4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
33 static struct kmem_cache
*userfaultfd_ctx_cachep __read_mostly
;
35 enum userfaultfd_state
{
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
44 struct userfaultfd_ctx
{
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh
;
47 /* waitqueue head for the userfaults */
48 wait_queue_head_t fault_wqh
;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh
;
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh
;
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq
;
55 /* pseudo fd refcounting */
57 /* userfaultfd syscall flags */
59 /* features requested from the userspace */
60 unsigned int features
;
62 enum userfaultfd_state state
;
65 /* mm with one ore more vmas attached to this userfaultfd_ctx */
69 struct userfaultfd_fork_ctx
{
70 struct userfaultfd_ctx
*orig
;
71 struct userfaultfd_ctx
*new;
72 struct list_head list
;
75 struct userfaultfd_unmap_ctx
{
76 struct userfaultfd_ctx
*ctx
;
79 struct list_head list
;
82 struct userfaultfd_wait_queue
{
84 wait_queue_entry_t wq
;
85 struct userfaultfd_ctx
*ctx
;
89 struct userfaultfd_wake_range
{
94 static int userfaultfd_wake_function(wait_queue_entry_t
*wq
, unsigned mode
,
95 int wake_flags
, void *key
)
97 struct userfaultfd_wake_range
*range
= key
;
99 struct userfaultfd_wait_queue
*uwq
;
100 unsigned long start
, len
;
102 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
104 /* len == 0 means wake all */
105 start
= range
->start
;
107 if (len
&& (start
> uwq
->msg
.arg
.pagefault
.address
||
108 start
+ len
<= uwq
->msg
.arg
.pagefault
.address
))
110 WRITE_ONCE(uwq
->waken
, true);
112 * The Program-Order guarantees provided by the scheduler
113 * ensure uwq->waken is visible before the task is woken.
115 ret
= wake_up_state(wq
->private, mode
);
118 * Wake only once, autoremove behavior.
120 * After the effect of list_del_init is visible to the other
121 * CPUs, the waitqueue may disappear from under us, see the
122 * !list_empty_careful() in handle_userfault().
124 * try_to_wake_up() has an implicit smp_mb(), and the
125 * wq->private is read before calling the extern function
126 * "wake_up_state" (which in turns calls try_to_wake_up).
128 list_del_init(&wq
->entry
);
135 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
137 * @ctx: [in] Pointer to the userfaultfd context.
139 static void userfaultfd_ctx_get(struct userfaultfd_ctx
*ctx
)
141 if (!atomic_inc_not_zero(&ctx
->refcount
))
146 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
148 * @ctx: [in] Pointer to userfaultfd context.
150 * The userfaultfd context reference must have been previously acquired either
151 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
153 static void userfaultfd_ctx_put(struct userfaultfd_ctx
*ctx
)
155 if (atomic_dec_and_test(&ctx
->refcount
)) {
156 VM_BUG_ON(spin_is_locked(&ctx
->fault_pending_wqh
.lock
));
157 VM_BUG_ON(waitqueue_active(&ctx
->fault_pending_wqh
));
158 VM_BUG_ON(spin_is_locked(&ctx
->fault_wqh
.lock
));
159 VM_BUG_ON(waitqueue_active(&ctx
->fault_wqh
));
160 VM_BUG_ON(spin_is_locked(&ctx
->event_wqh
.lock
));
161 VM_BUG_ON(waitqueue_active(&ctx
->event_wqh
));
162 VM_BUG_ON(spin_is_locked(&ctx
->fd_wqh
.lock
));
163 VM_BUG_ON(waitqueue_active(&ctx
->fd_wqh
));
165 kmem_cache_free(userfaultfd_ctx_cachep
, ctx
);
169 static inline void msg_init(struct uffd_msg
*msg
)
171 BUILD_BUG_ON(sizeof(struct uffd_msg
) != 32);
173 * Must use memset to zero out the paddings or kernel data is
174 * leaked to userland.
176 memset(msg
, 0, sizeof(struct uffd_msg
));
179 static inline struct uffd_msg
userfault_msg(unsigned long address
,
181 unsigned long reason
,
182 unsigned int features
)
186 msg
.event
= UFFD_EVENT_PAGEFAULT
;
187 msg
.arg
.pagefault
.address
= address
;
188 if (flags
& FAULT_FLAG_WRITE
)
190 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
191 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
192 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
193 * was a read fault, otherwise if set it means it's
196 msg
.arg
.pagefault
.flags
|= UFFD_PAGEFAULT_FLAG_WRITE
;
197 if (reason
& VM_UFFD_WP
)
199 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
200 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
201 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
202 * a missing fault, otherwise if set it means it's a
203 * write protect fault.
205 msg
.arg
.pagefault
.flags
|= UFFD_PAGEFAULT_FLAG_WP
;
206 if (features
& UFFD_FEATURE_THREAD_ID
)
207 msg
.arg
.pagefault
.feat
.ptid
= task_pid_vnr(current
);
211 #ifdef CONFIG_HUGETLB_PAGE
213 * Same functionality as userfaultfd_must_wait below with modifications for
216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx
*ctx
,
217 struct vm_area_struct
*vma
,
218 unsigned long address
,
220 unsigned long reason
)
222 struct mm_struct
*mm
= ctx
->mm
;
226 VM_BUG_ON(!rwsem_is_locked(&mm
->mmap_sem
));
228 pte
= huge_pte_offset(mm
, address
, vma_mmu_pagesize(vma
));
235 * Lockless access: we're in a wait_event so it's ok if it
238 if (huge_pte_none(*pte
))
240 if (!huge_pte_write(*pte
) && (reason
& VM_UFFD_WP
))
246 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx
*ctx
,
247 struct vm_area_struct
*vma
,
248 unsigned long address
,
250 unsigned long reason
)
252 return false; /* should never get here */
254 #endif /* CONFIG_HUGETLB_PAGE */
257 * Verify the pagetables are still not ok after having reigstered into
258 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
259 * userfault that has already been resolved, if userfaultfd_read and
260 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
263 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx
*ctx
,
264 unsigned long address
,
266 unsigned long reason
)
268 struct mm_struct
*mm
= ctx
->mm
;
276 VM_BUG_ON(!rwsem_is_locked(&mm
->mmap_sem
));
278 pgd
= pgd_offset(mm
, address
);
279 if (!pgd_present(*pgd
))
281 p4d
= p4d_offset(pgd
, address
);
282 if (!p4d_present(*p4d
))
284 pud
= pud_offset(p4d
, address
);
285 if (!pud_present(*pud
))
287 pmd
= pmd_offset(pud
, address
);
289 * READ_ONCE must function as a barrier with narrower scope
290 * and it must be equivalent to:
291 * _pmd = *pmd; barrier();
293 * This is to deal with the instability (as in
294 * pmd_trans_unstable) of the pmd.
296 _pmd
= READ_ONCE(*pmd
);
297 if (!pmd_present(_pmd
))
301 if (pmd_trans_huge(_pmd
))
305 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
306 * and use the standard pte_offset_map() instead of parsing _pmd.
