interconnect: Add a common standard aggregate function
[linux/fpc-iii.git] / sound / firewire / amdtp-stream.c
blob37d38efb4c877f8084400b92a4c9e87599fc007c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
4 * with Common Isochronous Packet (IEC 61883-1) headers
6 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
7 */
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/firewire.h>
12 #include <linux/firewire-constants.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <sound/pcm.h>
16 #include <sound/pcm_params.h>
17 #include "amdtp-stream.h"
19 #define TICKS_PER_CYCLE 3072
20 #define CYCLES_PER_SECOND 8000
21 #define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
23 /* Always support Linux tracing subsystem. */
24 #define CREATE_TRACE_POINTS
25 #include "amdtp-stream-trace.h"
27 #define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */
29 /* isochronous header parameters */
30 #define ISO_DATA_LENGTH_SHIFT 16
31 #define TAG_NO_CIP_HEADER 0
32 #define TAG_CIP 1
34 /* common isochronous packet header parameters */
35 #define CIP_EOH_SHIFT 31
36 #define CIP_EOH (1u << CIP_EOH_SHIFT)
37 #define CIP_EOH_MASK 0x80000000
38 #define CIP_SID_SHIFT 24
39 #define CIP_SID_MASK 0x3f000000
40 #define CIP_DBS_MASK 0x00ff0000
41 #define CIP_DBS_SHIFT 16
42 #define CIP_SPH_MASK 0x00000400
43 #define CIP_SPH_SHIFT 10
44 #define CIP_DBC_MASK 0x000000ff
45 #define CIP_FMT_SHIFT 24
46 #define CIP_FMT_MASK 0x3f000000
47 #define CIP_FDF_MASK 0x00ff0000
48 #define CIP_FDF_SHIFT 16
49 #define CIP_SYT_MASK 0x0000ffff
50 #define CIP_SYT_NO_INFO 0xffff
52 /* Audio and Music transfer protocol specific parameters */
53 #define CIP_FMT_AM 0x10
54 #define AMDTP_FDF_NO_DATA 0xff
56 // For iso header, tstamp and 2 CIP header.
57 #define IR_CTX_HEADER_SIZE_CIP 16
58 // For iso header and tstamp.
59 #define IR_CTX_HEADER_SIZE_NO_CIP 8
60 #define HEADER_TSTAMP_MASK 0x0000ffff
62 #define IT_PKT_HEADER_SIZE_CIP 8 // For 2 CIP header.
63 #define IT_PKT_HEADER_SIZE_NO_CIP 0 // Nothing.
65 static void pcm_period_tasklet(unsigned long data);
67 /**
68 * amdtp_stream_init - initialize an AMDTP stream structure
69 * @s: the AMDTP stream to initialize
70 * @unit: the target of the stream
71 * @dir: the direction of stream
72 * @flags: the packet transmission method to use
73 * @fmt: the value of fmt field in CIP header
74 * @process_ctx_payloads: callback handler to process payloads of isoc context
75 * @protocol_size: the size to allocate newly for protocol
77 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
78 enum amdtp_stream_direction dir, enum cip_flags flags,
79 unsigned int fmt,
80 amdtp_stream_process_ctx_payloads_t process_ctx_payloads,
81 unsigned int protocol_size)
83 if (process_ctx_payloads == NULL)
84 return -EINVAL;
86 s->protocol = kzalloc(protocol_size, GFP_KERNEL);
87 if (!s->protocol)
88 return -ENOMEM;
90 s->unit = unit;
91 s->direction = dir;
92 s->flags = flags;
93 s->context = ERR_PTR(-1);
94 mutex_init(&s->mutex);
95 tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
96 s->packet_index = 0;
98 init_waitqueue_head(&s->callback_wait);
99 s->callbacked = false;
101 s->fmt = fmt;
102 s->process_ctx_payloads = process_ctx_payloads;
104 if (dir == AMDTP_OUT_STREAM)
105 s->ctx_data.rx.syt_override = -1;
107 return 0;
109 EXPORT_SYMBOL(amdtp_stream_init);
112 * amdtp_stream_destroy - free stream resources
113 * @s: the AMDTP stream to destroy
115 void amdtp_stream_destroy(struct amdtp_stream *s)
117 /* Not initialized. */
118 if (s->protocol == NULL)
119 return;
121 WARN_ON(amdtp_stream_running(s));
122 kfree(s->protocol);
123 mutex_destroy(&s->mutex);
125 EXPORT_SYMBOL(amdtp_stream_destroy);
127 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
128 [CIP_SFC_32000] = 8,
129 [CIP_SFC_44100] = 8,
130 [CIP_SFC_48000] = 8,
131 [CIP_SFC_88200] = 16,
132 [CIP_SFC_96000] = 16,
133 [CIP_SFC_176400] = 32,
134 [CIP_SFC_192000] = 32,
136 EXPORT_SYMBOL(amdtp_syt_intervals);
138 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
139 [CIP_SFC_32000] = 32000,
140 [CIP_SFC_44100] = 44100,
141 [CIP_SFC_48000] = 48000,
142 [CIP_SFC_88200] = 88200,
143 [CIP_SFC_96000] = 96000,
144 [CIP_SFC_176400] = 176400,
145 [CIP_SFC_192000] = 192000,
147 EXPORT_SYMBOL(amdtp_rate_table);
149 static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
150 struct snd_pcm_hw_rule *rule)
152 struct snd_interval *s = hw_param_interval(params, rule->var);
153 const struct snd_interval *r =
154 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
155 struct snd_interval t = {0};
156 unsigned int step = 0;
157 int i;
159 for (i = 0; i < CIP_SFC_COUNT; ++i) {
160 if (snd_interval_test(r, amdtp_rate_table[i]))
161 step = max(step, amdtp_syt_intervals[i]);
164 t.min = roundup(s->min, step);
165 t.max = rounddown(s->max, step);
166 t.integer = 1;
168 return snd_interval_refine(s, &t);
172 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
173 * @s: the AMDTP stream, which must be initialized.
