net/mlx4_en: Move filters cleanup to a proper location
[linux/fpc-iii.git] / drivers / base / regmap / regmap-irq.c
blob26f799e71c82355e02ef58ff9847cef33545e444
1 /*
2 * regmap based irq_chip
4 * Copyright 2011 Wolfson Microelectronics plc
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/device.h>
14 #include <linux/export.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/irqdomain.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/regmap.h>
20 #include <linux/slab.h>
22 #include "internal.h"
24 struct regmap_irq_chip_data {
25 struct mutex lock;
26 struct irq_chip irq_chip;
28 struct regmap *map;
29 const struct regmap_irq_chip *chip;
31 int irq_base;
32 struct irq_domain *domain;
34 int irq;
35 int wake_count;
37 void *status_reg_buf;
38 unsigned int *status_buf;
39 unsigned int *mask_buf;
40 unsigned int *mask_buf_def;
41 unsigned int *wake_buf;
42 unsigned int *type_buf;
43 unsigned int *type_buf_def;
45 unsigned int irq_reg_stride;
46 unsigned int type_reg_stride;
49 static inline const
50 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
51 int irq)
53 return &data->chip->irqs[irq];
56 static void regmap_irq_lock(struct irq_data *data)
58 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
60 mutex_lock(&d->lock);
63 static void regmap_irq_sync_unlock(struct irq_data *data)
65 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
66 struct regmap *map = d->map;
67 int i, ret;
68 u32 reg;
69 u32 unmask_offset;
71 if (d->chip->runtime_pm) {
72 ret = pm_runtime_get_sync(map->dev);
73 if (ret < 0)
74 dev_err(map->dev, "IRQ sync failed to resume: %d\n",
75 ret);
79 * If there's been a change in the mask write it back to the
80 * hardware. We rely on the use of the regmap core cache to
81 * suppress pointless writes.
83 for (i = 0; i < d->chip->num_regs; i++) {
84 reg = d->chip->mask_base +
85 (i * map->reg_stride * d->irq_reg_stride);
86 if (d->chip->mask_invert) {
87 ret = regmap_update_bits(d->map, reg,
88 d->mask_buf_def[i], ~d->mask_buf[i]);
89 } else if (d->chip->unmask_base) {
90 /* set mask with mask_base register */
91 ret = regmap_update_bits(d->map, reg,
92 d->mask_buf_def[i], ~d->mask_buf[i]);
93 if (ret < 0)
94 dev_err(d->map->dev,
95 "Failed to sync unmasks in %x\n",
96 reg);
97 unmask_offset = d->chip->unmask_base -
98 d->chip->mask_base;
99 /* clear mask with unmask_base register */
100 ret = regmap_update_bits(d->map,
101 reg + unmask_offset,
102 d->mask_buf_def[i],
103 d->mask_buf[i]);
104 } else {
105 ret = regmap_update_bits(d->map, reg,
106 d->mask_buf_def[i], d->mask_buf[i]);
108 if (ret != 0)
109 dev_err(d->map->dev, "Failed to sync masks in %x\n",
110 reg);
112 reg = d->chip->wake_base +
113 (i * map->reg_stride * d->irq_reg_stride);
114 if (d->wake_buf) {
115 if (d->chip->wake_invert)
116 ret = regmap_update_bits(d->map, reg,
117 d->mask_buf_def[i],
118 ~d->wake_buf[i]);
119 else
120 ret = regmap_update_bits(d->map, reg,
121 d->mask_buf_def[i],
122 d->wake_buf[i]);
123 if (ret != 0)
124 dev_err(d->map->dev,
125 "Failed to sync wakes in %x: %d\n",
126 reg, ret);
129 if (!d->chip->init_ack_masked)
130 continue;
132 * Ack all the masked interrupts unconditionally,
133 * OR if there is masked interrupt which hasn't been Acked,
134 * it'll be ignored in irq handler, then may introduce irq storm
136 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
137 reg = d->chip->ack_base +
138 (i * map->reg_stride * d->irq_reg_stride);
139 /* some chips ack by write 0 */
140 if (d->chip->ack_invert)
141 ret = regmap_write(map, reg, ~d->mask_buf[i]);
142 else
143 ret = regmap_write(map, reg, d->mask_buf[i]);
144 if (ret != 0)
