spi: sh-msiof: Configure MSIOF sync signal timing in device tree
[linux/fpc-iii.git] / crypto / drbg.c
blobd748a1d0ca24b5c646953cd6a6cdfa240c4669e0
1 /*
2 * DRBG: Deterministic Random Bits Generator
3 * Based on NIST Recommended DRBG from NIST SP800-90A with the following
4 * properties:
5 * * CTR DRBG with DF with AES-128, AES-192, AES-256 cores
6 * * Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
7 * * HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
8 * * with and without prediction resistance
10 * Copyright Stephan Mueller <smueller@chronox.de>, 2014
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
23 * written permission.
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
44 * DRBG Usage
45 * ==========
46 * The SP 800-90A DRBG allows the user to specify a personalization string
47 * for initialization as well as an additional information string for each
48 * random number request. The following code fragments show how a caller
49 * uses the kernel crypto API to use the full functionality of the DRBG.
51 * Usage without any additional data
52 * ---------------------------------
53 * struct crypto_rng *drng;
54 * int err;
55 * char data[DATALEN];
57 * drng = crypto_alloc_rng(drng_name, 0, 0);
58 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
59 * crypto_free_rng(drng);
62 * Usage with personalization string during initialization
63 * -------------------------------------------------------
64 * struct crypto_rng *drng;
65 * int err;
66 * char data[DATALEN];
67 * struct drbg_string pers;
68 * char personalization[11] = "some-string";
70 * drbg_string_fill(&pers, personalization, strlen(personalization));
71 * drng = crypto_alloc_rng(drng_name, 0, 0);
72 * // The reset completely re-initializes the DRBG with the provided
73 * // personalization string
74 * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
75 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
76 * crypto_free_rng(drng);
79 * Usage with additional information string during random number request
80 * ---------------------------------------------------------------------
81 * struct crypto_rng *drng;
82 * int err;
83 * char data[DATALEN];
84 * char addtl_string[11] = "some-string";
85 * string drbg_string addtl;
87 * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
88 * drng = crypto_alloc_rng(drng_name, 0, 0);
89 * // The following call is a wrapper to crypto_rng_get_bytes() and returns
90 * // the same error codes.
91 * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
92 * crypto_free_rng(drng);
95 * Usage with personalization and additional information strings
96 * -------------------------------------------------------------
97 * Just mix both scenarios above.
100 #include <crypto/drbg.h>
101 #include <linux/string.h>
103 /***************************************************************
104 * Backend cipher definitions available to DRBG
105 ***************************************************************/
108 * The order of the DRBG definitions here matter: every DRBG is registered
109 * as stdrng. Each DRBG receives an increasing cra_priority values the later
110 * they are defined in this array (see drbg_fill_array).
112 * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
113 * the SHA256 / AES 256 over other ciphers. Thus, the favored
114 * DRBGs are the latest entries in this array.
116 static const struct drbg_core drbg_cores[] = {
117 #ifdef CONFIG_CRYPTO_DRBG_CTR
119 .flags = DRBG_CTR | DRBG_STRENGTH128,
120 .statelen = 32, /* 256 bits as defined in 10.2.1 */
121 .blocklen_bytes = 16,
122 .cra_name = "ctr_aes128",
123 .backend_cra_name = "ecb(aes)",
124 }, {
125 .flags = DRBG_CTR | DRBG_STRENGTH192,
126 .statelen = 40, /* 320 bits as defined in 10.2.1 */
127 .blocklen_bytes = 16,
128 .cra_name = "ctr_aes192",
129 .backend_cra_name = "ecb(aes)",
130 }, {
131 .flags = DRBG_CTR | DRBG_STRENGTH256,
132 .statelen = 48, /* 384 bits as defined in 10.2.1 */
133 .blocklen_bytes = 16,
134 .cra_name = "ctr_aes256",
135 .backend_cra_name = "ecb(aes)",
137 #endif /* CONFIG_CRYPTO_DRBG_CTR */
138 #ifdef CONFIG_CRYPTO_DRBG_HASH
140 .flags = DRBG_HASH | DRBG_STRENGTH128,
141 .statelen = 55, /* 440 bits */
142 .blocklen_bytes = 20,
143 .cra_name = "sha1",
144 .backend_cra_name = "sha1",
145 }, {
146 .flags = DRBG_HASH | DRBG_STRENGTH256,
147 .statelen = 111, /* 888 bits */
148 .blocklen_bytes = 48,
149 .cra_name = "sha384",
150 .backend_cra_name = "sha384",
151 }, {
152 .flags = DRBG_HASH | DRBG_STRENGTH256,
153 .statelen = 111, /* 888 bits */
154 .blocklen_bytes = 64,
155 .cra_name = "sha512",
156 .backend_cra_name = "sha512",
157 }, {
158 .flags = DRBG_HASH | DRBG_STRENGTH256,
159 .statelen = 55, /* 440 bits */
160 .blocklen_bytes = 32,
161 .cra_name = "sha256",
162 .backend_cra_name = "sha256",
164 #endif /* CONFIG_CRYPTO_DRBG_HASH */
165 #ifdef CONFIG_CRYPTO_DRBG_HMAC
167 .flags = DRBG_HMAC | DRBG_STRENGTH128,
168 .statelen = 20, /* block length of cipher */
169 .blocklen_bytes = 20,
170 .cra_name = "hmac_sha1",
171 .backend_cra_name = "hmac(sha1)",
172 }, {
173 .flags = DRBG_HMAC | DRBG_STRENGTH256,
174 .statelen = 48, /* block length of cipher */
175 .blocklen_bytes = 48,
176 .cra_name = "hmac_sha384",
177 .backend_cra_name = "hmac(sha384)",
178 }, {
179 .flags = DRBG_HMAC | DRBG_STRENGTH256,
180 .statelen = 64, /* block length of cipher */
181 .blocklen_bytes = 64,
182 .cra_name = "hmac_sha512",
183 .backend_cra_name = "hmac(sha512)",
184 }, {
185 .flags = DRBG_HMAC | DRBG_STRENGTH256,
186 .statelen = 32, /* block length of cipher */
187 .blocklen_bytes = 32,
188 .cra_name = "hmac_sha256",
189 .backend_cra_name = "hmac(sha256)",
191 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
194 /******************************************************************
195 * Generic helper functions
196 ******************************************************************/
199 * Return strength of DRBG according to SP800-90A section 8.4
201 * @flags DRBG flags reference
203 * Return: normalized strength in *bytes* value or 32 as default
204 * to counter programming errors
206 static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
208 switch (flags & DRBG_STRENGTH_MASK) {
209 case DRBG_STRENGTH128:
210 return 16;
211 case DRBG_STRENGTH192:
212 return 24;
213 case DRBG_STRENGTH256:
214 return 32;
215 default:
216 return 32;
221 * FIPS 140-2 continuous self test
222 * The test is performed on the result of one round of the output
223 * function. Thus, the function implicitly knows the size of the
224 * buffer.
226 * The FIPS test can be called in an endless loop until it returns
227 * true. Although the code looks like a potential for a deadlock, it
228 * is not the case, because returning a false cannot mathematically
229 * occur (except once when a reseed took place and the updated state
230 * would is now set up such that the generation of new value returns
231 * an identical one -- this is most unlikely and would happen only once).
232 * Thus, if this function repeatedly returns false and thus would cause
233 * a deadlock, the integrity of the entire kernel is lost.
235 * @drbg DRBG handle
236 * @buf output buffer of random data to be checked
238 * return:
239 * true on success
240 * false on error
242 static bool drbg_fips_continuous_test(struct drbg_state *drbg,
243 const unsigned char *buf)
245 #ifdef CONFIG_CRYPTO_FIPS
246 int ret = 0;
247 /* skip test if we test the overall system */
248 if (drbg->test_data)
249 return true;
250 /* only perform test in FIPS mode */
251 if (0 == fips_enabled)
252 return true;
253 if (!drbg->fips_primed) {
254 /* Priming of FIPS test */
255 memcpy(drbg->prev, buf, drbg_blocklen(drbg));
256 drbg->fips_primed = true;
257 /* return false due to priming, i.e. another round is needed */
258 return false;
260 ret = memcmp(drbg->prev, buf, drbg_blocklen(drbg));
261 memcpy(drbg->prev, buf, drbg_blocklen(drbg));
262 /* the test shall pass when the two compared values are not equal */
263 return ret != 0;
264 #else
265 return true;
266 #endif /* CONFIG_CRYPTO_FIPS */
270 * Convert an integer into a byte representation of this integer.
