2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
37 #include "blk-mq-sched.h"
38 #include "blk-rq-qos.h"
40 static bool blk_mq_poll(struct request_queue
*q
, blk_qc_t cookie
);
41 static void blk_mq_poll_stats_start(struct request_queue
*q
);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
);
44 static int blk_mq_poll_stats_bkt(const struct request
*rq
)
46 int ddir
, bytes
, bucket
;
48 ddir
= rq_data_dir(rq
);
49 bytes
= blk_rq_bytes(rq
);
51 bucket
= ddir
+ 2*(ilog2(bytes
) - 9);
55 else if (bucket
>= BLK_MQ_POLL_STATS_BKTS
)
56 return ddir
+ BLK_MQ_POLL_STATS_BKTS
- 2;
62 * Check if any of the ctx's have pending work in this hardware queue
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
66 return !list_empty_careful(&hctx
->dispatch
) ||
67 sbitmap_any_bit_set(&hctx
->ctx_map
) ||
68 blk_mq_sched_has_work(hctx
);
72 * Mark this ctx as having pending work in this hardware queue
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
75 struct blk_mq_ctx
*ctx
)
77 if (!sbitmap_test_bit(&hctx
->ctx_map
, ctx
->index_hw
))
78 sbitmap_set_bit(&hctx
->ctx_map
, ctx
->index_hw
);
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
82 struct blk_mq_ctx
*ctx
)
84 sbitmap_clear_bit(&hctx
->ctx_map
, ctx
->index_hw
);
88 struct hd_struct
*part
;
89 unsigned int *inflight
;
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx
*hctx
,
93 struct request
*rq
, void *priv
,
96 struct mq_inflight
*mi
= priv
;
99 * index[0] counts the specific partition that was asked for. index[1]
100 * counts the ones that are active on the whole device, so increment
101 * that if mi->part is indeed a partition, and not a whole device.
103 if (rq
->part
== mi
->part
)
105 if (mi
->part
->partno
)
109 void blk_mq_in_flight(struct request_queue
*q
, struct hd_struct
*part
,
110 unsigned int inflight
[2])
112 struct mq_inflight mi
= { .part
= part
, .inflight
= inflight
, };
114 inflight
[0] = inflight
[1] = 0;
115 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight
, &mi
);
118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx
*hctx
,
119 struct request
*rq
, void *priv
,
122 struct mq_inflight
*mi
= priv
;
124 if (rq
->part
== mi
->part
)
125 mi
->inflight
[rq_data_dir(rq
)]++;
128 void blk_mq_in_flight_rw(struct request_queue
*q
, struct hd_struct
*part
,
129 unsigned int inflight
[2])
131 struct mq_inflight mi
= { .part
= part
, .inflight
= inflight
, };
133 inflight
[0] = inflight
[1] = 0;
134 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight_rw
, &mi
);
137 void blk_freeze_queue_start(struct request_queue
*q
)
141 freeze_depth
= atomic_inc_return(&q
->mq_freeze_depth
);
142 if (freeze_depth
== 1) {
143 percpu_ref_kill(&q
->q_usage_counter
);
145 blk_mq_run_hw_queues(q
, false);
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start
);
150 void blk_mq_freeze_queue_wait(struct request_queue
*q
)
152 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->q_usage_counter
));
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait
);
156 int blk_mq_freeze_queue_wait_timeout(struct request_queue
*q
,
157 unsigned long timeout
)
159 return wait_event_timeout(q
->mq_freeze_wq
,
160 percpu_ref_is_zero(&q
->q_usage_counter
),
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout
);
166 * Guarantee no request is in use, so we can change any data structure of
167 * the queue afterward.
169 void blk_freeze_queue(struct request_queue
*q
)
172 * In the !blk_mq case we are only calling this to kill the
173 * q_usage_counter, otherwise this increases the freeze depth
174 * and waits for it to return to zero. For this reason there is
175 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176 * exported to drivers as the only user for unfreeze is blk_mq.
178 blk_freeze_queue_start(q
);
181 blk_mq_freeze_queue_wait(q
);
184 void blk_mq_freeze_queue(struct request_queue
*q
)
187 * ...just an alias to keep freeze and unfreeze actions balanced
188 * in the blk_mq_* namespace
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
194 void blk_mq_unfreeze_queue(struct request_queue
*q
)
198 freeze_depth
= atomic_dec_return(&q
->mq_freeze_depth
);
199 WARN_ON_ONCE(freeze_depth
< 0);
201 percpu_ref_reinit(&q
->q_usage_counter
);
202 wake_up_all(&q
->mq_freeze_wq
);
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
208 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209 * mpt3sas driver such that this function can be removed.
211 void blk_mq_quiesce_queue_nowait(struct request_queue
*q
)
213 blk_queue_flag_set(QUEUE_FLAG_QUIESCED
, q
);
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait
);
218 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
221 * Note: this function does not prevent that the struct request end_io()
222 * callback function is invoked. Once this function is returned, we make
223 * sure no dispatch can happen until the queue is unquiesced via
224 * blk_mq_unquiesce_queue().
226 void blk_mq_quiesce_queue(struct request_queue
*q
)
228 struct blk_mq_hw_ctx
*hctx
;
232 blk_mq_quiesce_queue_nowait(q
);
234 queue_for_each_hw_ctx(q
, hctx
, i
) {
235 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
236 synchronize_srcu(hctx
->srcu
);
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue
);
246 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
249 * This function recovers queue into the state before quiescing
250 * which is done by blk_mq_quiesce_queue.
252 void blk_mq_unquiesce_queue(struct request_queue
*q
)
254 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED
, q
);
256 /* dispatch requests which are inserted during quiescing */
257 blk_mq_run_hw_queues(q
, true);
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue
);
261 void blk_mq_wake_waiters(struct request_queue
*q
)
263 struct blk_mq_hw_ctx
*hctx
;
266 queue_for_each_hw_ctx(q
, hctx
, i
)
267 if (blk_mq_hw_queue_mapped(hctx
))
268 blk_mq_tag_wakeup_all(hctx
->tags
, true);
271 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
273 return blk_mq_has_free_tags(hctx
->tags
);
275 EXPORT_SYMBOL(blk_mq_can_queue
);
277 static struct request
*blk_mq_rq_ctx_init(struct blk_mq_alloc_data
*data
,
278 unsigned int tag
, unsigned int op
)
280 struct blk_mq_tags
*tags
= blk_mq_tags_from_data(data
);
281 struct request
*rq
= tags
->static_rqs
[tag
];
282 req_flags_t rq_flags
= 0;
284 if (data
->flags
& BLK_MQ_REQ_INTERNAL
) {
286 rq
->internal_tag
= tag
;
288 if (data
->hctx
->flags
& BLK_MQ_F_TAG_SHARED
) {
289 rq_flags
= RQF_MQ_INFLIGHT
;
290 atomic_inc(&data
->hctx
->nr_active
);
293 rq
->internal_tag
= -1;
294 data
->hctx
->tags
->rqs
[rq
->tag
] = rq
;
297 /* csd/requeue_work/fifo_time is initialized before use */
299 rq
->mq_ctx
= data
->ctx
;
300 rq
->rq_flags
= rq_flags
;
303 if (data
->flags
& BLK_MQ_REQ_PREEMPT
)
304 rq
->rq_flags
|= RQF_PREEMPT
;
305 if (blk_queue_io_stat(data
->q
))
306 rq
->rq_flags
|= RQF_IO_STAT
;
307 INIT_LIST_HEAD(&rq
->queuelist
);
308 INIT_HLIST_NODE(&rq
->hash
);
309 RB_CLEAR_NODE(&rq
->rb_node
);
312 rq
->start_time_ns
= ktime_get_ns();
313 rq
->io_start_time_ns
= 0;
314 rq
->nr_phys_segments
= 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316 rq
->nr_integrity_segments
= 0;
319 /* tag was already set */
323 INIT_LIST_HEAD(&rq
->timeout_list
);
327 rq
->end_io_data
= NULL
;
330 #ifdef CONFIG_BLK_CGROUP
334 data
->ctx
->rq_dispatched
[op_is_sync(op
)]++;
335 refcount_set(&rq
->ref
, 1);
339 static struct request
*blk_mq_get_request(struct request_queue
*q
,
340 struct bio
*bio
, unsigned int op
,
341 struct blk_mq_alloc_data
*data
)
343 struct elevator_queue
*e
= q
->elevator
;
346 bool put_ctx_on_error
= false;
348 blk_queue_enter_live(q
);
350 if (likely(!data
->ctx
)) {
351 data
->ctx
= blk_mq_get_ctx(q
);
352 put_ctx_on_error
= true;
354 if (likely(!data
->hctx
))
355 data
->hctx
= blk_mq_map_queue(q
, data
->ctx
->cpu
);
357 data
->flags
|= BLK_MQ_REQ_NOWAIT
;
360 data
->flags
|= BLK_MQ_REQ_INTERNAL
;
363 * Flush requests are special and go directly to the
364 * dispatch list. Don't include reserved tags in the
365 * limiting, as it isn't useful.