174 * @runtime: the PCM substream runtime
176 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
177 struct snd_pcm_runtime *runtime)
179 struct snd_pcm_hardware *hw = &runtime->hw;
180 unsigned int ctx_header_size;
181 unsigned int maximum_usec_per_period;
182 int err;
184 hw->info = SNDRV_PCM_INFO_BATCH |
185 SNDRV_PCM_INFO_BLOCK_TRANSFER |
186 SNDRV_PCM_INFO_INTERLEAVED |
187 SNDRV_PCM_INFO_JOINT_DUPLEX |
188 SNDRV_PCM_INFO_MMAP |
189 SNDRV_PCM_INFO_MMAP_VALID;
191 /* SNDRV_PCM_INFO_BATCH */
192 hw->periods_min = 2;
193 hw->periods_max = UINT_MAX;
195 /* bytes for a frame */
196 hw->period_bytes_min = 4 * hw->channels_max;
198 /* Just to prevent from allocating much pages. */
199 hw->period_bytes_max = hw->period_bytes_min * 2048;
200 hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
202 // Linux driver for 1394 OHCI controller voluntarily flushes isoc
203 // context when total size of accumulated context header reaches
204 // PAGE_SIZE. This kicks tasklet for the isoc context and brings
205 // callback in the middle of scheduled interrupts.
206 // Although AMDTP streams in the same domain use the same events per
207 // IRQ, use the largest size of context header between IT/IR contexts.
208 // Here, use the value of context header in IR context is for both
209 // contexts.
210 if (!(s->flags & CIP_NO_HEADER))
211 ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
212 else
213 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
214 maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE /
215 CYCLES_PER_SECOND / ctx_header_size;
217 // In IEC 61883-6, one isoc packet can transfer events up to the value
218 // of syt interval. This comes from the interval of isoc cycle. As 1394
219 // OHCI controller can generate hardware IRQ per isoc packet, the
220 // interval is 125 usec.
221 // However, there are two ways of transmission in IEC 61883-6; blocking
222 // and non-blocking modes. In blocking mode, the sequence of isoc packet
223 // includes 'empty' or 'NODATA' packets which include no event. In
224 // non-blocking mode, the number of events per packet is variable up to
225 // the syt interval.
226 // Due to the above protocol design, the minimum PCM frames per
227 // interrupt should be double of the value of syt interval, thus it is
228 // 250 usec.
229 err = snd_pcm_hw_constraint_minmax(runtime,
230 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
231 250, maximum_usec_per_period);
232 if (err < 0)
233 goto end;
235 /* Non-Blocking stream has no more constraints */
236 if (!(s->flags & CIP_BLOCKING))
237 goto end;
240 * One AMDTP packet can include some frames. In blocking mode, the
241 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
242 * depending on its sampling rate. For accurate period interrupt, it's
243 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
245 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
246 apply_constraint_to_size, NULL,
247 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
248 SNDRV_PCM_HW_PARAM_RATE, -1);
249 if (err < 0)
250 goto end;
251 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
252 apply_constraint_to_size, NULL,
253 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
254 SNDRV_PCM_HW_PARAM_RATE, -1);
255 if (err < 0)
256 goto end;
257 end:
258 return err;
260 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
263 * amdtp_stream_set_parameters - set stream parameters
264 * @s: the AMDTP stream to configure
265 * @rate: the sample rate
266 * @data_block_quadlets: the size of a data block in quadlet unit
268 * The parameters must be set before the stream is started, and must not be
269 * changed while the stream is running.
271 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
272 unsigned int data_block_quadlets)
274 unsigned int sfc;
276 for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
277 if (amdtp_rate_table[sfc] == rate)
278 break;
280 if (sfc == ARRAY_SIZE(amdtp_rate_table))
281 return -EINVAL;
283 s->sfc = sfc;
284 s->data_block_quadlets = data_block_quadlets;
285 s->syt_interval = amdtp_syt_intervals[sfc];
287 // default buffering in the device.
288 if (s->direction == AMDTP_OUT_STREAM) {
289 s->ctx_data.rx.transfer_delay =
290 TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
292 if (s->flags & CIP_BLOCKING) {
293 // additional buffering needed to adjust for no-data
294 // packets.
295 s->ctx_data.rx.transfer_delay +=
296 TICKS_PER_SECOND * s->syt_interval / rate;
300 return 0;
302 EXPORT_SYMBOL(amdtp_stream_set_parameters);
305 * amdtp_stream_get_max_payload - get the stream's packet size
306 * @s: the AMDTP stream
308 * This function must not be called before the stream has been configured
309 * with amdtp_stream_set_parameters().
311 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
313 unsigned int multiplier = 1;
314 unsigned int cip_header_size = 0;
316 if (s->flags & CIP_JUMBO_PAYLOAD)
317 multiplier = 5;
318 if (!(s->flags & CIP_NO_HEADER))
319 cip_header_size = sizeof(__be32) * 2;
321 return cip_header_size +
322 s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier;
324 EXPORT_SYMBOL(amdtp_stream_get_max_payload);
327 * amdtp_stream_pcm_prepare - prepare PCM device for running
328 * @s: the AMDTP stream
330 * This function should be called from the PCM device's .prepare callback.
332 void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
334 tasklet_kill(&s->period_tasklet);
335 s->pcm_buffer_pointer = 0;
336 s->pcm_period_pointer = 0;
338 EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
340 static unsigned int calculate_data_blocks(struct amdtp_stream *s,
341 unsigned int syt)
343 unsigned int phase, data_blocks;
345 /* Blocking mode. */
346 if (s->flags & CIP_BLOCKING) {
347 /* This module generate empty packet for 'no data'. */
348 if (syt == CIP_SYT_NO_INFO)
349 data_blocks = 0;
350 else
351 data_blocks = s->syt_interval;
352 /* Non-blocking mode. */
353 } else {
354 if (!cip_sfc_is_base_44100(s->sfc)) {
355 // Sample_rate / 8000 is an integer, and precomputed.