271 * The byte representation is big-endian
273 * @val value to be converted
274 * @buf buffer holding the converted integer -- caller must ensure that
275 * buffer size is at least 32 bit
277 #if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
278 static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
280 struct s {
281 __be32 conv;
283 struct s *conversion = (struct s *) buf;
285 conversion->conv = cpu_to_be32(val);
287 #endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
289 /******************************************************************
290 * CTR DRBG callback functions
291 ******************************************************************/
293 #ifdef CONFIG_CRYPTO_DRBG_CTR
294 #define CRYPTO_DRBG_CTR_STRING "CTR "
295 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
296 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
297 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
298 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
299 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
300 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
302 static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
303 unsigned char *outval, const struct drbg_string *in);
304 static int drbg_init_sym_kernel(struct drbg_state *drbg);
305 static int drbg_fini_sym_kernel(struct drbg_state *drbg);
307 /* BCC function for CTR DRBG as defined in 10.4.3 */
308 static int drbg_ctr_bcc(struct drbg_state *drbg,
309 unsigned char *out, const unsigned char *key,
310 struct list_head *in)
312 int ret = 0;
313 struct drbg_string *curr = NULL;
314 struct drbg_string data;
315 short cnt = 0;
317 drbg_string_fill(&data, out, drbg_blocklen(drbg));
319 /* 10.4.3 step 1 */
320 memset(out, 0, drbg_blocklen(drbg));
322 /* 10.4.3 step 2 / 4 */
323 list_for_each_entry(curr, in, list) {
324 const unsigned char *pos = curr->buf;
325 size_t len = curr->len;
326 /* 10.4.3 step 4.1 */
327 while (len) {
328 /* 10.4.3 step 4.2 */
329 if (drbg_blocklen(drbg) == cnt) {
330 cnt = 0;
331 ret = drbg_kcapi_sym(drbg, key, out, &data);
332 if (ret)
333 return ret;
335 out[cnt] ^= *pos;
336 pos++;
337 cnt++;
338 len--;
341 /* 10.4.3 step 4.2 for last block */
342 if (cnt)
343 ret = drbg_kcapi_sym(drbg, key, out, &data);
345 return ret;
349 * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
350 * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
351 * the scratchpad is used as follows:
352 * drbg_ctr_update:
353 * temp
354 * start: drbg->scratchpad
355 * length: drbg_statelen(drbg) + drbg_blocklen(drbg)
356 * note: the cipher writing into this variable works
357 * blocklen-wise. Now, when the statelen is not a multiple
358 * of blocklen, the generateion loop below "spills over"
359 * by at most blocklen. Thus, we need to give sufficient
360 * memory.
361 * df_data
362 * start: drbg->scratchpad +
363 * drbg_statelen(drbg) + drbg_blocklen(drbg)
364 * length: drbg_statelen(drbg)
366 * drbg_ctr_df:
367 * pad
368 * start: df_data + drbg_statelen(drbg)
369 * length: drbg_blocklen(drbg)
370 * iv
371 * start: pad + drbg_blocklen(drbg)
372 * length: drbg_blocklen(drbg)
373 * temp
374 * start: iv + drbg_blocklen(drbg)
375 * length: drbg_satelen(drbg) + drbg_blocklen(drbg)
376 * note: temp is the buffer that the BCC function operates
377 * on. BCC operates blockwise. drbg_statelen(drbg)
378 * is sufficient when the DRBG state length is a multiple
379 * of the block size. For AES192 (and maybe other ciphers)
380 * this is not correct and the length for temp is
381 * insufficient (yes, that also means for such ciphers,
382 * the final output of all BCC rounds are truncated).
383 * Therefore, add drbg_blocklen(drbg) to cover all
384 * possibilities.
387 /* Derivation Function for CTR DRBG as defined in 10.4.2 */
388 static int drbg_ctr_df(struct drbg_state *drbg,
389 unsigned char *df_data, size_t bytes_to_return,
390 struct list_head *seedlist)
392 int ret = -EFAULT;
393 unsigned char L_N[8];
394 /* S3 is input */
395 struct drbg_string S1, S2, S4, cipherin;
396 LIST_HEAD(bcc_list);
397 unsigned char *pad = df_data + drbg_statelen(drbg);
398 unsigned char *iv = pad + drbg_blocklen(drbg);
399 unsigned char *temp = iv + drbg_blocklen(drbg);
400 size_t padlen = 0;
401 unsigned int templen = 0;
402 /* 10.4.2 step 7 */
403 unsigned int i = 0;
404 /* 10.4.2 step 8 */
405 const unsigned char *K = (unsigned char *)
406 "\x00\x01\x02\x03\x04\x05\x06\x07"
407 "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
408 "\x10\x11\x12\x13\x14\x15\x16\x17"
409 "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
410 unsigned char *X;
411 size_t generated_len = 0;
412 size_t inputlen = 0;
413 struct drbg_string *seed = NULL;
415 memset(pad, 0, drbg_blocklen(drbg));
416 memset(iv, 0, drbg_blocklen(drbg));
417 memset(temp, 0, drbg_statelen(drbg));
419 /* 10.4.2 step 1 is implicit as we work byte-wise */
421 /* 10.4.2 step 2 */
422 if ((512/8) < bytes_to_return)
423 return -EINVAL;
425 /* 10.4.2 step 2 -- calculate the entire length of all input data */
426 list_for_each_entry(seed, seedlist, list)
427 inputlen += seed->len;
428 drbg_cpu_to_be32(inputlen, &L_N[0]);
430 /* 10.4.2 step 3 */
431 drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
433 /* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
434 padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
435 /* wrap the padlen appropriately */
436 if (padlen)
437 padlen = drbg_blocklen(drbg) - padlen;
439 * pad / padlen contains the 0x80 byte and the following zero bytes.
440 * As the calculated padlen value only covers the number of zero
441 * bytes, this value has to be incremented by one for the 0x80 byte.
443 padlen++;
444 pad[0] = 0x80;
446 /* 10.4.2 step 4 -- first fill the linked list and then order it */
447 drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
448 list_add_tail(&S1.list, &bcc_list);
449 drbg_string_fill(&S2, L_N, sizeof(L_N));
450 list_add_tail(&S2.list, &bcc_list);
451 list_splice_tail(seedlist, &bcc_list);
452 drbg_string_fill(&S4, pad, padlen);
453 list_add_tail(&S4.list, &bcc_list);
455 /* 10.4.2 step 9 */
456 while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
458 * 10.4.2 step 9.1 - the padding is implicit as the buffer
459 * holds zeros after allocation -- even the increment of i
460 * is irrelevant as the increment remains within length of i
462 drbg_cpu_to_be32(i, iv);
463 /* 10.4.2 step 9.2 -- BCC and concatenation with temp */
464 ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
465 if (ret)
466 goto out;
467 /* 10.4.2 step 9.3 */
468 i++;
469 templen += drbg_blocklen(drbg);
472 /* 10.4.2 step 11 */
473 X = temp + (drbg_keylen(drbg));
474 drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
476 /* 10.4.2 step 12: overwriting of outval is implemented in next step */
478 /* 10.4.2 step 13 */
479 while (generated_len < bytes_to_return) {
480 short blocklen = 0;
482 * 10.4.2 step 13.1: the truncation of the key length is
483 * implicit as the key is only drbg_blocklen in size based on
484 * the implementation of the cipher function callback
486 ret = drbg_kcapi_sym(drbg, temp, X, &cipherin);
487 if (ret)
488 goto out;
489 blocklen = (drbg_blocklen(drbg) <
490 (bytes_to_return - generated_len)) ?