367 if (!op_is_flush(op
) && e
->type
->ops
.mq
.limit_depth
&&
368 !(data
->flags
& BLK_MQ_REQ_RESERVED
))
369 e
->type
->ops
.mq
.limit_depth(op
, data
);
371 blk_mq_tag_busy(data
->hctx
);
374 tag
= blk_mq_get_tag(data
);
375 if (tag
== BLK_MQ_TAG_FAIL
) {
376 if (put_ctx_on_error
) {
377 blk_mq_put_ctx(data
->ctx
);
384 rq
= blk_mq_rq_ctx_init(data
, tag
, op
);
385 if (!op_is_flush(op
)) {
387 if (e
&& e
->type
->ops
.mq
.prepare_request
) {
388 if (e
->type
->icq_cache
&& rq_ioc(bio
))
389 blk_mq_sched_assign_ioc(rq
, bio
);
391 e
->type
->ops
.mq
.prepare_request(rq
, bio
);
392 rq
->rq_flags
|= RQF_ELVPRIV
;
395 data
->hctx
->queued
++;
399 struct request
*blk_mq_alloc_request(struct request_queue
*q
, unsigned int op
,
400 blk_mq_req_flags_t flags
)
402 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
};
406 ret
= blk_queue_enter(q
, flags
);
410 rq
= blk_mq_get_request(q
, NULL
, op
, &alloc_data
);
414 return ERR_PTR(-EWOULDBLOCK
);
416 blk_mq_put_ctx(alloc_data
.ctx
);
419 rq
->__sector
= (sector_t
) -1;
420 rq
->bio
= rq
->biotail
= NULL
;
423 EXPORT_SYMBOL(blk_mq_alloc_request
);
425 struct request
*blk_mq_alloc_request_hctx(struct request_queue
*q
,
426 unsigned int op
, blk_mq_req_flags_t flags
, unsigned int hctx_idx
)
428 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
};
434 * If the tag allocator sleeps we could get an allocation for a
435 * different hardware context. No need to complicate the low level
436 * allocator for this for the rare use case of a command tied to
439 if (WARN_ON_ONCE(!(flags
& BLK_MQ_REQ_NOWAIT
)))
440 return ERR_PTR(-EINVAL
);
442 if (hctx_idx
>= q
->nr_hw_queues
)
443 return ERR_PTR(-EIO
);
445 ret
= blk_queue_enter(q
, flags
);
450 * Check if the hardware context is actually mapped to anything.
451 * If not tell the caller that it should skip this queue.
453 alloc_data
.hctx
= q
->queue_hw_ctx
[hctx_idx
];
454 if (!blk_mq_hw_queue_mapped(alloc_data
.hctx
)) {
456 return ERR_PTR(-EXDEV
);
458 cpu
= cpumask_first_and(alloc_data
.hctx
->cpumask
, cpu_online_mask
);
459 alloc_data
.ctx
= __blk_mq_get_ctx(q
, cpu
);
461 rq
= blk_mq_get_request(q
, NULL
, op
, &alloc_data
);
465 return ERR_PTR(-EWOULDBLOCK
);
469 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx
);
471 static void __blk_mq_free_request(struct request
*rq
)
473 struct request_queue
*q
= rq
->q
;
474 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
475 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, ctx
->cpu
);
476 const int sched_tag
= rq
->internal_tag
;
479 blk_mq_put_tag(hctx
, hctx
->tags
, ctx
, rq
->tag
);
481 blk_mq_put_tag(hctx
, hctx
->sched_tags
, ctx
, sched_tag
);
482 blk_mq_sched_restart(hctx
);
486 void blk_mq_free_request(struct request
*rq
)
488 struct request_queue
*q
= rq
->q
;
489 struct elevator_queue
*e
= q
->elevator
;
490 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
491 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, ctx
->cpu
);
493 if (rq
->rq_flags
& RQF_ELVPRIV
) {
494 if (e
&& e
->type
->ops
.mq
.finish_request
)
495 e
->type
->ops
.mq
.finish_request(rq
);
497 put_io_context(rq
->elv
.icq
->ioc
);
502 ctx
->rq_completed
[rq_is_sync(rq
)]++;
503 if (rq
->rq_flags
& RQF_MQ_INFLIGHT
)
504 atomic_dec(&hctx
->nr_active
);
506 if (unlikely(laptop_mode
&& !blk_rq_is_passthrough(rq
)))
507 laptop_io_completion(q
->backing_dev_info
);
512 blk_put_rl(blk_rq_rl(rq
));
514 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
515 if (refcount_dec_and_test(&rq
->ref
))
516 __blk_mq_free_request(rq
);
518 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
520 inline void __blk_mq_end_request(struct request
*rq
, blk_status_t error
)
522 u64 now
= ktime_get_ns();
524 if (rq
->rq_flags
& RQF_STATS
) {
525 blk_mq_poll_stats_start(rq
->q
);
526 blk_stat_add(rq
, now
);
529 blk_account_io_done(rq
, now
);
532 rq_qos_done(rq
->q
, rq
);
533 rq
->end_io(rq
, error
);
535 if (unlikely(blk_bidi_rq(rq
)))
536 blk_mq_free_request(rq
->next_rq
);
537 blk_mq_free_request(rq
);
540 EXPORT_SYMBOL(__blk_mq_end_request
);
542 void blk_mq_end_request(struct request
*rq
, blk_status_t error
)
544 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
546 __blk_mq_end_request(rq
, error
);
548 EXPORT_SYMBOL(blk_mq_end_request
);
550 static void __blk_mq_complete_request_remote(void *data
)
552 struct request
*rq
= data
;
554 rq
->q
->softirq_done_fn(rq
);
557 static void __blk_mq_complete_request(struct request
*rq
)
559 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
563 if (!blk_mq_mark_complete(rq
))
565 if (rq
->internal_tag
!= -1)
566 blk_mq_sched_completed_request(rq
);
568 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
569 rq
->q
->softirq_done_fn(rq
);
574 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
575 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
577 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
578 rq
->csd
.func
= __blk_mq_complete_request_remote
;
581 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
583 rq
->q
->softirq_done_fn(rq
);
588 static void hctx_unlock(struct blk_mq_hw_ctx
*hctx
, int srcu_idx
)
589 __releases(hctx
->srcu
)
591 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
))
594 srcu_read_unlock(hctx
->srcu
, srcu_idx
);
597 static void hctx_lock(struct blk_mq_hw_ctx
*hctx
, int *srcu_idx
)
598 __acquires(hctx
->srcu
)
600 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
601 /* shut up gcc false positive */
605 *srcu_idx
= srcu_read_lock(hctx
->srcu
);
609 * blk_mq_complete_request - end I/O on a request
610 * @rq: the request being processed
613 * Ends all I/O on a request. It does not handle partial completions.
614 * The actual completion happens out-of-order, through a IPI handler.
616 void blk_mq_complete_request(struct request
*rq
)
618 if (unlikely(blk_should_fake_timeout(rq
->q
)))
620 __blk_mq_complete_request(rq
);
622 EXPORT_SYMBOL(blk_mq_complete_request
);
624 int blk_mq_request_started(struct request
*rq
)
626 return blk_mq_rq_state(rq
) != MQ_RQ_IDLE
;
628 EXPORT_SYMBOL_GPL(blk_mq_request_started
);
630 void blk_mq_start_request(struct request
*rq
)
632 struct request_queue
*q
= rq
->q
;
634 blk_mq_sched_started_request(rq
);
636 trace_block_rq_issue(q
, rq
);
638 if (test_bit(QUEUE_FLAG_STATS
, &q
->queue_flags
)) {
639 rq
->io_start_time_ns
= ktime_get_ns();
640 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
641 rq
->throtl_size
= blk_rq_sectors(rq
);
643 rq
->rq_flags
|= RQF_STATS
;
647 WARN_ON_ONCE(blk_mq_rq_state(rq
) != MQ_RQ_IDLE
);
650 WRITE_ONCE(rq
->state
, MQ_RQ_IN_FLIGHT
);
652 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
654 * Make sure space for the drain appears. We know we can do
655 * this because max_hw_segments has been adjusted to be one
656 * fewer than the device can handle.
658 rq
->nr_phys_segments
++;
661 EXPORT_SYMBOL(blk_mq_start_request
);
663 static void __blk_mq_requeue_request(struct request
*rq
)
665 struct request_queue
*q
= rq
->q
;
667 blk_mq_put_driver_tag(rq
);
669 trace_block_rq_requeue(q
, rq
);
670 rq_qos_requeue(q
, rq
);
672 if (blk_mq_request_started(rq
)) {
673 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
674 rq
->rq_flags
&= ~RQF_TIMED_OUT
;
675 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
676 rq
->nr_phys_segments
--;
680 void blk_mq_requeue_request(struct request
*rq
, bool kick_requeue_list
)
682 __blk_mq_requeue_request(rq
);
684 /* this request will be re-inserted to io scheduler queue */
685 blk_mq_sched_requeue_request(rq
);
687 BUG_ON(blk_queued_rq(rq
));
688 blk_mq_add_to_requeue_list(rq
, true, kick_requeue_list
);
690 EXPORT_SYMBOL(blk_mq_requeue_request
);
692 static void blk_mq_requeue_work(struct work_struct
*work
)
694 struct request_queue
*q
=
695 container_of(work
, struct request_queue
, requeue_work
.work
);
697 struct request
*rq
, *next
;
699 spin_lock_irq(&q
->requeue_lock
);
700 list_splice_init(&q
->requeue_list
, &rq_list
);
701 spin_unlock_irq(&q
->requeue_lock
);
703 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
704 if (!(rq
->rq_flags
& (RQF_SOFTBARRIER
| RQF_DONTPREP
)))
707 rq
->rq_flags
&= ~RQF_SOFTBARRIER
;
708 list_del_init(&rq
->queuelist
);
710 * If RQF_DONTPREP, rq has contained some driver specific
711 * data, so insert it to hctx dispatch list to avoid any
714 if (rq
->rq_flags
& RQF_DONTPREP
)
715 blk_mq_request_bypass_insert(rq
, false);
717 blk_mq_sched_insert_request(rq
, true, false, false);
720 while (!list_empty(&rq_list
)) {
721 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
722 list_del_init(&rq
->queuelist
);
723 blk_mq_sched_insert_request(rq
, false, false, false);
726 blk_mq_run_hw_queues(q
, false);
729 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
,
730 bool kick_requeue_list
)
732 struct request_queue
*q
= rq
->q
;
736 * We abuse this flag that is otherwise used by the I/O scheduler to
737 * request head insertion from the workqueue.