145 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
146 reg, ret);
150 for (i = 0; i < d->chip->num_type_reg; i++) {
151 if (!d->type_buf_def[i])
152 continue;
153 reg = d->chip->type_base +
154 (i * map->reg_stride * d->type_reg_stride);
155 if (d->chip->type_invert)
156 ret = regmap_update_bits(d->map, reg,
157 d->type_buf_def[i], ~d->type_buf[i]);
158 else
159 ret = regmap_update_bits(d->map, reg,
160 d->type_buf_def[i], d->type_buf[i]);
161 if (ret != 0)
162 dev_err(d->map->dev, "Failed to sync type in %x\n",
163 reg);
166 if (d->chip->runtime_pm)
167 pm_runtime_put(map->dev);
169 /* If we've changed our wakeup count propagate it to the parent */
170 if (d->wake_count < 0)
171 for (i = d->wake_count; i < 0; i++)
172 irq_set_irq_wake(d->irq, 0);
173 else if (d->wake_count > 0)
174 for (i = 0; i < d->wake_count; i++)
175 irq_set_irq_wake(d->irq, 1);
177 d->wake_count = 0;
179 mutex_unlock(&d->lock);
182 static void regmap_irq_enable(struct irq_data *data)
184 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
185 struct regmap *map = d->map;
186 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
188 d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
191 static void regmap_irq_disable(struct irq_data *data)
193 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
194 struct regmap *map = d->map;
195 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
197 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
200 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
202 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
203 struct regmap *map = d->map;
204 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
205 int reg = irq_data->type_reg_offset / map->reg_stride;
207 if (!(irq_data->type_rising_mask | irq_data->type_falling_mask))
208 return 0;
210 d->type_buf[reg] &= ~(irq_data->type_falling_mask |
211 irq_data->type_rising_mask);
212 switch (type) {
213 case IRQ_TYPE_EDGE_FALLING:
214 d->type_buf[reg] |= irq_data->type_falling_mask;
215 break;
217 case IRQ_TYPE_EDGE_RISING:
218 d->type_buf[reg] |= irq_data->type_rising_mask;
219 break;
221 case IRQ_TYPE_EDGE_BOTH:
222 d->type_buf[reg] |= (irq_data->type_falling_mask |
223 irq_data->type_rising_mask);
224 break;
226 default:
227 return -EINVAL;
229 return 0;
232 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
234 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
235 struct regmap *map = d->map;
236 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
238 if (on) {
239 if (d->wake_buf)
240 d->wake_buf[irq_data->reg_offset / map->reg_stride]
241 &= ~irq_data->mask;
242 d->wake_count++;
243 } else {
244 if (d->wake_buf)
245 d->wake_buf[irq_data->reg_offset / map->reg_stride]
246 |= irq_data->mask;
247 d->wake_count--;
250 return 0;
253 static const struct irq_chip regmap_irq_chip = {
254 .irq_bus_lock = regmap_irq_lock,
255 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
256 .irq_disable = regmap_irq_disable,
257 .irq_enable = regmap_irq_enable,
258 .irq_set_type = regmap_irq_set_type,
259 .irq_set_wake = regmap_irq_set_wake,
262 static irqreturn_t regmap_irq_thread(int irq, void *d)
264 struct regmap_irq_chip_data *data = d;
265 const struct regmap_irq_chip *chip = data->chip;
266 struct regmap *map = data->map;
267 int ret, i;
268 bool handled = false;
269 u32 reg;
271 if (chip->runtime_pm) {
272 ret = pm_runtime_get_sync(map->dev);
273 if (ret < 0) {
274 dev_err(map->dev, "IRQ thread failed to resume: %d\n",
275 ret);
276 pm_runtime_put(map->dev);
277 return IRQ_NONE;
282 * Read in the statuses, using a single bulk read if possible
283 * in order to reduce the I/O overheads.
