
677 __free_page(pipe
->tmp_page
);
682 static struct vfsmount
*pipe_mnt __read_mostly
;
685 * pipefs_dname() is called from d_path().
687 static char *pipefs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
689 return dynamic_dname(dentry
, buffer
, buflen
, "pipe:[%lu]",
690 d_inode(dentry
)->i_ino
);
693 static const struct dentry_operations pipefs_dentry_operations
= {
694 .d_dname
= pipefs_dname
,
697 static struct inode
* get_pipe_inode(void)
699 struct inode
*inode
= new_inode_pseudo(pipe_mnt
->mnt_sb
);
700 struct pipe_inode_info
*pipe
;
705 inode
->i_ino
= get_next_ino();
707 pipe
= alloc_pipe_info();
711 inode
->i_pipe
= pipe
;
713 pipe
->readers
= pipe
->writers
= 1;
714 inode
->i_fop
= &pipefifo_fops
;
717 * Mark the inode dirty from the very beginning,
718 * that way it will never be moved to the dirty
719 * list because "mark_inode_dirty()" will think
720 * that it already _is_ on the dirty list.
722 inode
->i_state
= I_DIRTY
;
723 inode
->i_mode
= S_IFIFO
| S_IRUSR
| S_IWUSR
;
724 inode
->i_uid
= current_fsuid();
725 inode
->i_gid
= current_fsgid();
726 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
737 int create_pipe_files(struct file
**res
, int flags
)
740 struct inode
*inode
= get_pipe_inode();
748 path
.dentry
= d_alloc_pseudo(pipe_mnt
->mnt_sb
, &empty_name
);
751 path
.mnt
= mntget(pipe_mnt
);
753 d_instantiate(path
.dentry
, inode
);
755 f
= alloc_file(&path
, FMODE_WRITE
, &pipefifo_fops
);
761 f
->f_flags
= O_WRONLY
| (flags
& (O_NONBLOCK
| O_DIRECT
));
762 f
->private_data
= inode
->i_pipe
;
764 res
[0] = alloc_file(&path
, FMODE_READ
, &pipefifo_fops
);
765 if (IS_ERR(res
[0])) {
766 err
= PTR_ERR(res
[0]);
771 res
[0]->private_data
= inode
->i_pipe
;
772 res
[0]->f_flags
= O_RDONLY
| (flags
& O_NONBLOCK
);
779 free_pipe_info(inode
->i_pipe
);
784 free_pipe_info(inode
->i_pipe
);
789 static int __do_pipe_flags(int *fd
, struct file
**files
, int flags
)
794 if (flags
& ~(O_CLOEXEC
| O_NONBLOCK
| O_DIRECT
))
797 error
= create_pipe_files(files
, flags
);
801 error
= get_unused_fd_flags(flags
);
806 error
= get_unused_fd_flags(flags
);
811 audit_fd_pair(fdr
, fdw
);
824 int do_pipe_flags(int *fd
, int flags
)
826 struct file
*files
[2];
827 int error
= __do_pipe_flags(fd
, files
, flags
);
829 fd_install(fd
[0], files
[0]);
830 fd_install(fd
[1], files
[1]);
836 * sys_pipe() is the normal C calling standard for creating
837 * a pipe. It's not the way Unix traditionally does this, though.