739 BUG_ON(rq
->rq_flags
& RQF_SOFTBARRIER
);
741 spin_lock_irqsave(&q
->requeue_lock
, flags
);
743 rq
->rq_flags
|= RQF_SOFTBARRIER
;
744 list_add(&rq
->queuelist
, &q
->requeue_list
);
746 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
748 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
750 if (kick_requeue_list
)
751 blk_mq_kick_requeue_list(q
);
753 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
755 void blk_mq_kick_requeue_list(struct request_queue
*q
)
757 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
, 0);
759 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
761 void blk_mq_delay_kick_requeue_list(struct request_queue
*q
,
764 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
,
765 msecs_to_jiffies(msecs
));
767 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list
);
769 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
771 if (tag
< tags
->nr_tags
) {
772 prefetch(tags
->rqs
[tag
]);
773 return tags
->rqs
[tag
];
778 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
780 static void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
782 req
->rq_flags
|= RQF_TIMED_OUT
;
783 if (req
->q
->mq_ops
->timeout
) {
784 enum blk_eh_timer_return ret
;
786 ret
= req
->q
->mq_ops
->timeout(req
, reserved
);
787 if (ret
== BLK_EH_DONE
)
789 WARN_ON_ONCE(ret
!= BLK_EH_RESET_TIMER
);
795 static bool blk_mq_req_expired(struct request
*rq
, unsigned long *next
)
797 unsigned long deadline
;
799 if (blk_mq_rq_state(rq
) != MQ_RQ_IN_FLIGHT
)
801 if (rq
->rq_flags
& RQF_TIMED_OUT
)
804 deadline
= blk_rq_deadline(rq
);
805 if (time_after_eq(jiffies
, deadline
))
810 else if (time_after(*next
, deadline
))
815 static void blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
816 struct request
*rq
, void *priv
, bool reserved
)
818 unsigned long *next
= priv
;
821 * Just do a quick check if it is expired before locking the request in
822 * so we're not unnecessarilly synchronizing across CPUs.
824 if (!blk_mq_req_expired(rq
, next
))
828 * We have reason to believe the request may be expired. Take a
829 * reference on the request to lock this request lifetime into its
830 * currently allocated context to prevent it from being reallocated in
831 * the event the completion by-passes this timeout handler.
833 * If the reference was already released, then the driver beat the
834 * timeout handler to posting a natural completion.
836 if (!refcount_inc_not_zero(&rq
->ref
))
840 * The request is now locked and cannot be reallocated underneath the
841 * timeout handler's processing. Re-verify this exact request is truly
842 * expired; if it is not expired, then the request was completed and
843 * reallocated as a new request.
845 if (blk_mq_req_expired(rq
, next
))
846 blk_mq_rq_timed_out(rq
, reserved
);
847 if (refcount_dec_and_test(&rq
->ref
))
848 __blk_mq_free_request(rq
);
851 static void blk_mq_timeout_work(struct work_struct
*work
)
853 struct request_queue
*q
=
854 container_of(work
, struct request_queue
, timeout_work
);
855 unsigned long next
= 0;
856 struct blk_mq_hw_ctx
*hctx
;
859 /* A deadlock might occur if a request is stuck requiring a
860 * timeout at the same time a queue freeze is waiting
861 * completion, since the timeout code would not be able to
862 * acquire the queue reference here.
864 * That's why we don't use blk_queue_enter here; instead, we use
865 * percpu_ref_tryget directly, because we need to be able to
866 * obtain a reference even in the short window between the queue
867 * starting to freeze, by dropping the first reference in
868 * blk_freeze_queue_start, and the moment the last request is
869 * consumed, marked by the instant q_usage_counter reaches
872 if (!percpu_ref_tryget(&q
->q_usage_counter
))
875 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_expired
, &next
);
878 mod_timer(&q
->timeout
, next
);
881 * Request timeouts are handled as a forward rolling timer. If
882 * we end up here it means that no requests are pending and
883 * also that no request has been pending for a while. Mark
886 queue_for_each_hw_ctx(q
, hctx
, i
) {
887 /* the hctx may be unmapped, so check it here */
888 if (blk_mq_hw_queue_mapped(hctx
))
889 blk_mq_tag_idle(hctx
);
895 struct flush_busy_ctx_data
{
896 struct blk_mq_hw_ctx
*hctx
;
897 struct list_head
*list
;
900 static bool flush_busy_ctx(struct sbitmap
*sb
, unsigned int bitnr
, void *data
)
902 struct flush_busy_ctx_data
*flush_data
= data
;
903 struct blk_mq_hw_ctx
*hctx
= flush_data
->hctx
;
904 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
906 spin_lock(&ctx
->lock
);
907 list_splice_tail_init(&ctx
->rq_list
, flush_data
->list
);
908 sbitmap_clear_bit(sb
, bitnr
);
909 spin_unlock(&ctx
->lock
);
914 * Process software queues that have been marked busy, splicing them
915 * to the for-dispatch
917 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
919 struct flush_busy_ctx_data data
= {
924 sbitmap_for_each_set(&hctx
->ctx_map
, flush_busy_ctx
, &data
);
926 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs
);
928 struct dispatch_rq_data
{
929 struct blk_mq_hw_ctx
*hctx
;
933 static bool dispatch_rq_from_ctx(struct sbitmap
*sb
, unsigned int bitnr
,
936 struct dispatch_rq_data
*dispatch_data
= data
;
937 struct blk_mq_hw_ctx
*hctx
= dispatch_data
->hctx
;
938 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
940 spin_lock(&ctx
->lock
);
941 if (!list_empty(&ctx
->rq_list
)) {
942 dispatch_data
->rq
= list_entry_rq(ctx
->rq_list
.next
);
943 list_del_init(&dispatch_data
->rq
->queuelist
);
944 if (list_empty(&ctx
->rq_list
))
945 sbitmap_clear_bit(sb
, bitnr
);
947 spin_unlock(&ctx
->lock
);
949 return !dispatch_data
->rq
;
952 struct request
*blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx
*hctx
,
953 struct blk_mq_ctx
*start
)
955 unsigned off
= start
? start
->index_hw
: 0;
956 struct dispatch_rq_data data
= {
961 __sbitmap_for_each_set(&hctx
->ctx_map
, off
,
962 dispatch_rq_from_ctx
, &data
);
967 static inline unsigned int queued_to_index(unsigned int queued
)
972 return min(BLK_MQ_MAX_DISPATCH_ORDER
- 1, ilog2(queued
) + 1);
975 bool blk_mq_get_driver_tag(struct request
*rq
)
977 struct blk_mq_alloc_data data
= {
979 .hctx
= blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
),
980 .flags
= BLK_MQ_REQ_NOWAIT
,
987 if (blk_mq_tag_is_reserved(data
.hctx
->sched_tags
, rq
->internal_tag
))
988 data
.flags
|= BLK_MQ_REQ_RESERVED
;
990 shared
= blk_mq_tag_busy(data
.hctx
);
991 rq
->tag
= blk_mq_get_tag(&data
);
994 rq
->rq_flags
|= RQF_MQ_INFLIGHT
;
995 atomic_inc(&data
.hctx
->nr_active
);
997 data
.hctx
->tags
->rqs
[rq
->tag
] = rq
;
1001 return rq
->tag
!= -1;
1004 static int blk_mq_dispatch_wake(wait_queue_entry_t
*wait
, unsigned mode
,
1005 int flags
, void *key
)
1007 struct blk_mq_hw_ctx
*hctx
;
1009 hctx
= container_of(wait
, struct blk_mq_hw_ctx
, dispatch_wait
);
1011 spin_lock(&hctx
->dispatch_wait_lock
);
1012 list_del_init(&wait
->entry
);
1013 spin_unlock(&hctx
->dispatch_wait_lock
);
1015 blk_mq_run_hw_queue(hctx
, true);
1020 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1021 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1022 * restart. For both cases, take care to check the condition again after
1023 * marking us as waiting.
1025 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx
*hctx
,
1028 struct wait_queue_head
*wq
;
1029 wait_queue_entry_t
*wait
;
1032 if (!(hctx
->flags
& BLK_MQ_F_TAG_SHARED
)) {
1033 if (!test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
1034 set_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
);
1037 * It's possible that a tag was freed in the window between the
1038 * allocation failure and adding the hardware queue to the wait
1041 * Don't clear RESTART here, someone else could have set it.
1042 * At most this will cost an extra queue run.
1044 return blk_mq_get_driver_tag(rq
);
1047 wait
= &hctx
->dispatch_wait
;
1048 if (!list_empty_careful(&wait
->entry
))
1051 wq
= &bt_wait_ptr(&hctx
->tags
->bitmap_tags
, hctx
)->wait
;
1053 spin_lock_irq(&wq
->lock
);
1054 spin_lock(&hctx
->dispatch_wait_lock
);
1055 if (!list_empty(&wait
->entry
)) {
1056 spin_unlock(&hctx
->dispatch_wait_lock
);
1057 spin_unlock_irq(&wq
->lock
);
1061 wait
->flags
&= ~WQ_FLAG_EXCLUSIVE
;
1062 __add_wait_queue(wq
, wait
);
1065 * It's possible that a tag was freed in the window between the
1066 * allocation failure and adding the hardware queue to the wait
1069 ret
= blk_mq_get_driver_tag(rq
);
1071 spin_unlock(&hctx
->dispatch_wait_lock
);
1072 spin_unlock_irq(&wq
->lock
);
1077 * We got a tag, remove ourselves from the wait queue to ensure
1078 * someone else gets the wakeup.