285 if (!map->use_single_read && map->reg_stride == 1 &&
286 data->irq_reg_stride == 1) {
287 u8 *buf8 = data->status_reg_buf;
288 u16 *buf16 = data->status_reg_buf;
289 u32 *buf32 = data->status_reg_buf;
291 BUG_ON(!data->status_reg_buf);
293 ret = regmap_bulk_read(map, chip->status_base,
294 data->status_reg_buf,
295 chip->num_regs);
296 if (ret != 0) {
297 dev_err(map->dev, "Failed to read IRQ status: %d\n",
298 ret);
299 return IRQ_NONE;
302 for (i = 0; i < data->chip->num_regs; i++) {
303 switch (map->format.val_bytes) {
304 case 1:
305 data->status_buf[i] = buf8[i];
306 break;
307 case 2:
308 data->status_buf[i] = buf16[i];
309 break;
310 case 4:
311 data->status_buf[i] = buf32[i];
312 break;
313 default:
314 BUG();
315 return IRQ_NONE;
319 } else {
320 for (i = 0; i < data->chip->num_regs; i++) {
321 ret = regmap_read(map, chip->status_base +
322 (i * map->reg_stride
323 * data->irq_reg_stride),
324 &data->status_buf[i]);
326 if (ret != 0) {
327 dev_err(map->dev,
328 "Failed to read IRQ status: %d\n",
329 ret);
330 if (chip->runtime_pm)
331 pm_runtime_put(map->dev);
332 return IRQ_NONE;
338 * Ignore masked IRQs and ack if we need to; we ack early so
339 * there is no race between handling and acknowleding the
340 * interrupt. We assume that typically few of the interrupts
341 * will fire simultaneously so don't worry about overhead from
342 * doing a write per register.
344 for (i = 0; i < data->chip->num_regs; i++) {
345 data->status_buf[i] &= ~data->mask_buf[i];
347 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
348 reg = chip->ack_base +
349 (i * map->reg_stride * data->irq_reg_stride);
350 ret = regmap_write(map, reg, data->status_buf[i]);
351 if (ret != 0)
352 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
353 reg, ret);
357 for (i = 0; i < chip->num_irqs; i++) {
358 if (data->status_buf[chip->irqs[i].reg_offset /
359 map->reg_stride] & chip->irqs[i].mask) {
360 handle_nested_irq(irq_find_mapping(data->domain, i));
361 handled = true;
365 if (chip->runtime_pm)
366 pm_runtime_put(map->dev);
368 if (handled)
369 return IRQ_HANDLED;
370 else
371 return IRQ_NONE;
374 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
375 irq_hw_number_t hw)
377 struct regmap_irq_chip_data *data = h->host_data;
379 irq_set_chip_data(virq, data);
380 irq_set_chip(virq, &data->irq_chip);
381 irq_set_nested_thread(virq, 1);
382 irq_set_parent(virq, data->irq);
383 irq_set_noprobe(virq);
385 return 0;
388 static const struct irq_domain_ops regmap_domain_ops = {
389 .map = regmap_irq_map,
390 .xlate = irq_domain_xlate_twocell,
394 * regmap_add_irq_chip(): Use standard regmap IRQ controller handling
396 * map: The regmap for the device.
397 * irq: The IRQ the device uses to signal interrupts
398 * irq_flags: The IRQF_ flags to use for the primary interrupt.
399 * chip: Configuration for the interrupt controller.
400 * data: Runtime data structure for the controller, allocated on success
402 * Returns 0 on success or an errno on failure.