308 pte
= pte_offset_map(pmd
, address
);
310 * Lockless access: we're in a wait_event so it's ok if it
322 * The locking rules involved in returning VM_FAULT_RETRY depending on
323 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
324 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
325 * recommendation in __lock_page_or_retry is not an understatement.
327 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
328 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
331 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
332 * set, VM_FAULT_RETRY can still be returned if and only if there are
333 * fatal_signal_pending()s, and the mmap_sem must be released before
336 int handle_userfault(struct vm_fault
*vmf
, unsigned long reason
)
338 struct mm_struct
*mm
= vmf
->vma
->vm_mm
;
339 struct userfaultfd_ctx
*ctx
;
340 struct userfaultfd_wait_queue uwq
;
342 bool must_wait
, return_to_userland
;
345 ret
= VM_FAULT_SIGBUS
;
348 * We don't do userfault handling for the final child pid update.
350 * We also don't do userfault handling during
351 * coredumping. hugetlbfs has the special
352 * follow_hugetlb_page() to skip missing pages in the
353 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
354 * the no_page_table() helper in follow_page_mask(), but the
355 * shmem_vm_ops->fault method is invoked even during
356 * coredumping without mmap_sem and it ends up here.
358 if (current
->flags
& (PF_EXITING
|PF_DUMPCORE
))
362 * Coredumping runs without mmap_sem so we can only check that
363 * the mmap_sem is held, if PF_DUMPCORE was not set.
365 WARN_ON_ONCE(!rwsem_is_locked(&mm
->mmap_sem
));
367 ctx
= vmf
->vma
->vm_userfaultfd_ctx
.ctx
;
371 BUG_ON(ctx
->mm
!= mm
);
373 VM_BUG_ON(reason
& ~(VM_UFFD_MISSING
|VM_UFFD_WP
));
374 VM_BUG_ON(!(reason
& VM_UFFD_MISSING
) ^ !!(reason
& VM_UFFD_WP
));
376 if (ctx
->features
& UFFD_FEATURE_SIGBUS
)
380 * If it's already released don't get it. This avoids to loop
381 * in __get_user_pages if userfaultfd_release waits on the
382 * caller of handle_userfault to release the mmap_sem.
384 if (unlikely(READ_ONCE(ctx
->released
))) {
386 * Don't return VM_FAULT_SIGBUS in this case, so a non
387 * cooperative manager can close the uffd after the
388 * last UFFDIO_COPY, without risking to trigger an
389 * involuntary SIGBUS if the process was starting the
390 * userfaultfd while the userfaultfd was still armed
391 * (but after the last UFFDIO_COPY). If the uffd
392 * wasn't already closed when the userfault reached
393 * this point, that would normally be solved by
394 * userfaultfd_must_wait returning 'false'.
396 * If we were to return VM_FAULT_SIGBUS here, the non
397 * cooperative manager would be instead forced to
398 * always call UFFDIO_UNREGISTER before it can safely
401 ret
= VM_FAULT_NOPAGE
;
406 * Check that we can return VM_FAULT_RETRY.
408 * NOTE: it should become possible to return VM_FAULT_RETRY
409 * even if FAULT_FLAG_TRIED is set without leading to gup()
410 * -EBUSY failures, if the userfaultfd is to be extended for
411 * VM_UFFD_WP tracking and we intend to arm the userfault
412 * without first stopping userland access to the memory. For
413 * VM_UFFD_MISSING userfaults this is enough for now.
415 if (unlikely(!(vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
))) {
417 * Validate the invariant that nowait must allow retry
418 * to be sure not to return SIGBUS erroneously on
419 * nowait invocations.
421 BUG_ON(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
);
422 #ifdef CONFIG_DEBUG_VM
423 if (printk_ratelimit()) {
425 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
434 * Handle nowait, not much to do other than tell it to retry
437 ret
= VM_FAULT_RETRY
;
438 if (vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)
441 /* take the reference before dropping the mmap_sem */
442 userfaultfd_ctx_get(ctx
);
444 init_waitqueue_func_entry(&uwq
.wq
, userfaultfd_wake_function
);
445 uwq
.wq
.private = current
;
446 uwq
.msg
= userfault_msg(vmf
->address
, vmf
->flags
, reason
,
452 (vmf
->flags
& (FAULT_FLAG_USER
|FAULT_FLAG_KILLABLE
)) ==
453 (FAULT_FLAG_USER
|FAULT_FLAG_KILLABLE
);
454 blocking_state
= return_to_userland
? TASK_INTERRUPTIBLE
:
457 spin_lock(&ctx
->fault_pending_wqh
.lock
);
459 * After the __add_wait_queue the uwq is visible to userland
460 * through poll/read().
462 __add_wait_queue(&ctx
->fault_pending_wqh
, &uwq
.wq
);
464 * The smp_mb() after __set_current_state prevents the reads
465 * following the spin_unlock to happen before the list_add in
468 set_current_state(blocking_state
);
469 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
471 if (!is_vm_hugetlb_page(vmf
->vma
))
472 must_wait
= userfaultfd_must_wait(ctx
, vmf
->address
, vmf
->flags
,
475 must_wait
= userfaultfd_huge_must_wait(ctx
, vmf
->vma
,
478 up_read(&mm
->mmap_sem
);
480 if (likely(must_wait
&& !READ_ONCE(ctx
->released
) &&
481 (return_to_userland
? !signal_pending(current
) :
482 !fatal_signal_pending(current
)))) {
483 wake_up_poll(&ctx
->fd_wqh
, POLLIN
);
485 ret
|= VM_FAULT_MAJOR
;
488 * False wakeups can orginate even from rwsem before
489 * up_read() however userfaults will wait either for a
490 * targeted wakeup on the specific uwq waitqueue from
491 * wake_userfault() or for signals or for uffd
494 while (!READ_ONCE(uwq
.waken
)) {
496 * This needs the full smp_store_mb()
497 * guarantee as the state write must be
498 * visible to other CPUs before reading
499 * uwq.waken from other CPUs.
501 set_current_state(blocking_state
);
502 if (READ_ONCE(uwq
.waken
) ||
503 READ_ONCE(ctx
->released
) ||
504 (return_to_userland
? signal_pending(current
) :
505 fatal_signal_pending(current
)))
511 __set_current_state(TASK_RUNNING
);
513 if (return_to_userland
) {
514 if (signal_pending(current
) &&
515 !fatal_signal_pending(current
)) {
517 * If we got a SIGSTOP or SIGCONT and this is
518 * a normal userland page fault, just let
519 * userland return so the signal will be
520 * handled and gdb debugging works. The page
521 * fault code immediately after we return from
522 * this function is going to release the
523 * mmap_sem and it's not depending on it
524 * (unlike gup would if we were not to return
527 * If a fatal signal is pending we still take
528 * the streamlined VM_FAULT_RETRY failure path
529 * and there's no need to retake the mmap_sem
532 down_read(&mm
->mmap_sem
);
533 ret
= VM_FAULT_NOPAGE
;
538 * Here we race with the list_del; list_add in
539 * userfaultfd_ctx_read(), however because we don't ever run
540 * list_del_init() to refile across the two lists, the prev
541 * and next pointers will never point to self. list_add also
542 * would never let any of the two pointers to point to
543 * self. So list_empty_careful won't risk to see both pointers
544 * pointing to self at any time during the list refile. The
545 * only case where list_del_init() is called is the full
546 * removal in the wake function and there we don't re-list_add
547 * and it's fine not to block on the spinlock. The uwq on this
548 * kernel stack can be released after the list_del_init.