356 data_blocks = s->ctx_data.rx.data_block_state;
357 } else {
358 phase = s->ctx_data.rx.data_block_state;
361 * This calculates the number of data blocks per packet so that
362 * 1) the overall rate is correct and exactly synchronized to
363 * the bus clock, and
364 * 2) packets with a rounded-up number of blocks occur as early
365 * as possible in the sequence (to prevent underruns of the
366 * device's buffer).
368 if (s->sfc == CIP_SFC_44100)
369 /* 6 6 5 6 5 6 5 ... */
370 data_blocks = 5 + ((phase & 1) ^
371 (phase == 0 || phase >= 40));
372 else
373 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
374 data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
375 if (++phase >= (80 >> (s->sfc >> 1)))
376 phase = 0;
377 s->ctx_data.rx.data_block_state = phase;
381 return data_blocks;
384 static unsigned int calculate_syt(struct amdtp_stream *s,
385 unsigned int cycle)
387 unsigned int syt_offset, phase, index, syt;
389 if (s->ctx_data.rx.last_syt_offset < TICKS_PER_CYCLE) {
390 if (!cip_sfc_is_base_44100(s->sfc))
391 syt_offset = s->ctx_data.rx.last_syt_offset +
392 s->ctx_data.rx.syt_offset_state;
393 else {
395 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
396 * n * SYT_INTERVAL * 24576000 / sample_rate
397 * Modulo TICKS_PER_CYCLE, the difference between successive
398 * elements is about 1386.23. Rounding the results of this
399 * formula to the SYT precision results in a sequence of
400 * differences that begins with:
401 * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
402 * This code generates _exactly_ the same sequence.
404 phase = s->ctx_data.rx.syt_offset_state;
405 index = phase % 13;
406 syt_offset = s->ctx_data.rx.last_syt_offset;
407 syt_offset += 1386 + ((index && !(index & 3)) ||
408 phase == 146);
409 if (++phase >= 147)
410 phase = 0;
411 s->ctx_data.rx.syt_offset_state = phase;
413 } else
414 syt_offset = s->ctx_data.rx.last_syt_offset - TICKS_PER_CYCLE;
415 s->ctx_data.rx.last_syt_offset = syt_offset;
417 if (syt_offset < TICKS_PER_CYCLE) {
418 syt_offset += s->ctx_data.rx.transfer_delay;
419 syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
420 syt += syt_offset % TICKS_PER_CYCLE;
422 return syt & CIP_SYT_MASK;
423 } else {
424 return CIP_SYT_NO_INFO;
428 static void update_pcm_pointers(struct amdtp_stream *s,
429 struct snd_pcm_substream *pcm,
430 unsigned int frames)
432 unsigned int ptr;
434 ptr = s->pcm_buffer_pointer + frames;
435 if (ptr >= pcm->runtime->buffer_size)
436 ptr -= pcm->runtime->buffer_size;
437 WRITE_ONCE(s->pcm_buffer_pointer, ptr);
439 s->pcm_period_pointer += frames;
440 if (s->pcm_period_pointer >= pcm->runtime->period_size) {
441 s->pcm_period_pointer -= pcm->runtime->period_size;
442 tasklet_hi_schedule(&s->period_tasklet);
446 static void pcm_period_tasklet(unsigned long data)
448 struct amdtp_stream *s = (void *)data;
449 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
451 if (pcm)
452 snd_pcm_period_elapsed(pcm);
455 static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params,
456 bool sched_irq)
458 int err;
460 params->interrupt = sched_irq;
461 params->tag = s->tag;
462 params->sy = 0;
464 err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer,
465 s->buffer.packets[s->packet_index].offset);
466 if (err < 0) {
467 dev_err(&s->unit->device, "queueing error: %d\n", err);
468 goto end;
471 if (++s->packet_index >= s->queue_size)
472 s->packet_index = 0;
473 end:
474 return err;
477 static inline int queue_out_packet(struct amdtp_stream *s,
478 struct fw_iso_packet *params, bool sched_irq)
480 params->skip =
481 !!(params->header_length == 0 && params->payload_length == 0);
482 return queue_packet(s, params, sched_irq);
485 static inline int queue_in_packet(struct amdtp_stream *s,
486 struct fw_iso_packet *params)
488 // Queue one packet for IR context.
489 params->header_length = s->ctx_data.tx.ctx_header_size;
490 params->payload_length = s->ctx_data.tx.max_ctx_payload_length;
491 params->skip = false;
492 return queue_packet(s, params, false);
495 static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2],
496 unsigned int data_block_counter, unsigned int syt)
498 cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
499 (s->data_block_quadlets << CIP_DBS_SHIFT) |
500 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
501 data_block_counter);
502 cip_header[1] = cpu_to_be32(CIP_EOH |
503 ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
504 ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
505 (syt & CIP_SYT_MASK));
508 static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle,
509 struct fw_iso_packet *params,
510 unsigned int data_blocks,
511 unsigned int data_block_counter,
512 unsigned int syt, unsigned int index)
514 unsigned int payload_length;
515 __be32 *cip_header;
517 payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets;
518 params->payload_length = payload_length;
520 if (!(s->flags & CIP_NO_HEADER)) {
521 cip_header = (__be32 *)params->header;
522 generate_cip_header(s, cip_header, data_block_counter, syt);
523 params->header_length = 2 * sizeof(__be32);
524 payload_length += params->header_length;
525 } else {
526 cip_header = NULL;
529 trace_amdtp_packet(s, cycle, cip_header, payload_length, data_blocks,
530 data_block_counter, index);
533 static int check_cip_header(struct amdtp_stream *s, const __be32 *buf,
534 unsigned int payload_length,
535 unsigned int *data_blocks,
536 unsigned int *data_block_counter, unsigned int *syt)
538 u32 cip_header[2];
539 unsigned int sph;
540 unsigned int fmt;
541 unsigned int fdf;
542 unsigned int dbc;
543 bool lost;
545 cip_header[0] = be32_to_cpu(buf[0]);
546 cip_header[1] = be32_to_cpu(buf[1]);
549 * This module supports 'Two-quadlet CIP header with SYT field'.