491 drbg_blocklen(drbg) :
492 (bytes_to_return - generated_len);
493 /* 10.4.2 step 13.2 and 14 */
494 memcpy(df_data + generated_len, X, blocklen);
495 generated_len += blocklen;
498 ret = 0;
500 out:
501 memzero_explicit(iv, drbg_blocklen(drbg));
502 memzero_explicit(temp, drbg_statelen(drbg));
503 memzero_explicit(pad, drbg_blocklen(drbg));
504 return ret;
508 * update function of CTR DRBG as defined in 10.2.1.2
510 * The reseed variable has an enhanced meaning compared to the update
511 * functions of the other DRBGs as follows:
512 * 0 => initial seed from initialization
513 * 1 => reseed via drbg_seed
514 * 2 => first invocation from drbg_ctr_update when addtl is present. In
515 * this case, the df_data scratchpad is not deleted so that it is
516 * available for another calls to prevent calling the DF function
517 * again.
518 * 3 => second invocation from drbg_ctr_update. When the update function
519 * was called with addtl, the df_data memory already contains the
520 * DFed addtl information and we do not need to call DF again.
522 static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
523 int reseed)
525 int ret = -EFAULT;
526 /* 10.2.1.2 step 1 */
527 unsigned char *temp = drbg->scratchpad;
528 unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
529 drbg_blocklen(drbg);
530 unsigned char *temp_p, *df_data_p; /* pointer to iterate over buffers */
531 unsigned int len = 0;
532 struct drbg_string cipherin;
534 memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
535 if (3 > reseed)
536 memset(df_data, 0, drbg_statelen(drbg));
538 /* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
539 if (seed) {
540 ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
541 if (ret)
542 goto out;
545 drbg_string_fill(&cipherin, drbg->V, drbg_blocklen(drbg));
547 * 10.2.1.3.2 steps 2 and 3 are already covered as the allocation
548 * zeroizes all memory during initialization
550 while (len < (drbg_statelen(drbg))) {
551 /* 10.2.1.2 step 2.1 */
552 crypto_inc(drbg->V, drbg_blocklen(drbg));
554 * 10.2.1.2 step 2.2 */
555 ret = drbg_kcapi_sym(drbg, drbg->C, temp + len, &cipherin);
556 if (ret)
557 goto out;
558 /* 10.2.1.2 step 2.3 and 3 */
559 len += drbg_blocklen(drbg);
562 /* 10.2.1.2 step 4 */
563 temp_p = temp;
564 df_data_p = df_data;
565 for (len = 0; len < drbg_statelen(drbg); len++) {
566 *temp_p ^= *df_data_p;
567 df_data_p++; temp_p++;
570 /* 10.2.1.2 step 5 */
571 memcpy(drbg->C, temp, drbg_keylen(drbg));
572 /* 10.2.1.2 step 6 */
573 memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
574 ret = 0;
576 out:
577 memzero_explicit(temp, drbg_statelen(drbg) + drbg_blocklen(drbg));
578 if (2 != reseed)
579 memzero_explicit(df_data, drbg_statelen(drbg));
580 return ret;
584 * scratchpad use: drbg_ctr_update is called independently from
585 * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
587 /* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
588 static int drbg_ctr_generate(struct drbg_state *drbg,
589 unsigned char *buf, unsigned int buflen,
590 struct list_head *addtl)
592 int len = 0;
593 int ret = 0;
594 struct drbg_string data;
596 memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
598 /* 10.2.1.5.2 step 2 */
599 if (addtl && !list_empty(addtl)) {
600 ret = drbg_ctr_update(drbg, addtl, 2);
601 if (ret)
602 return 0;
605 /* 10.2.1.5.2 step 4.1 */
606 crypto_inc(drbg->V, drbg_blocklen(drbg));
607 drbg_string_fill(&data, drbg->V, drbg_blocklen(drbg));
608 while (len < buflen) {
609 int outlen = 0;
610 /* 10.2.1.5.2 step 4.2 */
611 ret = drbg_kcapi_sym(drbg, drbg->C, drbg->scratchpad, &data);
612 if (ret) {
613 len = ret;
614 goto out;
616 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
617 drbg_blocklen(drbg) : (buflen - len);
618 if (!drbg_fips_continuous_test(drbg, drbg->scratchpad)) {
619 /* 10.2.1.5.2 step 6 */
620 crypto_inc(drbg->V, drbg_blocklen(drbg));
621 continue;
623 /* 10.2.1.5.2 step 4.3 */
624 memcpy(buf + len, drbg->scratchpad, outlen);
625 len += outlen;
626 /* 10.2.1.5.2 step 6 */
627 if (len < buflen)
628 crypto_inc(drbg->V, drbg_blocklen(drbg));
631 /* 10.2.1.5.2 step 6 */
632 ret = drbg_ctr_update(drbg, NULL, 3);
633 if (ret)
634 len = ret;
636 out:
637 memzero_explicit(drbg->scratchpad, drbg_blocklen(drbg));
638 return len;
641 static struct drbg_state_ops drbg_ctr_ops = {
642 .update = drbg_ctr_update,
643 .generate = drbg_ctr_generate,
644 .crypto_init = drbg_init_sym_kernel,
645 .crypto_fini = drbg_fini_sym_kernel,
647 #endif /* CONFIG_CRYPTO_DRBG_CTR */
649 /******************************************************************
650 * HMAC DRBG callback functions
651 ******************************************************************/
653 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
654 static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key,
655 unsigned char *outval, const struct list_head *in);
656 static int drbg_init_hash_kernel(struct drbg_state *drbg);
657 static int drbg_fini_hash_kernel(struct drbg_state *drbg);
658 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
660 #ifdef CONFIG_CRYPTO_DRBG_HMAC
661 #define CRYPTO_DRBG_HMAC_STRING "HMAC "
662 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
663 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
664 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
665 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
666 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
667 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
668 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
669 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
671 /* update function of HMAC DRBG as defined in 10.1.2.2 */
672 static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
673 int reseed)
675 int ret = -EFAULT;
676 int i = 0;
677 struct drbg_string seed1, seed2, vdata;
678 LIST_HEAD(seedlist);
679 LIST_HEAD(vdatalist);
681 if (!reseed)
682 /* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
683 memset(drbg->V, 1, drbg_statelen(drbg));
685 drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
686 list_add_tail(&seed1.list, &seedlist);
687 /* buffer of seed2 will be filled in for loop below with one byte */
688 drbg_string_fill(&seed2, NULL, 1);
689 list_add_tail(&seed2.list, &seedlist);
690 /* input data of seed is allowed to be NULL at this point */
691 if (seed)
692 list_splice_tail(seed, &seedlist);
694 drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
695 list_add_tail(&vdata.list, &vdatalist);
696 for (i = 2; 0 < i; i--) {
697 /* first round uses 0x0, second 0x1 */
698 unsigned char prefix = DRBG_PREFIX0;
699 if (1 == i)
700 prefix = DRBG_PREFIX1;
701 /* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
702 seed2.buf = &prefix;
703 ret = drbg_kcapi_hash(drbg, drbg->C, drbg->C, &seedlist);
704 if (ret)
705 return ret;
707 /* 10.1.2.2 step 2 and 5 -- HMAC for V */
708 ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &vdatalist);
709 if (ret)
710 return ret;
712 /* 10.1.2.2 step 3 */
713 if (!seed)
714 return ret;
717 return 0;
720 /* generate function of HMAC DRBG as defined in 10.1.2.5 */
721 static int drbg_hmac_generate(struct drbg_state *drbg,
722 unsigned char *buf,
723 unsigned int buflen,
724 struct list_head *addtl)
726 int len = 0;
727 int ret = 0;
728 struct drbg_string data;
729 LIST_HEAD(datalist);
731 /* 10.1.2.5 step 2 */
732 if (addtl && !list_empty(addtl)) {
733 ret = drbg_hmac_update(drbg, addtl, 1);
734 if (ret)
735 return ret;
738 drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
739 list_add_tail(&data.list, &datalist);
740 while (len < buflen) {
741 unsigned int outlen = 0;
742 /* 10.1.2.5 step 4.1 */
743 ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &datalist);
744 if (ret)
745 return ret;
746 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
747 drbg_blocklen(drbg) : (buflen - len);
748 if (!drbg_fips_continuous_test(drbg, drbg->V))
749 continue;
751 /* 10.1.2.5 step 4.2 */
752 memcpy(buf + len, drbg->V, outlen);
753 len += outlen;
756 /* 10.1.2.5 step 6 */
757 if (addtl && !list_empty(addtl))
758 ret = drbg_hmac_update(drbg, addtl, 1);
759 else
760 ret = drbg_hmac_update(drbg, NULL, 1);
761 if (ret)
762 return ret;
764 return len;
767 static struct drbg_state_ops drbg_hmac_ops = {
768 .update = drbg_hmac_update,
769 .generate = drbg_hmac_generate,
770 .crypto_init = drbg_init_hash_kernel,
771 .crypto_fini = drbg_fini_hash_kernel,
774 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
776 /******************************************************************
777 * Hash DRBG callback functions
778 ******************************************************************/
780 #ifdef CONFIG_CRYPTO_DRBG_HASH
781 #define CRYPTO_DRBG_HASH_STRING "HASH "
782 MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
783 MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
784 MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
785 MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
786 MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
787 MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
788 MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
789 MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
792 * Increment buffer
794 * @dst buffer to increment
795 * @add value to add
797 static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
798 const unsigned char *add, size_t addlen)
800 /* implied: dstlen > addlen */
801 unsigned char *dstptr;
802 const unsigned char *addptr;
803 unsigned int remainder = 0;
804 size_t len = addlen;
806 dstptr = dst + (dstlen-1);
807 addptr = add + (addlen-1);
808 while (len) {
809 remainder += *dstptr + *addptr;
810 *dstptr = remainder & 0xff;
811 remainder >>= 8;
812 len--; dstptr--; addptr--;
814 len = dstlen - addlen;
815 while (len && remainder > 0) {
816 remainder = *dstptr + 1;
817 *dstptr = remainder & 0xff;
818 remainder >>= 8;
819 len--; dstptr--;
824 * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
825 * interlinked, the scratchpad is used as follows:
826 * drbg_hash_update
827 * start: drbg->scratchpad
828 * length: drbg_statelen(drbg)
829 * drbg_hash_df:
830 * start: drbg->scratchpad + drbg_statelen(drbg)
831 * length: drbg_blocklen(drbg)
833 * drbg_hash_process_addtl uses the scratchpad, but fully completes
834 * before either of the functions mentioned before are invoked. Therefore,
835 * drbg_hash_process_addtl does not need to be specifically considered.
