visorbus: switch from ioremap_cache to memremap
[linux/fpc-iii.git] / drivers / clk / clk-cdce925.c
blob85fafb41e6ca3a8edbab5f1a1d8adc88c4ec7f4d
1 /*
2 * Driver for TI Dual PLL CDCE925 clock synthesizer
4 * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1
5 * and Y4/Y5 to PLL2. PLL frequency is set on a first-come-first-serve
6 * basis. Clients can directly request any frequency that the chip can
7 * deliver using the standard clk framework. In addition, the device can
8 * be configured and activated via the devicetree.
10 * Copyright (C) 2014, Topic Embedded Products
11 * Licenced under GPL
13 #include <linux/clk-provider.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/i2c.h>
17 #include <linux/regmap.h>
18 #include <linux/slab.h>
19 #include <linux/gcd.h>
21 /* The chip has 2 PLLs which can be routed through dividers to 5 outputs.
22 * Model this as 2 PLL clocks which are parents to the outputs.
24 #define NUMBER_OF_PLLS 2
25 #define NUMBER_OF_OUTPUTS 5
27 #define CDCE925_REG_GLOBAL1 0x01
28 #define CDCE925_REG_Y1SPIPDIVH 0x02
29 #define CDCE925_REG_PDIVL 0x03
30 #define CDCE925_REG_XCSEL 0x05
31 /* PLL parameters start at 0x10, steps of 0x10 */
32 #define CDCE925_OFFSET_PLL 0x10
33 /* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
34 #define CDCE925_PLL_MUX_OUTPUTS 0x14
35 #define CDCE925_PLL_MULDIV 0x18
37 #define CDCE925_PLL_FREQUENCY_MIN 80000000ul
38 #define CDCE925_PLL_FREQUENCY_MAX 230000000ul
39 struct clk_cdce925_chip;
41 struct clk_cdce925_output {
42 struct clk_hw hw;
43 struct clk_cdce925_chip *chip;
44 u8 index;
45 u16 pdiv; /* 1..127 for Y2-Y5; 1..1023 for Y1 */
47 #define to_clk_cdce925_output(_hw) \
48 container_of(_hw, struct clk_cdce925_output, hw)
50 struct clk_cdce925_pll {
51 struct clk_hw hw;
52 struct clk_cdce925_chip *chip;
53 u8 index;
54 u16 m; /* 1..511 */
55 u16 n; /* 1..4095 */
57 #define to_clk_cdce925_pll(_hw) container_of(_hw, struct clk_cdce925_pll, hw)
59 struct clk_cdce925_chip {
60 struct regmap *regmap;
61 struct i2c_client *i2c_client;
62 struct clk_cdce925_pll pll[NUMBER_OF_PLLS];
63 struct clk_cdce925_output clk[NUMBER_OF_OUTPUTS];
64 struct clk *dt_clk[NUMBER_OF_OUTPUTS];
65 struct clk_onecell_data onecell;
68 /* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
70 static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
71 u16 n, u16 m)
73 if ((!m || !n) || (m == n))
74 return parent_rate; /* In bypass mode runs at same frequency */
75 return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
78 static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
79 unsigned long parent_rate)
81 /* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
82 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
84 return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
87 static void cdce925_pll_find_rate(unsigned long rate,
88 unsigned long parent_rate, u16 *n, u16 *m)
90 unsigned long un;
91 unsigned long um;
92 unsigned long g;
94 if (rate <= parent_rate) {
95 /* Can always deliver parent_rate in bypass mode */
96 rate = parent_rate;
97 *n = 0;
98 *m = 0;
99 } else {
100 /* In PLL mode, need to apply min/max range */
101 if (rate < CDCE925_PLL_FREQUENCY_MIN)
102 rate = CDCE925_PLL_FREQUENCY_MIN;
103 else if (rate > CDCE925_PLL_FREQUENCY_MAX)
104 rate = CDCE925_PLL_FREQUENCY_MAX;
106 g = gcd(rate, parent_rate);
107 um = parent_rate / g;
108 un = rate / g;
109 /* When outside hw range, reduce to fit (rounding errors) */
110 while ((un > 4095) || (um > 511)) {
111 un >>= 1;
112 um >>= 1;
114 if (un == 0)
115 un = 1;
116 if (um == 0)
117 um = 1;
119 *n = un;
120 *m = um;
124 static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
125 unsigned long *parent_rate)
127 u16 n, m;
129 cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
130 return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
133 static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
134 unsigned long parent_rate)
136 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
138 if (!rate || (rate == parent_rate)) {