839 SYSCALL_DEFINE2(pipe2
, int __user
*, fildes
, int, flags
)
841 struct file
*files
[2];
845 error
= __do_pipe_flags(fd
, files
, flags
);
847 if (unlikely(copy_to_user(fildes
, fd
, sizeof(fd
)))) {
850 put_unused_fd(fd
[0]);
851 put_unused_fd(fd
[1]);
854 fd_install(fd
[0], files
[0]);
855 fd_install(fd
[1], files
[1]);
861 SYSCALL_DEFINE1(pipe
, int __user
*, fildes
)
863 return sys_pipe2(fildes
, 0);
866 static int wait_for_partner(struct pipe_inode_info
*pipe
, unsigned int *cnt
)
870 while (cur
== *cnt
) {
872 if (signal_pending(current
))
875 return cur
== *cnt
? -ERESTARTSYS
: 0;
878 static void wake_up_partner(struct pipe_inode_info
*pipe
)
880 wake_up_interruptible(&pipe
->wait
);
883 static int fifo_open(struct inode
*inode
, struct file
*filp
)
885 struct pipe_inode_info
*pipe
;
886 bool is_pipe
= inode
->i_sb
->s_magic
== PIPEFS_MAGIC
;
891 spin_lock(&inode
->i_lock
);
893 pipe
= inode
->i_pipe
;
895 spin_unlock(&inode
->i_lock
);
897 spin_unlock(&inode
->i_lock
);
898 pipe
= alloc_pipe_info();
902 spin_lock(&inode
->i_lock
);
903 if (unlikely(inode
->i_pipe
)) {
904 inode
->i_pipe
->files
++;
905 spin_unlock(&inode
->i_lock
);
906 free_pipe_info(pipe
);
907 pipe
= inode
->i_pipe
;
909 inode
->i_pipe
= pipe
;
910 spin_unlock(&inode
->i_lock
);
913 filp
->private_data
= pipe
;
914 /* OK, we have a pipe and it's pinned down */
918 /* We can only do regular read/write on fifos */
919 filp
->f_mode
&= (FMODE_READ
| FMODE_WRITE
);
921 switch (filp
->f_mode
) {
925 * POSIX.1 says that O_NONBLOCK means return with the FIFO
926 * opened, even when there is no process writing the FIFO.
929 if (pipe
->readers
++ == 0)
930 wake_up_partner(pipe
);
932 if (!is_pipe
&& !pipe
->writers
) {
933 if ((filp
->f_flags
& O_NONBLOCK
)) {
934 /* suppress POLLHUP until we have
936 filp
->f_version
= pipe
->w_counter
;
938 if (wait_for_partner(pipe
, &pipe
->w_counter
))
947 * POSIX.1 says that O_NONBLOCK means return -1 with
948 * errno=ENXIO when there is no process reading the FIFO.
951 if (!is_pipe
&& (filp
->f_flags
& O_NONBLOCK
) && !pipe
->readers
)
955 if (!pipe
->writers
++)
956 wake_up_partner(pipe
);
958 if (!is_pipe
&& !pipe
->readers
) {
959 if (wait_for_partner(pipe
, &pipe
->r_counter
))
964 case FMODE_READ
| FMODE_WRITE
:
967 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
968 * This implementation will NEVER block on a O_RDWR open, since
969 * the process can at least talk to itself.
976 if (pipe
->readers
== 1 || pipe
->writers
== 1)
977 wake_up_partner(pipe
);
990 if (!--pipe
->readers
)
991 wake_up_interruptible(&pipe
->wait
);
996 if (!--pipe
->writers
)
997 wake_up_interruptible(&pipe
->wait
);
1002 __pipe_unlock(pipe
);
1004 put_pipe_info(inode
, pipe
);
1008 const struct file_operations pipefifo_fops
= {
1010 .llseek
= no_llseek
,
1011 .read_iter
= pipe_read
,
1012 .write_iter
= pipe_write
,
1014 .unlocked_ioctl
= pipe_ioctl
,
1015 .release
= pipe_release
,
1016 .fasync
= pipe_fasync
,
1020 * Currently we rely on the pipe array holding a power-of-2 number
1021 * of pages. Returns 0 on error.
1023 unsigned int round_pipe_size(unsigned int size
)
1025 unsigned long nr_pages
;
1027 if (size
< pipe_min_size
)
1028 size
= pipe_min_size
;
1030 nr_pages
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1034 return roundup_pow_of_two(nr_pages
) << PAGE_SHIFT
;
1038 * Allocate a new array of pipe buffers and copy the info over. Returns the
1039 * pipe size if successful, or return -ERROR on error.
1041 static long pipe_set_size(struct pipe_inode_info
*pipe
, unsigned long arg
)
1043 struct pipe_buffer
*bufs
;
1044 unsigned int size
, nr_pages
;
1045 unsigned long user_bufs
;
1048 size
= round_pipe_size(arg
);
1051 nr_pages
= size
>> PAGE_SHIFT
;
1057 * If trying to increase the pipe capacity, check that an
1058 * unprivileged user is not trying to exceed various limits
1059 * (soft limit check here, hard limit check just below).
1060 * Decreasing the pipe capacity is always permitted, even
1061 * if the user is currently over a limit.