550 * For convenience, also check FMT field is AM824 or not.
552 if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
553 ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
554 (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
555 dev_info_ratelimited(&s->unit->device,
556 "Invalid CIP header for AMDTP: %08X:%08X\n",
557 cip_header[0], cip_header[1]);
558 return -EAGAIN;
561 /* Check valid protocol or not. */
562 sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
563 fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
564 if (sph != s->sph || fmt != s->fmt) {
565 dev_info_ratelimited(&s->unit->device,
566 "Detect unexpected protocol: %08x %08x\n",
567 cip_header[0], cip_header[1]);
568 return -EAGAIN;
571 /* Calculate data blocks */
572 fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
573 if (payload_length < sizeof(__be32) * 2 ||
574 (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
575 *data_blocks = 0;
576 } else {
577 unsigned int data_block_quadlets =
578 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
579 /* avoid division by zero */
580 if (data_block_quadlets == 0) {
581 dev_err(&s->unit->device,
582 "Detect invalid value in dbs field: %08X\n",
583 cip_header[0]);
584 return -EPROTO;
586 if (s->flags & CIP_WRONG_DBS)
587 data_block_quadlets = s->data_block_quadlets;
589 *data_blocks = (payload_length / sizeof(__be32) - 2) /
590 data_block_quadlets;
593 /* Check data block counter continuity */
594 dbc = cip_header[0] & CIP_DBC_MASK;
595 if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
596 *data_block_counter != UINT_MAX)
597 dbc = *data_block_counter;
599 if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) ||
600 *data_block_counter == UINT_MAX) {
601 lost = false;
602 } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
603 lost = dbc != *data_block_counter;
604 } else {
605 unsigned int dbc_interval;
607 if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0)
608 dbc_interval = s->ctx_data.tx.dbc_interval;
609 else
610 dbc_interval = *data_blocks;
612 lost = dbc != ((*data_block_counter + dbc_interval) & 0xff);
615 if (lost) {
616 dev_err(&s->unit->device,
617 "Detect discontinuity of CIP: %02X %02X\n",
618 *data_block_counter, dbc);
619 return -EIO;
622 *data_block_counter = dbc;
624 *syt = cip_header[1] & CIP_SYT_MASK;
626 return 0;
629 static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle,
630 const __be32 *ctx_header,
631 unsigned int *payload_length,
632 unsigned int *data_blocks,
633 unsigned int *data_block_counter,
634 unsigned int *syt, unsigned int index)
636 const __be32 *cip_header;
637 int err;
639 *payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT;
640 if (*payload_length > s->ctx_data.tx.ctx_header_size +
641 s->ctx_data.tx.max_ctx_payload_length) {
642 dev_err(&s->unit->device,
643 "Detect jumbo payload: %04x %04x\n",
644 *payload_length, s->ctx_data.tx.max_ctx_payload_length);
645 return -EIO;
648 if (!(s->flags & CIP_NO_HEADER)) {
649 cip_header = ctx_header + 2;
650 err = check_cip_header(s, cip_header, *payload_length,
651 data_blocks, data_block_counter, syt);
652 if (err < 0)
653 return err;
654 } else {
655 cip_header = NULL;
656 err = 0;
657 *data_blocks = *payload_length / sizeof(__be32) /
658 s->data_block_quadlets;
659 *syt = 0;
661 if (*data_block_counter == UINT_MAX)
662 *data_block_counter = 0;
665 trace_amdtp_packet(s, cycle, cip_header, *payload_length, *data_blocks,
666 *data_block_counter, index);
668 return err;
671 // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
672 // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
673 // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
674 static inline u32 compute_cycle_count(__be32 ctx_header_tstamp)
676 u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK;
677 return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff);
680 static inline u32 increment_cycle_count(u32 cycle, unsigned int addend)
682 cycle += addend;
683 if (cycle >= 8 * CYCLES_PER_SECOND)
684 cycle -= 8 * CYCLES_PER_SECOND;
685 return cycle;
688 // Align to actual cycle count for the packet which is going to be scheduled.
689 // This module queued the same number of isochronous cycle as the size of queue
690 // to kip isochronous cycle, therefore it's OK to just increment the cycle by
691 // the size of queue for scheduled cycle.