404 * In order for this to be efficient the chip really should use a
405 * register cache. The chip driver is responsible for restoring the
406 * register values used by the IRQ controller over suspend and resume.
408 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
409 int irq_base, const struct regmap_irq_chip *chip,
410 struct regmap_irq_chip_data **data)
412 struct regmap_irq_chip_data *d;
413 int i;
414 int ret = -ENOMEM;
415 u32 reg;
416 u32 unmask_offset;
418 if (chip->num_regs <= 0)
419 return -EINVAL;
421 for (i = 0; i < chip->num_irqs; i++) {
422 if (chip->irqs[i].reg_offset % map->reg_stride)
423 return -EINVAL;
424 if (chip->irqs[i].reg_offset / map->reg_stride >=
425 chip->num_regs)
426 return -EINVAL;
429 if (irq_base) {
430 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
431 if (irq_base < 0) {
432 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
433 irq_base);
434 return irq_base;
438 d = kzalloc(sizeof(*d), GFP_KERNEL);
439 if (!d)
440 return -ENOMEM;
442 d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
443 GFP_KERNEL);
444 if (!d->status_buf)
445 goto err_alloc;
447 d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
448 GFP_KERNEL);
449 if (!d->mask_buf)
450 goto err_alloc;
452 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
453 GFP_KERNEL);
454 if (!d->mask_buf_def)
455 goto err_alloc;
457 if (chip->wake_base) {
458 d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
459 GFP_KERNEL);
460 if (!d->wake_buf)
461 goto err_alloc;
464 if (chip->num_type_reg) {
465 d->type_buf_def = kcalloc(chip->num_type_reg,
466 sizeof(unsigned int), GFP_KERNEL);
467 if (!d->type_buf_def)
468 goto err_alloc;
470 d->type_buf = kcalloc(chip->num_type_reg, sizeof(unsigned int),
471 GFP_KERNEL);
472 if (!d->type_buf)
473 goto err_alloc;
476 d->irq_chip = regmap_irq_chip;
477 d->irq_chip.name = chip->name;
478 d->irq = irq;
479 d->map = map;
480 d->chip = chip;
481 d->irq_base = irq_base;
483 if (chip->irq_reg_stride)
484 d->irq_reg_stride = chip->irq_reg_stride;
485 else
486 d->irq_reg_stride = 1;
488 if (chip->type_reg_stride)
489 d->type_reg_stride = chip->type_reg_stride;
490 else
491 d->type_reg_stride = 1;
493 if (!map->use_single_read && map->reg_stride == 1 &&
494 d->irq_reg_stride == 1) {
495 d->status_reg_buf = kmalloc_array(chip->num_regs,
496 map->format.val_bytes,
497 GFP_KERNEL);
498 if (!d->status_reg_buf)
499 goto err_alloc;
502 mutex_init(&d->lock);
504 for (i = 0; i < chip->num_irqs; i++)
505 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
506 |= chip->irqs[i].mask;
508 /* Mask all the interrupts by default */
509 for (i = 0; i < chip->num_regs; i++) {
510 d->mask_buf[i] = d->mask_buf_def[i];
511 reg = chip->mask_base +
512 (i * map->reg_stride * d->irq_reg_stride);
513 if (chip->mask_invert)
514 ret = regmap_update_bits(map, reg,
515 d->mask_buf[i], ~d->mask_buf[i]);
516 else if (d->chip->unmask_base) {
517 unmask_offset = d->chip->unmask_base -
518 d->chip->mask_base;
519 ret = regmap_update_bits(d->map,
520 reg + unmask_offset,
521 d->mask_buf[i],
522 d->mask_buf[i]);
523 } else
524 ret = regmap_update_bits(map, reg,
525 d->mask_buf[i], d->mask_buf[i]);
526 if (ret != 0) {
527 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
