2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
38 #include "blk-mq-sched.h"
40 static void blk_mq_poll_stats_start(struct request_queue
*q
);
41 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
);
42 static void __blk_mq_stop_hw_queues(struct request_queue
*q
, bool sync
);
44 static int blk_mq_poll_stats_bkt(const struct request
*rq
)
46 int ddir
, bytes
, bucket
;
48 ddir
= rq_data_dir(rq
);
49 bytes
= blk_rq_bytes(rq
);
51 bucket
= ddir
+ 2*(ilog2(bytes
) - 9);
55 else if (bucket
>= BLK_MQ_POLL_STATS_BKTS
)
56 return ddir
+ BLK_MQ_POLL_STATS_BKTS
- 2;
62 * Check if any of the ctx's have pending work in this hardware queue
64 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
66 return sbitmap_any_bit_set(&hctx
->ctx_map
) ||
67 !list_empty_careful(&hctx
->dispatch
) ||
68 blk_mq_sched_has_work(hctx
);
72 * Mark this ctx as having pending work in this hardware queue
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
75 struct blk_mq_ctx
*ctx
)
77 if (!sbitmap_test_bit(&hctx
->ctx_map
, ctx
->index_hw
))
78 sbitmap_set_bit(&hctx
->ctx_map
, ctx
->index_hw
);
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
82 struct blk_mq_ctx
*ctx
)
84 sbitmap_clear_bit(&hctx
->ctx_map
, ctx
->index_hw
);
87 void blk_freeze_queue_start(struct request_queue
*q
)
91 freeze_depth
= atomic_inc_return(&q
->mq_freeze_depth
);
92 if (freeze_depth
== 1) {
93 percpu_ref_kill(&q
->q_usage_counter
);
94 blk_mq_run_hw_queues(q
, false);
97 EXPORT_SYMBOL_GPL(blk_freeze_queue_start
);
99 void blk_mq_freeze_queue_wait(struct request_queue
*q
)
101 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->q_usage_counter
));
103 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait
);
105 int blk_mq_freeze_queue_wait_timeout(struct request_queue
*q
,
106 unsigned long timeout
)
108 return wait_event_timeout(q
->mq_freeze_wq
,
109 percpu_ref_is_zero(&q
->q_usage_counter
),
112 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout
);
115 * Guarantee no request is in use, so we can change any data structure of
116 * the queue afterward.
118 void blk_freeze_queue(struct request_queue
*q
)
121 * In the !blk_mq case we are only calling this to kill the
122 * q_usage_counter, otherwise this increases the freeze depth
123 * and waits for it to return to zero. For this reason there is
124 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
125 * exported to drivers as the only user for unfreeze is blk_mq.
127 blk_freeze_queue_start(q
);
128 blk_mq_freeze_queue_wait(q
);
131 void blk_mq_freeze_queue(struct request_queue
*q
)
134 * ...just an alias to keep freeze and unfreeze actions balanced
135 * in the blk_mq_* namespace
139 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
141 void blk_mq_unfreeze_queue(struct request_queue
*q
)
145 freeze_depth
= atomic_dec_return(&q
->mq_freeze_depth
);
146 WARN_ON_ONCE(freeze_depth
< 0);
148 percpu_ref_reinit(&q
->q_usage_counter
);
149 wake_up_all(&q
->mq_freeze_wq
);
152 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
155 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
158 * Note: this function does not prevent that the struct request end_io()
159 * callback function is invoked. Additionally, it is not prevented that
160 * new queue_rq() calls occur unless the queue has been stopped first.
162 void blk_mq_quiesce_queue(struct request_queue
*q
)
164 struct blk_mq_hw_ctx
*hctx
;
168 __blk_mq_stop_hw_queues(q
, true);
170 queue_for_each_hw_ctx(q
, hctx
, i
) {
171 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
172 synchronize_srcu(&hctx
->queue_rq_srcu
);
179 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue
);
181 void blk_mq_wake_waiters(struct request_queue
*q
)
183 struct blk_mq_hw_ctx
*hctx
;
186 queue_for_each_hw_ctx(q
, hctx
, i
)
187 if (blk_mq_hw_queue_mapped(hctx
))
188 blk_mq_tag_wakeup_all(hctx
->tags
, true);
191 * If we are called because the queue has now been marked as
192 * dying, we need to ensure that processes currently waiting on
193 * the queue are notified as well.
195 wake_up_all(&q
->mq_freeze_wq
);
198 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
200 return blk_mq_has_free_tags(hctx
->tags
);
202 EXPORT_SYMBOL(blk_mq_can_queue
);
204 void blk_mq_rq_ctx_init(struct request_queue
*q
, struct blk_mq_ctx
*ctx
,
205 struct request
*rq
, unsigned int op
)
207 INIT_LIST_HEAD(&rq
->queuelist
);
208 /* csd/requeue_work/fifo_time is initialized before use */
212 if (blk_queue_io_stat(q
))
213 rq
->rq_flags
|= RQF_IO_STAT
;
214 /* do not touch atomic flags, it needs atomic ops against the timer */
216 INIT_HLIST_NODE(&rq
->hash
);
217 RB_CLEAR_NODE(&rq
->rb_node
);
220 rq
->start_time
= jiffies
;
221 #ifdef CONFIG_BLK_CGROUP
223 set_start_time_ns(rq
);
224 rq
->io_start_time_ns
= 0;
226 rq
->nr_phys_segments
= 0;
227 #if defined(CONFIG_BLK_DEV_INTEGRITY)
228 rq
->nr_integrity_segments
= 0;
231 /* tag was already set */
234 INIT_LIST_HEAD(&rq
->timeout_list
);
238 rq
->end_io_data
= NULL
;
241 ctx
->rq_dispatched
[op_is_sync(op
)]++;
243 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init
);
245 struct request
*__blk_mq_alloc_request(struct blk_mq_alloc_data
*data
,
251 tag
= blk_mq_get_tag(data
);
252 if (tag
!= BLK_MQ_TAG_FAIL
) {
253 struct blk_mq_tags
*tags
= blk_mq_tags_from_data(data
);
255 rq
= tags
->static_rqs
[tag
];
257 if (data
->flags
& BLK_MQ_REQ_INTERNAL
) {
259 rq
->internal_tag
= tag
;
261 if (blk_mq_tag_busy(data
->hctx
)) {
262 rq
->rq_flags
= RQF_MQ_INFLIGHT
;
263 atomic_inc(&data
->hctx
->nr_active
);
266 rq
->internal_tag
= -1;
267 data
->hctx
->tags
->rqs
[rq
->tag
] = rq
;
270 blk_mq_rq_ctx_init(data
->q
, data
->ctx
, rq
, op
);
276 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request
);
278 struct request
*blk_mq_alloc_request(struct request_queue
*q
, int rw
,
281 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
};
285 ret
= blk_queue_enter(q
, flags
& BLK_MQ_REQ_NOWAIT
);
289 rq
= blk_mq_sched_get_request(q
, NULL
, rw
, &alloc_data
);
291 blk_mq_put_ctx(alloc_data
.ctx
);
295 return ERR_PTR(-EWOULDBLOCK
);
298 rq
->__sector
= (sector_t
) -1;
299 rq
->bio
= rq
->biotail
= NULL
;
302 EXPORT_SYMBOL(blk_mq_alloc_request
);
304 struct request
*blk_mq_alloc_request_hctx(struct request_queue
*q
, int rw
,
305 unsigned int flags
, unsigned int hctx_idx
)
307 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
};
313 * If the tag allocator sleeps we could get an allocation for a
314 * different hardware context. No need to complicate the low level
315 * allocator for this for the rare use case of a command tied to
318 if (WARN_ON_ONCE(!(flags
& BLK_MQ_REQ_NOWAIT
)))
319 return ERR_PTR(-EINVAL
);
321 if (hctx_idx
>= q
->nr_hw_queues
)
322 return ERR_PTR(-EIO
);
324 ret
= blk_queue_enter(q
, true);
329 * Check if the hardware context is actually mapped to anything.
330 * If not tell the caller that it should skip this queue.