838 /* Derivation Function for Hash DRBG as defined in 10.4.1 */
839 static int drbg_hash_df(struct drbg_state *drbg,
840 unsigned char *outval, size_t outlen,
841 struct list_head *entropylist)
843 int ret = 0;
844 size_t len = 0;
845 unsigned char input[5];
846 unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
847 struct drbg_string data;
849 memset(tmp, 0, drbg_blocklen(drbg));
851 /* 10.4.1 step 3 */
852 input[0] = 1;
853 drbg_cpu_to_be32((outlen * 8), &input[1]);
855 /* 10.4.1 step 4.1 -- concatenation of data for input into hash */
856 drbg_string_fill(&data, input, 5);
857 list_add(&data.list, entropylist);
859 /* 10.4.1 step 4 */
860 while (len < outlen) {
861 short blocklen = 0;
862 /* 10.4.1 step 4.1 */
863 ret = drbg_kcapi_hash(drbg, NULL, tmp, entropylist);
864 if (ret)
865 goto out;
866 /* 10.4.1 step 4.2 */
867 input[0]++;
868 blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
869 drbg_blocklen(drbg) : (outlen - len);
870 memcpy(outval + len, tmp, blocklen);
871 len += blocklen;
874 out:
875 memzero_explicit(tmp, drbg_blocklen(drbg));
876 return ret;
879 /* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
880 static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
881 int reseed)
883 int ret = 0;
884 struct drbg_string data1, data2;
885 LIST_HEAD(datalist);
886 LIST_HEAD(datalist2);
887 unsigned char *V = drbg->scratchpad;
888 unsigned char prefix = DRBG_PREFIX1;
890 memset(drbg->scratchpad, 0, drbg_statelen(drbg));
891 if (!seed)
892 return -EINVAL;
894 if (reseed) {
895 /* 10.1.1.3 step 1 */
896 memcpy(V, drbg->V, drbg_statelen(drbg));
897 drbg_string_fill(&data1, &prefix, 1);
898 list_add_tail(&data1.list, &datalist);
899 drbg_string_fill(&data2, V, drbg_statelen(drbg));
900 list_add_tail(&data2.list, &datalist);
902 list_splice_tail(seed, &datalist);
904 /* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
905 ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
906 if (ret)
907 goto out;
909 /* 10.1.1.2 / 10.1.1.3 step 4 */
910 prefix = DRBG_PREFIX0;
911 drbg_string_fill(&data1, &prefix, 1);
912 list_add_tail(&data1.list, &datalist2);
913 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
914 list_add_tail(&data2.list, &datalist2);
915 /* 10.1.1.2 / 10.1.1.3 step 4 */
916 ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
918 out:
919 memzero_explicit(drbg->scratchpad, drbg_statelen(drbg));
920 return ret;
923 /* processing of additional information string for Hash DRBG */
924 static int drbg_hash_process_addtl(struct drbg_state *drbg,
925 struct list_head *addtl)
927 int ret = 0;
928 struct drbg_string data1, data2;
929 LIST_HEAD(datalist);
930 unsigned char prefix = DRBG_PREFIX2;
932 /* this is value w as per documentation */
933 memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
935 /* 10.1.1.4 step 2 */
936 if (!addtl || list_empty(addtl))
937 return 0;
939 /* 10.1.1.4 step 2a */
940 drbg_string_fill(&data1, &prefix, 1);
941 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
942 list_add_tail(&data1.list, &datalist);
943 list_add_tail(&data2.list, &datalist);
944 list_splice_tail(addtl, &datalist);
945 ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &datalist);
946 if (ret)
947 goto out;
949 /* 10.1.1.4 step 2b */
950 drbg_add_buf(drbg->V, drbg_statelen(drbg),
951 drbg->scratchpad, drbg_blocklen(drbg));
953 out:
954 memzero_explicit(drbg->scratchpad, drbg_blocklen(drbg));
955 return ret;
958 /* Hashgen defined in 10.1.1.4 */
959 static int drbg_hash_hashgen(struct drbg_state *drbg,
960 unsigned char *buf,
961 unsigned int buflen)
963 int len = 0;
964 int ret = 0;
965 unsigned char *src = drbg->scratchpad;
966 unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
967 struct drbg_string data;
968 LIST_HEAD(datalist);
970 memset(src, 0, drbg_statelen(drbg));
971 memset(dst, 0, drbg_blocklen(drbg));
973 /* 10.1.1.4 step hashgen 2 */
974 memcpy(src, drbg->V, drbg_statelen(drbg));
976 drbg_string_fill(&data, src, drbg_statelen(drbg));
977 list_add_tail(&data.list, &datalist);
978 while (len < buflen) {
979 unsigned int outlen = 0;
980 /* 10.1.1.4 step hashgen 4.1 */
981 ret = drbg_kcapi_hash(drbg, NULL, dst, &datalist);
982 if (ret) {
983 len = ret;
984 goto out;
986 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
987 drbg_blocklen(drbg) : (buflen - len);
988 if (!drbg_fips_continuous_test(drbg, dst)) {
989 crypto_inc(src, drbg_statelen(drbg));
990 continue;
992 /* 10.1.1.4 step hashgen 4.2 */
993 memcpy(buf + len, dst, outlen);
994 len += outlen;
995 /* 10.1.1.4 hashgen step 4.3 */
996 if (len < buflen)
997 crypto_inc(src, drbg_statelen(drbg));
1000 out:
1001 memzero_explicit(drbg->scratchpad,
1002 (drbg_statelen(drbg) + drbg_blocklen(drbg)));
1003 return len;
1006 /* generate function for Hash DRBG as defined in 10.1.1.4 */
1007 static int drbg_hash_generate(struct drbg_state *drbg,
1008 unsigned char *buf, unsigned int buflen,
1009 struct list_head *addtl)
1011 int len = 0;
1012 int ret = 0;
1013 union {
1014 unsigned char req[8];
1015 __be64 req_int;
1016 } u;
1017 unsigned char prefix = DRBG_PREFIX3;
1018 struct drbg_string data1, data2;
1019 LIST_HEAD(datalist);
1021 /* 10.1.1.4 step 2 */
1022 ret = drbg_hash_process_addtl(drbg, addtl);
1023 if (ret)
1024 return ret;
1025 /* 10.1.1.4 step 3 */
1026 len = drbg_hash_hashgen(drbg, buf, buflen);
1028 /* this is the value H as documented in 10.1.1.4 */
1029 memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
1030 /* 10.1.1.4 step 4 */
1031 drbg_string_fill(&data1, &prefix, 1);
1032 list_add_tail(&data1.list, &datalist);
1033 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
1034 list_add_tail(&data2.list, &datalist);
1035 ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &datalist);
1036 if (ret) {
1037 len = ret;
1038 goto out;
1041 /* 10.1.1.4 step 5 */
1042 drbg_add_buf(drbg->V, drbg_statelen(drbg),
1043 drbg->scratchpad, drbg_blocklen(drbg));
1044 drbg_add_buf(drbg->V, drbg_statelen(drbg),
1045 drbg->C, drbg_statelen(drbg));