692 static inline u32 compute_it_cycle(const __be32 ctx_header_tstamp,
693 unsigned int queue_size)
695 u32 cycle = compute_cycle_count(ctx_header_tstamp);
696 return increment_cycle_count(cycle, queue_size);
699 static int generate_device_pkt_descs(struct amdtp_stream *s,
700 struct pkt_desc *descs,
701 const __be32 *ctx_header,
702 unsigned int packets)
704 unsigned int dbc = s->data_block_counter;
705 int i;
706 int err;
708 for (i = 0; i < packets; ++i) {
709 struct pkt_desc *desc = descs + i;
710 unsigned int index = (s->packet_index + i) % s->queue_size;
711 unsigned int cycle;
712 unsigned int payload_length;
713 unsigned int data_blocks;
714 unsigned int syt;
716 cycle = compute_cycle_count(ctx_header[1]);
718 err = parse_ir_ctx_header(s, cycle, ctx_header, &payload_length,
719 &data_blocks, &dbc, &syt, i);
720 if (err < 0)
721 return err;
723 desc->cycle = cycle;
724 desc->syt = syt;
725 desc->data_blocks = data_blocks;
726 desc->data_block_counter = dbc;
727 desc->ctx_payload = s->buffer.packets[index].buffer;
729 if (!(s->flags & CIP_DBC_IS_END_EVENT))
730 dbc = (dbc + desc->data_blocks) & 0xff;
732 ctx_header +=
733 s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
736 s->data_block_counter = dbc;
738 return 0;
741 static void generate_ideal_pkt_descs(struct amdtp_stream *s,
742 struct pkt_desc *descs,
743 const __be32 *ctx_header,
744 unsigned int packets)
746 unsigned int dbc = s->data_block_counter;
747 int i;
749 for (i = 0; i < packets; ++i) {
750 struct pkt_desc *desc = descs + i;
751 unsigned int index = (s->packet_index + i) % s->queue_size;
753 desc->cycle = compute_it_cycle(*ctx_header, s->queue_size);
754 desc->syt = calculate_syt(s, desc->cycle);
755 desc->data_blocks = calculate_data_blocks(s, desc->syt);
757 if (s->flags & CIP_DBC_IS_END_EVENT)
758 dbc = (dbc + desc->data_blocks) & 0xff;
760 desc->data_block_counter = dbc;
762 if (!(s->flags & CIP_DBC_IS_END_EVENT))
763 dbc = (dbc + desc->data_blocks) & 0xff;
765 desc->ctx_payload = s->buffer.packets[index].buffer;
767 ++ctx_header;
770 s->data_block_counter = dbc;
773 static inline void cancel_stream(struct amdtp_stream *s)
775 s->packet_index = -1;
776 if (in_interrupt())
777 amdtp_stream_pcm_abort(s);
778 WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
781 static void process_ctx_payloads(struct amdtp_stream *s,
782 const struct pkt_desc *descs,
783 unsigned int packets)
785 struct snd_pcm_substream *pcm;
786 unsigned int pcm_frames;
788 pcm = READ_ONCE(s->pcm);
789 pcm_frames = s->process_ctx_payloads(s, descs, packets, pcm);
790 if (pcm)
791 update_pcm_pointers(s, pcm, pcm_frames);
794 static void amdtp_stream_master_callback(struct fw_iso_context *context,
795 u32 tstamp, size_t header_length,
796 void *header, void *private_data);
798 static void amdtp_stream_master_first_callback(struct fw_iso_context *context,
799 u32 tstamp, size_t header_length,
800 void *header, void *private_data);
802 static void out_stream_callback(struct fw_iso_context *context, u32 tstamp,
803 size_t header_length, void *header,
804 void *private_data)
806 struct amdtp_stream *s = private_data;
807 const __be32 *ctx_header = header;
808 unsigned int events_per_period = s->ctx_data.rx.events_per_period;
809 unsigned int event_count = s->ctx_data.rx.event_count;
810 unsigned int packets;
811 bool is_irq_target;
812 int i;
814 if (s->packet_index < 0)
815 return;
817 // Calculate the number of packets in buffer and check XRUN.
818 packets = header_length / sizeof(*ctx_header);
820 generate_ideal_pkt_descs(s, s->pkt_descs, ctx_header, packets);
822 process_ctx_payloads(s, s->pkt_descs, packets);
824 is_irq_target =
825 !!(context->callback.sc == amdtp_stream_master_callback ||
826 context->callback.sc == amdtp_stream_master_first_callback);
828 for (i = 0; i < packets; ++i) {
829 const struct pkt_desc *desc = s->pkt_descs + i;
830 unsigned int syt;
831 struct {
832 struct fw_iso_packet params;
833 __be32 header[IT_PKT_HEADER_SIZE_CIP / sizeof(__be32)];
834 } template = { {0}, {0} };
835 bool sched_irq = false;
837 if (s->ctx_data.rx.syt_override < 0)
838 syt = desc->syt;
839 else
840 syt = s->ctx_data.rx.syt_override;
842 build_it_pkt_header(s, desc->cycle, &template.params,
843 desc->data_blocks, desc->data_block_counter,
844 syt, i);
846 if (is_irq_target) {
847 event_count += desc->data_blocks;
848 if (event_count >= events_per_period) {
849 event_count -= events_per_period;
850 sched_irq = true;
854 if (queue_out_packet(s, &template.params, sched_irq) < 0) {
855 cancel_stream(s);
856 return;
860 s->ctx_data.rx.event_count = event_count;
863 static void in_stream_callback(struct fw_iso_context *context, u32 tstamp,
864 size_t header_length, void *header,
865 void *private_data)
867 struct amdtp_stream *s = private_data;
868 __be32 *ctx_header = header;
869 unsigned int packets;
870 int i;
871 int err;
873 if (s->packet_index < 0)
874 return;
876 // Calculate the number of packets in buffer and check XRUN.
877 packets = header_length / s->ctx_data.tx.ctx_header_size;
879 err = generate_device_pkt_descs(s, s->pkt_descs, ctx_header, packets);
880 if (err < 0) {
881 if (err != -EAGAIN) {
882 cancel_stream(s);
883 return;
885 } else {
886 process_ctx_payloads(s, s->pkt_descs, packets);
889 for (i = 0; i < packets; ++i) {
890 struct fw_iso_packet params = {0};
892 if (queue_in_packet(s, &params) < 0) {
893 cancel_stream(s);
894 return;
899 static void amdtp_stream_master_callback(struct fw_iso_context *context,
900 u32 tstamp, size_t header_length,
901 void *header, void *private_data)
903 struct amdtp_domain *d = private_data;
904 struct amdtp_stream *irq_target = d->irq_target;
905 struct amdtp_stream *s;
907 out_stream_callback(context, tstamp, header_length, header, irq_target);
908 if (amdtp_streaming_error(irq_target))
909 goto error;
911 list_for_each_entry(s, &d->streams, list) {
912 if (s != irq_target && amdtp_stream_running(s)) {
913 fw_iso_context_flush_completions(s->context);
914 if (amdtp_streaming_error(s))
915 goto error;
919 return;
920 error:
921 if (amdtp_stream_running(irq_target))
922 cancel_stream(irq_target);
924 list_for_each_entry(s, &d->streams, list) {
925 if (amdtp_stream_running(s))
926 cancel_stream(s);
930 // this is executed one time.