332 alloc_data
.hctx
= q
->queue_hw_ctx
[hctx_idx
];
333 if (!blk_mq_hw_queue_mapped(alloc_data
.hctx
)) {
335 return ERR_PTR(-EXDEV
);
337 cpu
= cpumask_first(alloc_data
.hctx
->cpumask
);
338 alloc_data
.ctx
= __blk_mq_get_ctx(q
, cpu
);
340 rq
= blk_mq_sched_get_request(q
, NULL
, rw
, &alloc_data
);
345 return ERR_PTR(-EWOULDBLOCK
);
349 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx
);
351 void __blk_mq_finish_request(struct blk_mq_hw_ctx
*hctx
, struct blk_mq_ctx
*ctx
,
354 const int sched_tag
= rq
->internal_tag
;
355 struct request_queue
*q
= rq
->q
;
357 if (rq
->rq_flags
& RQF_MQ_INFLIGHT
)
358 atomic_dec(&hctx
->nr_active
);
360 wbt_done(q
->rq_wb
, &rq
->issue_stat
);
363 clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
364 clear_bit(REQ_ATOM_POLL_SLEPT
, &rq
->atomic_flags
);
366 blk_mq_put_tag(hctx
, hctx
->tags
, ctx
, rq
->tag
);
368 blk_mq_put_tag(hctx
, hctx
->sched_tags
, ctx
, sched_tag
);
369 blk_mq_sched_restart(hctx
);
373 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx
*hctx
,
376 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
378 ctx
->rq_completed
[rq_is_sync(rq
)]++;
379 __blk_mq_finish_request(hctx
, ctx
, rq
);
382 void blk_mq_finish_request(struct request
*rq
)
384 blk_mq_finish_hctx_request(blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
), rq
);
386 EXPORT_SYMBOL_GPL(blk_mq_finish_request
);
388 void blk_mq_free_request(struct request
*rq
)
390 blk_mq_sched_put_request(rq
);
392 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
394 inline void __blk_mq_end_request(struct request
*rq
, int error
)
396 blk_account_io_done(rq
);
399 wbt_done(rq
->q
->rq_wb
, &rq
->issue_stat
);
400 rq
->end_io(rq
, error
);
402 if (unlikely(blk_bidi_rq(rq
)))
403 blk_mq_free_request(rq
->next_rq
);
404 blk_mq_free_request(rq
);
407 EXPORT_SYMBOL(__blk_mq_end_request
);
409 void blk_mq_end_request(struct request
*rq
, int error
)
411 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
413 __blk_mq_end_request(rq
, error
);
415 EXPORT_SYMBOL(blk_mq_end_request
);
417 static void __blk_mq_complete_request_remote(void *data
)
419 struct request
*rq
= data
;
421 rq
->q
->softirq_done_fn(rq
);
424 static void __blk_mq_complete_request(struct request
*rq
)
426 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
430 if (rq
->internal_tag
!= -1)
431 blk_mq_sched_completed_request(rq
);
432 if (rq
->rq_flags
& RQF_STATS
) {
433 blk_mq_poll_stats_start(rq
->q
);
437 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
438 rq
->q
->softirq_done_fn(rq
);
443 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
444 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
446 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
447 rq
->csd
.func
= __blk_mq_complete_request_remote
;
450 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
452 rq
->q
->softirq_done_fn(rq
);
458 * blk_mq_complete_request - end I/O on a request
459 * @rq: the request being processed
462 * Ends all I/O on a request. It does not handle partial completions.
463 * The actual completion happens out-of-order, through a IPI handler.
465 void blk_mq_complete_request(struct request
*rq
)
467 struct request_queue
*q
= rq
->q
;
469 if (unlikely(blk_should_fake_timeout(q
)))
471 if (!blk_mark_rq_complete(rq
))
472 __blk_mq_complete_request(rq
);
474 EXPORT_SYMBOL(blk_mq_complete_request
);
476 int blk_mq_request_started(struct request
*rq
)
478 return test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
480 EXPORT_SYMBOL_GPL(blk_mq_request_started
);
482 void blk_mq_start_request(struct request
*rq
)
484 struct request_queue
*q
= rq
->q
;
486 blk_mq_sched_started_request(rq
);
488 trace_block_rq_issue(q
, rq
);
490 if (test_bit(QUEUE_FLAG_STATS
, &q
->queue_flags
)) {
491 blk_stat_set_issue(&rq
->issue_stat
, blk_rq_sectors(rq
));
492 rq
->rq_flags
|= RQF_STATS
;
493 wbt_issue(q
->rq_wb
, &rq
->issue_stat
);
499 * Ensure that ->deadline is visible before set the started
500 * flag and clear the completed flag.
502 smp_mb__before_atomic();
505 * Mark us as started and clear complete. Complete might have been
506 * set if requeue raced with timeout, which then marked it as
507 * complete. So be sure to clear complete again when we start
508 * the request, otherwise we'll ignore the completion event.
510 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
511 set_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
512 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
513 clear_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
);
515 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
517 * Make sure space for the drain appears. We know we can do
518 * this because max_hw_segments has been adjusted to be one
519 * fewer than the device can handle.
521 rq
->nr_phys_segments
++;
524 EXPORT_SYMBOL(blk_mq_start_request
);
527 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
528 * flag isn't set yet, so there may be race with timeout handler,
529 * but given rq->deadline is just set in .queue_rq() under
530 * this situation, the race won't be possible in reality because
531 * rq->timeout should be set as big enough to cover the window
532 * between blk_mq_start_request() called from .queue_rq() and
533 * clearing REQ_ATOM_STARTED here.
535 static void __blk_mq_requeue_request(struct request
*rq
)
537 struct request_queue
*q
= rq
->q
;
539 trace_block_rq_requeue(q
, rq
);
540 wbt_requeue(q
->rq_wb
, &rq
->issue_stat
);
541 blk_mq_sched_requeue_request(rq
);
543 if (test_and_clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
544 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
545 rq
->nr_phys_segments
--;
549 void blk_mq_requeue_request(struct request
*rq
, bool kick_requeue_list
)
551 __blk_mq_requeue_request(rq
);
553 BUG_ON(blk_queued_rq(rq
));
554 blk_mq_add_to_requeue_list(rq
, true, kick_requeue_list
);
556 EXPORT_SYMBOL(blk_mq_requeue_request
);
558 static void blk_mq_requeue_work(struct work_struct
*work
)
560 struct request_queue
*q
=
561 container_of(work
, struct request_queue
, requeue_work
.work
);
563 struct request
*rq
, *next
;
566 spin_lock_irqsave(&q
->requeue_lock
, flags
);
567 list_splice_init(&q
->requeue_list
, &rq_list
);
568 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
570 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
571 if (!(rq
->rq_flags
& RQF_SOFTBARRIER
))
574 rq
->rq_flags
&= ~RQF_SOFTBARRIER
;
575 list_del_init(&rq
->queuelist
);
576 blk_mq_sched_insert_request(rq
, true, false, false, true);
579 while (!list_empty(&rq_list
)) {
580 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
581 list_del_init(&rq
->queuelist
);
582 blk_mq_sched_insert_request(rq
, false, false, false, true);
585 blk_mq_run_hw_queues(q
, false);
588 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
,
589 bool kick_requeue_list
)
591 struct request_queue
*q
= rq
->q
;
595 * We abuse this flag that is otherwise used by the I/O scheduler to
596 * request head insertation from the workqueue.
598 BUG_ON(rq
->rq_flags
& RQF_SOFTBARRIER
);
600 spin_lock_irqsave(&q
->requeue_lock
, flags
);
602 rq
->rq_flags
|= RQF_SOFTBARRIER
;
603 list_add(&rq
->queuelist
, &q
->requeue_list
);
605 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
607 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
609 if (kick_requeue_list
)
610 blk_mq_kick_requeue_list(q
);
612 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
614 void blk_mq_kick_requeue_list(struct request_queue
*q
)
616 kblockd_schedule_delayed_work(&q
->requeue_work
, 0);
618 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
620 void blk_mq_delay_kick_requeue_list(struct request_queue
*q
,
623 kblockd_schedule_delayed_work(&q
->requeue_work
,
624 msecs_to_jiffies(msecs
));
626 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list
);
628 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
630 if (tag
< tags
->nr_tags
) {
631 prefetch(tags
->rqs
[tag
]);
632 return tags
->rqs
[tag
];
637 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
639 struct blk_mq_timeout_data
{
641 unsigned int next_set
;
644 void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
646 const struct blk_mq_ops
*ops
= req
->q
->mq_ops
;
647 enum blk_eh_timer_return ret
= BLK_EH_RESET_TIMER
;
650 * We know that complete is set at this point. If STARTED isn't set
651 * anymore, then the request isn't active and the "timeout" should
652 * just be ignored. This can happen due to the bitflag ordering.
653 * Timeout first checks if STARTED is set, and if it is, assumes
654 * the request is active. But if we race with completion, then
655 * both flags will get cleared. So check here again, and ignore
656 * a timeout event with a request that isn't active.
658 if (!test_bit(REQ_ATOM_STARTED
, &req
->atomic_flags
))
662 ret
= ops
->timeout(req
, reserved
);
666 __blk_mq_complete_request(req
);
668 case BLK_EH_RESET_TIMER
:
670 blk_clear_rq_complete(req
);
672 case BLK_EH_NOT_HANDLED
:
675 printk(KERN_ERR
"block: bad eh return: %d\n", ret
);
680 static void blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
681 struct request
*rq
, void *priv
, bool reserved
)
683 struct blk_mq_timeout_data
*data
= priv
;
685 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
689 * The rq being checked may have been freed and reallocated
690 * out already here, we avoid this race by checking rq->deadline
691 * and REQ_ATOM_COMPLETE flag together:
693 * - if rq->deadline is observed as new value because of
694 * reusing, the rq won't be timed out because of timing.
695 * - if rq->deadline is observed as previous value,
696 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
697 * because we put a barrier between setting rq->deadline
698 * and clearing the flag in blk_mq_start_request(), so
699 * this rq won't be timed out too.
701 if (time_after_eq(jiffies
, rq
->deadline
)) {
702 if (!blk_mark_rq_complete(rq
))
703 blk_mq_rq_timed_out(rq
, reserved
);
704 } else if (!data
->next_set
|| time_after(data
->next
, rq
->deadline
)) {
705 data
->next
= rq
->deadline
;
710 static void blk_mq_timeout_work(struct work_struct
*work
)
712 struct request_queue
*q
=
713 container_of(work
, struct request_queue
, timeout_work
);
714 struct blk_mq_timeout_data data
= {
720 /* A deadlock might occur if a request is stuck requiring a
721 * timeout at the same time a queue freeze is waiting
722 * completion, since the timeout code would not be able to
723 * acquire the queue reference here.