1046 u.req_int = cpu_to_be64(drbg->reseed_ctr);
1047 drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
1049 out:
1050 memzero_explicit(drbg->scratchpad, drbg_blocklen(drbg));
1051 return len;
1055 * scratchpad usage: as update and generate are used isolated, both
1056 * can use the scratchpad
1058 static struct drbg_state_ops drbg_hash_ops = {
1059 .update = drbg_hash_update,
1060 .generate = drbg_hash_generate,
1061 .crypto_init = drbg_init_hash_kernel,
1062 .crypto_fini = drbg_fini_hash_kernel,
1064 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1066 /******************************************************************
1067 * Functions common for DRBG implementations
1068 ******************************************************************/
1071 * Seeding or reseeding of the DRBG
1073 * @drbg: DRBG state struct
1074 * @pers: personalization / additional information buffer
1075 * @reseed: 0 for initial seed process, 1 for reseeding
1077 * return:
1078 * 0 on success
1079 * error value otherwise
1081 static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1082 bool reseed)
1084 int ret = 0;
1085 unsigned char *entropy = NULL;
1086 size_t entropylen = 0;
1087 struct drbg_string data1;
1088 LIST_HEAD(seedlist);
1090 /* 9.1 / 9.2 / 9.3.1 step 3 */
1091 if (pers && pers->len > (drbg_max_addtl(drbg))) {
1092 pr_devel("DRBG: personalization string too long %zu\n",
1093 pers->len);
1094 return -EINVAL;
1097 if (drbg->test_data && drbg->test_data->testentropy) {
1098 drbg_string_fill(&data1, drbg->test_data->testentropy->buf,
1099 drbg->test_data->testentropy->len);
1100 pr_devel("DRBG: using test entropy\n");
1101 } else {
1103 * Gather entropy equal to the security strength of the DRBG.
1104 * With a derivation function, a nonce is required in addition
1105 * to the entropy. A nonce must be at least 1/2 of the security
1106 * strength of the DRBG in size. Thus, entropy * nonce is 3/2
1107 * of the strength. The consideration of a nonce is only
1108 * applicable during initial seeding.
1110 entropylen = drbg_sec_strength(drbg->core->flags);
1111 if (!entropylen)
1112 return -EFAULT;
1113 if (!reseed)
1114 entropylen = ((entropylen + 1) / 2) * 3;
1115 pr_devel("DRBG: (re)seeding with %zu bytes of entropy\n",
1116 entropylen);
1117 entropy = kzalloc(entropylen, GFP_KERNEL);
1118 if (!entropy)
1119 return -ENOMEM;
1120 get_random_bytes(entropy, entropylen);
1121 drbg_string_fill(&data1, entropy, entropylen);
1123 list_add_tail(&data1.list, &seedlist);
1126 * concatenation of entropy with personalization str / addtl input)
1127 * the variable pers is directly handed in by the caller, so check its
1128 * contents whether it is appropriate
1130 if (pers && pers->buf && 0 < pers->len) {
1131 list_add_tail(&pers->list, &seedlist);
1132 pr_devel("DRBG: using personalization string\n");
1135 if (!reseed) {
1136 memset(drbg->V, 0, drbg_statelen(drbg));
1137 memset(drbg->C, 0, drbg_statelen(drbg));
1140 ret = drbg->d_ops->update(drbg, &seedlist, reseed);
1141 if (ret)
1142 goto out;
1144 drbg->seeded = true;
1145 /* 10.1.1.2 / 10.1.1.3 step 5 */
1146 drbg->reseed_ctr = 1;
1148 out:
1149 kzfree(entropy);
1150 return ret;
1153 /* Free all substructures in a DRBG state without the DRBG state structure */
1154 static inline void drbg_dealloc_state(struct drbg_state *drbg)
1156 if (!drbg)
1157 return;
1158 kzfree(drbg->V);
1159 drbg->V = NULL;
1160 kzfree(drbg->C);
1161 drbg->C = NULL;
1162 kzfree(drbg->scratchpad);
1163 drbg->scratchpad = NULL;
1164 drbg->reseed_ctr = 0;
1165 #ifdef CONFIG_CRYPTO_FIPS
1166 kzfree(drbg->prev);
1167 drbg->prev = NULL;
1168 drbg->fips_primed = false;
1169 #endif
1173 * Allocate all sub-structures for a DRBG state.
1174 * The DRBG state structure must already be allocated.
1176 static inline int drbg_alloc_state(struct drbg_state *drbg)
1178 int ret = -ENOMEM;
1179 unsigned int sb_size = 0;
1181 drbg->V = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
1182 if (!drbg->V)
1183 goto err;
1184 drbg->C = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
1185 if (!drbg->C)
1186 goto err;
1187 #ifdef CONFIG_CRYPTO_FIPS
1188 drbg->prev = kmalloc(drbg_blocklen(drbg), GFP_KERNEL);
1189 if (!drbg->prev)
1190 goto err;
1191 drbg->fips_primed = false;
1192 #endif
1193 /* scratchpad is only generated for CTR and Hash */
1194 if (drbg->core->flags & DRBG_HMAC)
1195 sb_size = 0;
1196 else if (drbg->core->flags & DRBG_CTR)
1197 sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1198 drbg_statelen(drbg) + /* df_data */
1199 drbg_blocklen(drbg) + /* pad */
1200 drbg_blocklen(drbg) + /* iv */
1201 drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1202 else
1203 sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1205 if (0 < sb_size) {
1206 drbg->scratchpad = kzalloc(sb_size, GFP_KERNEL);
1207 if (!drbg->scratchpad)
1208 goto err;
1210 spin_lock_init(&drbg->drbg_lock);
1211 return 0;
1213 err:
1214 drbg_dealloc_state(drbg);
1215 return ret;
1219 * Strategy to avoid holding long term locks: generate a shadow copy of DRBG
1220 * and perform all operations on this shadow copy. After finishing, restore
1221 * the updated state of the shadow copy into original drbg state. This way,
1222 * only the read and write operations of the original drbg state must be
1223 * locked
1225 static inline void drbg_copy_drbg(struct drbg_state *src,
1226 struct drbg_state *dst)
1228 if (!src || !dst)
1229 return;
1230 memcpy(dst->V, src->V, drbg_statelen(src));
1231 memcpy(dst->C, src->C, drbg_statelen(src));
1232 dst->reseed_ctr = src->reseed_ctr;
1233 dst->seeded = src->seeded;
1234 dst->pr = src->pr;
1235 #ifdef CONFIG_CRYPTO_FIPS
1236 dst->fips_primed = src->fips_primed;
1237 memcpy(dst->prev, src->prev, drbg_blocklen(src));
1238 #endif
1240 * Not copied:
1241 * scratchpad is initialized drbg_alloc_state;
1242 * priv_data is initialized with call to crypto_init;
1243 * d_ops and core are set outside, as these parameters are const;
1244 * test_data is set outside to prevent it being copied back.