1080 list_del_init(&wait
->entry
);
1081 spin_unlock(&hctx
->dispatch_wait_lock
);
1082 spin_unlock_irq(&wq
->lock
);
1087 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1088 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1090 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1091 * - EWMA is one simple way to compute running average value
1092 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1093 * - take 4 as factor for avoiding to get too small(0) result, and this
1094 * factor doesn't matter because EWMA decreases exponentially
1096 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx
*hctx
, bool busy
)
1100 if (hctx
->queue
->elevator
)
1103 ewma
= hctx
->dispatch_busy
;
1108 ewma
*= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT
- 1;
1110 ewma
+= 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR
;
1111 ewma
/= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT
;
1113 hctx
->dispatch_busy
= ewma
;
1116 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1119 * Returns true if we did some work AND can potentially do more.
1121 bool blk_mq_dispatch_rq_list(struct request_queue
*q
, struct list_head
*list
,
1124 struct blk_mq_hw_ctx
*hctx
;
1125 struct request
*rq
, *nxt
;
1126 bool no_tag
= false;
1128 blk_status_t ret
= BLK_STS_OK
;
1130 if (list_empty(list
))
1133 WARN_ON(!list_is_singular(list
) && got_budget
);
1136 * Now process all the entries, sending them to the driver.
1138 errors
= queued
= 0;
1140 struct blk_mq_queue_data bd
;
1142 rq
= list_first_entry(list
, struct request
, queuelist
);
1144 hctx
= blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
);
1145 if (!got_budget
&& !blk_mq_get_dispatch_budget(hctx
))
1148 if (!blk_mq_get_driver_tag(rq
)) {
1150 * The initial allocation attempt failed, so we need to
1151 * rerun the hardware queue when a tag is freed. The
1152 * waitqueue takes care of that. If the queue is run
1153 * before we add this entry back on the dispatch list,
1154 * we'll re-run it below.
1156 if (!blk_mq_mark_tag_wait(hctx
, rq
)) {
1157 blk_mq_put_dispatch_budget(hctx
);
1159 * For non-shared tags, the RESTART check
1162 if (hctx
->flags
& BLK_MQ_F_TAG_SHARED
)
1168 list_del_init(&rq
->queuelist
);
1173 * Flag last if we have no more requests, or if we have more
1174 * but can't assign a driver tag to it.
1176 if (list_empty(list
))
1179 nxt
= list_first_entry(list
, struct request
, queuelist
);
1180 bd
.last
= !blk_mq_get_driver_tag(nxt
);
1183 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1184 if (ret
== BLK_STS_RESOURCE
|| ret
== BLK_STS_DEV_RESOURCE
) {
1186 * If an I/O scheduler has been configured and we got a
1187 * driver tag for the next request already, free it
1190 if (!list_empty(list
)) {
1191 nxt
= list_first_entry(list
, struct request
, queuelist
);
1192 blk_mq_put_driver_tag(nxt
);
1194 list_add(&rq
->queuelist
, list
);
1195 __blk_mq_requeue_request(rq
);
1199 if (unlikely(ret
!= BLK_STS_OK
)) {
1201 blk_mq_end_request(rq
, BLK_STS_IOERR
);
1206 } while (!list_empty(list
));
1208 hctx
->dispatched
[queued_to_index(queued
)]++;
1211 * Any items that need requeuing? Stuff them into hctx->dispatch,
1212 * that is where we will continue on next queue run.
1214 if (!list_empty(list
)) {
1217 spin_lock(&hctx
->lock
);
1218 list_splice_init(list
, &hctx
->dispatch
);
1219 spin_unlock(&hctx
->lock
);
1222 * If SCHED_RESTART was set by the caller of this function and
1223 * it is no longer set that means that it was cleared by another
1224 * thread and hence that a queue rerun is needed.
1226 * If 'no_tag' is set, that means that we failed getting
1227 * a driver tag with an I/O scheduler attached. If our dispatch
1228 * waitqueue is no longer active, ensure that we run the queue
1229 * AFTER adding our entries back to the list.
1231 * If no I/O scheduler has been configured it is possible that
1232 * the hardware queue got stopped and restarted before requests
1233 * were pushed back onto the dispatch list. Rerun the queue to
1234 * avoid starvation. Notes:
1235 * - blk_mq_run_hw_queue() checks whether or not a queue has
1236 * been stopped before rerunning a queue.
1237 * - Some but not all block drivers stop a queue before
1238 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1241 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1242 * bit is set, run queue after a delay to avoid IO stalls
1243 * that could otherwise occur if the queue is idle.
1245 needs_restart
= blk_mq_sched_needs_restart(hctx
);
1246 if (!needs_restart
||
1247 (no_tag
&& list_empty_careful(&hctx
->dispatch_wait
.entry
)))
1248 blk_mq_run_hw_queue(hctx
, true);
1249 else if (needs_restart
&& (ret
== BLK_STS_RESOURCE
))
1250 blk_mq_delay_run_hw_queue(hctx
, BLK_MQ_RESOURCE_DELAY
);
1252 blk_mq_update_dispatch_busy(hctx
, true);
1255 blk_mq_update_dispatch_busy(hctx
, false);
1258 * If the host/device is unable to accept more work, inform the
1261 if (ret
== BLK_STS_RESOURCE
|| ret
== BLK_STS_DEV_RESOURCE
)
1264 return (queued
+ errors
) != 0;
1267 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1272 * We should be running this queue from one of the CPUs that
1275 * There are at least two related races now between setting
1276 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1277 * __blk_mq_run_hw_queue():
1279 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1280 * but later it becomes online, then this warning is harmless
1283 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1284 * but later it becomes offline, then the warning can't be
1285 * triggered, and we depend on blk-mq timeout handler to
1286 * handle dispatched requests to this hctx
1288 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
) &&
1289 cpu_online(hctx
->next_cpu
)) {
1290 printk(KERN_WARNING
"run queue from wrong CPU %d, hctx %s\n",
1291 raw_smp_processor_id(),
1292 cpumask_empty(hctx
->cpumask
) ? "inactive": "active");
1297 * We can't run the queue inline with ints disabled. Ensure that
1298 * we catch bad users of this early.
1300 WARN_ON_ONCE(in_interrupt());
1302 might_sleep_if(hctx
->flags
& BLK_MQ_F_BLOCKING
);
1304 hctx_lock(hctx
, &srcu_idx
);
1305 blk_mq_sched_dispatch_requests(hctx
);
1306 hctx_unlock(hctx
, srcu_idx
);
1309 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx
*hctx
)
1311 int cpu
= cpumask_first_and(hctx
->cpumask
, cpu_online_mask
);
1313 if (cpu
>= nr_cpu_ids
)
1314 cpu
= cpumask_first(hctx
->cpumask
);
1319 * It'd be great if the workqueue API had a way to pass
1320 * in a mask and had some smarts for more clever placement.
1321 * For now we just round-robin here, switching for every
1322 * BLK_MQ_CPU_WORK_BATCH queued items.
1324 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
1327 int next_cpu
= hctx
->next_cpu
;
1329 if (hctx
->queue
->nr_hw_queues
== 1)
1330 return WORK_CPU_UNBOUND
;
1332 if (--hctx
->next_cpu_batch
<= 0) {
1334 next_cpu
= cpumask_next_and(next_cpu
, hctx
->cpumask
,
1336 if (next_cpu
>= nr_cpu_ids
)
1337 next_cpu
= blk_mq_first_mapped_cpu(hctx
);
1338 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1342 * Do unbound schedule if we can't find a online CPU for this hctx,
1343 * and it should only happen in the path of handling CPU DEAD.
1345 if (!cpu_online(next_cpu
)) {
1352 * Make sure to re-select CPU next time once after CPUs
1353 * in hctx->cpumask become online again.
1355 hctx
->next_cpu
= next_cpu
;
1356 hctx
->next_cpu_batch
= 1;
1357 return WORK_CPU_UNBOUND
;
1360 hctx
->next_cpu
= next_cpu
;
1364 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
,
1365 unsigned long msecs
)
1367 if (unlikely(blk_mq_hctx_stopped(hctx
)))
1370 if (!async
&& !(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1371 int cpu
= get_cpu();
1372 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
1373 __blk_mq_run_hw_queue(hctx
);
1381 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx
), &hctx
->run_work
,
1382 msecs_to_jiffies(msecs
));
1385 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1387 __blk_mq_delay_run_hw_queue(hctx
, true, msecs
);
1389 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue
);
1391 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1397 * When queue is quiesced, we may be switching io scheduler, or
1398 * updating nr_hw_queues, or other things, and we can't run queue
1399 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1401 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1404 hctx_lock(hctx
, &srcu_idx
);
1405 need_run
= !blk_queue_quiesced(hctx
->queue
) &&
1406 blk_mq_hctx_has_pending(hctx
);
1407 hctx_unlock(hctx
, srcu_idx
);
1410 __blk_mq_delay_run_hw_queue(hctx
, async
, 0);
1416 EXPORT_SYMBOL(blk_mq_run_hw_queue
);
1418 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
1420 struct blk_mq_hw_ctx
*hctx
;
1423 queue_for_each_hw_ctx(q
, hctx
, i
) {
1424 if (blk_mq_hctx_stopped(hctx
))
1427 blk_mq_run_hw_queue(hctx
, async
);
1430 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
1433 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1434 * @q: request queue.
1436 * The caller is responsible for serializing this function against
1437 * blk_mq_{start,stop}_hw_queue().
1439 bool blk_mq_queue_stopped(struct request_queue
*q
)
1441 struct blk_mq_hw_ctx
*hctx
;
1444 queue_for_each_hw_ctx(q
, hctx
, i
)
1445 if (blk_mq_hctx_stopped(hctx
))
1450 EXPORT_SYMBOL(blk_mq_queue_stopped
);
1453 * This function is often used for pausing .queue_rq() by driver when
1454 * there isn't enough resource or some conditions aren't satisfied, and
1455 * BLK_STS_RESOURCE is usually returned.
1457 * We do not guarantee that dispatch can be drained or blocked
1458 * after blk_mq_stop_hw_queue() returns. Please use
1459 * blk_mq_quiesce_queue() for that requirement.