725 * That's why we don't use blk_queue_enter here; instead, we use
726 * percpu_ref_tryget directly, because we need to be able to
727 * obtain a reference even in the short window between the queue
728 * starting to freeze, by dropping the first reference in
729 * blk_freeze_queue_start, and the moment the last request is
730 * consumed, marked by the instant q_usage_counter reaches
733 if (!percpu_ref_tryget(&q
->q_usage_counter
))
736 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_expired
, &data
);
739 data
.next
= blk_rq_timeout(round_jiffies_up(data
.next
));
740 mod_timer(&q
->timeout
, data
.next
);
742 struct blk_mq_hw_ctx
*hctx
;
744 queue_for_each_hw_ctx(q
, hctx
, i
) {
745 /* the hctx may be unmapped, so check it here */
746 if (blk_mq_hw_queue_mapped(hctx
))
747 blk_mq_tag_idle(hctx
);
754 * Reverse check our software queue for entries that we could potentially
755 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
756 * too much time checking for merges.
758 static bool blk_mq_attempt_merge(struct request_queue
*q
,
759 struct blk_mq_ctx
*ctx
, struct bio
*bio
)
764 list_for_each_entry_reverse(rq
, &ctx
->rq_list
, queuelist
) {
770 if (!blk_rq_merge_ok(rq
, bio
))
773 switch (blk_try_merge(rq
, bio
)) {
774 case ELEVATOR_BACK_MERGE
:
775 if (blk_mq_sched_allow_merge(q
, rq
, bio
))
776 merged
= bio_attempt_back_merge(q
, rq
, bio
);
778 case ELEVATOR_FRONT_MERGE
:
779 if (blk_mq_sched_allow_merge(q
, rq
, bio
))
780 merged
= bio_attempt_front_merge(q
, rq
, bio
);
782 case ELEVATOR_DISCARD_MERGE
:
783 merged
= bio_attempt_discard_merge(q
, rq
, bio
);
797 struct flush_busy_ctx_data
{
798 struct blk_mq_hw_ctx
*hctx
;
799 struct list_head
*list
;
802 static bool flush_busy_ctx(struct sbitmap
*sb
, unsigned int bitnr
, void *data
)
804 struct flush_busy_ctx_data
*flush_data
= data
;
805 struct blk_mq_hw_ctx
*hctx
= flush_data
->hctx
;
806 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
808 sbitmap_clear_bit(sb
, bitnr
);
809 spin_lock(&ctx
->lock
);
810 list_splice_tail_init(&ctx
->rq_list
, flush_data
->list
);
811 spin_unlock(&ctx
->lock
);
816 * Process software queues that have been marked busy, splicing them
817 * to the for-dispatch
819 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
821 struct flush_busy_ctx_data data
= {
826 sbitmap_for_each_set(&hctx
->ctx_map
, flush_busy_ctx
, &data
);
828 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs
);
830 static inline unsigned int queued_to_index(unsigned int queued
)
835 return min(BLK_MQ_MAX_DISPATCH_ORDER
- 1, ilog2(queued
) + 1);
838 bool blk_mq_get_driver_tag(struct request
*rq
, struct blk_mq_hw_ctx
**hctx
,
841 struct blk_mq_alloc_data data
= {
843 .hctx
= blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
),
844 .flags
= wait
? 0 : BLK_MQ_REQ_NOWAIT
,
847 might_sleep_if(wait
);
852 if (blk_mq_tag_is_reserved(data
.hctx
->sched_tags
, rq
->internal_tag
))
853 data
.flags
|= BLK_MQ_REQ_RESERVED
;
855 rq
->tag
= blk_mq_get_tag(&data
);
857 if (blk_mq_tag_busy(data
.hctx
)) {
858 rq
->rq_flags
|= RQF_MQ_INFLIGHT
;
859 atomic_inc(&data
.hctx
->nr_active
);
861 data
.hctx
->tags
->rqs
[rq
->tag
] = rq
;
867 return rq
->tag
!= -1;
870 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx
*hctx
,
873 blk_mq_put_tag(hctx
, hctx
->tags
, rq
->mq_ctx
, rq
->tag
);
876 if (rq
->rq_flags
& RQF_MQ_INFLIGHT
) {
877 rq
->rq_flags
&= ~RQF_MQ_INFLIGHT
;
878 atomic_dec(&hctx
->nr_active
);
882 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx
*hctx
,
885 if (rq
->tag
== -1 || rq
->internal_tag
== -1)
888 __blk_mq_put_driver_tag(hctx
, rq
);
891 static void blk_mq_put_driver_tag(struct request
*rq
)
893 struct blk_mq_hw_ctx
*hctx
;
895 if (rq
->tag
== -1 || rq
->internal_tag
== -1)
898 hctx
= blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
);
899 __blk_mq_put_driver_tag(hctx
, rq
);
903 * If we fail getting a driver tag because all the driver tags are already
904 * assigned and on the dispatch list, BUT the first entry does not have a
905 * tag, then we could deadlock. For that case, move entries with assigned
906 * driver tags to the front, leaving the set of tagged requests in the
907 * same order, and the untagged set in the same order.
909 static bool reorder_tags_to_front(struct list_head
*list
)
911 struct request
*rq
, *tmp
, *first
= NULL
;
913 list_for_each_entry_safe_reverse(rq
, tmp
, list
, queuelist
) {
917 list_move(&rq
->queuelist
, list
);
923 return first
!= NULL
;
926 static int blk_mq_dispatch_wake(wait_queue_t
*wait
, unsigned mode
, int flags
,
929 struct blk_mq_hw_ctx
*hctx
;
931 hctx
= container_of(wait
, struct blk_mq_hw_ctx
, dispatch_wait
);
933 list_del(&wait
->task_list
);
934 clear_bit_unlock(BLK_MQ_S_TAG_WAITING
, &hctx
->state
);
935 blk_mq_run_hw_queue(hctx
, true);
939 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx
*hctx
)
941 struct sbq_wait_state
*ws
;
944 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
945 * The thread which wins the race to grab this bit adds the hardware
946 * queue to the wait queue.
948 if (test_bit(BLK_MQ_S_TAG_WAITING
, &hctx
->state
) ||
949 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING
, &hctx
->state
))
952 init_waitqueue_func_entry(&hctx
->dispatch_wait
, blk_mq_dispatch_wake
);
953 ws
= bt_wait_ptr(&hctx
->tags
->bitmap_tags
, hctx
);
956 * As soon as this returns, it's no longer safe to fiddle with
957 * hctx->dispatch_wait, since a completion can wake up the wait queue
958 * and unlock the bit.
960 add_wait_queue(&ws
->wait
, &hctx
->dispatch_wait
);
964 bool blk_mq_dispatch_rq_list(struct request_queue
*q
, struct list_head
*list
)
966 struct blk_mq_hw_ctx
*hctx
;
968 int errors
, queued
, ret
= BLK_MQ_RQ_QUEUE_OK
;
970 if (list_empty(list
))
974 * Now process all the entries, sending them to the driver.
978 struct blk_mq_queue_data bd
;
980 rq
= list_first_entry(list
, struct request
, queuelist
);
981 if (!blk_mq_get_driver_tag(rq
, &hctx
, false)) {
982 if (!queued
&& reorder_tags_to_front(list
))
986 * The initial allocation attempt failed, so we need to
987 * rerun the hardware queue when a tag is freed.
989 if (!blk_mq_dispatch_wait_add(hctx
))
993 * It's possible that a tag was freed in the window
994 * between the allocation failure and adding the
995 * hardware queue to the wait queue.
997 if (!blk_mq_get_driver_tag(rq
, &hctx
, false))
1001 list_del_init(&rq
->queuelist
);
1006 * Flag last if we have no more requests, or if we have more
1007 * but can't assign a driver tag to it.
1009 if (list_empty(list
))
1012 struct request
*nxt
;
1014 nxt
= list_first_entry(list
, struct request
, queuelist
);
1015 bd
.last
= !blk_mq_get_driver_tag(nxt
, NULL
, false);
1018 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1020 case BLK_MQ_RQ_QUEUE_OK
:
1023 case BLK_MQ_RQ_QUEUE_BUSY
:
1024 blk_mq_put_driver_tag_hctx(hctx
, rq
);
1025 list_add(&rq
->queuelist
, list
);
1026 __blk_mq_requeue_request(rq
);
1029 pr_err("blk-mq: bad return on queue: %d\n", ret
);
1030 case BLK_MQ_RQ_QUEUE_ERROR
:
1032 blk_mq_end_request(rq
, -EIO
);
1036 if (ret
== BLK_MQ_RQ_QUEUE_BUSY
)
1038 } while (!list_empty(list
));
1040 hctx
->dispatched
[queued_to_index(queued
)]++;
1043 * Any items that need requeuing? Stuff them into hctx->dispatch,
1044 * that is where we will continue on next queue run.
1046 if (!list_empty(list
)) {
1048 * If an I/O scheduler has been configured and we got a driver
1049 * tag for the next request already, free it again.