931 static void amdtp_stream_first_callback(struct fw_iso_context *context,
932 u32 tstamp, size_t header_length,
933 void *header, void *private_data)
935 struct amdtp_stream *s = private_data;
936 const __be32 *ctx_header = header;
937 u32 cycle;
940 * For in-stream, first packet has come.
941 * For out-stream, prepared to transmit first packet
943 s->callbacked = true;
944 wake_up(&s->callback_wait);
946 if (s->direction == AMDTP_IN_STREAM) {
947 cycle = compute_cycle_count(ctx_header[1]);
949 context->callback.sc = in_stream_callback;
950 } else {
951 cycle = compute_it_cycle(*ctx_header, s->queue_size);
953 context->callback.sc = out_stream_callback;
956 s->start_cycle = cycle;
958 context->callback.sc(context, tstamp, header_length, header, s);
961 static void amdtp_stream_master_first_callback(struct fw_iso_context *context,
962 u32 tstamp, size_t header_length,
963 void *header, void *private_data)
965 struct amdtp_domain *d = private_data;
966 struct amdtp_stream *s = d->irq_target;
967 const __be32 *ctx_header = header;
969 s->callbacked = true;
970 wake_up(&s->callback_wait);
972 s->start_cycle = compute_it_cycle(*ctx_header, s->queue_size);
974 context->callback.sc = amdtp_stream_master_callback;
976 context->callback.sc(context, tstamp, header_length, header, d);
980 * amdtp_stream_start - start transferring packets
981 * @s: the AMDTP stream to start
982 * @channel: the isochronous channel on the bus
983 * @speed: firewire speed code
984 * @d: the AMDTP domain to which the AMDTP stream belongs
985 * @is_irq_target: whether isoc context for the AMDTP stream is used to generate
986 * hardware IRQ.
987 * @start_cycle: the isochronous cycle to start the context. Start immediately
988 * if negative value is given.
990 * The stream cannot be started until it has been configured with
991 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
992 * device can be started.
994 static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed,
995 struct amdtp_domain *d, bool is_irq_target,
996 int start_cycle)
998 static const struct {
999 unsigned int data_block;
1000 unsigned int syt_offset;
1001 } *entry, initial_state[] = {
1002 [CIP_SFC_32000] = { 4, 3072 },
1003 [CIP_SFC_48000] = { 6, 1024 },
1004 [CIP_SFC_96000] = { 12, 1024 },
1005 [CIP_SFC_192000] = { 24, 1024 },
1006 [CIP_SFC_44100] = { 0, 67 },
1007 [CIP_SFC_88200] = { 0, 67 },
1008 [CIP_SFC_176400] = { 0, 67 },
1010 unsigned int events_per_buffer = d->events_per_buffer;
1011 unsigned int events_per_period = d->events_per_period;
1012 unsigned int idle_irq_interval;
1013 unsigned int ctx_header_size;
1014 unsigned int max_ctx_payload_size;
1015 enum dma_data_direction dir;
1016 int type, tag, err;
1017 fw_iso_callback_t ctx_cb;
1018 void *ctx_data;
1020 mutex_lock(&s->mutex);
1022 if (WARN_ON(amdtp_stream_running(s) ||
1023 (s->data_block_quadlets < 1))) {
1024 err = -EBADFD;
1025 goto err_unlock;
1028 if (s->direction == AMDTP_IN_STREAM) {
1029 // NOTE: IT context should be used for constant IRQ.
1030 if (is_irq_target) {
1031 err = -EINVAL;
1032 goto err_unlock;
1035 s->data_block_counter = UINT_MAX;
1036 } else {
1037 entry = &initial_state[s->sfc];
1039 s->data_block_counter = 0;
1040 s->ctx_data.rx.data_block_state = entry->data_block;
1041 s->ctx_data.rx.syt_offset_state = entry->syt_offset;
1042 s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE;
1045 /* initialize packet buffer */
1046 if (s->direction == AMDTP_IN_STREAM) {
1047 dir = DMA_FROM_DEVICE;
1048 type = FW_ISO_CONTEXT_RECEIVE;
1049 if (!(s->flags & CIP_NO_HEADER))
1050 ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
1051 else
1052 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
1054 max_ctx_payload_size = amdtp_stream_get_max_payload(s) -
1055 ctx_header_size;
1056 } else {
1057 dir = DMA_TO_DEVICE;
1058 type = FW_ISO_CONTEXT_TRANSMIT;
1059 ctx_header_size = 0; // No effect for IT context.
1061 max_ctx_payload_size = amdtp_stream_get_max_payload(s);
1062 if (!(s->flags & CIP_NO_HEADER))
1063 max_ctx_payload_size -= IT_PKT_HEADER_SIZE_CIP;
1066 // This is a case that AMDTP streams in domain run just for MIDI
1067 // substream. Use the number of events equivalent to 10 msec as
1068 // interval of hardware IRQ.