1248 static int drbg_make_shadow(struct drbg_state *drbg, struct drbg_state **shadow)
1250 int ret = -ENOMEM;
1251 struct drbg_state *tmp = NULL;
1253 tmp = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
1254 if (!tmp)
1255 return -ENOMEM;
1257 /* read-only data as they are defined as const, no lock needed */
1258 tmp->core = drbg->core;
1259 tmp->d_ops = drbg->d_ops;
1261 ret = drbg_alloc_state(tmp);
1262 if (ret)
1263 goto err;
1265 spin_lock_bh(&drbg->drbg_lock);
1266 drbg_copy_drbg(drbg, tmp);
1267 /* only make a link to the test buffer, as we only read that data */
1268 tmp->test_data = drbg->test_data;
1269 spin_unlock_bh(&drbg->drbg_lock);
1270 *shadow = tmp;
1271 return 0;
1273 err:
1274 kzfree(tmp);
1275 return ret;
1278 static void drbg_restore_shadow(struct drbg_state *drbg,
1279 struct drbg_state **shadow)
1281 struct drbg_state *tmp = *shadow;
1283 spin_lock_bh(&drbg->drbg_lock);
1284 drbg_copy_drbg(tmp, drbg);
1285 spin_unlock_bh(&drbg->drbg_lock);
1286 drbg_dealloc_state(tmp);
1287 kzfree(tmp);
1288 *shadow = NULL;
1291 /*************************************************************************
1292 * DRBG interface functions
1293 *************************************************************************/
1296 * DRBG generate function as required by SP800-90A - this function
1297 * generates random numbers
1299 * @drbg DRBG state handle
1300 * @buf Buffer where to store the random numbers -- the buffer must already
1301 * be pre-allocated by caller
1302 * @buflen Length of output buffer - this value defines the number of random
1303 * bytes pulled from DRBG
1304 * @addtl Additional input that is mixed into state, may be NULL -- note
1305 * the entropy is pulled by the DRBG internally unconditionally
1306 * as defined in SP800-90A. The additional input is mixed into
1307 * the state in addition to the pulled entropy.
1309 * return: generated number of bytes
1311 static int drbg_generate(struct drbg_state *drbg,
1312 unsigned char *buf, unsigned int buflen,
1313 struct drbg_string *addtl)
1315 int len = 0;
1316 struct drbg_state *shadow = NULL;
1317 LIST_HEAD(addtllist);
1318 struct drbg_string timestamp;
1319 union {
1320 cycles_t cycles;
1321 unsigned char char_cycles[sizeof(cycles_t)];
1322 } now;
1324 if (0 == buflen || !buf) {
1325 pr_devel("DRBG: no output buffer provided\n");
1326 return -EINVAL;
1328 if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1329 pr_devel("DRBG: wrong format of additional information\n");
1330 return -EINVAL;
1333 len = drbg_make_shadow(drbg, &shadow);
1334 if (len) {
1335 pr_devel("DRBG: shadow copy cannot be generated\n");
1336 return len;
1339 /* 9.3.1 step 2 */
1340 len = -EINVAL;
1341 if (buflen > (drbg_max_request_bytes(shadow))) {
1342 pr_devel("DRBG: requested random numbers too large %u\n",
1343 buflen);
1344 goto err;
1347 /* 9.3.1 step 3 is implicit with the chosen DRBG */
1349 /* 9.3.1 step 4 */
1350 if (addtl && addtl->len > (drbg_max_addtl(shadow))) {
1351 pr_devel("DRBG: additional information string too long %zu\n",
1352 addtl->len);
1353 goto err;
1355 /* 9.3.1 step 5 is implicit with the chosen DRBG */
1358 * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1359 * here. The spec is a bit convoluted here, we make it simpler.
1361 if ((drbg_max_requests(shadow)) < shadow->reseed_ctr)
1362 shadow->seeded = false;
1364 /* allocate cipher handle */
1365 len = shadow->d_ops->crypto_init(shadow);
1366 if (len)
1367 goto err;
1369 if (shadow->pr || !shadow->seeded) {
1370 pr_devel("DRBG: reseeding before generation (prediction "
1371 "resistance: %s, state %s)\n",
1372 drbg->pr ? "true" : "false",
1373 drbg->seeded ? "seeded" : "unseeded");
1374 /* 9.3.1 steps 7.1 through 7.3 */
1375 len = drbg_seed(shadow, addtl, true);
1376 if (len)
1377 goto err;
1378 /* 9.3.1 step 7.4 */
1379 addtl = NULL;
1383 * Mix the time stamp into the DRBG state if the DRBG is not in
1384 * test mode. If there are two callers invoking the DRBG at the same
1385 * time, i.e. before the first caller merges its shadow state back,
1386 * both callers would obtain the same random number stream without
1387 * changing the state here.
1389 if (!drbg->test_data) {
1390 now.cycles = random_get_entropy();
1391 drbg_string_fill(&timestamp, now.char_cycles, sizeof(cycles_t));
1392 list_add_tail(&timestamp.list, &addtllist);
1394 if (addtl && 0 < addtl->len)
1395 list_add_tail(&addtl->list, &addtllist);
1396 /* 9.3.1 step 8 and 10 */
1397 len = shadow->d_ops->generate(shadow, buf, buflen, &addtllist);
1399 /* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1400 shadow->reseed_ctr++;
1401 if (0 >= len)
1402 goto err;
1405 * Section 11.3.3 requires to re-perform self tests after some
1406 * generated random numbers. The chosen value after which self
1407 * test is performed is arbitrary, but it should be reasonable.
1408 * However, we do not perform the self tests because of the following
1409 * reasons: it is mathematically impossible that the initial self tests
1410 * were successfully and the following are not. If the initial would
1411 * pass and the following would not, the kernel integrity is violated.
1412 * In this case, the entire kernel operation is questionable and it
1413 * is unlikely that the integrity violation only affects the
1414 * correct operation of the DRBG.
1416 * Albeit the following code is commented out, it is provided in
1417 * case somebody has a need to implement the test of 11.3.3.
1419 #if 0
1420 if (shadow->reseed_ctr && !(shadow->reseed_ctr % 4096)) {
1421 int err = 0;
1422 pr_devel("DRBG: start to perform self test\n");
1423 if (drbg->core->flags & DRBG_HMAC)
1424 err = alg_test("drbg_pr_hmac_sha256",
1425 "drbg_pr_hmac_sha256", 0, 0);
1426 else if (drbg->core->flags & DRBG_CTR)
1427 err = alg_test("drbg_pr_ctr_aes128",
1428 "drbg_pr_ctr_aes128", 0, 0);
1429 else
1430 err = alg_test("drbg_pr_sha256",
1431 "drbg_pr_sha256", 0, 0);
1432 if (err) {
1433 pr_err("DRBG: periodical self test failed\n");
1435 * uninstantiate implies that from now on, only errors
1436 * are returned when reusing this DRBG cipher handle
1438 drbg_uninstantiate(drbg);
1439 drbg_dealloc_state(shadow);
1440 kzfree(shadow);
1441 return 0;
1442 } else {
1443 pr_devel("DRBG: self test successful\n");
1446 #endif
1448 err:
1449 shadow->d_ops->crypto_fini(shadow);
1450 drbg_restore_shadow(drbg, &shadow);
1451 return len;
1455 * Wrapper around drbg_generate which can pull arbitrary long strings
1456 * from the DRBG without hitting the maximum request limitation.
1458 * Parameters: see drbg_generate
1459 * Return codes: see drbg_generate -- if one drbg_generate request fails,
1460 * the entire drbg_generate_long request fails
1462 static int drbg_generate_long(struct drbg_state *drbg,
1463 unsigned char *buf, unsigned int buflen,
1464 struct drbg_string *addtl)
1466 int len = 0;
1467 unsigned int slice = 0;
1468 do {
1469 int tmplen = 0;
1470 unsigned int chunk = 0;
1471 slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1472 chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1473 tmplen = drbg_generate(drbg, buf + len, chunk, addtl);
1474 if (0 >= tmplen)
1475 return tmplen;
1476 len += tmplen;
1477 } while (slice > 0 && (len < buflen));
1478 return len;
1482 * DRBG instantiation function as required by SP800-90A - this function
1483 * sets up the DRBG handle, performs the initial seeding and all sanity
1484 * checks required by SP800-90A
1486 * @drbg memory of state -- if NULL, new memory is allocated
1487 * @pers Personalization string that is mixed into state, may be NULL -- note
1488 * the entropy is pulled by the DRBG internally unconditionally
1489 * as defined in SP800-90A. The additional input is mixed into
1490 * the state in addition to the pulled entropy.