139 data->m = 0; /* Bypass mode */
140 data->n = 0;
141 return 0;
144 if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
145 (rate > CDCE925_PLL_FREQUENCY_MAX)) {
146 pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
147 return -EINVAL;
150 if (rate < parent_rate) {
151 pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
152 rate, parent_rate);
153 return -EINVAL;
156 cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
157 return 0;
161 /* calculate p = max(0, 4 - int(log2 (n/m))) */
162 static u8 cdce925_pll_calc_p(u16 n, u16 m)
164 u8 p;
165 u16 r = n / m;
167 if (r >= 16)
168 return 0;
169 p = 4;
170 while (r > 1) {
171 r >>= 1;
172 --p;
174 return p;
177 /* Returns VCO range bits for VCO1_0_RANGE */
178 static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
180 struct clk *parent = clk_get_parent(hw->clk);
181 unsigned long rate = clk_get_rate(parent);
183 rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
184 if (rate >= 175000000)
185 return 0x3;
186 if (rate >= 150000000)
187 return 0x02;
188 if (rate >= 125000000)
189 return 0x01;
190 return 0x00;
193 /* I2C clock, hence everything must happen in (un)prepare because this
194 * may sleep */
195 static int cdce925_pll_prepare(struct clk_hw *hw)
197 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
198 u16 n = data->n;
199 u16 m = data->m;
200 u16 r;
201 u8 q;
202 u8 p;
203 u16 nn;
204 u8 pll[4]; /* Bits are spread out over 4 byte registers */
205 u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
206 unsigned i;
208 if ((!m || !n) || (m == n)) {
209 /* Set PLL mux to bypass mode, leave the rest as is */
210 regmap_update_bits(data->chip->regmap,
211 reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
212 } else {
213 /* According to data sheet: */
214 /* p = max(0, 4 - int(log2 (n/m))) */
215 p = cdce925_pll_calc_p(n, m);
216 /* nn = n * 2^p */
217 nn = n * BIT(p);
218 /* q = int(nn/m) */
219 q = nn / m;
220 if ((q < 16) || (1 > 64)) {
221 pr_debug("%s invalid q=%d\n", __func__, q);
222 return -EINVAL;
224 r = nn - (m*q);
225 if (r > 511) {
226 pr_debug("%s invalid r=%d\n", __func__, r);
227 return -EINVAL;
229 pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
230 n, m, p, q, r);
231 /* encode into register bits */
232 pll[0] = n >> 4;
233 pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
234 pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
235 pll[3] = ((q & 0x07) << 5) | (p << 2) |
236 cdce925_pll_calc_range_bits(hw, n, m);
237 /* Write to registers */
238 for (i = 0; i < ARRAY_SIZE(pll); ++i)
239 regmap_write(data->chip->regmap,
240 reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
241 /* Enable PLL */
242 regmap_update_bits(data->chip->regmap,
243 reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
246 return 0;
249 static void cdce925_pll_unprepare(struct clk_hw *hw)
251 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
252 u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
254 regmap_update_bits(data->chip->regmap,
255 reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
258 static const struct clk_ops cdce925_pll_ops = {
259 .prepare = cdce925_pll_prepare,
260 .unprepare = cdce925_pll_unprepare,
261 .recalc_rate = cdce925_pll_recalc_rate,
262 .round_rate = cdce925_pll_round_rate,
263 .set_rate = cdce925_pll_set_rate,
267 static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
269 switch (data->index) {
270 case 0:
271 regmap_update_bits(data->chip->regmap,
272 CDCE925_REG_Y1SPIPDIVH,
273 0x03, (pdiv >> 8) & 0x03);
274 regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
275 break;
276 case 1:
277 regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
278 break;
279 case 2:
280 regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
281 break;
282 case 3:
283 regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
284 break;
285 case 4:
286 regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
287 break;
291 static void cdce925_clk_activate(struct clk_cdce925_output *data)
293 switch (data->index) {
294 case 0:
295 regmap_update_bits(data->chip->regmap,
296 CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
297 break;
298 case 1:
299 case 2:
300 regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
301 break;
302 case 3:
303 case 4:
304 regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
305 break;
309 static int cdce925_clk_prepare(struct clk_hw *hw)
311 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
313 cdce925_clk_set_pdiv(data, data->pdiv);
314 cdce925_clk_activate(data);
315 return 0;
318 static void cdce925_clk_unprepare(struct clk_hw *hw)
320 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
322 /* Disable clock by setting divider to "0" */
323 cdce925_clk_set_pdiv(data, 0);
326 static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
327 unsigned long parent_rate)
329 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
331 if (data->pdiv)
332 return parent_rate / data->pdiv;
333 return 0;
336 static u16 cdce925_calc_divider(unsigned long rate,
337 unsigned long parent_rate)
339 unsigned long divider;
341 if (!rate)
342 return 0;
343 if (rate >= parent_rate)
344 return 1;
346 divider = DIV_ROUND_CLOSEST(parent_rate, rate);
347 if (divider > 0x7F)
348 divider = 0x7F;
350 return (u16)divider;
353 static unsigned long cdce925_clk_best_parent_rate(
354 struct clk_hw *hw, unsigned long rate)
356 struct clk *pll = clk_get_parent(hw->clk);
357 struct clk *root = clk_get_parent(pll);
358 unsigned long root_rate = clk_get_rate(root);
359 unsigned long best_rate_error = rate;
360 u16 pdiv_min;
361 u16 pdiv_max;
362 u16 pdiv_best;
363 u16 pdiv_now;
365 if (root_rate % rate == 0)
366 return root_rate; /* Don't need the PLL, use bypass */
368 pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
369 pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
371 if (pdiv_min > pdiv_max)
372 return 0; /* No can do? */
374 pdiv_best = pdiv_min;
375 for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
376 unsigned long target_rate = rate * pdiv_now;
377 long pll_rate = clk_round_rate(pll, target_rate);
378 unsigned long actual_rate;
379 unsigned long rate_error;
381 if (pll_rate <= 0)
382 continue;
383 actual_rate = pll_rate / pdiv_now;
384 rate_error = abs((long)actual_rate - (long)rate);
385 if (rate_error < best_rate_error) {
386 pdiv_best = pdiv_now;
387 best_rate_error = rate_error;
389 /* TODO: Consider PLL frequency based on smaller n/m values
390 * and pick the better one if the error is equal */
393 return rate * pdiv_best;
396 static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
397 unsigned long *parent_rate)
399 unsigned long l_parent_rate = *parent_rate;
400 u16 divider = cdce925_calc_divider(rate, l_parent_rate);
402 if (l_parent_rate / divider != rate) {
403 l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
404 divider = cdce925_calc_divider(rate, l_parent_rate);
405 *parent_rate = l_parent_rate;
408 if (divider)
409 return (long)(l_parent_rate / divider);
410 return 0;
413 static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
414 unsigned long parent_rate)
416 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
418 data->pdiv = cdce925_calc_divider(rate, parent_rate);
420 return 0;
423 static const struct clk_ops cdce925_clk_ops = {
424 .prepare = cdce925_clk_prepare,
425 .unprepare = cdce925_clk_unprepare,
426 .recalc_rate = cdce925_clk_recalc_rate,
427 .round_rate = cdce925_clk_round_rate,
428 .set_rate = cdce925_clk_set_rate,
432 static u16 cdce925_y1_calc_divider(unsigned long rate,
433 unsigned long parent_rate)
435 unsigned long divider;
437 if (!rate)
438 return 0;
439 if (rate >= parent_rate)
440 return 1;
442 divider = DIV_ROUND_CLOSEST(parent_rate, rate);
443 if (divider > 0x3FF) /* Y1 has 10-bit divider */
444 divider = 0x3FF;
446 return (u16)divider;
449 static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
450 unsigned long *parent_rate)
452 unsigned long l_parent_rate = *parent_rate;
453 u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
455 if (divider)
456 return (long)(l_parent_rate / divider);