1461 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1463 cancel_delayed_work(&hctx
->run_work
);
1465 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1467 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
1470 * This function is often used for pausing .queue_rq() by driver when
1471 * there isn't enough resource or some conditions aren't satisfied, and
1472 * BLK_STS_RESOURCE is usually returned.
1474 * We do not guarantee that dispatch can be drained or blocked
1475 * after blk_mq_stop_hw_queues() returns. Please use
1476 * blk_mq_quiesce_queue() for that requirement.
1478 void blk_mq_stop_hw_queues(struct request_queue
*q
)
1480 struct blk_mq_hw_ctx
*hctx
;
1483 queue_for_each_hw_ctx(q
, hctx
, i
)
1484 blk_mq_stop_hw_queue(hctx
);
1486 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
1488 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1490 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1492 blk_mq_run_hw_queue(hctx
, false);
1494 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
1496 void blk_mq_start_hw_queues(struct request_queue
*q
)
1498 struct blk_mq_hw_ctx
*hctx
;
1501 queue_for_each_hw_ctx(q
, hctx
, i
)
1502 blk_mq_start_hw_queue(hctx
);
1504 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
1506 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1508 if (!blk_mq_hctx_stopped(hctx
))
1511 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1512 blk_mq_run_hw_queue(hctx
, async
);
1514 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue
);
1516 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
1518 struct blk_mq_hw_ctx
*hctx
;
1521 queue_for_each_hw_ctx(q
, hctx
, i
)
1522 blk_mq_start_stopped_hw_queue(hctx
, async
);
1524 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
1526 static void blk_mq_run_work_fn(struct work_struct
*work
)
1528 struct blk_mq_hw_ctx
*hctx
;
1530 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
1533 * If we are stopped, don't run the queue.
1535 if (test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
1538 __blk_mq_run_hw_queue(hctx
);
1541 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx
*hctx
,
1545 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1547 lockdep_assert_held(&ctx
->lock
);
1549 trace_block_rq_insert(hctx
->queue
, rq
);
1552 list_add(&rq
->queuelist
, &ctx
->rq_list
);
1554 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
1557 void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
,
1560 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1562 lockdep_assert_held(&ctx
->lock
);
1564 __blk_mq_insert_req_list(hctx
, rq
, at_head
);
1565 blk_mq_hctx_mark_pending(hctx
, ctx
);
1569 * Should only be used carefully, when the caller knows we want to
1570 * bypass a potential IO scheduler on the target device.
1572 void blk_mq_request_bypass_insert(struct request
*rq
, bool run_queue
)
1574 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1575 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(rq
->q
, ctx
->cpu
);
1577 spin_lock(&hctx
->lock
);
1578 list_add_tail(&rq
->queuelist
, &hctx
->dispatch
);
1579 spin_unlock(&hctx
->lock
);
1582 blk_mq_run_hw_queue(hctx
, false);
1585 void blk_mq_insert_requests(struct blk_mq_hw_ctx
*hctx
, struct blk_mq_ctx
*ctx
,
1586 struct list_head
*list
)
1592 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1595 list_for_each_entry(rq
, list
, queuelist
) {
1596 BUG_ON(rq
->mq_ctx
!= ctx
);
1597 trace_block_rq_insert(hctx
->queue
, rq
);
1600 spin_lock(&ctx
->lock
);
1601 list_splice_tail_init(list
, &ctx
->rq_list
);
1602 blk_mq_hctx_mark_pending(hctx
, ctx
);
1603 spin_unlock(&ctx
->lock
);
1606 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1608 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1609 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1611 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
1612 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
1613 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
1616 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1618 struct blk_mq_ctx
*this_ctx
;
1619 struct request_queue
*this_q
;
1622 LIST_HEAD(ctx_list
);
1625 list_splice_init(&plug
->mq_list
, &list
);
1627 list_sort(NULL
, &list
, plug_ctx_cmp
);
1633 while (!list_empty(&list
)) {
1634 rq
= list_entry_rq(list
.next
);
1635 list_del_init(&rq
->queuelist
);
1637 if (rq
->mq_ctx
!= this_ctx
) {
1639 trace_block_unplug(this_q
, depth
, !from_schedule
);
1640 blk_mq_sched_insert_requests(this_q
, this_ctx
,
1645 this_ctx
= rq
->mq_ctx
;
1651 list_add_tail(&rq
->queuelist
, &ctx_list
);
1655 * If 'this_ctx' is set, we know we have entries to complete
1656 * on 'ctx_list'. Do those.
1659 trace_block_unplug(this_q
, depth
, !from_schedule
);
1660 blk_mq_sched_insert_requests(this_q
, this_ctx
, &ctx_list
,
1665 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1667 blk_init_request_from_bio(rq
, bio
);
1669 blk_rq_set_rl(rq
, blk_get_rl(rq
->q
, bio
));
1671 blk_account_io_start(rq
, true);
1674 static blk_qc_t
request_to_qc_t(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
1677 return blk_tag_to_qc_t(rq
->tag
, hctx
->queue_num
, false);
1679 return blk_tag_to_qc_t(rq
->internal_tag
, hctx
->queue_num
, true);
1682 static blk_status_t
__blk_mq_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1686 struct request_queue
*q
= rq
->q
;
1687 struct blk_mq_queue_data bd
= {
1691 blk_qc_t new_cookie
;
1694 new_cookie
= request_to_qc_t(hctx
, rq
);
1697 * For OK queue, we are done. For error, caller may kill it.
1698 * Any other error (busy), just add it to our list as we
1699 * previously would have done.
1701 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1704 blk_mq_update_dispatch_busy(hctx
, false);
1705 *cookie
= new_cookie
;
1707 case BLK_STS_RESOURCE
:
1708 case BLK_STS_DEV_RESOURCE
:
1709 blk_mq_update_dispatch_busy(hctx
, true);
1710 __blk_mq_requeue_request(rq
);
1713 blk_mq_update_dispatch_busy(hctx
, false);
1714 *cookie
= BLK_QC_T_NONE
;
1721 static blk_status_t
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1726 struct request_queue
*q
= rq
->q
;
1727 bool run_queue
= true;
1730 * RCU or SRCU read lock is needed before checking quiesced flag.
1732 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1733 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1734 * and avoid driver to try to dispatch again.
1736 if (blk_mq_hctx_stopped(hctx
) || blk_queue_quiesced(q
)) {
1738 bypass_insert
= false;
1742 if (q
->elevator
&& !bypass_insert
)
1745 if (!blk_mq_get_dispatch_budget(hctx
))
1748 if (!blk_mq_get_driver_tag(rq
)) {
1749 blk_mq_put_dispatch_budget(hctx
);
1753 return __blk_mq_issue_directly(hctx
, rq
, cookie
);
1756 return BLK_STS_RESOURCE
;
1758 blk_mq_request_bypass_insert(rq
, run_queue
);
1762 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
1763 struct request
*rq
, blk_qc_t
*cookie
)
1768 might_sleep_if(hctx
->flags
& BLK_MQ_F_BLOCKING
);
1770 hctx_lock(hctx
, &srcu_idx
);
1772 ret
= __blk_mq_try_issue_directly(hctx
, rq
, cookie
, false);
1773 if (ret
== BLK_STS_RESOURCE
|| ret
== BLK_STS_DEV_RESOURCE
)
1774 blk_mq_request_bypass_insert(rq
, true);
1775 else if (ret
!= BLK_STS_OK
)
1776 blk_mq_end_request(rq
, ret
);
1778 hctx_unlock(hctx
, srcu_idx
);
1781 blk_status_t
blk_mq_request_issue_directly(struct request
*rq
)
1785 blk_qc_t unused_cookie
;
1786 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1787 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(rq
->q
, ctx
->cpu
);
1789 hctx_lock(hctx
, &srcu_idx
);
1790 ret
= __blk_mq_try_issue_directly(hctx
, rq
, &unused_cookie
, true);
1791 hctx_unlock(hctx
, srcu_idx
);
1796 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx
*hctx
,
1797 struct list_head
*list
)
1799 while (!list_empty(list
)) {
1801 struct request
*rq
= list_first_entry(list
, struct request
,
1804 list_del_init(&rq
->queuelist
);
1805 ret
= blk_mq_request_issue_directly(rq
);
1806 if (ret
!= BLK_STS_OK
) {
1807 if (ret
== BLK_STS_RESOURCE
||
1808 ret
== BLK_STS_DEV_RESOURCE
) {
1809 blk_mq_request_bypass_insert(rq
,
1813 blk_mq_end_request(rq
, ret
);
1818 static blk_qc_t
blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1820 const int is_sync
= op_is_sync(bio
->bi_opf
);
1821 const int is_flush_fua
= op_is_flush(bio
->bi_opf
);
1822 struct blk_mq_alloc_data data
= { .flags
= 0 };
1824 unsigned int request_count
= 0;
1825 struct blk_plug
*plug
;
1826 struct request
*same_queue_rq
= NULL
;
1829 blk_queue_bounce(q
, &bio
);
1831 blk_queue_split(q
, &bio
);
1833 if (!bio_integrity_prep(bio
))
1834 return BLK_QC_T_NONE
;
1836 if (!is_flush_fua
&& !blk_queue_nomerges(q
) &&
1837 blk_attempt_plug_merge(q
, bio
, &request_count
, &same_queue_rq
))
1838 return BLK_QC_T_NONE
;
1840 if (blk_mq_sched_bio_merge(q
, bio
))
1841 return BLK_QC_T_NONE
;
1843 rq_qos_throttle(q
, bio
, NULL
);
1845 trace_block_getrq(q
, bio
, bio
->bi_opf
);
1847 rq
= blk_mq_get_request(q
, bio
, bio
->bi_opf
, &data
);
1848 if (unlikely(!rq
)) {
1849 rq_qos_cleanup(q
, bio
);
1850 if (bio
->bi_opf
& REQ_NOWAIT
)
1851 bio_wouldblock_error(bio
);
1852 return BLK_QC_T_NONE
;
1855 rq_qos_track(q
, rq
, bio
);
1857 cookie
= request_to_qc_t(data
.hctx
, rq
);
1859 plug
= current
->plug
;
1860 if (unlikely(is_flush_fua
)) {
1861 blk_mq_put_ctx(data
.ctx
);
1862 blk_mq_bio_to_request(rq
, bio
);
1864 /* bypass scheduler for flush rq */
1865 blk_insert_flush(rq
);
1866 blk_mq_run_hw_queue(data
.hctx
, true);
1867 } else if (plug
&& q
->nr_hw_queues
== 1) {
1868 struct request
*last
= NULL
;
1870 blk_mq_put_ctx(data
.ctx
);
1871 blk_mq_bio_to_request(rq
, bio
);
1874 * @request_count may become stale because of schedule
1875 * out, so check the list again.