528 reg, ret);
529 goto err_alloc;
532 if (!chip->init_ack_masked)
533 continue;
535 /* Ack masked but set interrupts */
536 reg = chip->status_base +
537 (i * map->reg_stride * d->irq_reg_stride);
538 ret = regmap_read(map, reg, &d->status_buf[i]);
539 if (ret != 0) {
540 dev_err(map->dev, "Failed to read IRQ status: %d\n",
541 ret);
542 goto err_alloc;
545 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
546 reg = chip->ack_base +
547 (i * map->reg_stride * d->irq_reg_stride);
548 if (chip->ack_invert)
549 ret = regmap_write(map, reg,
550 ~(d->status_buf[i] & d->mask_buf[i]));
551 else
552 ret = regmap_write(map, reg,
553 d->status_buf[i] & d->mask_buf[i]);
554 if (ret != 0) {
555 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
556 reg, ret);
557 goto err_alloc;
562 /* Wake is disabled by default */
563 if (d->wake_buf) {
564 for (i = 0; i < chip->num_regs; i++) {
565 d->wake_buf[i] = d->mask_buf_def[i];
566 reg = chip->wake_base +
567 (i * map->reg_stride * d->irq_reg_stride);
569 if (chip->wake_invert)
570 ret = regmap_update_bits(map, reg,
571 d->mask_buf_def[i],
573 else
574 ret = regmap_update_bits(map, reg,
575 d->mask_buf_def[i],
576 d->wake_buf[i]);
577 if (ret != 0) {
578 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
579 reg, ret);
580 goto err_alloc;
585 if (chip->num_type_reg) {
586 for (i = 0; i < chip->num_irqs; i++) {
587 reg = chip->irqs[i].type_reg_offset / map->reg_stride;
588 d->type_buf_def[reg] |= chip->irqs[i].type_rising_mask |
589 chip->irqs[i].type_falling_mask;
591 for (i = 0; i < chip->num_type_reg; ++i) {
592 if (!d->type_buf_def[i])
593 continue;
595 reg = chip->type_base +
596 (i * map->reg_stride * d->type_reg_stride);
597 if (chip->type_invert)
598 ret = regmap_update_bits(map, reg,
599 d->type_buf_def[i], 0xFF);
600 else
601 ret = regmap_update_bits(map, reg,
602 d->type_buf_def[i], 0x0);
603 if (ret != 0) {
604 dev_err(map->dev,
605 "Failed to set type in 0x%x: %x\n",
606 reg, ret);
607 goto err_alloc;
612 if (irq_base)
613 d->domain = irq_domain_add_legacy(map->dev->of_node,
614 chip->num_irqs, irq_base, 0,
615 &regmap_domain_ops, d);
616 else
617 d->domain = irq_domain_add_linear(map->dev->of_node,
618 chip->num_irqs,
619 &regmap_domain_ops, d);
620 if (!d->domain) {
621 dev_err(map->dev, "Failed to create IRQ domain\n");
622 ret = -ENOMEM;
623 goto err_alloc;
626 ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
627 irq_flags | IRQF_ONESHOT,
628 chip->name, d);
629 if (ret != 0) {
630 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
631 irq, chip->name, ret);
632 goto err_domain;
635 *data = d;
637 return 0;
639 err_domain:
640 /* Should really dispose of the domain but... */
641 err_alloc:
642 kfree(d->type_buf);
643 kfree(d->type_buf_def);
644 kfree(d->wake_buf);
645 kfree(d->mask_buf_def);
646 kfree(d->mask_buf);
647 kfree(d->status_buf);
648 kfree(d->status_reg_buf);
649 kfree(d);
650 return ret;
652 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
655 * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip
657 * @irq: Primary IRQ for the device
658 * @d: regmap_irq_chip_data allocated by regmap_add_irq_chip()
660 * This function also dispose all mapped irq on chip.