1051 rq
= list_first_entry(list
, struct request
, queuelist
);
1052 blk_mq_put_driver_tag(rq
);
1054 spin_lock(&hctx
->lock
);
1055 list_splice_init(list
, &hctx
->dispatch
);
1056 spin_unlock(&hctx
->lock
);
1059 * If SCHED_RESTART was set by the caller of this function and
1060 * it is no longer set that means that it was cleared by another
1061 * thread and hence that a queue rerun is needed.
1063 * If TAG_WAITING is set that means that an I/O scheduler has
1064 * been configured and another thread is waiting for a driver
1065 * tag. To guarantee fairness, do not rerun this hardware queue
1066 * but let the other thread grab the driver tag.
1068 * If no I/O scheduler has been configured it is possible that
1069 * the hardware queue got stopped and restarted before requests
1070 * were pushed back onto the dispatch list. Rerun the queue to
1071 * avoid starvation. Notes:
1072 * - blk_mq_run_hw_queue() checks whether or not a queue has
1073 * been stopped before rerunning a queue.
1074 * - Some but not all block drivers stop a queue before
1075 * returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
1078 if (!blk_mq_sched_needs_restart(hctx
) &&
1079 !test_bit(BLK_MQ_S_TAG_WAITING
, &hctx
->state
))
1080 blk_mq_run_hw_queue(hctx
, true);
1083 return (queued
+ errors
) != 0;
1086 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1090 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
) &&
1091 cpu_online(hctx
->next_cpu
));
1093 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1095 blk_mq_sched_dispatch_requests(hctx
);
1100 srcu_idx
= srcu_read_lock(&hctx
->queue_rq_srcu
);
1101 blk_mq_sched_dispatch_requests(hctx
);
1102 srcu_read_unlock(&hctx
->queue_rq_srcu
, srcu_idx
);
1107 * It'd be great if the workqueue API had a way to pass
1108 * in a mask and had some smarts for more clever placement.
1109 * For now we just round-robin here, switching for every
1110 * BLK_MQ_CPU_WORK_BATCH queued items.
1112 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
1114 if (hctx
->queue
->nr_hw_queues
== 1)
1115 return WORK_CPU_UNBOUND
;
1117 if (--hctx
->next_cpu_batch
<= 0) {
1120 next_cpu
= cpumask_next(hctx
->next_cpu
, hctx
->cpumask
);
1121 if (next_cpu
>= nr_cpu_ids
)
1122 next_cpu
= cpumask_first(hctx
->cpumask
);
1124 hctx
->next_cpu
= next_cpu
;
1125 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1128 return hctx
->next_cpu
;
1131 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
,
1132 unsigned long msecs
)
1134 if (unlikely(blk_mq_hctx_stopped(hctx
) ||
1135 !blk_mq_hw_queue_mapped(hctx
)))
1138 if (!async
&& !(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1139 int cpu
= get_cpu();
1140 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
1141 __blk_mq_run_hw_queue(hctx
);
1149 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
1151 msecs_to_jiffies(msecs
));
1154 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1156 __blk_mq_delay_run_hw_queue(hctx
, true, msecs
);
1158 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue
);
1160 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1162 __blk_mq_delay_run_hw_queue(hctx
, async
, 0);
1164 EXPORT_SYMBOL(blk_mq_run_hw_queue
);
1166 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
1168 struct blk_mq_hw_ctx
*hctx
;
1171 queue_for_each_hw_ctx(q
, hctx
, i
) {
1172 if (!blk_mq_hctx_has_pending(hctx
) ||
1173 blk_mq_hctx_stopped(hctx
))
1176 blk_mq_run_hw_queue(hctx
, async
);
1179 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
1182 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1183 * @q: request queue.
1185 * The caller is responsible for serializing this function against
1186 * blk_mq_{start,stop}_hw_queue().
1188 bool blk_mq_queue_stopped(struct request_queue
*q
)
1190 struct blk_mq_hw_ctx
*hctx
;
1193 queue_for_each_hw_ctx(q
, hctx
, i
)
1194 if (blk_mq_hctx_stopped(hctx
))
1199 EXPORT_SYMBOL(blk_mq_queue_stopped
);
1201 static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool sync
)
1204 cancel_delayed_work_sync(&hctx
->run_work
);
1206 cancel_delayed_work(&hctx
->run_work
);
1208 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1211 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1213 __blk_mq_stop_hw_queue(hctx
, false);
1215 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
1217 static void __blk_mq_stop_hw_queues(struct request_queue
*q
, bool sync
)
1219 struct blk_mq_hw_ctx
*hctx
;
1222 queue_for_each_hw_ctx(q
, hctx
, i
)
1223 __blk_mq_stop_hw_queue(hctx
, sync
);
1226 void blk_mq_stop_hw_queues(struct request_queue
*q
)
1228 __blk_mq_stop_hw_queues(q
, false);
1230 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
1232 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1234 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1236 blk_mq_run_hw_queue(hctx
, false);
1238 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
1240 void blk_mq_start_hw_queues(struct request_queue
*q
)
1242 struct blk_mq_hw_ctx
*hctx
;
1245 queue_for_each_hw_ctx(q
, hctx
, i
)
1246 blk_mq_start_hw_queue(hctx
);
1248 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
1250 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1252 if (!blk_mq_hctx_stopped(hctx
))
1255 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1256 blk_mq_run_hw_queue(hctx
, async
);
1258 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue
);
1260 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
1262 struct blk_mq_hw_ctx
*hctx
;
1265 queue_for_each_hw_ctx(q
, hctx
, i
)
1266 blk_mq_start_stopped_hw_queue(hctx
, async
);
1268 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
1270 static void blk_mq_run_work_fn(struct work_struct
*work
)
1272 struct blk_mq_hw_ctx
*hctx
;
1274 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
1277 * If we are stopped, don't run the queue. The exception is if
1278 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1279 * the STOPPED bit and run it.
1281 if (test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
)) {
1282 if (!test_bit(BLK_MQ_S_START_ON_RUN
, &hctx
->state
))
1285 clear_bit(BLK_MQ_S_START_ON_RUN
, &hctx
->state
);
1286 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1289 __blk_mq_run_hw_queue(hctx
);
1293 void blk_mq_delay_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1295 if (unlikely(!blk_mq_hw_queue_mapped(hctx
)))
1299 * Stop the hw queue, then modify currently delayed work.
1300 * This should prevent us from running the queue prematurely.
1301 * Mark the queue as auto-clearing STOPPED when it runs.
1303 blk_mq_stop_hw_queue(hctx
);
1304 set_bit(BLK_MQ_S_START_ON_RUN
, &hctx
->state
);
1305 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
1307 msecs_to_jiffies(msecs
));
1309 EXPORT_SYMBOL(blk_mq_delay_queue
);
1311 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx
*hctx
,
1315 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1317 trace_block_rq_insert(hctx
->queue
, rq
);
1320 list_add(&rq
->queuelist
, &ctx
->rq_list
);
1322 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
1325 void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
,
1328 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1330 __blk_mq_insert_req_list(hctx
, rq
, at_head
);
1331 blk_mq_hctx_mark_pending(hctx
, ctx
);
1334 void blk_mq_insert_requests(struct blk_mq_hw_ctx
*hctx
, struct blk_mq_ctx
*ctx
,
1335 struct list_head
*list
)
1339 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1342 spin_lock(&ctx
->lock
);
1343 while (!list_empty(list
)) {
1346 rq
= list_first_entry(list
, struct request
, queuelist
);
1347 BUG_ON(rq
->mq_ctx
!= ctx
);
1348 list_del_init(&rq
->queuelist
);
1349 __blk_mq_insert_req_list(hctx
, rq
, false);
1351 blk_mq_hctx_mark_pending(hctx
, ctx
);
1352 spin_unlock(&ctx
->lock
);
1355 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1357 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1358 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1360 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
1361 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
1362 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
1365 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1367 struct blk_mq_ctx
*this_ctx
;
1368 struct request_queue
*this_q
;
1371 LIST_HEAD(ctx_list
);
1374 list_splice_init(&plug
->mq_list
, &list
);
1376 list_sort(NULL
, &list
, plug_ctx_cmp
);
1382 while (!list_empty(&list
)) {
1383 rq
= list_entry_rq(list
.next
);
1384 list_del_init(&rq
->queuelist
);
1386 if (rq
->mq_ctx
!= this_ctx
) {
1388 trace_block_unplug(this_q
, depth
, from_schedule
);
1389 blk_mq_sched_insert_requests(this_q
, this_ctx
,
1394 this_ctx
= rq
->mq_ctx
;
1400 list_add_tail(&rq
->queuelist
, &ctx_list
);
1404 * If 'this_ctx' is set, we know we have entries to complete
1405 * on 'ctx_list'. Do those.