550 if (!list_empty_careful(&uwq
.wq
.entry
)) {
551 spin_lock(&ctx
->fault_pending_wqh
.lock
);
553 * No need of list_del_init(), the uwq on the stack
554 * will be freed shortly anyway.
556 list_del(&uwq
.wq
.entry
);
557 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
561 * ctx may go away after this if the userfault pseudo fd is
564 userfaultfd_ctx_put(ctx
);
570 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx
*ctx
,
571 struct userfaultfd_wait_queue
*ewq
)
573 if (WARN_ON_ONCE(current
->flags
& PF_EXITING
))
577 init_waitqueue_entry(&ewq
->wq
, current
);
579 spin_lock(&ctx
->event_wqh
.lock
);
581 * After the __add_wait_queue the uwq is visible to userland
582 * through poll/read().
584 __add_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
586 set_current_state(TASK_KILLABLE
);
587 if (ewq
->msg
.event
== 0)
589 if (READ_ONCE(ctx
->released
) ||
590 fatal_signal_pending(current
)) {
592 * &ewq->wq may be queued in fork_event, but
593 * __remove_wait_queue ignores the head
594 * parameter. It would be a problem if it
597 __remove_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
598 if (ewq
->msg
.event
== UFFD_EVENT_FORK
) {
599 struct userfaultfd_ctx
*new;
601 new = (struct userfaultfd_ctx
*)
603 ewq
->msg
.arg
.reserved
.reserved1
;
605 userfaultfd_ctx_put(new);
610 spin_unlock(&ctx
->event_wqh
.lock
);
612 wake_up_poll(&ctx
->fd_wqh
, POLLIN
);
615 spin_lock(&ctx
->event_wqh
.lock
);
617 __set_current_state(TASK_RUNNING
);
618 spin_unlock(&ctx
->event_wqh
.lock
);
621 * ctx may go away after this if the userfault pseudo fd is
625 userfaultfd_ctx_put(ctx
);
628 static void userfaultfd_event_complete(struct userfaultfd_ctx
*ctx
,
629 struct userfaultfd_wait_queue
*ewq
)
632 wake_up_locked(&ctx
->event_wqh
);
633 __remove_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
636 int dup_userfaultfd(struct vm_area_struct
*vma
, struct list_head
*fcs
)
638 struct userfaultfd_ctx
*ctx
= NULL
, *octx
;
639 struct userfaultfd_fork_ctx
*fctx
;
641 octx
= vma
->vm_userfaultfd_ctx
.ctx
;
642 if (!octx
|| !(octx
->features
& UFFD_FEATURE_EVENT_FORK
)) {
643 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
644 vma
->vm_flags
&= ~(VM_UFFD_WP
| VM_UFFD_MISSING
);
648 list_for_each_entry(fctx
, fcs
, list
)
649 if (fctx
->orig
== octx
) {
655 fctx
= kmalloc(sizeof(*fctx
), GFP_KERNEL
);
659 ctx
= kmem_cache_alloc(userfaultfd_ctx_cachep
, GFP_KERNEL
);
665 atomic_set(&ctx
->refcount
, 1);
666 ctx
->flags
= octx
->flags
;
667 ctx
->state
= UFFD_STATE_RUNNING
;
668 ctx
->features
= octx
->features
;
669 ctx
->released
= false;
670 ctx
->mm
= vma
->vm_mm
;
673 userfaultfd_ctx_get(octx
);
676 list_add_tail(&fctx
->list
, fcs
);
679 vma
->vm_userfaultfd_ctx
.ctx
= ctx
;
683 static void dup_fctx(struct userfaultfd_fork_ctx
*fctx
)
685 struct userfaultfd_ctx
*ctx
= fctx
->orig
;
686 struct userfaultfd_wait_queue ewq
;
690 ewq
.msg
.event
= UFFD_EVENT_FORK
;
691 ewq
.msg
.arg
.reserved
.reserved1
= (unsigned long)fctx
->new;
693 userfaultfd_event_wait_completion(ctx
, &ewq
);
696 void dup_userfaultfd_complete(struct list_head
*fcs
)
698 struct userfaultfd_fork_ctx
*fctx
, *n
;
700 list_for_each_entry_safe(fctx
, n
, fcs
, list
) {
702 list_del(&fctx
->list
);
707 void mremap_userfaultfd_prep(struct vm_area_struct
*vma
,
708 struct vm_userfaultfd_ctx
*vm_ctx
)
710 struct userfaultfd_ctx
*ctx
;
712 ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
713 if (ctx
&& (ctx
->features
& UFFD_FEATURE_EVENT_REMAP
)) {
715 userfaultfd_ctx_get(ctx
);
719 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx
*vm_ctx
,
720 unsigned long from
, unsigned long to
,
723 struct userfaultfd_ctx
*ctx
= vm_ctx
->ctx
;
724 struct userfaultfd_wait_queue ewq
;
729 if (to
& ~PAGE_MASK
) {
730 userfaultfd_ctx_put(ctx
);
736 ewq
.msg
.event
= UFFD_EVENT_REMAP
;
737 ewq
.msg
.arg
.remap
.from
= from
;
738 ewq
.msg
.arg
.remap
.to
= to
;
739 ewq
.msg
.arg
.remap
.len
= len
;
741 userfaultfd_event_wait_completion(ctx
, &ewq
);
744 bool userfaultfd_remove(struct vm_area_struct
*vma
,
745 unsigned long start
, unsigned long end
)
747 struct mm_struct
*mm
= vma
->vm_mm
;
748 struct userfaultfd_ctx
*ctx
;
749 struct userfaultfd_wait_queue ewq
;
751 ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
752 if (!ctx
|| !(ctx
->features
& UFFD_FEATURE_EVENT_REMOVE
))
755 userfaultfd_ctx_get(ctx
);
756 up_read(&mm
->mmap_sem
);
760 ewq
.msg
.event
= UFFD_EVENT_REMOVE
;
761 ewq
.msg
.arg
.remove
.start
= start
;
762 ewq
.msg
.arg
.remove
.end
= end
;
764 userfaultfd_event_wait_completion(ctx
, &ewq
);
769 static bool has_unmap_ctx(struct userfaultfd_ctx
*ctx
, struct list_head
*unmaps
,
770 unsigned long start
, unsigned long end
)
772 struct userfaultfd_unmap_ctx
*unmap_ctx
;
774 list_for_each_entry(unmap_ctx
, unmaps
, list
)
775 if (unmap_ctx
->ctx
== ctx
&& unmap_ctx
->start
== start
&&
776 unmap_ctx
->end
== end
)
782 int userfaultfd_unmap_prep(struct vm_area_struct
*vma
,
783 unsigned long start
, unsigned long end
,
784 struct list_head
*unmaps
)
786 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
) {
787 struct userfaultfd_unmap_ctx
*unmap_ctx
;
788 struct userfaultfd_ctx
*ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
790 if (!ctx
|| !(ctx
->features
& UFFD_FEATURE_EVENT_UNMAP
) ||
791 has_unmap_ctx(ctx
, unmaps
, start
, end
))
794 unmap_ctx
= kzalloc(sizeof(*unmap_ctx
), GFP_KERNEL
);
798 userfaultfd_ctx_get(ctx
);
799 unmap_ctx
->ctx
= ctx
;
800 unmap_ctx
->start
= start
;
801 unmap_ctx
->end
= end
;
802 list_add_tail(&unmap_ctx
->list
, unmaps
);
808 void userfaultfd_unmap_complete(struct mm_struct