662 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
664 unsigned int virq;
665 int hwirq;
667 if (!d)
668 return;
670 free_irq(irq, d);
672 /* Dispose all virtual irq from irq domain before removing it */
673 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
674 /* Ignore hwirq if holes in the IRQ list */
675 if (!d->chip->irqs[hwirq].mask)
676 continue;
679 * Find the virtual irq of hwirq on chip and if it is
680 * there then dispose it
682 virq = irq_find_mapping(d->domain, hwirq);
683 if (virq)
684 irq_dispose_mapping(virq);
687 irq_domain_remove(d->domain);
688 kfree(d->type_buf);
689 kfree(d->type_buf_def);
690 kfree(d->wake_buf);
691 kfree(d->mask_buf_def);
692 kfree(d->mask_buf);
693 kfree(d->status_reg_buf);
694 kfree(d->status_buf);
695 kfree(d);
697 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
699 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
701 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
703 regmap_del_irq_chip(d->irq, d);
706 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
709 struct regmap_irq_chip_data **r = res;
711 if (!r || !*r) {
712 WARN_ON(!r || !*r);
713 return 0;
715 return *r == data;
719 * devm_regmap_add_irq_chip(): Resource manager regmap_add_irq_chip()
721 * @dev: The device pointer on which irq_chip belongs to.
722 * @map: The regmap for the device.
723 * @irq: The IRQ the device uses to signal interrupts
724 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
725 * @chip: Configuration for the interrupt controller.
726 * @data: Runtime data structure for the controller, allocated on success
728 * Returns 0 on success or an errno on failure.
730 * The regmap_irq_chip data automatically be released when the device is
731 * unbound.
733 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
734 int irq_flags, int irq_base,
735 const struct regmap_irq_chip *chip,
736 struct regmap_irq_chip_data **data)
738 struct regmap_irq_chip_data **ptr, *d;
739 int ret;
741 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
742 GFP_KERNEL);
743 if (!ptr)
744 return -ENOMEM;
746 ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base,
747 chip, &d);
748 if (ret < 0) {
749 devres_free(ptr);
750 return ret;
753 *ptr = d;
754 devres_add(dev, ptr);
755 *data = d;
756 return 0;
758 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
761 * devm_regmap_del_irq_chip(): Resource managed regmap_del_irq_chip()
763 * @dev: Device for which which resource was allocated.
764 * @irq: Primary IRQ for the device
765 * @d: regmap_irq_chip_data allocated by regmap_add_irq_chip()
767 void devm_regmap_del_irq_chip(struct device *dev, int irq,
768 struct regmap_irq_chip_data *data)
770 int rc;
772 WARN_ON(irq != data->irq);
773 rc = devres_release(dev, devm_regmap_irq_chip_release,
774 devm_regmap_irq_chip_match, data);
776 if (rc != 0)
777 WARN_ON(rc);
779 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
782 * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip
784 * Useful for drivers to request their own IRQs.
786 * @data: regmap_irq controller to operate on.
788 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
790 WARN_ON(!data->irq_base);
791 return data->irq_base;
793 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
796 * regmap_irq_get_virq(): Map an interrupt on a chip to a virtual IRQ
798 * Useful for drivers to request their own IRQs.
800 * @data: regmap_irq controller to operate on.
801 * @irq: index of the interrupt requested in the chip IRQs
803 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
805 /* Handle holes in the IRQ list */
806 if (!data->chip->irqs[irq].mask)
807 return -EINVAL;
809 return irq_create_mapping(data->domain, irq);
811 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
814 * regmap_irq_get_domain(): Retrieve the irq_domain for the chip
816 * Useful for drivers to request their own IRQs and for integration
817 * with subsystems. For ease of integration NULL is accepted as a
818 * domain, allowing devices to just call this even if no domain is
819 * allocated.
821 * @data: regmap_irq controller to operate on.
823 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
825 if (data)
826 return data->domain;
827 else
828 return NULL;
830 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);