1408 trace_block_unplug(this_q
, depth
, from_schedule
);
1409 blk_mq_sched_insert_requests(this_q
, this_ctx
, &ctx_list
,
1414 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1416 blk_init_request_from_bio(rq
, bio
);
1418 blk_account_io_start(rq
, true);
1421 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx
*hctx
)
1423 return (hctx
->flags
& BLK_MQ_F_SHOULD_MERGE
) &&
1424 !blk_queue_nomerges(hctx
->queue
);
1427 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx
*hctx
,
1428 struct blk_mq_ctx
*ctx
,
1429 struct request
*rq
, struct bio
*bio
)
1431 if (!hctx_allow_merges(hctx
) || !bio_mergeable(bio
)) {
1432 blk_mq_bio_to_request(rq
, bio
);
1433 spin_lock(&ctx
->lock
);
1435 __blk_mq_insert_request(hctx
, rq
, false);
1436 spin_unlock(&ctx
->lock
);
1439 struct request_queue
*q
= hctx
->queue
;
1441 spin_lock(&ctx
->lock
);
1442 if (!blk_mq_attempt_merge(q
, ctx
, bio
)) {
1443 blk_mq_bio_to_request(rq
, bio
);
1447 spin_unlock(&ctx
->lock
);
1448 __blk_mq_finish_request(hctx
, ctx
, rq
);
1453 static blk_qc_t
request_to_qc_t(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
1456 return blk_tag_to_qc_t(rq
->tag
, hctx
->queue_num
, false);
1458 return blk_tag_to_qc_t(rq
->internal_tag
, hctx
->queue_num
, true);
1461 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1463 blk_qc_t
*cookie
, bool may_sleep
)
1465 struct request_queue
*q
= rq
->q
;
1466 struct blk_mq_queue_data bd
= {
1470 blk_qc_t new_cookie
;
1472 bool run_queue
= true;
1474 if (blk_mq_hctx_stopped(hctx
)) {
1482 if (!blk_mq_get_driver_tag(rq
, NULL
, false))
1485 new_cookie
= request_to_qc_t(hctx
, rq
);
1488 * For OK queue, we are done. For error, kill it. Any other
1489 * error (busy), just add it to our list as we previously
1492 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1493 if (ret
== BLK_MQ_RQ_QUEUE_OK
) {
1494 *cookie
= new_cookie
;
1498 if (ret
== BLK_MQ_RQ_QUEUE_ERROR
) {
1499 *cookie
= BLK_QC_T_NONE
;
1500 blk_mq_end_request(rq
, -EIO
);
1504 __blk_mq_requeue_request(rq
);
1506 blk_mq_sched_insert_request(rq
, false, run_queue
, false, may_sleep
);
1509 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1510 struct request
*rq
, blk_qc_t
*cookie
)
1512 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1514 __blk_mq_try_issue_directly(hctx
, rq
, cookie
, false);
1517 unsigned int srcu_idx
;
1521 srcu_idx
= srcu_read_lock(&hctx
->queue_rq_srcu
);
1522 __blk_mq_try_issue_directly(hctx
, rq
, cookie
, true);
1523 srcu_read_unlock(&hctx
->queue_rq_srcu
, srcu_idx
);
1527 static blk_qc_t
blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1529 const int is_sync
= op_is_sync(bio
->bi_opf
);
1530 const int is_flush_fua
= op_is_flush(bio
->bi_opf
);
1531 struct blk_mq_alloc_data data
= { .flags
= 0 };
1533 unsigned int request_count
= 0;
1534 struct blk_plug
*plug
;
1535 struct request
*same_queue_rq
= NULL
;
1537 unsigned int wb_acct
;
1539 blk_queue_bounce(q
, &bio
);
1541 blk_queue_split(q
, &bio
, q
->bio_split
);
1543 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1545 return BLK_QC_T_NONE
;
1548 if (!is_flush_fua
&& !blk_queue_nomerges(q
) &&
1549 blk_attempt_plug_merge(q
, bio
, &request_count
, &same_queue_rq
))
1550 return BLK_QC_T_NONE
;
1552 if (blk_mq_sched_bio_merge(q
, bio
))
1553 return BLK_QC_T_NONE
;
1555 wb_acct
= wbt_wait(q
->rq_wb
, bio
, NULL
);
1557 trace_block_getrq(q
, bio
, bio
->bi_opf
);
1559 rq
= blk_mq_sched_get_request(q
, bio
, bio
->bi_opf
, &data
);
1560 if (unlikely(!rq
)) {
1561 __wbt_done(q
->rq_wb
, wb_acct
);
1562 return BLK_QC_T_NONE
;
1565 wbt_track(&rq
->issue_stat
, wb_acct
);
1567 cookie
= request_to_qc_t(data
.hctx
, rq
);
1569 plug
= current
->plug
;
1570 if (unlikely(is_flush_fua
)) {
1571 blk_mq_put_ctx(data
.ctx
);
1572 blk_mq_bio_to_request(rq
, bio
);
1574 blk_mq_sched_insert_request(rq
, false, true, true,
1577 blk_insert_flush(rq
);
1578 blk_mq_run_hw_queue(data
.hctx
, true);
1580 } else if (plug
&& q
->nr_hw_queues
== 1) {
1581 struct request
*last
= NULL
;
1583 blk_mq_put_ctx(data
.ctx
);
1584 blk_mq_bio_to_request(rq
, bio
);
1587 * @request_count may become stale because of schedule
1588 * out, so check the list again.
1590 if (list_empty(&plug
->mq_list
))
1592 else if (blk_queue_nomerges(q
))
1593 request_count
= blk_plug_queued_count(q
);
1596 trace_block_plug(q
);
1598 last
= list_entry_rq(plug
->mq_list
.prev
);
1600 if (request_count
>= BLK_MAX_REQUEST_COUNT
|| (last
&&
1601 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
)) {
1602 blk_flush_plug_list(plug
, false);
1603 trace_block_plug(q
);
1606 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1607 } else if (plug
&& !blk_queue_nomerges(q
)) {
1608 blk_mq_bio_to_request(rq
, bio
);
1611 * We do limited plugging. If the bio can be merged, do that.
1612 * Otherwise the existing request in the plug list will be
1613 * issued. So the plug list will have one request at most
1614 * The plug list might get flushed before this. If that happens,
1615 * the plug list is empty, and same_queue_rq is invalid.
1617 if (list_empty(&plug
->mq_list
))
1618 same_queue_rq
= NULL
;
1620 list_del_init(&same_queue_rq
->queuelist
);
1621 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1623 blk_mq_put_ctx(data
.ctx
);
1625 if (same_queue_rq
) {
1626 data
.hctx
= blk_mq_map_queue(q
,
1627 same_queue_rq
->mq_ctx
->cpu
);
1628 blk_mq_try_issue_directly(data
.hctx
, same_queue_rq
,
1631 } else if (q
->nr_hw_queues
> 1 && is_sync
) {
1632 blk_mq_put_ctx(data
.ctx
);
1633 blk_mq_bio_to_request(rq
, bio
);
1634 blk_mq_try_issue_directly(data
.hctx
, rq
, &cookie
);
1635 } else if (q
->elevator
) {
1636 blk_mq_put_ctx(data
.ctx
);
1637 blk_mq_bio_to_request(rq
, bio
);
1638 blk_mq_sched_insert_request(rq
, false, true, true, true);
1639 } else if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1640 blk_mq_put_ctx(data
.ctx
);
1641 blk_mq_run_hw_queue(data
.hctx
, true);
1643 blk_mq_put_ctx(data
.ctx
);
1648 void blk_mq_free_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
1649 unsigned int hctx_idx
)
1653 if (tags
->rqs
&& set
->ops
->exit_request
) {
1656 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1657 struct request
*rq
= tags
->static_rqs
[i
];
1661 set
->ops
->exit_request(set
, rq
, hctx_idx
);
1662 tags
->static_rqs
[i
] = NULL
;
1666 while (!list_empty(&tags
->page_list
)) {
1667 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
1668 list_del_init(&page
->lru
);
1670 * Remove kmemleak object previously allocated in
1671 * blk_mq_init_rq_map().
1673 kmemleak_free(page_address(page
));
1674 __free_pages(page
, page
->private);
1678 void blk_mq_free_rq_map(struct blk_mq_tags
*tags
)
1682 kfree(tags
->static_rqs
);
1683 tags
->static_rqs
= NULL
;
1685 blk_mq_free_tags(tags
);
1688 struct blk_mq_tags
*blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
,
1689 unsigned int hctx_idx
,
1690 unsigned int nr_tags
,
1691 unsigned int reserved_tags
)
1693 struct blk_mq_tags
*tags
;
1696 node
= blk_mq_hw_queue_to_node(set
->mq_map
, hctx_idx
);
1697 if (node
== NUMA_NO_NODE
)
1698 node
= set
->numa_node
;
1700 tags
= blk_mq_init_tags(nr_tags
, reserved_tags
, node
,
1701 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
1705 tags
->rqs
= kzalloc_node(nr_tags
* sizeof(struct request
*),
1706 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
1709 blk_mq_free_tags(tags
);
1713 tags
->static_rqs
= kzalloc_node(nr_tags
* sizeof(struct request
*),
1714 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
1716 if (!tags
->static_rqs
) {
1718 blk_mq_free_tags(tags
);
1725 static size_t order_to_size(unsigned int order
)
1727 return (size_t)PAGE_SIZE
<< order
;
1730 int blk_mq_alloc_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
1731 unsigned int hctx_idx
, unsigned int depth
)
1733 unsigned int i
, j
, entries_per_page
, max_order
= 4;
1734 size_t rq_size
, left
;
1737 node
= blk_mq_hw_queue_to_node(set
->mq_map
, hctx_idx
);
1738 if (node
== NUMA_NO_NODE
)
1739 node
= set
->numa_node
;
1741 INIT_LIST_HEAD(&tags
->page_list
);
1744 * rq_size is the size of the request plus driver payload, rounded
1745 * to the cacheline size
1747 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
1749 left
= rq_size
* depth
;
1751 for (i
= 0; i
< depth
; ) {
1752 int this_order
= max_order
;
1757 while (this_order
&& left
< order_to_size(this_order
- 1))
1761 page
= alloc_pages_node(node
,
1762 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
1768 if (order_to_size(this_order
) < rq_size
)
1775 page
->private = this_order
;
1776 list_add_tail(&page
->lru
, &tags
->page_list
);
1778 p
= page_address(page
);
1780 * Allow kmemleak to scan these pages as they contain pointers
1781 * to additional allocations like via ops->init_request().