1069 if (events_per_period == 0)
1070 events_per_period = amdtp_rate_table[s->sfc] / 100;
1071 if (events_per_buffer == 0)
1072 events_per_buffer = events_per_period * 3;
1074 idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period,
1075 amdtp_rate_table[s->sfc]);
1076 s->queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer,
1077 amdtp_rate_table[s->sfc]);
1079 err = iso_packets_buffer_init(&s->buffer, s->unit, s->queue_size,
1080 max_ctx_payload_size, dir);
1081 if (err < 0)
1082 goto err_unlock;
1084 if (is_irq_target) {
1085 s->ctx_data.rx.events_per_period = events_per_period;
1086 s->ctx_data.rx.event_count = 0;
1087 ctx_cb = amdtp_stream_master_first_callback;
1088 ctx_data = d;
1089 } else {
1090 ctx_cb = amdtp_stream_first_callback;
1091 ctx_data = s;
1094 s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
1095 type, channel, speed, ctx_header_size,
1096 ctx_cb, ctx_data);
1097 if (IS_ERR(s->context)) {
1098 err = PTR_ERR(s->context);
1099 if (err == -EBUSY)
1100 dev_err(&s->unit->device,
1101 "no free stream on this controller\n");
1102 goto err_buffer;
1105 amdtp_stream_update(s);
1107 if (s->direction == AMDTP_IN_STREAM) {
1108 s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size;
1109 s->ctx_data.tx.ctx_header_size = ctx_header_size;
1112 if (s->flags & CIP_NO_HEADER)
1113 s->tag = TAG_NO_CIP_HEADER;
1114 else
1115 s->tag = TAG_CIP;
1117 s->pkt_descs = kcalloc(s->queue_size, sizeof(*s->pkt_descs),
1118 GFP_KERNEL);
1119 if (!s->pkt_descs) {
1120 err = -ENOMEM;
1121 goto err_context;
1124 s->packet_index = 0;
1125 do {
1126 struct fw_iso_packet params;
1128 if (s->direction == AMDTP_IN_STREAM) {
1129 err = queue_in_packet(s, &params);
1130 } else {
1131 bool sched_irq = false;
1133 params.header_length = 0;
1134 params.payload_length = 0;
1136 if (is_irq_target) {
1137 sched_irq = !((s->packet_index + 1) %
1138 idle_irq_interval);
1141 err = queue_out_packet(s, &params, sched_irq);
1143 if (err < 0)
1144 goto err_pkt_descs;
1145 } while (s->packet_index > 0);
1147 /* NOTE: TAG1 matches CIP. This just affects in stream. */
1148 tag = FW_ISO_CONTEXT_MATCH_TAG1;
1149 if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
1150 tag |= FW_ISO_CONTEXT_MATCH_TAG0;
1152 s->callbacked = false;
1153 err = fw_iso_context_start(s->context, start_cycle, 0, tag);
1154 if (err < 0)
1155 goto err_pkt_descs;
1157 mutex_unlock(&s->mutex);
1159 return 0;
1160 err_pkt_descs:
1161 kfree(s->pkt_descs);
1162 err_context:
1163 fw_iso_context_destroy(s->context);
1164 s->context = ERR_PTR(-1);
1165 err_buffer:
1166 iso_packets_buffer_destroy(&s->buffer, s->unit);
1167 err_unlock:
1168 mutex_unlock(&s->mutex);
1170 return err;
1174 * amdtp_domain_stream_pcm_pointer - get the PCM buffer position
1175 * @d: the AMDTP domain.
1176 * @s: the AMDTP stream that transports the PCM data
1178 * Returns the current buffer position, in frames.
1180 unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d,
1181 struct amdtp_stream *s)
1183 struct amdtp_stream *irq_target = d->irq_target;
1185 if (irq_target && amdtp_stream_running(irq_target)) {
1186 // This function is called in software IRQ context of
1187 // period_tasklet or process context.
1189 // When the software IRQ context was scheduled by software IRQ
1190 // context of IT contexts, queued packets were already handled.
1191 // Therefore, no need to flush the queue in buffer furthermore.
1193 // When the process context reach here, some packets will be
1194 // already queued in the buffer. These packets should be handled
1195 // immediately to keep better granularity of PCM pointer.
1197 // Later, the process context will sometimes schedules software
1198 // IRQ context of the period_tasklet. Then, no need to flush the
1199 // queue by the same reason as described in the above
1200 if (!in_interrupt()) {
1201 // Queued packet should be processed without any kernel
1202 // preemption to keep latency against bus cycle.
1203 preempt_disable();
1204 fw_iso_context_flush_completions(irq_target->context);
1205 preempt_enable();
1209 return READ_ONCE(s->pcm_buffer_pointer);
1211 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer);
1214 * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames
1215 * @d: the AMDTP domain.
1216 * @s: the AMDTP stream that transfers the PCM frames
1218 * Returns zero always.
1220 int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s)
1222 struct amdtp_stream *irq_target = d->irq_target;
1224 // Process isochronous packets for recent isochronous cycle to handle
1225 // queued PCM frames.
1226 if (irq_target && amdtp_stream_running(irq_target)) {
1227 // Queued packet should be processed without any kernel
1228 // preemption to keep latency against bus cycle.
1229 preempt_disable();
1230 fw_iso_context_flush_completions(irq_target->context);
1231 preempt_enable();
1234 return 0;
1236 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack);
1239 * amdtp_stream_update - update the stream after a bus reset
1240 * @s: the AMDTP stream
1242 void amdtp_stream_update(struct amdtp_stream *s)
1244 /* Precomputing. */
1245 WRITE_ONCE(s->source_node_id_field,
1246 (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
1248 EXPORT_SYMBOL(amdtp_stream_update);
1251 * amdtp_stream_stop - stop sending packets
1252 * @s: the AMDTP stream to stop
1254 * All PCM and MIDI devices of the stream must be stopped before the stream
1255 * itself can be stopped.
1257 static void amdtp_stream_stop(struct amdtp_stream *s)
1259 mutex_lock(&s->mutex);
1261 if (!amdtp_stream_running(s)) {
1262 mutex_unlock(&s->mutex);
1263 return;
1266 tasklet_kill(&s->period_tasklet);
1267 fw_iso_context_stop(s->context);
1268 fw_iso_context_destroy(s->context);
1269 s->context = ERR_PTR(-1);
1270 iso_packets_buffer_destroy(&s->buffer, s->unit);
1271 kfree(s->pkt_descs);
1273 s->callbacked = false;
1275 mutex_unlock(&s->mutex);
1279 * amdtp_stream_pcm_abort - abort the running PCM device
1280 * @s: the AMDTP stream about to be stopped
1282 * If the isochronous stream needs to be stopped asynchronously, call this
1283 * function first to stop the PCM device.