1877 if (list_empty(&plug
->mq_list
))
1879 else if (blk_queue_nomerges(q
))
1880 request_count
= blk_plug_queued_count(q
);
1883 trace_block_plug(q
);
1885 last
= list_entry_rq(plug
->mq_list
.prev
);
1887 if (request_count
>= BLK_MAX_REQUEST_COUNT
|| (last
&&
1888 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
)) {
1889 blk_flush_plug_list(plug
, false);
1890 trace_block_plug(q
);
1893 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1894 } else if (plug
&& !blk_queue_nomerges(q
)) {
1895 blk_mq_bio_to_request(rq
, bio
);
1898 * We do limited plugging. If the bio can be merged, do that.
1899 * Otherwise the existing request in the plug list will be
1900 * issued. So the plug list will have one request at most
1901 * The plug list might get flushed before this. If that happens,
1902 * the plug list is empty, and same_queue_rq is invalid.
1904 if (list_empty(&plug
->mq_list
))
1905 same_queue_rq
= NULL
;
1907 list_del_init(&same_queue_rq
->queuelist
);
1908 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1910 blk_mq_put_ctx(data
.ctx
);
1912 if (same_queue_rq
) {
1913 data
.hctx
= blk_mq_map_queue(q
,
1914 same_queue_rq
->mq_ctx
->cpu
);
1915 blk_mq_try_issue_directly(data
.hctx
, same_queue_rq
,
1918 } else if ((q
->nr_hw_queues
> 1 && is_sync
) || (!q
->elevator
&&
1919 !data
.hctx
->dispatch_busy
)) {
1920 blk_mq_put_ctx(data
.ctx
);
1921 blk_mq_bio_to_request(rq
, bio
);
1922 blk_mq_try_issue_directly(data
.hctx
, rq
, &cookie
);
1924 blk_mq_put_ctx(data
.ctx
);
1925 blk_mq_bio_to_request(rq
, bio
);
1926 blk_mq_sched_insert_request(rq
, false, true, true);
1932 void blk_mq_free_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
1933 unsigned int hctx_idx
)
1937 if (tags
->rqs
&& set
->ops
->exit_request
) {
1940 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1941 struct request
*rq
= tags
->static_rqs
[i
];
1945 set
->ops
->exit_request(set
, rq
, hctx_idx
);
1946 tags
->static_rqs
[i
] = NULL
;
1950 while (!list_empty(&tags
->page_list
)) {
1951 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
1952 list_del_init(&page
->lru
);
1954 * Remove kmemleak object previously allocated in
1955 * blk_mq_init_rq_map().
1957 kmemleak_free(page_address(page
));
1958 __free_pages(page
, page
->private);
1962 void blk_mq_free_rq_map(struct blk_mq_tags
*tags
)
1966 kfree(tags
->static_rqs
);
1967 tags
->static_rqs
= NULL
;
1969 blk_mq_free_tags(tags
);
1972 struct blk_mq_tags
*blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
,
1973 unsigned int hctx_idx
,
1974 unsigned int nr_tags
,
1975 unsigned int reserved_tags
)
1977 struct blk_mq_tags
*tags
;
1980 node
= blk_mq_hw_queue_to_node(set
->mq_map
, hctx_idx
);
1981 if (node
== NUMA_NO_NODE
)
1982 node
= set
->numa_node
;
1984 tags
= blk_mq_init_tags(nr_tags
, reserved_tags
, node
,
1985 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
1989 tags
->rqs
= kcalloc_node(nr_tags
, sizeof(struct request
*),
1990 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
1993 blk_mq_free_tags(tags
);
1997 tags
->static_rqs
= kcalloc_node(nr_tags
, sizeof(struct request
*),
1998 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
2000 if (!tags
->static_rqs
) {
2002 blk_mq_free_tags(tags
);
2009 static size_t order_to_size(unsigned int order
)
2011 return (size_t)PAGE_SIZE
<< order
;
2014 static int blk_mq_init_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
2015 unsigned int hctx_idx
, int node
)
2019 if (set
->ops
->init_request
) {
2020 ret
= set
->ops
->init_request(set
, rq
, hctx_idx
, node
);
2025 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
2029 int blk_mq_alloc_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
2030 unsigned int hctx_idx
, unsigned int depth
)
2032 unsigned int i
, j
, entries_per_page
, max_order
= 4;
2033 size_t rq_size
, left
;
2036 node
= blk_mq_hw_queue_to_node(set
->mq_map
, hctx_idx
);
2037 if (node
== NUMA_NO_NODE
)
2038 node
= set
->numa_node
;
2040 INIT_LIST_HEAD(&tags
->page_list
);
2043 * rq_size is the size of the request plus driver payload, rounded
2044 * to the cacheline size
2046 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
2048 left
= rq_size
* depth
;
2050 for (i
= 0; i
< depth
; ) {
2051 int this_order
= max_order
;
2056 while (this_order
&& left
< order_to_size(this_order
- 1))
2060 page
= alloc_pages_node(node
,
2061 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
2067 if (order_to_size(this_order
) < rq_size
)
2074 page
->private = this_order
;
2075 list_add_tail(&page
->lru
, &tags
->page_list
);
2077 p
= page_address(page
);
2079 * Allow kmemleak to scan these pages as they contain pointers
2080 * to additional allocations like via ops->init_request().
2082 kmemleak_alloc(p
, order_to_size(this_order
), 1, GFP_NOIO
);
2083 entries_per_page
= order_to_size(this_order
) / rq_size
;
2084 to_do
= min(entries_per_page
, depth
- i
);
2085 left
-= to_do
* rq_size
;
2086 for (j
= 0; j
< to_do
; j
++) {
2087 struct request
*rq
= p
;
2089 tags
->static_rqs
[i
] = rq
;
2090 if (blk_mq_init_request(set
, rq
, hctx_idx
, node
)) {
2091 tags
->static_rqs
[i
] = NULL
;
2102 blk_mq_free_rqs(set
, tags
, hctx_idx
);
2107 * 'cpu' is going away. splice any existing rq_list entries from this
2108 * software queue to the hw queue dispatch list, and ensure that it
2111 static int blk_mq_hctx_notify_dead(unsigned int cpu
, struct hlist_node
*node
)
2113 struct blk_mq_hw_ctx
*hctx
;
2114 struct blk_mq_ctx
*ctx
;
2117 hctx
= hlist_entry_safe(node
, struct blk_mq_hw_ctx
, cpuhp_dead
);
2118 ctx
= __blk_mq_get_ctx(hctx
->queue
, cpu
);
2120 spin_lock(&ctx
->lock
);
2121 if (!list_empty(&ctx
->rq_list
)) {
2122 list_splice_init(&ctx
->rq_list
, &tmp
);
2123 blk_mq_hctx_clear_pending(hctx
, ctx
);
2125 spin_unlock(&ctx
->lock
);
2127 if (list_empty(&tmp
))
2130 spin_lock(&hctx
->lock
);
2131 list_splice_tail_init(&tmp
, &hctx
->dispatch
);
2132 spin_unlock(&hctx
->lock
);
2134 blk_mq_run_hw_queue(hctx
, true);
2138 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx
*hctx
)
2140 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD
,
2144 /* hctx->ctxs will be freed in queue's release handler */
2145 static void blk_mq_exit_hctx(struct request_queue
*q
,
2146 struct blk_mq_tag_set
*set
,
2147 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
2149 blk_mq_debugfs_unregister_hctx(hctx
);
2151 if (blk_mq_hw_queue_mapped(hctx
))
2152 blk_mq_tag_idle(hctx
);
2154 if (set
->ops
->exit_request
)
2155 set
->ops
->exit_request(set
, hctx
->fq
->flush_rq
, hctx_idx
);
2157 if (set
->ops
->exit_hctx
)
2158 set
->ops
->exit_hctx(hctx
, hctx_idx
);
2160 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
2161 cleanup_srcu_struct(hctx
->srcu
);
2163 blk_mq_remove_cpuhp(hctx
);
2164 blk_free_flush_queue(hctx
->fq
);
2165 sbitmap_free(&hctx
->ctx_map
);
2168 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
2169 struct blk_mq_tag_set
*set
, int nr_queue
)
2171 struct blk_mq_hw_ctx
*hctx
;
2174 queue_for_each_hw_ctx(q
, hctx
, i
) {
2177 blk_mq_exit_hctx(q
, set
, hctx
, i
);
2181 static int blk_mq_init_hctx(struct request_queue
*q
,
2182 struct blk_mq_tag_set
*set
,
2183 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
2187 node
= hctx
->numa_node
;
2188 if (node
== NUMA_NO_NODE
)
2189 node
= hctx
->numa_node
= set
->numa_node
;
2191 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
2192 spin_lock_init(&hctx
->lock
);
2193 INIT_LIST_HEAD(&hctx
->dispatch
);
2195 hctx
->flags
= set
->flags
& ~BLK_MQ_F_TAG_SHARED
;
2197 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD
, &hctx
->cpuhp_dead
);
2199 hctx
->tags
= set
->tags
[hctx_idx
];
2202 * Allocate space for all possible cpus to avoid allocation at
2205 hctx
->ctxs
= kmalloc_array_node(nr_cpu_ids
, sizeof(void *),
2208 goto unregister_cpu_notifier
;
2210 if (sbitmap_init_node(&hctx
->ctx_map
, nr_cpu_ids
, ilog2(8), GFP_KERNEL
,
2216 spin_lock_init(&hctx
->dispatch_wait_lock
);
2217 init_waitqueue_func_entry(&hctx
->dispatch_wait
, blk_mq_dispatch_wake
);
2218 INIT_LIST_HEAD(&hctx
->dispatch_wait
.entry
);
2220 if (set
->ops
->init_hctx
&&
2221 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
2224 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
);
2228 if (blk_mq_init_request(set
, hctx
->fq
->flush_rq
, hctx_idx
, node
))
2231 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
2232 init_srcu_struct(hctx
->srcu
);
2234 blk_mq_debugfs_register_hctx(q
, hctx
);
2239 blk_free_flush_queue(hctx
->fq
);
2241 if (set
->ops
->exit_hctx
)
2242 set
->ops
->exit_hctx(hctx
, hctx_idx
);
2244 sbitmap_free(&hctx
->ctx_map
);
2247 unregister_cpu_notifier
:
2248 blk_mq_remove_cpuhp(hctx
);
2252 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
2253 unsigned int nr_hw_queues
)
2257 for_each_possible_cpu(i
) {