*mm
, struct list_head
*uf
)
810 struct userfaultfd_unmap_ctx
*ctx
, *n
;
811 struct userfaultfd_wait_queue ewq
;
813 list_for_each_entry_safe(ctx
, n
, uf
, list
) {
816 ewq
.msg
.event
= UFFD_EVENT_UNMAP
;
817 ewq
.msg
.arg
.remove
.start
= ctx
->start
;
818 ewq
.msg
.arg
.remove
.end
= ctx
->end
;
820 userfaultfd_event_wait_completion(ctx
->ctx
, &ewq
);
822 list_del(&ctx
->list
);
827 static int userfaultfd_release(struct inode
*inode
, struct file
*file
)
829 struct userfaultfd_ctx
*ctx
= file
->private_data
;
830 struct mm_struct
*mm
= ctx
->mm
;
831 struct vm_area_struct
*vma
, *prev
;
832 /* len == 0 means wake all */
833 struct userfaultfd_wake_range range
= { .len
= 0, };
834 unsigned long new_flags
;
836 WRITE_ONCE(ctx
->released
, true);
838 if (!mmget_not_zero(mm
))
842 * Flush page faults out of all CPUs. NOTE: all page faults
843 * must be retried without returning VM_FAULT_SIGBUS if
844 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
845 * changes while handle_userfault released the mmap_sem. So
846 * it's critical that released is set to true (above), before
847 * taking the mmap_sem for writing.
849 down_write(&mm
->mmap_sem
);
851 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
853 BUG_ON(!!vma
->vm_userfaultfd_ctx
.ctx
^
854 !!(vma
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
855 if (vma
->vm_userfaultfd_ctx
.ctx
!= ctx
) {
859 new_flags
= vma
->vm_flags
& ~(VM_UFFD_MISSING
| VM_UFFD_WP
);
860 prev
= vma_merge(mm
, prev
, vma
->vm_start
, vma
->vm_end
,
861 new_flags
, vma
->anon_vma
,
862 vma
->vm_file
, vma
->vm_pgoff
,
869 vma
->vm_flags
= new_flags
;
870 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
872 up_write(&mm
->mmap_sem
);
876 * After no new page faults can wait on this fault_*wqh, flush
877 * the last page faults that may have been already waiting on
880 spin_lock(&ctx
->fault_pending_wqh
.lock
);
881 __wake_up_locked_key(&ctx
->fault_pending_wqh
, TASK_NORMAL
, &range
);
882 __wake_up_locked_key(&ctx
->fault_wqh
, TASK_NORMAL
, &range
);
883 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
885 /* Flush pending events that may still wait on event_wqh */
886 wake_up_all(&ctx
->event_wqh
);
888 wake_up_poll(&ctx
->fd_wqh
, POLLHUP
);
889 userfaultfd_ctx_put(ctx
);
893 /* fault_pending_wqh.lock must be hold by the caller */
894 static inline struct userfaultfd_wait_queue
*find_userfault_in(
895 wait_queue_head_t
*wqh
)
897 wait_queue_entry_t
*wq
;
898 struct userfaultfd_wait_queue
*uwq
;
900 VM_BUG_ON(!spin_is_locked(&wqh
->lock
));
903 if (!waitqueue_active(wqh
))
905 /* walk in reverse to provide FIFO behavior to read userfaults */
906 wq
= list_last_entry(&wqh
->head
, typeof(*wq
), entry
);
907 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
912 static inline struct userfaultfd_wait_queue
*find_userfault(
913 struct userfaultfd_ctx
*ctx
)
915 return find_userfault_in(&ctx
->fault_pending_wqh
);
918 static inline struct userfaultfd_wait_queue
*find_userfault_evt(
919 struct userfaultfd_ctx
*ctx
)
921 return find_userfault_in(&ctx
->event_wqh
);
924 static unsigned int userfaultfd_poll(struct file
*file
, poll_table
*wait
)
926 struct userfaultfd_ctx
*ctx
= file
->private_data
;
929 poll_wait(file
, &ctx
->fd_wqh
, wait
);
931 switch (ctx
->state
) {
932 case UFFD_STATE_WAIT_API
:
934 case UFFD_STATE_RUNNING
:
936 * poll() never guarantees that read won't block.
937 * userfaults can be waken before they're read().
939 if (unlikely(!(file
->f_flags
& O_NONBLOCK
)))
942 * lockless access to see if there are pending faults
943 * __pollwait last action is the add_wait_queue but
944 * the spin_unlock would allow the waitqueue_active to
945 * pass above the actual list_add inside
946 * add_wait_queue critical section. So use a full
947 * memory barrier to serialize the list_add write of
948 * add_wait_queue() with the waitqueue_active read
953 if (waitqueue_active(&ctx
->fault_pending_wqh
))
955 else if (waitqueue_active(&ctx
->event_wqh
))
965 static const struct file_operations userfaultfd_fops
;
967 static int resolve_userfault_fork(struct userfaultfd_ctx
*ctx
,
968 struct userfaultfd_ctx
*new,
969 struct uffd_msg
*msg
)
973 unsigned int flags
= new->flags
& UFFD_SHARED_FCNTL_FLAGS
;
975 fd
= get_unused_fd_flags(flags
);
979 file
= anon_inode_getfile("[userfaultfd]", &userfaultfd_fops
, new,
983 return PTR_ERR(file
);
986 fd_install(fd
, file
);
987 msg
->arg
.reserved
.reserved1
= 0;
988 msg
->arg
.fork
.ufd
= fd
;
993 static ssize_t
userfaultfd_ctx_read(struct userfaultfd_ctx
*ctx
, int no_wait
,
994 struct uffd_msg
*msg
)
997 DECLARE_WAITQUEUE(wait
, current
);
998 struct userfaultfd_wait_queue
*uwq
;
1000 * Handling fork event requires sleeping operations, so
1001 * we drop the event_wqh lock, then do these ops, then
1002 * lock it back and wake up the waiter. While the lock is
1003 * dropped the ewq may go away so we keep track of it
1006 LIST_HEAD(fork_event
);
1007 struct userfaultfd_ctx
*fork_nctx
= NULL
;
1009 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1010 spin_lock(&ctx
->fd_wqh
.lock
);
1011 __add_wait_queue(&ctx
->fd_wqh
, &wait
);
1013 set_current_state(TASK_INTERRUPTIBLE
);
1014 spin_lock(&ctx
->fault_pending_wqh
.lock
);
1015 uwq
= find_userfault(ctx
);
1018 * Use a seqcount to repeat the lockless check
1019 * in wake_userfault() to avoid missing
1020 * wakeups because during the refile both
1021 * waitqueue could become empty if this is the
1024 write_seqcount_begin(&ctx
->refile_seq
);
1027 * The fault_pending_wqh.lock prevents the uwq
1028 * to disappear from under us.