1063 if (nr_pages
> pipe
->buffers
&&
1064 size
> pipe_max_size
&& !capable(CAP_SYS_RESOURCE
))
1067 user_bufs
= account_pipe_buffers(pipe
->user
, pipe
->buffers
, nr_pages
);
1069 if (nr_pages
> pipe
->buffers
&&
1070 (too_many_pipe_buffers_hard(user_bufs
) ||
1071 too_many_pipe_buffers_soft(user_bufs
)) &&
1072 !capable(CAP_SYS_RESOURCE
) && !capable(CAP_SYS_ADMIN
)) {
1074 goto out_revert_acct
;
1078 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1079 * expect a lot of shrink+grow operations, just free and allocate
1080 * again like we would do for growing. If the pipe currently
1081 * contains more buffers than arg, then return busy.
1083 if (nr_pages
< pipe
->nrbufs
) {
1085 goto out_revert_acct
;
1088 bufs
= kcalloc(nr_pages
, sizeof(*bufs
),
1089 GFP_KERNEL_ACCOUNT
| __GFP_NOWARN
);
1090 if (unlikely(!bufs
)) {
1092 goto out_revert_acct
;
1096 * The pipe array wraps around, so just start the new one at zero
1097 * and adjust the indexes.
1103 tail
= pipe
->curbuf
+ pipe
->nrbufs
;
1104 if (tail
< pipe
->buffers
)
1107 tail
&= (pipe
->buffers
- 1);
1109 head
= pipe
->nrbufs
- tail
;
1111 memcpy(bufs
, pipe
->bufs
+ pipe
->curbuf
, head
* sizeof(struct pipe_buffer
));
1113 memcpy(bufs
+ head
, pipe
->bufs
, tail
* sizeof(struct pipe_buffer
));
1119 pipe
->buffers
= nr_pages
;
1120 return nr_pages
* PAGE_SIZE
;
1123 (void) account_pipe_buffers(pipe
->user
, nr_pages
, pipe
->buffers
);
1128 * This should work even if CONFIG_PROC_FS isn't set, as proc_dopipe_max_size
1129 * will return an error.
1131 int pipe_proc_fn(struct ctl_table
*table
, int write
, void __user
*buf
,
1132 size_t *lenp
, loff_t
*ppos
)
1134 return proc_dopipe_max_size(table
, write
, buf
, lenp
, ppos
);
1138 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1139 * location, so checking ->i_pipe is not enough to verify that this is a
1142 struct pipe_inode_info
*get_pipe_info(struct file
*file
)
1144 return file
->f_op
== &pipefifo_fops
? file
->private_data
: NULL
;
1147 long pipe_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1149 struct pipe_inode_info
*pipe
;
1152 pipe
= get_pipe_info(file
);
1160 ret
= pipe_set_size(pipe
, arg
);
1163 ret
= pipe
->buffers
* PAGE_SIZE
;
1170 __pipe_unlock(pipe
);
1174 static const struct super_operations pipefs_ops
= {
1175 .destroy_inode
= free_inode_nonrcu
,
1176 .statfs
= simple_statfs
,
1180 * pipefs should _never_ be mounted by userland - too much of security hassle,
1181 * no real gain from having the whole whorehouse mounted. So we don't need
1182 * any operations on the root directory. However, we need a non-trivial
1183 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1185 static struct dentry
*pipefs_mount(struct file_system_type
*fs_type
,
1186 int flags
, const char *dev_name
, void *data
)
1188 return mount_pseudo(fs_type
, "pipe:", &pipefs_ops
,
1189 &pipefs_dentry_operations
, PIPEFS_MAGIC
);
1192 static struct file_system_type pipe_fs_type
= {
1194 .mount
= pipefs_mount
,
1195 .kill_sb
= kill_anon_super
,
1198 static int __init
init_pipe_fs(void)
1200 int err
= register_filesystem(&pipe_fs_type
);
1203 pipe_mnt
= kern_mount(&pipe_fs_type
);
1204 if (IS_ERR(pipe_mnt
)) {
1205 err
= PTR_ERR(pipe_mnt
);
1206 unregister_filesystem(&pipe_fs_type
);
1212 fs_initcall(init_pipe_fs
);