1783 kmemleak_alloc(p
, order_to_size(this_order
), 1, GFP_NOIO
);
1784 entries_per_page
= order_to_size(this_order
) / rq_size
;
1785 to_do
= min(entries_per_page
, depth
- i
);
1786 left
-= to_do
* rq_size
;
1787 for (j
= 0; j
< to_do
; j
++) {
1788 struct request
*rq
= p
;
1790 tags
->static_rqs
[i
] = rq
;
1791 if (set
->ops
->init_request
) {
1792 if (set
->ops
->init_request(set
, rq
, hctx_idx
,
1794 tags
->static_rqs
[i
] = NULL
;
1806 blk_mq_free_rqs(set
, tags
, hctx_idx
);
1811 * 'cpu' is going away. splice any existing rq_list entries from this
1812 * software queue to the hw queue dispatch list, and ensure that it
1815 static int blk_mq_hctx_notify_dead(unsigned int cpu
, struct hlist_node
*node
)
1817 struct blk_mq_hw_ctx
*hctx
;
1818 struct blk_mq_ctx
*ctx
;
1821 hctx
= hlist_entry_safe(node
, struct blk_mq_hw_ctx
, cpuhp_dead
);
1822 ctx
= __blk_mq_get_ctx(hctx
->queue
, cpu
);
1824 spin_lock(&ctx
->lock
);
1825 if (!list_empty(&ctx
->rq_list
)) {
1826 list_splice_init(&ctx
->rq_list
, &tmp
);
1827 blk_mq_hctx_clear_pending(hctx
, ctx
);
1829 spin_unlock(&ctx
->lock
);
1831 if (list_empty(&tmp
))
1834 spin_lock(&hctx
->lock
);
1835 list_splice_tail_init(&tmp
, &hctx
->dispatch
);
1836 spin_unlock(&hctx
->lock
);
1838 blk_mq_run_hw_queue(hctx
, true);
1842 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx
*hctx
)
1844 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD
,
1848 /* hctx->ctxs will be freed in queue's release handler */
1849 static void blk_mq_exit_hctx(struct request_queue
*q
,
1850 struct blk_mq_tag_set
*set
,
1851 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
1853 blk_mq_debugfs_unregister_hctx(hctx
);
1855 blk_mq_tag_idle(hctx
);
1857 if (set
->ops
->exit_request
)
1858 set
->ops
->exit_request(set
, hctx
->fq
->flush_rq
, hctx_idx
);
1860 blk_mq_sched_exit_hctx(q
, hctx
, hctx_idx
);
1862 if (set
->ops
->exit_hctx
)
1863 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1865 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
1866 cleanup_srcu_struct(&hctx
->queue_rq_srcu
);
1868 blk_mq_remove_cpuhp(hctx
);
1869 blk_free_flush_queue(hctx
->fq
);
1870 sbitmap_free(&hctx
->ctx_map
);
1873 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
1874 struct blk_mq_tag_set
*set
, int nr_queue
)
1876 struct blk_mq_hw_ctx
*hctx
;
1879 queue_for_each_hw_ctx(q
, hctx
, i
) {
1882 blk_mq_exit_hctx(q
, set
, hctx
, i
);
1886 static int blk_mq_init_hctx(struct request_queue
*q
,
1887 struct blk_mq_tag_set
*set
,
1888 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
1892 node
= hctx
->numa_node
;
1893 if (node
== NUMA_NO_NODE
)
1894 node
= hctx
->numa_node
= set
->numa_node
;
1896 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
1897 spin_lock_init(&hctx
->lock
);
1898 INIT_LIST_HEAD(&hctx
->dispatch
);
1900 hctx
->queue_num
= hctx_idx
;
1901 hctx
->flags
= set
->flags
& ~BLK_MQ_F_TAG_SHARED
;
1903 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD
, &hctx
->cpuhp_dead
);
1905 hctx
->tags
= set
->tags
[hctx_idx
];
1908 * Allocate space for all possible cpus to avoid allocation at
1911 hctx
->ctxs
= kmalloc_node(nr_cpu_ids
* sizeof(void *),
1914 goto unregister_cpu_notifier
;
1916 if (sbitmap_init_node(&hctx
->ctx_map
, nr_cpu_ids
, ilog2(8), GFP_KERNEL
,
1922 if (set
->ops
->init_hctx
&&
1923 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
1926 if (blk_mq_sched_init_hctx(q
, hctx
, hctx_idx
))
1929 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
);
1931 goto sched_exit_hctx
;
1933 if (set
->ops
->init_request
&&
1934 set
->ops
->init_request(set
, hctx
->fq
->flush_rq
, hctx_idx
,
1938 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
1939 init_srcu_struct(&hctx
->queue_rq_srcu
);
1941 blk_mq_debugfs_register_hctx(q
, hctx
);
1948 blk_mq_sched_exit_hctx(q
, hctx
, hctx_idx
);
1950 if (set
->ops
->exit_hctx
)
1951 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1953 sbitmap_free(&hctx
->ctx_map
);
1956 unregister_cpu_notifier
:
1957 blk_mq_remove_cpuhp(hctx
);
1961 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
1962 unsigned int nr_hw_queues
)
1966 for_each_possible_cpu(i
) {
1967 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
1968 struct blk_mq_hw_ctx
*hctx
;
1971 spin_lock_init(&__ctx
->lock
);
1972 INIT_LIST_HEAD(&__ctx
->rq_list
);
1975 /* If the cpu isn't present, the cpu is mapped to first hctx */
1976 if (!cpu_present(i
))
1979 hctx
= blk_mq_map_queue(q
, i
);
1982 * Set local node, IFF we have more than one hw queue. If
1983 * not, we remain on the home node of the device
1985 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
1986 hctx
->numa_node
= local_memory_node(cpu_to_node(i
));
1990 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
, int hctx_idx
)
1994 set
->tags
[hctx_idx
] = blk_mq_alloc_rq_map(set
, hctx_idx
,
1995 set
->queue_depth
, set
->reserved_tags
);
1996 if (!set
->tags
[hctx_idx
])
1999 ret
= blk_mq_alloc_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
,
2004 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2005 set
->tags
[hctx_idx
] = NULL
;
2009 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set
*set
,
2010 unsigned int hctx_idx
)
2012 if (set
->tags
[hctx_idx
]) {
2013 blk_mq_free_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
);
2014 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2015 set
->tags
[hctx_idx
] = NULL
;
2019 static void blk_mq_map_swqueue(struct request_queue
*q
)
2021 unsigned int i
, hctx_idx
;
2022 struct blk_mq_hw_ctx
*hctx
;
2023 struct blk_mq_ctx
*ctx
;
2024 struct blk_mq_tag_set
*set
= q
->tag_set
;
2027 * Avoid others reading imcomplete hctx->cpumask through sysfs
2029 mutex_lock(&q
->sysfs_lock
);
2031 queue_for_each_hw_ctx(q
, hctx
, i
) {
2032 cpumask_clear(hctx
->cpumask
);
2037 * Map software to hardware queues.
2039 * If the cpu isn't present, the cpu is mapped to first hctx.
2041 for_each_present_cpu(i
) {
2042 hctx_idx
= q
->mq_map
[i
];
2043 /* unmapped hw queue can be remapped after CPU topo changed */
2044 if (!set
->tags
[hctx_idx
] &&
2045 !__blk_mq_alloc_rq_map(set
, hctx_idx
)) {
2047 * If tags initialization fail for some hctx,
2048 * that hctx won't be brought online. In this
2049 * case, remap the current ctx to hctx[0] which
2050 * is guaranteed to always have tags allocated
2055 ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2056 hctx
= blk_mq_map_queue(q
, i
);
2058 cpumask_set_cpu(i
, hctx
->cpumask
);
2059 ctx
->index_hw
= hctx
->nr_ctx
;
2060 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
2063 mutex_unlock(&q
->sysfs_lock
);
2065 queue_for_each_hw_ctx(q
, hctx
, i
) {
2067 * If no software queues are mapped to this hardware queue,
2068 * disable it and free the request entries.
2070 if (!hctx
->nr_ctx
) {
2071 /* Never unmap queue 0. We need it as a
2072 * fallback in case of a new remap fails
2075 if (i
&& set
->tags
[i
])
2076 blk_mq_free_map_and_requests(set
, i
);
2082 hctx
->tags
= set
->tags
[i
];
2083 WARN_ON(!hctx
->tags
);
2086 * Set the map size to the number of mapped software queues.
2087 * This is more accurate and more efficient than looping
2088 * over all possibly mapped software queues.