1030 * Refile this userfault from
1031 * fault_pending_wqh to fault_wqh, it's not
1032 * pending anymore after we read it.
1034 * Use list_del() by hand (as
1035 * userfaultfd_wake_function also uses
1036 * list_del_init() by hand) to be sure nobody
1037 * changes __remove_wait_queue() to use
1038 * list_del_init() in turn breaking the
1039 * !list_empty_careful() check in
1040 * handle_userfault(). The uwq->wq.head list
1041 * must never be empty at any time during the
1042 * refile, or the waitqueue could disappear
1043 * from under us. The "wait_queue_head_t"
1044 * parameter of __remove_wait_queue() is unused
1047 list_del(&uwq
->wq
.entry
);
1048 __add_wait_queue(&ctx
->fault_wqh
, &uwq
->wq
);
1050 write_seqcount_end(&ctx
->refile_seq
);
1052 /* careful to always initialize msg if ret == 0 */
1054 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1058 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1060 spin_lock(&ctx
->event_wqh
.lock
);
1061 uwq
= find_userfault_evt(ctx
);
1065 if (uwq
->msg
.event
== UFFD_EVENT_FORK
) {
1066 fork_nctx
= (struct userfaultfd_ctx
*)
1068 uwq
->msg
.arg
.reserved
.reserved1
;
1069 list_move(&uwq
->wq
.entry
, &fork_event
);
1071 * fork_nctx can be freed as soon as
1072 * we drop the lock, unless we take a
1075 userfaultfd_ctx_get(fork_nctx
);
1076 spin_unlock(&ctx
->event_wqh
.lock
);
1081 userfaultfd_event_complete(ctx
, uwq
);
1082 spin_unlock(&ctx
->event_wqh
.lock
);
1086 spin_unlock(&ctx
->event_wqh
.lock
);
1088 if (signal_pending(current
)) {
1096 spin_unlock(&ctx
->fd_wqh
.lock
);
1098 spin_lock(&ctx
->fd_wqh
.lock
);
1100 __remove_wait_queue(&ctx
->fd_wqh
, &wait
);
1101 __set_current_state(TASK_RUNNING
);
1102 spin_unlock(&ctx
->fd_wqh
.lock
);
1104 if (!ret
&& msg
->event
== UFFD_EVENT_FORK
) {
1105 ret
= resolve_userfault_fork(ctx
, fork_nctx
, msg
);
1106 spin_lock(&ctx
->event_wqh
.lock
);
1107 if (!list_empty(&fork_event
)) {
1109 * The fork thread didn't abort, so we can
1110 * drop the temporary refcount.
1112 userfaultfd_ctx_put(fork_nctx
);
1114 uwq
= list_first_entry(&fork_event
,
1118 * If fork_event list wasn't empty and in turn
1119 * the event wasn't already released by fork
1120 * (the event is allocated on fork kernel
1121 * stack), put the event back to its place in
1122 * the event_wq. fork_event head will be freed
1123 * as soon as we return so the event cannot
1124 * stay queued there no matter the current
1127 list_del(&uwq
->wq
.entry
);
1128 __add_wait_queue(&ctx
->event_wqh
, &uwq
->wq
);
1131 * Leave the event in the waitqueue and report
1132 * error to userland if we failed to resolve
1133 * the userfault fork.
1136 userfaultfd_event_complete(ctx
, uwq
);
1139 * Here the fork thread aborted and the
1140 * refcount from the fork thread on fork_nctx
1141 * has already been released. We still hold
1142 * the reference we took before releasing the
1143 * lock above. If resolve_userfault_fork
1144 * failed we've to drop it because the
1145 * fork_nctx has to be freed in such case. If
1146 * it succeeded we'll hold it because the new
1147 * uffd references it.
1150 userfaultfd_ctx_put(fork_nctx
);
1152 spin_unlock(&ctx
->event_wqh
.lock
);
1158 static ssize_t
userfaultfd_read(struct file
*file
, char __user
*buf
,
1159 size_t count
, loff_t
*ppos
)
1161 struct userfaultfd_ctx
*ctx
= file
->private_data
;
1162 ssize_t _ret
, ret
= 0;
1163 struct uffd_msg msg
;
1164 int no_wait
= file
->f_flags
& O_NONBLOCK
;
1166 if (ctx
->state
== UFFD_STATE_WAIT_API
)
1170 if (count
< sizeof(msg
))
1171 return ret
? ret
: -EINVAL
;
1172 _ret
= userfaultfd_ctx_read(ctx
, no_wait
, &msg
);
1174 return ret
? ret
: _ret
;
1175 if (copy_to_user((__u64 __user
*) buf
, &msg
, sizeof(msg
)))
1176 return ret
? ret
: -EFAULT
;
1179 count
-= sizeof(msg
);
1181 * Allow to read more than one fault at time but only
1182 * block if waiting for the very first one.
1184 no_wait
= O_NONBLOCK
;
1188 static void __wake_userfault(struct userfaultfd_ctx
*ctx
,
1189 struct userfaultfd_wake_range
*range
)
1191 spin_lock(&ctx
->fault_pending_wqh
.lock
);
1192 /* wake all in the range and autoremove */
1193 if (waitqueue_active(&ctx
->fault_pending_wqh
))
1194 __wake_up_locked_key(&ctx
->fault_pending_wqh
, TASK_NORMAL
,
1196 if (waitqueue_active(&ctx
->fault_wqh
))
1197 __wake_up_locked_key(&ctx
->fault_wqh
, TASK_NORMAL
, range
);
1198 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1201 static __always_inline
void wake_userfault(struct userfaultfd_ctx
*ctx
,
1202 struct userfaultfd_wake_range
*range
)
1208 * To be sure waitqueue_active() is not reordered by the CPU
1209 * before the pagetable update, use an explicit SMP memory
1210 * barrier here. PT lock release or up_read(mmap_sem) still
1211 * have release semantics that can allow the
1212 * waitqueue_active() to be reordered before the pte update.
1217 * Use waitqueue_active because it's very frequent to
1218 * change the address space atomically even if there are no
1219 * userfaults yet. So we take the spinlock only when we're
1220 * sure we've userfaults to wake.