1491 * @coreref reference to core
1492 * @pr prediction resistance enabled
1494 * return
1495 * 0 on success
1496 * error value otherwise
1498 static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1499 int coreref, bool pr)
1501 int ret = -ENOMEM;
1503 pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1504 "%s\n", coreref, pr ? "enabled" : "disabled");
1505 drbg->core = &drbg_cores[coreref];
1506 drbg->pr = pr;
1507 drbg->seeded = false;
1508 switch (drbg->core->flags & DRBG_TYPE_MASK) {
1509 #ifdef CONFIG_CRYPTO_DRBG_HMAC
1510 case DRBG_HMAC:
1511 drbg->d_ops = &drbg_hmac_ops;
1512 break;
1513 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
1514 #ifdef CONFIG_CRYPTO_DRBG_HASH
1515 case DRBG_HASH:
1516 drbg->d_ops = &drbg_hash_ops;
1517 break;
1518 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1519 #ifdef CONFIG_CRYPTO_DRBG_CTR
1520 case DRBG_CTR:
1521 drbg->d_ops = &drbg_ctr_ops;
1522 break;
1523 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1524 default:
1525 return -EOPNOTSUPP;
1528 /* 9.1 step 1 is implicit with the selected DRBG type */
1531 * 9.1 step 2 is implicit as caller can select prediction resistance
1532 * and the flag is copied into drbg->flags --
1533 * all DRBG types support prediction resistance
1536 /* 9.1 step 4 is implicit in drbg_sec_strength */
1538 ret = drbg_alloc_state(drbg);
1539 if (ret)
1540 return ret;
1542 ret = -EFAULT;
1543 if (drbg->d_ops->crypto_init(drbg))
1544 goto err;
1545 ret = drbg_seed(drbg, pers, false);
1546 drbg->d_ops->crypto_fini(drbg);
1547 if (ret)
1548 goto err;
1550 return 0;
1552 err:
1553 drbg_dealloc_state(drbg);
1554 return ret;
1558 * DRBG uninstantiate function as required by SP800-90A - this function
1559 * frees all buffers and the DRBG handle
1561 * @drbg DRBG state handle
1563 * return
1564 * 0 on success
1566 static int drbg_uninstantiate(struct drbg_state *drbg)
1568 spin_lock_bh(&drbg->drbg_lock);
1569 drbg_dealloc_state(drbg);
1570 /* no scrubbing of test_data -- this shall survive an uninstantiate */
1571 spin_unlock_bh(&drbg->drbg_lock);
1572 return 0;
1576 * Helper function for setting the test data in the DRBG
1578 * @drbg DRBG state handle
1579 * @test_data test data to sets
1581 static inline void drbg_set_testdata(struct drbg_state *drbg,
1582 struct drbg_test_data *test_data)
1584 if (!test_data || !test_data->testentropy)
1585 return;
1586 spin_lock_bh(&drbg->drbg_lock);
1587 drbg->test_data = test_data;
1588 spin_unlock_bh(&drbg->drbg_lock);
1591 /***************************************************************
1592 * Kernel crypto API cipher invocations requested by DRBG
1593 ***************************************************************/
1595 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1596 struct sdesc {
1597 struct shash_desc shash;
1598 char ctx[];
1601 static int drbg_init_hash_kernel(struct drbg_state *drbg)
1603 struct sdesc *sdesc;
1604 struct crypto_shash *tfm;
1606 tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1607 if (IS_ERR(tfm)) {
1608 pr_info("DRBG: could not allocate digest TFM handle\n");
1609 return PTR_ERR(tfm);
1611 BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1612 sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1613 GFP_KERNEL);
1614 if (!sdesc) {
1615 crypto_free_shash(tfm);
1616 return -ENOMEM;
1619 sdesc->shash.tfm = tfm;
1620 sdesc->shash.flags = 0;
1621 drbg->priv_data = sdesc;
1622 return 0;
1625 static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1627 struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1628 if (sdesc) {
1629 crypto_free_shash(sdesc->shash.tfm);
1630 kzfree(sdesc);
1632 drbg->priv_data = NULL;
1633 return 0;
1636 static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key,
1637 unsigned char *outval, const struct list_head *in)
1639 struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1640 struct drbg_string *input = NULL;
1642 if (key)
1643 crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1644 crypto_shash_init(&sdesc->shash);
1645 list_for_each_entry(input, in, list)
1646 crypto_shash_update(&sdesc->shash, input->buf, input->len);
1647 return crypto_shash_final(&sdesc->shash, outval);
1649 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1651 #ifdef CONFIG_CRYPTO_DRBG_CTR
1652 static int drbg_init_sym_kernel(struct drbg_state *drbg)
1654 int ret = 0;
1655 struct crypto_blkcipher *tfm;
1657 tfm = crypto_alloc_blkcipher(drbg->core->backend_cra_name, 0, 0);
1658 if (IS_ERR(tfm)) {
1659 pr_info("DRBG: could not allocate cipher TFM handle\n");
1660 return PTR_ERR(tfm);
1662 BUG_ON(drbg_blocklen(drbg) != crypto_blkcipher_blocksize(tfm));
1663 drbg->priv_data = tfm;
1664 return ret;
1667 static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1669 struct crypto_blkcipher *tfm =
1670 (struct crypto_blkcipher *)drbg->priv_data;
1671 if (tfm)
1672 crypto_free_blkcipher(tfm);
1673 drbg->priv_data = NULL;
1674 return 0;
1677 static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
1678 unsigned char *outval, const struct drbg_string *in)
1680 int ret = 0;
1681 struct scatterlist sg_in, sg_out;
1682 struct blkcipher_desc desc;
1683 struct crypto_blkcipher *tfm =
1684 (struct crypto_blkcipher *)drbg->priv_data;
1686 desc.tfm = tfm;
1687 desc.flags = 0;
1688 crypto_blkcipher_setkey(tfm, key, (drbg_keylen(drbg)));
1689 /* there is only component in *in */
1690 sg_init_one(&sg_in, in->buf, in->len);
1691 sg_init_one(&sg_out, outval, drbg_blocklen(drbg));
1692 ret = crypto_blkcipher_encrypt(&desc, &sg_out, &sg_in, in->len);
1694 return ret;
1696 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1698 /***************************************************************
1699 * Kernel crypto API interface to register DRBG
1700 ***************************************************************/
1703 * Look up the DRBG flags by given kernel crypto API cra_name
1704 * The code uses the drbg_cores definition to do this
1706 * @cra_name kernel crypto API cra_name
1707 * @coreref reference to integer which is filled with the pointer to
1708 * the applicable core
1709 * @pr reference for setting prediction resistance
1711 * return: flags
1713 static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1714 int *coreref, bool *pr)
1716 int i = 0;
1717 size_t start = 0;
1718 int len = 0;
1720 *pr = true;
1721 /* disassemble the names */
1722 if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1723 start = 10;
1724 *pr = false;
1725 } else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1726 start = 8;
1727 } else {
1728 return;
1731 /* remove the first part */
1732 len = strlen(cra_driver_name) - start;
1733 for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1734 if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1735 len)) {
1736 *coreref = i;
1737 return;
1742 static int drbg_kcapi_init(struct crypto_tfm *tfm)
1744 struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1745 bool pr = false;
1746 int coreref = 0;
1748 drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm), &coreref, &pr);
1750 * when personalization string is needed, the caller must call reset
1751 * and provide the personalization string as seed information
1753 return drbg_instantiate(drbg, NULL, coreref, pr);
1756 static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1758 drbg_uninstantiate(crypto_tfm_ctx(tfm));
1762 * Generate random numbers invoked by the kernel crypto API:
1763 * The API of the kernel crypto API is extended as follows:
1765 * If dlen is larger than zero, rdata is interpreted as the output buffer
1766 * where random data is to be stored.
1768 * If dlen is zero, rdata is interpreted as a pointer to a struct drbg_gen
1769 * which holds the additional information string that is used for the
1770 * DRBG generation process. The output buffer that is to be used to store
1771 * data is also pointed to by struct drbg_gen.