457 return 0;
460 static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
461 unsigned long parent_rate)
463 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
465 data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
467 return 0;
470 static const struct clk_ops cdce925_clk_y1_ops = {
471 .prepare = cdce925_clk_prepare,
472 .unprepare = cdce925_clk_unprepare,
473 .recalc_rate = cdce925_clk_recalc_rate,
474 .round_rate = cdce925_clk_y1_round_rate,
475 .set_rate = cdce925_clk_y1_set_rate,
479 static struct regmap_config cdce925_regmap_config = {
480 .name = "configuration0",
481 .reg_bits = 8,
482 .val_bits = 8,
483 .cache_type = REGCACHE_RBTREE,
484 .max_register = 0x2F,
487 #define CDCE925_I2C_COMMAND_BLOCK_TRANSFER 0x00
488 #define CDCE925_I2C_COMMAND_BYTE_TRANSFER 0x80
490 static int cdce925_regmap_i2c_write(
491 void *context, const void *data, size_t count)
493 struct device *dev = context;
494 struct i2c_client *i2c = to_i2c_client(dev);
495 int ret;
496 u8 reg_data[2];
498 if (count != 2)
499 return -ENOTSUPP;
501 /* First byte is command code */
502 reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
503 reg_data[1] = ((u8 *)data)[1];
505 dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
506 reg_data[0], reg_data[1]);
508 ret = i2c_master_send(i2c, reg_data, count);
509 if (likely(ret == count))
510 return 0;
511 else if (ret < 0)
512 return ret;
513 else
514 return -EIO;
517 static int cdce925_regmap_i2c_read(void *context,
518 const void *reg, size_t reg_size, void *val, size_t val_size)
520 struct device *dev = context;
521 struct i2c_client *i2c = to_i2c_client(dev);
522 struct i2c_msg xfer[2];
523 int ret;
524 u8 reg_data[2];
526 if (reg_size != 1)
527 return -ENOTSUPP;
529 xfer[0].addr = i2c->addr;
530 xfer[0].flags = 0;
531 xfer[0].buf = reg_data;
532 if (val_size == 1) {
533 reg_data[0] =
534 CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
535 xfer[0].len = 1;
536 } else {
537 reg_data[0] =
538 CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
539 reg_data[1] = val_size;
540 xfer[0].len = 2;
543 xfer[1].addr = i2c->addr;
544 xfer[1].flags = I2C_M_RD;
545 xfer[1].len = val_size;
546 xfer[1].buf = val;
548 ret = i2c_transfer(i2c->adapter, xfer, 2);
549 if (likely(ret == 2)) {
550 dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
551 reg_size, val_size, reg_data[0], *((u8 *)val));
552 return 0;
553 } else if (ret < 0)
554 return ret;
555 else
556 return -EIO;
559 /* The CDCE925 uses a funky way to read/write registers. Bulk mode is
560 * just weird, so just use the single byte mode exclusively. */
561 static struct regmap_bus regmap_cdce925_bus = {
562 .write = cdce925_regmap_i2c_write,
563 .read = cdce925_regmap_i2c_read,
566 static int cdce925_probe(struct i2c_client *client,
567 const struct i2c_device_id *id)
569 struct clk_cdce925_chip *data;
570 struct device_node *node = client->dev.of_node;
571 const char *parent_name;
572 const char *pll_clk_name[NUMBER_OF_PLLS] = {NULL,};
573 struct clk_init_data init;
574 struct clk *clk;
575 u32 value;
576 int i;
577 int err;
578 struct device_node *np_output;
579 char child_name[6];
581 dev_dbg(&client->dev, "%s\n", __func__);
582 data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
583 if (!data)
584 return -ENOMEM;
586 data->i2c_client = client;
587 data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
588 &client->dev, &cdce925_regmap_config);
589 if (IS_ERR(data->regmap)) {
590 dev_err(&client->dev, "failed to allocate register map\n");
591 return PTR_ERR(data->regmap);
593 i2c_set_clientdata(client, data);
595 parent_name = of_clk_get_parent_name(node, 0);
596 if (!parent_name) {
597 dev_err(&client->dev, "missing parent clock\n");
598 return -ENODEV;
600 dev_dbg(&client->dev, "parent is: %s\n", parent_name);
602 if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
603 regmap_write(data->regmap,
604 CDCE925_REG_XCSEL, (value << 3) & 0xF8);
605 /* PWDN bit */
606 regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