1223 seq
= read_seqcount_begin(&ctx
->refile_seq
);
1224 need_wakeup
= waitqueue_active(&ctx
->fault_pending_wqh
) ||
1225 waitqueue_active(&ctx
->fault_wqh
);
1227 } while (read_seqcount_retry(&ctx
->refile_seq
, seq
));
1229 __wake_userfault(ctx
, range
);
1232 static __always_inline
int validate_range(struct mm_struct
*mm
,
1233 __u64 start
, __u64 len
)
1235 __u64 task_size
= mm
->task_size
;
1237 if (start
& ~PAGE_MASK
)
1239 if (len
& ~PAGE_MASK
)
1243 if (start
< mmap_min_addr
)
1245 if (start
>= task_size
)
1247 if (len
> task_size
- start
)
1252 static inline bool vma_can_userfault(struct vm_area_struct
*vma
)
1254 return vma_is_anonymous(vma
) || is_vm_hugetlb_page(vma
) ||
1258 static int userfaultfd_register(struct userfaultfd_ctx
*ctx
,
1261 struct mm_struct
*mm
= ctx
->mm
;
1262 struct vm_area_struct
*vma
, *prev
, *cur
;
1264 struct uffdio_register uffdio_register
;
1265 struct uffdio_register __user
*user_uffdio_register
;
1266 unsigned long vm_flags
, new_flags
;
1269 unsigned long start
, end
, vma_end
;
1271 user_uffdio_register
= (struct uffdio_register __user
*) arg
;
1274 if (copy_from_user(&uffdio_register
, user_uffdio_register
,
1275 sizeof(uffdio_register
)-sizeof(__u64
)))
1279 if (!uffdio_register
.mode
)
1281 if (uffdio_register
.mode
& ~(UFFDIO_REGISTER_MODE_MISSING
|
1282 UFFDIO_REGISTER_MODE_WP
))
1285 if (uffdio_register
.mode
& UFFDIO_REGISTER_MODE_MISSING
)
1286 vm_flags
|= VM_UFFD_MISSING
;
1287 if (uffdio_register
.mode
& UFFDIO_REGISTER_MODE_WP
) {
1288 vm_flags
|= VM_UFFD_WP
;
1290 * FIXME: remove the below error constraint by
1291 * implementing the wprotect tracking mode.
1297 ret
= validate_range(mm
, uffdio_register
.range
.start
,
1298 uffdio_register
.range
.len
);
1302 start
= uffdio_register
.range
.start
;
1303 end
= start
+ uffdio_register
.range
.len
;
1306 if (!mmget_not_zero(mm
))
1309 down_write(&mm
->mmap_sem
);
1310 vma
= find_vma_prev(mm
, start
, &prev
);
1314 /* check that there's at least one vma in the range */
1316 if (vma
->vm_start
>= end
)
1320 * If the first vma contains huge pages, make sure start address
1321 * is aligned to huge page size.
1323 if (is_vm_hugetlb_page(vma
)) {
1324 unsigned long vma_hpagesize
= vma_kernel_pagesize(vma
);
1326 if (start
& (vma_hpagesize
- 1))
1331 * Search for not compatible vmas.
1334 basic_ioctls
= false;
1335 for (cur
= vma
; cur
&& cur
->vm_start
< end
; cur
= cur
->vm_next
) {
1338 BUG_ON(!!cur
->vm_userfaultfd_ctx
.ctx
^
1339 !!(cur
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
1341 /* check not compatible vmas */
1343 if (!vma_can_userfault(cur
))
1346 * If this vma contains ending address, and huge pages
1349 if (is_vm_hugetlb_page(cur
) && end
<= cur
->vm_end
&&
1350 end
> cur
->vm_start
) {
1351 unsigned long vma_hpagesize
= vma_kernel_pagesize(cur
);
1355 if (end
& (vma_hpagesize
- 1))
1360 * Check that this vma isn't already owned by a
1361 * different userfaultfd. We can't allow more than one
1362 * userfaultfd to own a single vma simultaneously or we
1363 * wouldn't know which one to deliver the userfaults to.
1366 if (cur
->vm_userfaultfd_ctx
.ctx
&&
1367 cur
->vm_userfaultfd_ctx
.ctx
!= ctx
)
1371 * Note vmas containing huge pages
1373 if (is_vm_hugetlb_page(cur
))
1374 basic_ioctls
= true;
1380 if (vma
->vm_start
< start
)
1387 BUG_ON(!vma_can_userfault(vma
));
1388 BUG_ON(vma
->vm_userfaultfd_ctx
.ctx
&&
1389 vma
->vm_userfaultfd_ctx
.ctx
!= ctx
);
1392 * Nothing to do: this vma is already registered into this
1393 * userfaultfd and with the right tracking mode too.
1395 if (vma
->vm_userfaultfd_ctx
.ctx
== ctx
&&
1396 (vma
->vm_flags
& vm_flags
) == vm_flags
)
1399 if (vma
->vm_start
> start
)
1400 start
= vma
->vm_start
;
1401 vma_end
= min(end
, vma
->vm_end
);
1403 new_flags
= (vma
->vm_flags
& ~vm_flags
) | vm_flags
;
1404 prev
= vma_merge(mm
, prev
, start
, vma_end
, new_flags
,
1405 vma
->anon_vma
, vma
->vm_file
, vma
->vm_pgoff
,
1407 ((struct vm_userfaultfd_ctx
){ ctx
}));
1412 if (vma
->vm_start
< start
) {
1413 ret
= split_vma(mm
, vma
, start
, 1);
1417 if (vma
->vm_end
> end
) {
1418 ret
= split_vma(mm
, vma
, end
, 0);
1424 * In the vma_merge() successful mprotect-like case 8:
1425 * the next vma was merged into the current one and
1426 * the current one has not been updated yet.
1428 vma
->vm_flags
= new_flags
;
1429 vma
->vm_userfaultfd_ctx
.ctx
= ctx
;
1433 start
= vma
->vm_end
;
1435 } while (vma
&& vma
->vm_start
< end
);
1437 up_write(&mm
->mmap_sem
);
1441 * Now that we scanned all vmas we can already tell
1442 * userland which ioctls methods are guaranteed to
1443 * succeed on this range.
1445 if (put_user(basic_ioctls
? UFFD_API_RANGE_IOCTLS_BASIC
:
1446 UFFD_API_RANGE_IOCTLS
,
1447 &user_uffdio_register
->ioctls
))
1454 static int userfaultfd_unregister(struct userfaultfd_ctx
*ctx
,
1457 struct mm_struct
*mm
= ctx
->mm
;
1458 struct vm_area_struct
*vma
, *prev
, *cur
;
1460 struct uffdio_range uffdio_unregister
;
1461 unsigned long new_flags
;
1463 unsigned long start
, end
, vma_end
;
1464 const void __user
*buf
= (void __user
*)arg
;
1467 if (copy_from_user(&uffdio_unregister
, buf
, sizeof(uffdio_unregister
)))
1470 ret
= validate_range(mm
, uffdio_unregister
.start
,
1471 uffdio_unregister
.len
);
1475 start
= uffdio_unregister
.start
;
1476 end
= start
+ uffdio_unregister
.len
;
1479 if (!mmget_not_zero(mm
))
1482 down_write(&mm
->mmap_sem
);
1483 vma
= find_vma_prev(mm
, start
, &prev
);
1487 /* check that there's at least one vma in the range */
1489 if (vma
->vm_start
>= end
)
1493 * If the first vma contains huge pages, make sure start address
1494 * is aligned to huge page size.