2258 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2259 struct blk_mq_hw_ctx
*hctx
;
2262 spin_lock_init(&__ctx
->lock
);
2263 INIT_LIST_HEAD(&__ctx
->rq_list
);
2267 * Set local node, IFF we have more than one hw queue. If
2268 * not, we remain on the home node of the device
2270 hctx
= blk_mq_map_queue(q
, i
);
2271 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
2272 hctx
->numa_node
= local_memory_node(cpu_to_node(i
));
2276 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
, int hctx_idx
)
2280 set
->tags
[hctx_idx
] = blk_mq_alloc_rq_map(set
, hctx_idx
,
2281 set
->queue_depth
, set
->reserved_tags
);
2282 if (!set
->tags
[hctx_idx
])
2285 ret
= blk_mq_alloc_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
,
2290 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2291 set
->tags
[hctx_idx
] = NULL
;
2295 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set
*set
,
2296 unsigned int hctx_idx
)
2298 if (set
->tags
[hctx_idx
]) {
2299 blk_mq_free_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
);
2300 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
2301 set
->tags
[hctx_idx
] = NULL
;
2305 static void blk_mq_map_swqueue(struct request_queue
*q
)
2307 unsigned int i
, hctx_idx
;
2308 struct blk_mq_hw_ctx
*hctx
;
2309 struct blk_mq_ctx
*ctx
;
2310 struct blk_mq_tag_set
*set
= q
->tag_set
;
2313 * Avoid others reading imcomplete hctx->cpumask through sysfs
2315 mutex_lock(&q
->sysfs_lock
);
2317 queue_for_each_hw_ctx(q
, hctx
, i
) {
2318 cpumask_clear(hctx
->cpumask
);
2320 hctx
->dispatch_from
= NULL
;
2324 * Map software to hardware queues.
2326 * If the cpu isn't present, the cpu is mapped to first hctx.
2328 for_each_possible_cpu(i
) {
2329 hctx_idx
= q
->mq_map
[i
];
2330 /* unmapped hw queue can be remapped after CPU topo changed */
2331 if (!set
->tags
[hctx_idx
] &&
2332 !__blk_mq_alloc_rq_map(set
, hctx_idx
)) {
2334 * If tags initialization fail for some hctx,
2335 * that hctx won't be brought online. In this
2336 * case, remap the current ctx to hctx[0] which
2337 * is guaranteed to always have tags allocated
2342 ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2343 hctx
= blk_mq_map_queue(q
, i
);
2345 cpumask_set_cpu(i
, hctx
->cpumask
);
2346 ctx
->index_hw
= hctx
->nr_ctx
;
2347 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
2350 mutex_unlock(&q
->sysfs_lock
);
2352 queue_for_each_hw_ctx(q
, hctx
, i
) {
2354 * If no software queues are mapped to this hardware queue,
2355 * disable it and free the request entries.
2357 if (!hctx
->nr_ctx
) {
2358 /* Never unmap queue 0. We need it as a
2359 * fallback in case of a new remap fails
2362 if (i
&& set
->tags
[i
])
2363 blk_mq_free_map_and_requests(set
, i
);
2369 hctx
->tags
= set
->tags
[i
];
2370 WARN_ON(!hctx
->tags
);
2373 * Set the map size to the number of mapped software queues.
2374 * This is more accurate and more efficient than looping
2375 * over all possibly mapped software queues.
2377 sbitmap_resize(&hctx
->ctx_map
, hctx
->nr_ctx
);
2380 * Initialize batch roundrobin counts
2382 hctx
->next_cpu
= blk_mq_first_mapped_cpu(hctx
);
2383 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
2388 * Caller needs to ensure that we're either frozen/quiesced, or that
2389 * the queue isn't live yet.
2391 static void queue_set_hctx_shared(struct request_queue
*q
, bool shared
)
2393 struct blk_mq_hw_ctx
*hctx
;
2396 queue_for_each_hw_ctx(q
, hctx
, i
) {
2398 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
2400 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2404 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
,
2407 struct request_queue
*q
;
2409 lockdep_assert_held(&set
->tag_list_lock
);
2411 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2412 blk_mq_freeze_queue(q
);
2413 queue_set_hctx_shared(q
, shared
);
2414 blk_mq_unfreeze_queue(q
);
2418 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
2420 struct blk_mq_tag_set
*set
= q
->tag_set
;
2422 mutex_lock(&set
->tag_list_lock
);
2423 list_del_rcu(&q
->tag_set_list
);
2424 if (list_is_singular(&set
->tag_list
)) {
2425 /* just transitioned to unshared */
2426 set
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2427 /* update existing queue */
2428 blk_mq_update_tag_set_depth(set
, false);
2430 mutex_unlock(&set
->tag_list_lock
);
2431 INIT_LIST_HEAD(&q
->tag_set_list
);
2434 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
2435 struct request_queue
*q
)
2439 mutex_lock(&set
->tag_list_lock
);
2442 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2444 if (!list_empty(&set
->tag_list
) &&
2445 !(set
->flags
& BLK_MQ_F_TAG_SHARED
)) {
2446 set
->flags
|= BLK_MQ_F_TAG_SHARED
;
2447 /* update existing queue */
2448 blk_mq_update_tag_set_depth(set
, true);
2450 if (set
->flags
& BLK_MQ_F_TAG_SHARED
)
2451 queue_set_hctx_shared(q
, true);
2452 list_add_tail_rcu(&q
->tag_set_list
, &set
->tag_list
);
2454 mutex_unlock(&set
->tag_list_lock
);
2458 * It is the actual release handler for mq, but we do it from
2459 * request queue's release handler for avoiding use-after-free
2460 * and headache because q->mq_kobj shouldn't have been introduced,
2461 * but we can't group ctx/kctx kobj without it.
2463 void blk_mq_release(struct request_queue
*q
)
2465 struct blk_mq_hw_ctx
*hctx
;
2468 cancel_delayed_work_sync(&q
->requeue_work
);
2470 /* hctx kobj stays in hctx */
2471 queue_for_each_hw_ctx(q
, hctx
, i
) {
2474 kobject_put(&hctx
->kobj
);
2479 kfree(q
->queue_hw_ctx
);
2482 * release .mq_kobj and sw queue's kobject now because
2483 * both share lifetime with request queue.
2485 blk_mq_sysfs_deinit(q
);
2487 free_percpu(q
->queue_ctx
);
2490 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
2492 struct request_queue
*uninit_q
, *q
;
2494 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
, NULL
);
2496 return ERR_PTR(-ENOMEM
);
2498 q
= blk_mq_init_allocated_queue(set
, uninit_q
);
2500 blk_cleanup_queue(uninit_q
);
2504 EXPORT_SYMBOL(blk_mq_init_queue
);
2506 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set
*tag_set
)
2508 int hw_ctx_size
= sizeof(struct blk_mq_hw_ctx
);
2510 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx
, srcu
),
2511 __alignof__(struct blk_mq_hw_ctx
)) !=
2512 sizeof(struct blk_mq_hw_ctx
));
2514 if (tag_set
->flags
& BLK_MQ_F_BLOCKING
)
2515 hw_ctx_size
+= sizeof(struct srcu_struct
);
2520 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set
*set
,
2521 struct request_queue
*q
)
2524 struct blk_mq_hw_ctx
**hctxs
= q
->queue_hw_ctx
;
2526 blk_mq_sysfs_unregister(q
);
2528 /* protect against switching io scheduler */
2529 mutex_lock(&q
->sysfs_lock
);
2530 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2536 node
= blk_mq_hw_queue_to_node(q
->mq_map
, i
);
2537 hctxs
[i
] = kzalloc_node(blk_mq_hw_ctx_size(set
),
2542 if (!zalloc_cpumask_var_node(&hctxs
[i
]->cpumask
, GFP_KERNEL
,
2549 atomic_set(&hctxs
[i
]->nr_active
, 0);
2550 hctxs
[i
]->numa_node
= node
;
2551 hctxs
[i
]->queue_num
= i
;
2553 if (blk_mq_init_hctx(q
, set
, hctxs
[i
], i
)) {
2554 free_cpumask_var(hctxs
[i
]->cpumask
);
2559 blk_mq_hctx_kobj_init(hctxs
[i
]);
2561 for (j
= i
; j
< q
->nr_hw_queues
; j
++) {
2562 struct blk_mq_hw_ctx
*hctx
= hctxs
[j
];
2566 blk_mq_free_map_and_requests(set
, j
);
2567 blk_mq_exit_hctx(q
, set
, hctx
, j
);
2568 kobject_put(&hctx
->kobj
);
2573 q
->nr_hw_queues
= i
;
2574 mutex_unlock(&q
->sysfs_lock
);
2575 blk_mq_sysfs_register(q
);
2578 struct request_queue
*blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
2579 struct request_queue
*q
)
2581 /* mark the queue as mq asap */
2582 q
->mq_ops
= set
->ops
;
2584 q
->poll_cb
= blk_stat_alloc_callback(blk_mq_poll_stats_fn
,
2585 blk_mq_poll_stats_bkt
,
2586 BLK_MQ_POLL_STATS_BKTS
, q
);
2590 q
->queue_ctx
= alloc_percpu(struct blk_mq_ctx
);
2594 /* init q->mq_kobj and sw queues' kobjects */
2595 blk_mq_sysfs_init(q
);
2597 q
->queue_hw_ctx
= kcalloc_node(nr_cpu_ids
, sizeof(*(q
->queue_hw_ctx
)),
2598 GFP_KERNEL
, set
->numa_node
);
2599 if (!q
->queue_hw_ctx
)
2602 q
->mq_map
= set
->mq_map
;
2604 blk_mq_realloc_hw_ctxs(set
, q
);
2605 if (!q
->nr_hw_queues
)
2608 INIT_WORK(&q
->timeout_work
, blk_mq_timeout_work
);
2609 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
2611 q
->nr_queues
= nr_cpu_ids
;
2613 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
2615 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
2616 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE
, q
);
2618 q
->sg_reserved_size
= INT_MAX
;
2620 INIT_DELAYED_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
2621 INIT_LIST_HEAD(&q
->requeue_list
);
2622 spin_lock_init(&q
->requeue_lock
);
2624 blk_queue_make_request(q
, blk_mq_make_request
);
2625 if (q
->mq_ops
->poll
)
2626 q
->poll_fn
= blk_mq_poll
;
2629 * Do this after blk_queue_make_request() overrides it...