2090 sbitmap_resize(&hctx
->ctx_map
, hctx
->nr_ctx
);
2093 * Initialize batch roundrobin counts
2095 hctx
->next_cpu
= cpumask_first(hctx
->cpumask
);
2096 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
2101 * Caller needs to ensure that we're either frozen/quiesced, or that
2102 * the queue isn't live yet.
2104 static void queue_set_hctx_shared(struct request_queue
*q
, bool shared
)
2106 struct blk_mq_hw_ctx
*hctx
;
2109 queue_for_each_hw_ctx(q
, hctx
, i
) {
2111 if (test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
2112 atomic_inc(&q
->shared_hctx_restart
);
2113 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
2115 if (test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
2116 atomic_dec(&q
->shared_hctx_restart
);
2117 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2122 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
,
2125 struct request_queue
*q
;
2127 lockdep_assert_held(&set
->tag_list_lock
);
2129 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2130 blk_mq_freeze_queue(q
);
2131 queue_set_hctx_shared(q
, shared
);
2132 blk_mq_unfreeze_queue(q
);
2136 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
2138 struct blk_mq_tag_set
*set
= q
->tag_set
;
2140 mutex_lock(&set
->tag_list_lock
);
2141 list_del_rcu(&q
->tag_set_list
);
2142 INIT_LIST_HEAD(&q
->tag_set_list
);
2143 if (list_is_singular(&set
->tag_list
)) {
2144 /* just transitioned to unshared */
2145 set
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2146 /* update existing queue */
2147 blk_mq_update_tag_set_depth(set
, false);
2149 mutex_unlock(&set
->tag_list_lock
);
2154 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
2155 struct request_queue
*q
)
2159 mutex_lock(&set
->tag_list_lock
);
2161 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2162 if (!list_empty(&set
->tag_list
) && !(set
->flags
& BLK_MQ_F_TAG_SHARED
)) {
2163 set
->flags
|= BLK_MQ_F_TAG_SHARED
;
2164 /* update existing queue */
2165 blk_mq_update_tag_set_depth(set
, true);
2167 if (set
->flags
& BLK_MQ_F_TAG_SHARED
)
2168 queue_set_hctx_shared(q
, true);
2169 list_add_tail_rcu(&q
->tag_set_list
, &set
->tag_list
);
2171 mutex_unlock(&set
->tag_list_lock
);
2175 * It is the actual release handler for mq, but we do it from
2176 * request queue's release handler for avoiding use-after-free
2177 * and headache because q->mq_kobj shouldn't have been introduced,
2178 * but we can't group ctx/kctx kobj without it.
2180 void blk_mq_release(struct request_queue
*q
)
2182 struct blk_mq_hw_ctx
*hctx
;
2185 /* hctx kobj stays in hctx */
2186 queue_for_each_hw_ctx(q
, hctx
, i
) {
2189 kobject_put(&hctx
->kobj
);
2194 kfree(q
->queue_hw_ctx
);
2197 * release .mq_kobj and sw queue's kobject now because
2198 * both share lifetime with request queue.
2200 blk_mq_sysfs_deinit(q
);
2202 free_percpu(q
->queue_ctx
);
2205 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
2207 struct request_queue
*uninit_q
, *q
;
2209 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
);
2211 return ERR_PTR(-ENOMEM
);
2213 q
= blk_mq_init_allocated_queue(set
, uninit_q
);
2215 blk_cleanup_queue(uninit_q
);
2219 EXPORT_SYMBOL(blk_mq_init_queue
);
2221 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set
*set
,
2222 struct request_queue
*q
)
2225 struct blk_mq_hw_ctx
**hctxs
= q
->queue_hw_ctx
;
2227 blk_mq_sysfs_unregister(q
);
2228 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2234 node
= blk_mq_hw_queue_to_node(q
->mq_map
, i
);
2235 hctxs
[i
] = kzalloc_node(sizeof(struct blk_mq_hw_ctx
),
2240 if (!zalloc_cpumask_var_node(&hctxs
[i
]->cpumask
, GFP_KERNEL
,
2247 atomic_set(&hctxs
[i
]->nr_active
, 0);
2248 hctxs
[i
]->numa_node
= node
;
2249 hctxs
[i
]->queue_num
= i
;
2251 if (blk_mq_init_hctx(q
, set
, hctxs
[i
], i
)) {
2252 free_cpumask_var(hctxs
[i
]->cpumask
);
2257 blk_mq_hctx_kobj_init(hctxs
[i
]);
2259 for (j
= i
; j
< q
->nr_hw_queues
; j
++) {
2260 struct blk_mq_hw_ctx
*hctx
= hctxs
[j
];
2264 blk_mq_free_map_and_requests(set
, j
);
2265 blk_mq_exit_hctx(q
, set
, hctx
, j
);
2266 kobject_put(&hctx
->kobj
);
2271 q
->nr_hw_queues
= i
;
2272 blk_mq_sysfs_register(q
);
2275 struct request_queue
*blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
2276 struct request_queue
*q
)
2278 /* mark the queue as mq asap */
2279 q
->mq_ops
= set
->ops
;
2281 q
->poll_cb
= blk_stat_alloc_callback(blk_mq_poll_stats_fn
,
2282 blk_mq_poll_stats_bkt
,
2283 BLK_MQ_POLL_STATS_BKTS
, q
);
2287 q
->queue_ctx
= alloc_percpu(struct blk_mq_ctx
);
2291 /* init q->mq_kobj and sw queues' kobjects */
2292 blk_mq_sysfs_init(q
);
2294 q
->queue_hw_ctx
= kzalloc_node(nr_cpu_ids
* sizeof(*(q
->queue_hw_ctx
)),
2295 GFP_KERNEL
, set
->numa_node
);
2296 if (!q
->queue_hw_ctx
)
2299 q
->mq_map
= set
->mq_map
;
2301 blk_mq_realloc_hw_ctxs(set
, q
);
2302 if (!q
->nr_hw_queues
)
2305 INIT_WORK(&q
->timeout_work
, blk_mq_timeout_work
);
2306 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
2308 q
->nr_queues
= nr_cpu_ids
;
2310 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
2312 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
2313 q
->queue_flags
|= 1 << QUEUE_FLAG_NO_SG_MERGE
;
2315 q
->sg_reserved_size
= INT_MAX
;
2317 INIT_DELAYED_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
2318 INIT_LIST_HEAD(&q
->requeue_list
);
2319 spin_lock_init(&q
->requeue_lock
);
2321 blk_queue_make_request(q
, blk_mq_make_request
);
2324 * Do this after blk_queue_make_request() overrides it...
2326 q
->nr_requests
= set
->queue_depth
;
2329 * Default to classic polling
2333 if (set
->ops
->complete
)
2334 blk_queue_softirq_done(q
, set
->ops
->complete
);
2336 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
2337 blk_mq_add_queue_tag_set(set
, q
);
2338 blk_mq_map_swqueue(q
);
2340 if (!(set
->flags
& BLK_MQ_F_NO_SCHED
)) {
2343 ret
= blk_mq_sched_init(q
);
2345 return ERR_PTR(ret
);
2351 kfree(q
->queue_hw_ctx
);
2353 free_percpu(q
->queue_ctx
);
2356 return ERR_PTR(-ENOMEM
);
2358 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
2360 void blk_mq_free_queue(struct request_queue
*q
)
2362 struct blk_mq_tag_set
*set
= q
->tag_set
;
2364 blk_mq_del_queue_tag_set(q
);
2365 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
2368 /* Basically redo blk_mq_init_queue with queue frozen */
2369 static void blk_mq_queue_reinit(struct request_queue
*q
)
2371 WARN_ON_ONCE(!atomic_read(&q
->mq_freeze_depth
));
2373 blk_mq_debugfs_unregister_hctxs(q
);
2374 blk_mq_sysfs_unregister(q
);
2377 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2378 * we should change hctx numa_node according to new topology (this
2379 * involves free and re-allocate memory, worthy doing?)
2382 blk_mq_map_swqueue(q
);
2384 blk_mq_sysfs_register(q
);
2385 blk_mq_debugfs_register_hctxs(q
);
2388 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2392 for (i
= 0; i
< set
->nr_hw_queues
; i
++)
2393 if (!__blk_mq_alloc_rq_map(set
, i
))
2400 blk_mq_free_rq_map(set
->tags
[i
]);
2406 * Allocate the request maps associated with this tag_set. Note that this
2407 * may reduce the depth asked for, if memory is tight. set->queue_depth
2408 * will be updated to reflect the allocated depth.
2410 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2415 depth
= set
->queue_depth
;
2417 err
= __blk_mq_alloc_rq_maps(set
);
2421 set
->queue_depth
>>= 1;
2422 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2426 } while (set
->queue_depth
);
2428 if (!set
->queue_depth
|| err
) {
2429 pr_err("blk-mq: failed to allocate request map\n");
2433 if (depth
!= set
->queue_depth
)
2434 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2435 depth
, set
->queue_depth
);
2440 static int blk_mq_update_queue_map(struct blk_mq_tag_set
*set
)
2442 if (set
->ops
->map_queues
)
2443 return set
->ops
->map_queues(set
);
2445 return blk_mq_map_queues(set
);
2449 * Alloc a tag set to be associated with one or more request queues.
2450 * May fail with EINVAL for various error conditions. May adjust the
2451 * requested depth down, if if it too large. In that case, the set
2452 * value will be stored in set->queue_depth.