608 /* Set input source for Y1 to be the XTAL */
609 regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
611 init.ops = &cdce925_pll_ops;
612 init.flags = 0;
613 init.parent_names = &parent_name;
614 init.num_parents = parent_name ? 1 : 0;
616 /* Register PLL clocks */
617 for (i = 0; i < NUMBER_OF_PLLS; ++i) {
618 pll_clk_name[i] = kasprintf(GFP_KERNEL, "%s.pll%d",
619 client->dev.of_node->name, i);
620 init.name = pll_clk_name[i];
621 data->pll[i].chip = data;
622 data->pll[i].hw.init = &init;
623 data->pll[i].index = i;
624 clk = devm_clk_register(&client->dev, &data->pll[i].hw);
625 if (IS_ERR(clk)) {
626 dev_err(&client->dev, "Failed register PLL %d\n", i);
627 err = PTR_ERR(clk);
628 goto error;
630 sprintf(child_name, "PLL%d", i+1);
631 np_output = of_get_child_by_name(node, child_name);
632 if (!np_output)
633 continue;
634 if (!of_property_read_u32(np_output,
635 "clock-frequency", &value)) {
636 err = clk_set_rate(clk, value);
637 if (err)
638 dev_err(&client->dev,
639 "unable to set PLL frequency %ud\n",
640 value);
642 if (!of_property_read_u32(np_output,
643 "spread-spectrum", &value)) {
644 u8 flag = of_property_read_bool(np_output,
645 "spread-spectrum-center") ? 0x80 : 0x00;
646 regmap_update_bits(data->regmap,
647 0x16 + (i*CDCE925_OFFSET_PLL),
648 0x80, flag);
649 regmap_update_bits(data->regmap,
650 0x12 + (i*CDCE925_OFFSET_PLL),
651 0x07, value & 0x07);
655 /* Register output clock Y1 */
656 init.ops = &cdce925_clk_y1_ops;
657 init.flags = 0;
658 init.num_parents = 1;
659 init.parent_names = &parent_name; /* Mux Y1 to input */
660 init.name = kasprintf(GFP_KERNEL, "%s.Y1", client->dev.of_node->name);
661 data->clk[0].chip = data;
662 data->clk[0].hw.init = &init;
663 data->clk[0].index = 0;
664 data->clk[0].pdiv = 1;
665 clk = devm_clk_register(&client->dev, &data->clk[0].hw);
666 kfree(init.name); /* clock framework made a copy of the name */
667 if (IS_ERR(clk)) {
668 dev_err(&client->dev, "clock registration Y1 failed\n");
669 err = PTR_ERR(clk);
670 goto error;
672 data->dt_clk[0] = clk;
674 /* Register output clocks Y2 .. Y5*/
675 init.ops = &cdce925_clk_ops;
676 init.flags = CLK_SET_RATE_PARENT;
677 init.num_parents = 1;
678 for (i = 1; i < NUMBER_OF_OUTPUTS; ++i) {
679 init.name = kasprintf(GFP_KERNEL, "%s.Y%d",
680 client->dev.of_node->name, i+1);
681 data->clk[i].chip = data;
682 data->clk[i].hw.init = &init;
683 data->clk[i].index = i;
684 data->clk[i].pdiv = 1;
685 switch (i) {
686 case 1:
687 case 2:
688 /* Mux Y2/3 to PLL1 */
689 init.parent_names = &pll_clk_name[0];
690 break;
691 case 3:
692 case 4:
693 /* Mux Y4/5 to PLL2 */
694 init.parent_names = &pll_clk_name[1];
695 break;
697 clk = devm_clk_register(&client->dev, &data->clk[i].hw);
698 kfree(init.name); /* clock framework made a copy of the name */
699 if (IS_ERR(clk)) {
700 dev_err(&client->dev, "clock registration failed\n");
701 err = PTR_ERR(clk);
702 goto error;
704 data->dt_clk[i] = clk;
707 /* Register the output clocks */
708 data->onecell.clk_num = NUMBER_OF_OUTPUTS;
709 data->onecell.clks = data->dt_clk;
710 err = of_clk_add_provider(client->dev.of_node, of_clk_src_onecell_get,
711 &data->onecell);
712 if (err)
713 dev_err(&client->dev, "unable to add OF clock provider\n");
715 err = 0;
717 error:
718 for (i = 0; i < NUMBER_OF_PLLS; ++i)
719 /* clock framework made a copy of the name */
720 kfree(pll_clk_name[i]);
722 return err;
725 static const struct i2c_device_id cdce925_id[] = {
726 { "cdce925", 0 },
729 MODULE_DEVICE_TABLE(i2c, cdce925_id);
731 static const struct of_device_id clk_cdce925_of_match[] = {
732 { .compatible = "ti,cdce925" },
733 { },
735 MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
737 static struct i2c_driver cdce925_driver = {
738 .driver = {
739 .name = "cdce925",
740 .of_match_table = of_match_ptr(clk_cdce925_of_match),
742 .probe = cdce925_probe,
743 .id_table = cdce925_id,
745 module_i2c_driver(cdce925_driver);
747 MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
748 MODULE_DESCRIPTION("cdce925 driver");
749 MODULE_LICENSE("GPL");