1773 static int drbg_kcapi_random(struct crypto_rng *tfm, u8 *rdata,
1774 unsigned int dlen)
1776 struct drbg_state *drbg = crypto_rng_ctx(tfm);
1777 if (0 < dlen) {
1778 return drbg_generate_long(drbg, rdata, dlen, NULL);
1779 } else {
1780 struct drbg_gen *data = (struct drbg_gen *)rdata;
1781 struct drbg_string addtl;
1782 /* catch NULL pointer */
1783 if (!data)
1784 return 0;
1785 drbg_set_testdata(drbg, data->test_data);
1786 /* linked list variable is now local to allow modification */
1787 drbg_string_fill(&addtl, data->addtl->buf, data->addtl->len);
1788 return drbg_generate_long(drbg, data->outbuf, data->outlen,
1789 &addtl);
1794 * Reset the DRBG invoked by the kernel crypto API
1795 * The reset implies a full re-initialization of the DRBG. Similar to the
1796 * generate function of drbg_kcapi_random, this function extends the
1797 * kernel crypto API interface with struct drbg_gen
1799 static int drbg_kcapi_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen)
1801 struct drbg_state *drbg = crypto_rng_ctx(tfm);
1802 struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1803 bool pr = false;
1804 struct drbg_string seed_string;
1805 int coreref = 0;
1807 drbg_uninstantiate(drbg);
1808 drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1809 &pr);
1810 if (0 < slen) {
1811 drbg_string_fill(&seed_string, seed, slen);
1812 return drbg_instantiate(drbg, &seed_string, coreref, pr);
1813 } else {
1814 struct drbg_gen *data = (struct drbg_gen *)seed;
1815 /* allow invocation of API call with NULL, 0 */
1816 if (!data)
1817 return drbg_instantiate(drbg, NULL, coreref, pr);
1818 drbg_set_testdata(drbg, data->test_data);
1819 /* linked list variable is now local to allow modification */
1820 drbg_string_fill(&seed_string, data->addtl->buf,
1821 data->addtl->len);
1822 return drbg_instantiate(drbg, &seed_string, coreref, pr);
1826 /***************************************************************
1827 * Kernel module: code to load the module
1828 ***************************************************************/
1831 * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1832 * of the error handling.
1834 * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1835 * as seed source of get_random_bytes does not fail.
1837 * Note 2: There is no sensible way of testing the reseed counter
1838 * enforcement, so skip it.
1840 static inline int __init drbg_healthcheck_sanity(void)
1842 #ifdef CONFIG_CRYPTO_FIPS
1843 int len = 0;
1844 #define OUTBUFLEN 16
1845 unsigned char buf[OUTBUFLEN];
1846 struct drbg_state *drbg = NULL;
1847 int ret = -EFAULT;
1848 int rc = -EFAULT;
1849 bool pr = false;
1850 int coreref = 0;
1851 struct drbg_string addtl;
1852 size_t max_addtllen, max_request_bytes;
1854 /* only perform test in FIPS mode */
1855 if (!fips_enabled)
1856 return 0;
1858 #ifdef CONFIG_CRYPTO_DRBG_CTR
1859 drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
1860 #elif defined CONFIG_CRYPTO_DRBG_HASH
1861 drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
1862 #else
1863 drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
1864 #endif
1866 drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
1867 if (!drbg)
1868 return -ENOMEM;
1871 * if the following tests fail, it is likely that there is a buffer
1872 * overflow as buf is much smaller than the requested or provided
1873 * string lengths -- in case the error handling does not succeed
1874 * we may get an OOPS. And we want to get an OOPS as this is a
1875 * grave bug.
1878 /* get a valid instance of DRBG for following tests */
1879 ret = drbg_instantiate(drbg, NULL, coreref, pr);
1880 if (ret) {
1881 rc = ret;
1882 goto outbuf;
1884 max_addtllen = drbg_max_addtl(drbg);
1885 max_request_bytes = drbg_max_request_bytes(drbg);
1886 drbg_string_fill(&addtl, buf, max_addtllen + 1);
1887 /* overflow addtllen with additonal info string */
1888 len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
1889 BUG_ON(0 < len);
1890 /* overflow max_bits */
1891 len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
1892 BUG_ON(0 < len);
1893 drbg_uninstantiate(drbg);
1895 /* overflow max addtllen with personalization string */
1896 ret = drbg_instantiate(drbg, &addtl, coreref, pr);
1897 BUG_ON(0 == ret);
1898 /* all tests passed */
1899 rc = 0;
1901 pr_devel("DRBG: Sanity tests for failure code paths successfully "
1902 "completed\n");
1904 drbg_uninstantiate(drbg);
1905 outbuf:
1906 kzfree(drbg);
1907 return rc;
1908 #else /* CONFIG_CRYPTO_FIPS */
1909 return 0;
1910 #endif /* CONFIG_CRYPTO_FIPS */
1913 static struct crypto_alg drbg_algs[22];
1916 * Fill the array drbg_algs used to register the different DRBGs
1917 * with the kernel crypto API. To fill the array, the information
1918 * from drbg_cores[] is used.
1920 static inline void __init drbg_fill_array(struct crypto_alg *alg,
1921 const struct drbg_core *core, int pr)
1923 int pos = 0;
1924 static int priority = 100;
1926 memset(alg, 0, sizeof(struct crypto_alg));
1927 memcpy(alg->cra_name, "stdrng", 6);
1928 if (pr) {
1929 memcpy(alg->cra_driver_name, "drbg_pr_", 8);
1930 pos = 8;
1931 } else {
1932 memcpy(alg->cra_driver_name, "drbg_nopr_", 10);
1933 pos = 10;
1935 memcpy(alg->cra_driver_name + pos, core->cra_name,
1936 strlen(core->cra_name));
1938 alg->cra_priority = priority;
1939 priority++;
1941 * If FIPS mode enabled, the selected DRBG shall have the
1942 * highest cra_priority over other stdrng instances to ensure
1943 * it is selected.
1945 if (fips_enabled)
1946 alg->cra_priority += 200;
1948 alg->cra_flags = CRYPTO_ALG_TYPE_RNG;
1949 alg->cra_ctxsize = sizeof(struct drbg_state);
1950 alg->cra_type = &crypto_rng_type;
1951 alg->cra_module = THIS_MODULE;
1952 alg->cra_init = drbg_kcapi_init;
1953 alg->cra_exit = drbg_kcapi_cleanup;
1954 alg->cra_u.rng.rng_make_random = drbg_kcapi_random;
1955 alg->cra_u.rng.rng_reset = drbg_kcapi_reset;
1956 alg->cra_u.rng.seedsize = 0;
1959 static int __init drbg_init(void)
1961 unsigned int i = 0; /* pointer to drbg_algs */
1962 unsigned int j = 0; /* pointer to drbg_cores */
1963 int ret = -EFAULT;
1965 ret = drbg_healthcheck_sanity();
1966 if (ret)
1967 return ret;
1969 if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
1970 pr_info("DRBG: Cannot register all DRBG types"
1971 "(slots needed: %zu, slots available: %zu)\n",
1972 ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
1973 return ret;
1977 * each DRBG definition can be used with PR and without PR, thus
1978 * we instantiate each DRBG in drbg_cores[] twice.
1980 * As the order of placing them into the drbg_algs array matters
1981 * (the later DRBGs receive a higher cra_priority) we register the
1982 * prediction resistance DRBGs first as the should not be too
1983 * interesting.
1985 for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
1986 drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
1987 for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
1988 drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
1989 return crypto_register_algs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
1992 static void __exit drbg_exit(void)
1994 crypto_unregister_algs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
1997 module_init(drbg_init);
1998 module_exit(drbg_exit);
1999 #ifndef CRYPTO_DRBG_HASH_STRING
2000 #define CRYPTO_DRBG_HASH_STRING ""
2001 #endif
2002 #ifndef CRYPTO_DRBG_HMAC_STRING
2003 #define CRYPTO_DRBG_HMAC_STRING ""
2004 #endif
2005 #ifndef CRYPTO_DRBG_CTR_STRING
2006 #define CRYPTO_DRBG_CTR_STRING ""
2007 #endif
2008 MODULE_LICENSE("GPL");
2009 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
2010 MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
2011 "using following cores: "
2012 CRYPTO_DRBG_HASH_STRING
2013 CRYPTO_DRBG_HMAC_STRING
2014 CRYPTO_DRBG_CTR_STRING);