2454 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
2458 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
2460 if (!set
->nr_hw_queues
)
2462 if (!set
->queue_depth
)
2464 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
2467 if (!set
->ops
->queue_rq
)
2470 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
2471 pr_info("blk-mq: reduced tag depth to %u\n",
2473 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
2477 * If a crashdump is active, then we are potentially in a very
2478 * memory constrained environment. Limit us to 1 queue and
2479 * 64 tags to prevent using too much memory.
2481 if (is_kdump_kernel()) {
2482 set
->nr_hw_queues
= 1;
2483 set
->queue_depth
= min(64U, set
->queue_depth
);
2486 * There is no use for more h/w queues than cpus.
2488 if (set
->nr_hw_queues
> nr_cpu_ids
)
2489 set
->nr_hw_queues
= nr_cpu_ids
;
2491 set
->tags
= kzalloc_node(nr_cpu_ids
* sizeof(struct blk_mq_tags
*),
2492 GFP_KERNEL
, set
->numa_node
);
2497 set
->mq_map
= kzalloc_node(sizeof(*set
->mq_map
) * nr_cpu_ids
,
2498 GFP_KERNEL
, set
->numa_node
);
2502 ret
= blk_mq_update_queue_map(set
);
2504 goto out_free_mq_map
;
2506 ret
= blk_mq_alloc_rq_maps(set
);
2508 goto out_free_mq_map
;
2510 mutex_init(&set
->tag_list_lock
);
2511 INIT_LIST_HEAD(&set
->tag_list
);
2523 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
2525 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
2529 for (i
= 0; i
< nr_cpu_ids
; i
++)
2530 blk_mq_free_map_and_requests(set
, i
);
2538 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2540 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2542 struct blk_mq_tag_set
*set
= q
->tag_set
;
2543 struct blk_mq_hw_ctx
*hctx
;
2549 blk_mq_freeze_queue(q
);
2552 queue_for_each_hw_ctx(q
, hctx
, i
) {
2556 * If we're using an MQ scheduler, just update the scheduler
2557 * queue depth. This is similar to what the old code would do.
2559 if (!hctx
->sched_tags
) {
2560 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->tags
,
2561 min(nr
, set
->queue_depth
),
2564 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->sched_tags
,
2572 q
->nr_requests
= nr
;
2574 blk_mq_unfreeze_queue(q
);
2579 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
,
2582 struct request_queue
*q
;
2584 lockdep_assert_held(&set
->tag_list_lock
);
2586 if (nr_hw_queues
> nr_cpu_ids
)
2587 nr_hw_queues
= nr_cpu_ids
;
2588 if (nr_hw_queues
< 1 || nr_hw_queues
== set
->nr_hw_queues
)
2591 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2592 blk_mq_freeze_queue(q
);
2594 set
->nr_hw_queues
= nr_hw_queues
;
2595 blk_mq_update_queue_map(set
);
2596 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2597 blk_mq_realloc_hw_ctxs(set
, q
);
2598 blk_mq_queue_reinit(q
);
2601 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2602 blk_mq_unfreeze_queue(q
);
2605 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
, int nr_hw_queues
)
2607 mutex_lock(&set
->tag_list_lock
);
2608 __blk_mq_update_nr_hw_queues(set
, nr_hw_queues
);
2609 mutex_unlock(&set
->tag_list_lock
);
2611 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues
);
2613 /* Enable polling stats and return whether they were already enabled. */
2614 static bool blk_poll_stats_enable(struct request_queue
*q
)
2616 if (test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
2617 test_and_set_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
))
2619 blk_stat_add_callback(q
, q
->poll_cb
);
2623 static void blk_mq_poll_stats_start(struct request_queue
*q
)
2626 * We don't arm the callback if polling stats are not enabled or the
2627 * callback is already active.
2629 if (!test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
2630 blk_stat_is_active(q
->poll_cb
))
2633 blk_stat_activate_msecs(q
->poll_cb
, 100);
2636 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
)
2638 struct request_queue
*q
= cb
->data
;
2641 for (bucket
= 0; bucket
< BLK_MQ_POLL_STATS_BKTS
; bucket
++) {
2642 if (cb
->stat
[bucket
].nr_samples
)
2643 q
->poll_stat
[bucket
] = cb
->stat
[bucket
];
2647 static unsigned long blk_mq_poll_nsecs(struct request_queue
*q
,
2648 struct blk_mq_hw_ctx
*hctx
,
2651 unsigned long ret
= 0;
2655 * If stats collection isn't on, don't sleep but turn it on for
2658 if (!blk_poll_stats_enable(q
))
2662 * As an optimistic guess, use half of the mean service time
2663 * for this type of request. We can (and should) make this smarter.
2664 * For instance, if the completion latencies are tight, we can
2665 * get closer than just half the mean. This is especially
2666 * important on devices where the completion latencies are longer
2667 * than ~10 usec. We do use the stats for the relevant IO size
2668 * if available which does lead to better estimates.
2670 bucket
= blk_mq_poll_stats_bkt(rq
);
2674 if (q
->poll_stat
[bucket
].nr_samples
)
2675 ret
= (q
->poll_stat
[bucket
].mean
+ 1) / 2;
2680 static bool blk_mq_poll_hybrid_sleep(struct request_queue
*q
,
2681 struct blk_mq_hw_ctx
*hctx
,
2684 struct hrtimer_sleeper hs
;
2685 enum hrtimer_mode mode
;
2689 if (test_bit(REQ_ATOM_POLL_SLEPT
, &rq
->atomic_flags
))
2695 * -1: don't ever hybrid sleep
2696 * 0: use half of prev avg
2697 * >0: use this specific value
2699 if (q
->poll_nsec
== -1)
2701 else if (q
->poll_nsec
> 0)
2702 nsecs
= q
->poll_nsec
;
2704 nsecs
= blk_mq_poll_nsecs(q
, hctx
, rq
);
2709 set_bit(REQ_ATOM_POLL_SLEPT
, &rq
->atomic_flags
);
2712 * This will be replaced with the stats tracking code, using
2713 * 'avg_completion_time / 2' as the pre-sleep target.
2717 mode
= HRTIMER_MODE_REL
;
2718 hrtimer_init_on_stack(&hs
.timer
, CLOCK_MONOTONIC
, mode
);
2719 hrtimer_set_expires(&hs
.timer
, kt
);
2721 hrtimer_init_sleeper(&hs
, current
);
2723 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
2725 set_current_state(TASK_UNINTERRUPTIBLE
);
2726 hrtimer_start_expires(&hs
.timer
, mode
);
2729 hrtimer_cancel(&hs
.timer
);
2730 mode
= HRTIMER_MODE_ABS
;
2731 } while (hs
.task
&& !signal_pending(current
));
2733 __set_current_state(TASK_RUNNING
);
2734 destroy_hrtimer_on_stack(&hs
.timer
);
2738 static bool __blk_mq_poll(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
2740 struct request_queue
*q
= hctx
->queue
;
2744 * If we sleep, have the caller restart the poll loop to reset
2745 * the state. Like for the other success return cases, the
2746 * caller is responsible for checking if the IO completed. If
2747 * the IO isn't complete, we'll get called again and will go
2748 * straight to the busy poll loop.
2750 if (blk_mq_poll_hybrid_sleep(q
, hctx
, rq
))
2753 hctx
->poll_considered
++;
2755 state
= current
->state
;
2756 while (!need_resched()) {
2759 hctx
->poll_invoked
++;
2761 ret
= q
->mq_ops
->poll(hctx
, rq
->tag
);
2763 hctx
->poll_success
++;
2764 set_current_state(TASK_RUNNING
);
2768 if (signal_pending_state(state
, current
))
2769 set_current_state(TASK_RUNNING
);
2771 if (current
->state
== TASK_RUNNING
)
2781 bool blk_mq_poll(struct request_queue
*q
, blk_qc_t cookie
)
2783 struct blk_mq_hw_ctx
*hctx
;
2784 struct blk_plug
*plug
;
2787 if (!q
->mq_ops
|| !q
->mq_ops
->poll
|| !blk_qc_t_valid(cookie
) ||
2788 !test_bit(QUEUE_FLAG_POLL
, &q
->queue_flags
))
2791 plug
= current
->plug
;
2793 blk_flush_plug_list(plug
, false);
2795 hctx
= q
->queue_hw_ctx
[blk_qc_t_to_queue_num(cookie
)];
2796 if (!blk_qc_t_is_internal(cookie
))
2797 rq
= blk_mq_tag_to_rq(hctx
->tags
, blk_qc_t_to_tag(cookie
));
2799 rq
= blk_mq_tag_to_rq(hctx
->sched_tags
, blk_qc_t_to_tag(cookie
));
2801 * With scheduling, if the request has completed, we'll
2802 * get a NULL return here, as we clear the sched tag when
2803 * that happens. The request still remains valid, like always,
2804 * so we should be safe with just the NULL check.
2810 return __blk_mq_poll(hctx
, rq
);
2812 EXPORT_SYMBOL_GPL(blk_mq_poll
);
2814 static int __init
blk_mq_init(void)
2816 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD
, "block/mq:dead", NULL
,
2817 blk_mq_hctx_notify_dead
);
2820 subsys_initcall(blk_mq_init
);