1496 if (is_vm_hugetlb_page(vma
)) {
1497 unsigned long vma_hpagesize
= vma_kernel_pagesize(vma
);
1499 if (start
& (vma_hpagesize
- 1))
1504 * Search for not compatible vmas.
1508 for (cur
= vma
; cur
&& cur
->vm_start
< end
; cur
= cur
->vm_next
) {
1511 BUG_ON(!!cur
->vm_userfaultfd_ctx
.ctx
^
1512 !!(cur
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
1515 * Check not compatible vmas, not strictly required
1516 * here as not compatible vmas cannot have an
1517 * userfaultfd_ctx registered on them, but this
1518 * provides for more strict behavior to notice
1519 * unregistration errors.
1521 if (!vma_can_userfault(cur
))
1528 if (vma
->vm_start
< start
)
1535 BUG_ON(!vma_can_userfault(vma
));
1538 * Nothing to do: this vma is already registered into this
1539 * userfaultfd and with the right tracking mode too.
1541 if (!vma
->vm_userfaultfd_ctx
.ctx
)
1544 if (vma
->vm_start
> start
)
1545 start
= vma
->vm_start
;
1546 vma_end
= min(end
, vma
->vm_end
);
1548 if (userfaultfd_missing(vma
)) {
1550 * Wake any concurrent pending userfault while
1551 * we unregister, so they will not hang
1552 * permanently and it avoids userland to call
1553 * UFFDIO_WAKE explicitly.
1555 struct userfaultfd_wake_range range
;
1556 range
.start
= start
;
1557 range
.len
= vma_end
- start
;
1558 wake_userfault(vma
->vm_userfaultfd_ctx
.ctx
, &range
);
1561 new_flags
= vma
->vm_flags
& ~(VM_UFFD_MISSING
| VM_UFFD_WP
);
1562 prev
= vma_merge(mm
, prev
, start
, vma_end
, new_flags
,
1563 vma
->anon_vma
, vma
->vm_file
, vma
->vm_pgoff
,
1570 if (vma
->vm_start
< start
) {
1571 ret
= split_vma(mm
, vma
, start
, 1);
1575 if (vma
->vm_end
> end
) {
1576 ret
= split_vma(mm
, vma
, end
, 0);
1582 * In the vma_merge() successful mprotect-like case 8:
1583 * the next vma was merged into the current one and
1584 * the current one has not been updated yet.
1586 vma
->vm_flags
= new_flags
;
1587 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
1591 start
= vma
->vm_end
;
1593 } while (vma
&& vma
->vm_start
< end
);
1595 up_write(&mm
->mmap_sem
);
1602 * userfaultfd_wake may be used in combination with the
1603 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1605 static int userfaultfd_wake(struct userfaultfd_ctx
*ctx
,
1609 struct uffdio_range uffdio_wake
;
1610 struct userfaultfd_wake_range range
;
1611 const void __user
*buf
= (void __user
*)arg
;
1614 if (copy_from_user(&uffdio_wake
, buf
, sizeof(uffdio_wake
)))
1617 ret
= validate_range(ctx
->mm
, uffdio_wake
.start
, uffdio_wake
.len
);
1621 range
.start
= uffdio_wake
.start
;
1622 range
.len
= uffdio_wake
.len
;
1625 * len == 0 means wake all and we don't want to wake all here,
1626 * so check it again to be sure.
1628 VM_BUG_ON(!range
.len
);
1630 wake_userfault(ctx
, &range
);
1637 static int userfaultfd_copy(struct userfaultfd_ctx
*ctx
,
1641 struct uffdio_copy uffdio_copy
;
1642 struct uffdio_copy __user
*user_uffdio_copy
;
1643 struct userfaultfd_wake_range range
;
1645 user_uffdio_copy
= (struct uffdio_copy __user
*) arg
;
1648 if (copy_from_user(&uffdio_copy
, user_uffdio_copy
,
1649 /* don't copy "copy" last field */
1650 sizeof(uffdio_copy
)-sizeof(__s64
)))
1653 ret
= validate_range(ctx
->mm
, uffdio_copy
.dst
, uffdio_copy
.len
);
1657 * double check for wraparound just in case. copy_from_user()
1658 * will later check uffdio_copy.src + uffdio_copy.len to fit
1659 * in the userland range.
1662 if (uffdio_copy
.src
+ uffdio_copy
.len
<= uffdio_copy
.src
)
1664 if (uffdio_copy
.mode
& ~UFFDIO_COPY_MODE_DONTWAKE
)
1666 if (mmget_not_zero(ctx
->mm
)) {
1667 ret
= mcopy_atomic(ctx
->mm
, uffdio_copy
.dst
, uffdio_copy
.src
,
1673 if (unlikely(put_user(ret
, &user_uffdio_copy
->copy
)))
1678 /* len == 0 would wake all */
1680 if (!(uffdio_copy
.mode
& UFFDIO_COPY_MODE_DONTWAKE
)) {
1681 range
.start
= uffdio_copy
.dst
;
1682 wake_userfault(ctx
, &range
);
1684 ret
= range
.len
== uffdio_copy
.len
? 0 : -EAGAIN
;
1689 static int userfaultfd_zeropage(struct userfaultfd_ctx
*ctx
,
1693 struct uffdio_zeropage uffdio_zeropage
;
1694 struct uffdio_zeropage __user
*user_uffdio_zeropage
;
1695 struct userfaultfd_wake_range range
;
1697 user_uffdio_zeropage
= (struct uffdio_zeropage __user
*) arg
;
1700 if (copy_from_user(&uffdio_zeropage
, user_uffdio_zeropage
,
1701 /* don't copy "zeropage" last field */
1702 sizeof(uffdio_zeropage
)-sizeof(__s64
)))
1705 ret
= validate_range(ctx
->mm
, uffdio_zeropage
.range
.start
,
1706 uffdio_zeropage
.range
.len
);
1710 if (uffdio_zeropage
.mode
& ~UFFDIO_ZEROPAGE_MODE_DONTWAKE
)
1713 if (mmget_not_zero(ctx
->mm
)) {
1714 ret
= mfill_zeropage(ctx
->mm
, uffdio_zeropage
.range
.start
,
1715 uffdio_zeropage
.range
.len
);
1720 if (unlikely(put_user(ret
, &user_uffdio_zeropage
->zeropage
)))
1724 /* len == 0 would wake all */
1727 if (!(uffdio_zeropage
.mode
& UFFDIO_ZEROPAGE_MODE_DONTWAKE
)) {
1728 range
.start
= uffdio_zeropage
.range
.start
;
1729 wake_userfault(ctx
, &range
);
1731 ret
= range
.len
== uffdio_zeropage
.range
.len
? 0 : -EAGAIN
;
1736 static inline unsigned int uffd_ctx_features(__u64 user_features
)
1739 * For the current set of features the bits just coincide
1741 return (unsigned int)user_features
;
1745 * userland asks for a certain API version and we return which bits
1746 * and ioctl commands are implemented in this kernel for such API
1747 * version or -EINVAL if unknown.