1285 void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1287 struct snd_pcm_substream *pcm;
1289 pcm = READ_ONCE(s->pcm);
1290 if (pcm)
1291 snd_pcm_stop_xrun(pcm);
1293 EXPORT_SYMBOL(amdtp_stream_pcm_abort);
1296 * amdtp_domain_init - initialize an AMDTP domain structure
1297 * @d: the AMDTP domain to initialize.
1299 int amdtp_domain_init(struct amdtp_domain *d)
1301 INIT_LIST_HEAD(&d->streams);
1303 d->events_per_period = 0;
1305 return 0;
1307 EXPORT_SYMBOL_GPL(amdtp_domain_init);
1310 * amdtp_domain_destroy - destroy an AMDTP domain structure
1311 * @d: the AMDTP domain to destroy.
1313 void amdtp_domain_destroy(struct amdtp_domain *d)
1315 // At present nothing to do.
1316 return;
1318 EXPORT_SYMBOL_GPL(amdtp_domain_destroy);
1321 * amdtp_domain_add_stream - register isoc context into the domain.
1322 * @d: the AMDTP domain.
1323 * @s: the AMDTP stream.
1324 * @channel: the isochronous channel on the bus.
1325 * @speed: firewire speed code.
1327 int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s,
1328 int channel, int speed)
1330 struct amdtp_stream *tmp;
1332 list_for_each_entry(tmp, &d->streams, list) {
1333 if (s == tmp)
1334 return -EBUSY;
1337 list_add(&s->list, &d->streams);
1339 s->channel = channel;
1340 s->speed = speed;
1342 return 0;
1344 EXPORT_SYMBOL_GPL(amdtp_domain_add_stream);
1346 static int get_current_cycle_time(struct fw_card *fw_card, int *cur_cycle)
1348 int generation;
1349 int rcode;
1350 __be32 reg;
1351 u32 data;
1353 // This is a request to local 1394 OHCI controller and expected to
1354 // complete without any event waiting.
1355 generation = fw_card->generation;
1356 smp_rmb(); // node_id vs. generation.
1357 rcode = fw_run_transaction(fw_card, TCODE_READ_QUADLET_REQUEST,
1358 fw_card->node_id, generation, SCODE_100,
1359 CSR_REGISTER_BASE + CSR_CYCLE_TIME,
1360 &reg, sizeof(reg));
1361 if (rcode != RCODE_COMPLETE)
1362 return -EIO;
1364 data = be32_to_cpu(reg);
1365 *cur_cycle = data >> 12;
1367 return 0;
1371 * amdtp_domain_start - start sending packets for isoc context in the domain.
1372 * @d: the AMDTP domain.
1373 * @ir_delay_cycle: the cycle delay to start all IR contexts.
1375 int amdtp_domain_start(struct amdtp_domain *d, unsigned int ir_delay_cycle)
1377 struct amdtp_stream *s;
1378 int cycle;
1379 int err;
1381 // Select an IT context as IRQ target.
1382 list_for_each_entry(s, &d->streams, list) {
1383 if (s->direction == AMDTP_OUT_STREAM)
1384 break;
1386 if (!s)
1387 return -ENXIO;
1388 d->irq_target = s;
1390 if (ir_delay_cycle > 0) {
1391 struct fw_card *fw_card = fw_parent_device(s->unit)->card;
1393 err = get_current_cycle_time(fw_card, &cycle);
1394 if (err < 0)
1395 return err;
1397 // No need to care overflow in cycle field because of enough
1398 // width.
1399 cycle += ir_delay_cycle;
1401 // Round up to sec field.
1402 if ((cycle & 0x00001fff) >= CYCLES_PER_SECOND) {
1403 unsigned int sec;
1405 // The sec field can overflow.
1406 sec = (cycle & 0xffffe000) >> 13;
1407 cycle = (++sec << 13) |
1408 ((cycle & 0x00001fff) / CYCLES_PER_SECOND);
1411 // In OHCI 1394 specification, lower 2 bits are available for
1412 // sec field.
1413 cycle &= 0x00007fff;
1414 } else {
1415 cycle = -1;
1418 list_for_each_entry(s, &d->streams, list) {
1419 int cycle_match;
1421 if (s->direction == AMDTP_IN_STREAM) {
1422 cycle_match = cycle;
1423 } else {
1424 // IT context starts immediately.
1425 cycle_match = -1;
1428 if (s != d->irq_target) {
1429 err = amdtp_stream_start(s, s->channel, s->speed, d,
1430 false, cycle_match);
1431 if (err < 0)
1432 goto error;
1436 s = d->irq_target;
1437 err = amdtp_stream_start(s, s->channel, s->speed, d, true, -1);
1438 if (err < 0)
1439 goto error;
1441 return 0;
1442 error:
1443 list_for_each_entry(s, &d->streams, list)
1444 amdtp_stream_stop(s);
1445 return err;
1447 EXPORT_SYMBOL_GPL(amdtp_domain_start);
1450 * amdtp_domain_stop - stop sending packets for isoc context in the same domain.
1451 * @d: the AMDTP domain to which the isoc contexts belong.
1453 void amdtp_domain_stop(struct amdtp_domain *d)
1455 struct amdtp_stream *s, *next;
1457 if (d->irq_target)
1458 amdtp_stream_stop(d->irq_target);
1460 list_for_each_entry_safe(s, next, &d->streams, list) {
1461 list_del(&s->list);
1463 if (s != d->irq_target)
1464 amdtp_stream_stop(s);
1467 d->events_per_period = 0;
1468 d->irq_target = NULL;
1470 EXPORT_SYMBOL_GPL(amdtp_domain_stop);