1749 static int userfaultfd_api(struct userfaultfd_ctx
*ctx
,
1752 struct uffdio_api uffdio_api
;
1753 void __user
*buf
= (void __user
*)arg
;
1758 if (ctx
->state
!= UFFD_STATE_WAIT_API
)
1761 if (copy_from_user(&uffdio_api
, buf
, sizeof(uffdio_api
)))
1763 features
= uffdio_api
.features
;
1764 if (uffdio_api
.api
!= UFFD_API
|| (features
& ~UFFD_API_FEATURES
)) {
1765 memset(&uffdio_api
, 0, sizeof(uffdio_api
));
1766 if (copy_to_user(buf
, &uffdio_api
, sizeof(uffdio_api
)))
1771 /* report all available features and ioctls to userland */
1772 uffdio_api
.features
= UFFD_API_FEATURES
;
1773 uffdio_api
.ioctls
= UFFD_API_IOCTLS
;
1775 if (copy_to_user(buf
, &uffdio_api
, sizeof(uffdio_api
)))
1777 ctx
->state
= UFFD_STATE_RUNNING
;
1778 /* only enable the requested features for this uffd context */
1779 ctx
->features
= uffd_ctx_features(features
);
1785 static long userfaultfd_ioctl(struct file
*file
, unsigned cmd
,
1789 struct userfaultfd_ctx
*ctx
= file
->private_data
;
1791 if (cmd
!= UFFDIO_API
&& ctx
->state
== UFFD_STATE_WAIT_API
)
1796 ret
= userfaultfd_api(ctx
, arg
);
1798 case UFFDIO_REGISTER
:
1799 ret
= userfaultfd_register(ctx
, arg
);
1801 case UFFDIO_UNREGISTER
:
1802 ret
= userfaultfd_unregister(ctx
, arg
);
1805 ret
= userfaultfd_wake(ctx
, arg
);
1808 ret
= userfaultfd_copy(ctx
, arg
);
1810 case UFFDIO_ZEROPAGE
:
1811 ret
= userfaultfd_zeropage(ctx
, arg
);
1817 #ifdef CONFIG_PROC_FS
1818 static void userfaultfd_show_fdinfo(struct seq_file
*m
, struct file
*f
)
1820 struct userfaultfd_ctx
*ctx
= f
->private_data
;
1821 wait_queue_entry_t
*wq
;
1822 struct userfaultfd_wait_queue
*uwq
;
1823 unsigned long pending
= 0, total
= 0;
1825 spin_lock(&ctx
->fault_pending_wqh
.lock
);
1826 list_for_each_entry(wq
, &ctx
->fault_pending_wqh
.head
, entry
) {
1827 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
1831 list_for_each_entry(wq
, &ctx
->fault_wqh
.head
, entry
) {
1832 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
1835 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1838 * If more protocols will be added, there will be all shown
1839 * separated by a space. Like this:
1840 * protocols: aa:... bb:...
1842 seq_printf(m
, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1843 pending
, total
, UFFD_API
, ctx
->features
,
1844 UFFD_API_IOCTLS
|UFFD_API_RANGE_IOCTLS
);
1848 static const struct file_operations userfaultfd_fops
= {
1849 #ifdef CONFIG_PROC_FS
1850 .show_fdinfo
= userfaultfd_show_fdinfo
,
1852 .release
= userfaultfd_release
,
1853 .poll
= userfaultfd_poll
,
1854 .read
= userfaultfd_read
,
1855 .unlocked_ioctl
= userfaultfd_ioctl
,
1856 .compat_ioctl
= userfaultfd_ioctl
,
1857 .llseek
= noop_llseek
,
1860 static void init_once_userfaultfd_ctx(void *mem
)
1862 struct userfaultfd_ctx
*ctx
= (struct userfaultfd_ctx
*) mem
;
1864 init_waitqueue_head(&ctx
->fault_pending_wqh
);
1865 init_waitqueue_head(&ctx
->fault_wqh
);
1866 init_waitqueue_head(&ctx
->event_wqh
);
1867 init_waitqueue_head(&ctx
->fd_wqh
);
1868 seqcount_init(&ctx
->refile_seq
);
1872 * userfaultfd_file_create - Creates a userfaultfd file pointer.
1873 * @flags: Flags for the userfaultfd file.
1875 * This function creates a userfaultfd file pointer, w/out installing
1876 * it into the fd table. This is useful when the userfaultfd file is
1877 * used during the initialization of data structures that require
1878 * extra setup after the userfaultfd creation. So the userfaultfd
1879 * creation is split into the file pointer creation phase, and the
1880 * file descriptor installation phase. In this way races with
1881 * userspace closing the newly installed file descriptor can be
1882 * avoided. Returns a userfaultfd file pointer, or a proper error
1885 static struct file
*userfaultfd_file_create(int flags
)
1888 struct userfaultfd_ctx
*ctx
;
1890 BUG_ON(!current
->mm
);
1892 /* Check the UFFD_* constants for consistency. */
1893 BUILD_BUG_ON(UFFD_CLOEXEC
!= O_CLOEXEC
);
1894 BUILD_BUG_ON(UFFD_NONBLOCK
!= O_NONBLOCK
);
1896 file
= ERR_PTR(-EINVAL
);
1897 if (flags
& ~UFFD_SHARED_FCNTL_FLAGS
)
1900 file
= ERR_PTR(-ENOMEM
);
1901 ctx
= kmem_cache_alloc(userfaultfd_ctx_cachep
, GFP_KERNEL
);
1905 atomic_set(&ctx
->refcount
, 1);
1908 ctx
->state
= UFFD_STATE_WAIT_API
;
1909 ctx
->released
= false;
1910 ctx
->mm
= current
->mm
;
1911 /* prevent the mm struct to be freed */
1914 file
= anon_inode_getfile("[userfaultfd]", &userfaultfd_fops
, ctx
,
1915 O_RDWR
| (flags
& UFFD_SHARED_FCNTL_FLAGS
));
1918 kmem_cache_free(userfaultfd_ctx_cachep
, ctx
);
1924 SYSCALL_DEFINE1(userfaultfd
, int, flags
)
1929 error
= get_unused_fd_flags(flags
& UFFD_SHARED_FCNTL_FLAGS
);
1934 file
= userfaultfd_file_create(flags
);
1936 error
= PTR_ERR(file
);
1937 goto err_put_unused_fd
;
1939 fd_install(fd
, file
);
1949 static int __init
userfaultfd_init(void)
1951 userfaultfd_ctx_cachep
= kmem_cache_create("userfaultfd_ctx_cache",
1952 sizeof(struct userfaultfd_ctx
),
1954 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
1955 init_once_userfaultfd_ctx
);
1958 __initcall(userfaultfd_init
);