2631 q
->nr_requests
= set
->queue_depth
;
2634 * Default to classic polling
2638 if (set
->ops
->complete
)
2639 blk_queue_softirq_done(q
, set
->ops
->complete
);
2641 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
2642 blk_mq_add_queue_tag_set(set
, q
);
2643 blk_mq_map_swqueue(q
);
2645 if (!(set
->flags
& BLK_MQ_F_NO_SCHED
)) {
2648 ret
= elevator_init_mq(q
);
2650 return ERR_PTR(ret
);
2656 kfree(q
->queue_hw_ctx
);
2658 free_percpu(q
->queue_ctx
);
2661 return ERR_PTR(-ENOMEM
);
2663 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
2665 void blk_mq_free_queue(struct request_queue
*q
)
2667 struct blk_mq_tag_set
*set
= q
->tag_set
;
2669 blk_mq_del_queue_tag_set(q
);
2670 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
2673 /* Basically redo blk_mq_init_queue with queue frozen */
2674 static void blk_mq_queue_reinit(struct request_queue
*q
)
2676 WARN_ON_ONCE(!atomic_read(&q
->mq_freeze_depth
));
2678 blk_mq_debugfs_unregister_hctxs(q
);
2679 blk_mq_sysfs_unregister(q
);
2682 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2683 * we should change hctx numa_node according to the new topology (this
2684 * involves freeing and re-allocating memory, worth doing?)
2686 blk_mq_map_swqueue(q
);
2688 blk_mq_sysfs_register(q
);
2689 blk_mq_debugfs_register_hctxs(q
);
2692 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2696 for (i
= 0; i
< set
->nr_hw_queues
; i
++)
2697 if (!__blk_mq_alloc_rq_map(set
, i
))
2704 blk_mq_free_rq_map(set
->tags
[i
]);
2710 * Allocate the request maps associated with this tag_set. Note that this
2711 * may reduce the depth asked for, if memory is tight. set->queue_depth
2712 * will be updated to reflect the allocated depth.
2714 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2719 depth
= set
->queue_depth
;
2721 err
= __blk_mq_alloc_rq_maps(set
);
2725 set
->queue_depth
>>= 1;
2726 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2730 } while (set
->queue_depth
);
2732 if (!set
->queue_depth
|| err
) {
2733 pr_err("blk-mq: failed to allocate request map\n");
2737 if (depth
!= set
->queue_depth
)
2738 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2739 depth
, set
->queue_depth
);
2744 static int blk_mq_update_queue_map(struct blk_mq_tag_set
*set
)
2746 if (set
->ops
->map_queues
) {
2748 * transport .map_queues is usually done in the following
2751 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2752 * mask = get_cpu_mask(queue)
2753 * for_each_cpu(cpu, mask)
2754 * set->mq_map[cpu] = queue;
2757 * When we need to remap, the table has to be cleared for
2758 * killing stale mapping since one CPU may not be mapped
2761 blk_mq_clear_mq_map(set
);
2763 return set
->ops
->map_queues(set
);
2765 return blk_mq_map_queues(set
);
2769 * Alloc a tag set to be associated with one or more request queues.
2770 * May fail with EINVAL for various error conditions. May adjust the
2771 * requested depth down, if it's too large. In that case, the set
2772 * value will be stored in set->queue_depth.
2774 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
2778 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
2780 if (!set
->nr_hw_queues
)
2782 if (!set
->queue_depth
)
2784 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
2787 if (!set
->ops
->queue_rq
)
2790 if (!set
->ops
->get_budget
^ !set
->ops
->put_budget
)
2793 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
2794 pr_info("blk-mq: reduced tag depth to %u\n",
2796 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
2800 * If a crashdump is active, then we are potentially in a very
2801 * memory constrained environment. Limit us to 1 queue and
2802 * 64 tags to prevent using too much memory.
2804 if (is_kdump_kernel()) {
2805 set
->nr_hw_queues
= 1;
2806 set
->queue_depth
= min(64U, set
->queue_depth
);
2809 * There is no use for more h/w queues than cpus.
2811 if (set
->nr_hw_queues
> nr_cpu_ids
)
2812 set
->nr_hw_queues
= nr_cpu_ids
;
2814 set
->tags
= kcalloc_node(nr_cpu_ids
, sizeof(struct blk_mq_tags
*),
2815 GFP_KERNEL
, set
->numa_node
);
2820 set
->mq_map
= kcalloc_node(nr_cpu_ids
, sizeof(*set
->mq_map
),
2821 GFP_KERNEL
, set
->numa_node
);
2825 ret
= blk_mq_update_queue_map(set
);
2827 goto out_free_mq_map
;
2829 ret
= blk_mq_alloc_rq_maps(set
);
2831 goto out_free_mq_map
;
2833 mutex_init(&set
->tag_list_lock
);
2834 INIT_LIST_HEAD(&set
->tag_list
);
2846 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
2848 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
2852 for (i
= 0; i
< nr_cpu_ids
; i
++)
2853 blk_mq_free_map_and_requests(set
, i
);
2861 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2863 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2865 struct blk_mq_tag_set
*set
= q
->tag_set
;
2866 struct blk_mq_hw_ctx
*hctx
;
2872 blk_mq_freeze_queue(q
);
2873 blk_mq_quiesce_queue(q
);
2876 queue_for_each_hw_ctx(q
, hctx
, i
) {
2880 * If we're using an MQ scheduler, just update the scheduler
2881 * queue depth. This is similar to what the old code would do.
2883 if (!hctx
->sched_tags
) {
2884 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->tags
, nr
,
2887 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->sched_tags
,
2892 if (q
->elevator
&& q
->elevator
->type
->ops
.mq
.depth_updated
)
2893 q
->elevator
->type
->ops
.mq
.depth_updated(hctx
);
2897 q
->nr_requests
= nr
;
2899 blk_mq_unquiesce_queue(q
);
2900 blk_mq_unfreeze_queue(q
);
2906 * request_queue and elevator_type pair.
2907 * It is just used by __blk_mq_update_nr_hw_queues to cache
2908 * the elevator_type associated with a request_queue.
2910 struct blk_mq_qe_pair
{
2911 struct list_head node
;
2912 struct request_queue
*q
;
2913 struct elevator_type
*type
;
2917 * Cache the elevator_type in qe pair list and switch the
2918 * io scheduler to 'none'
2920 static bool blk_mq_elv_switch_none(struct list_head
*head
,
2921 struct request_queue
*q
)
2923 struct blk_mq_qe_pair
*qe
;
2928 qe
= kmalloc(sizeof(*qe
), GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
);
2932 INIT_LIST_HEAD(&qe
->node
);
2934 qe
->type
= q
->elevator
->type
;
2935 list_add(&qe
->node
, head
);
2937 mutex_lock(&q
->sysfs_lock
);
2939 * After elevator_switch_mq, the previous elevator_queue will be
2940 * released by elevator_release. The reference of the io scheduler
2941 * module get by elevator_get will also be put. So we need to get
2942 * a reference of the io scheduler module here to prevent it to be
2945 __module_get(qe
->type
->elevator_owner
);
2946 elevator_switch_mq(q
, NULL
);
2947 mutex_unlock(&q
->sysfs_lock
);
2952 static void blk_mq_elv_switch_back(struct list_head
*head
,
2953 struct request_queue
*q
)
2955 struct blk_mq_qe_pair
*qe
;
2956 struct elevator_type
*t
= NULL
;
2958 list_for_each_entry(qe
, head
, node
)
2967 list_del(&qe
->node
);
2970 mutex_lock(&q
->sysfs_lock
);
2971 elevator_switch_mq(q
, t
);
2972 mutex_unlock(&q
->sysfs_lock
);
2975 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
,
2978 struct request_queue
*q
;
2981 lockdep_assert_held(&set
->tag_list_lock
);
2983 if (nr_hw_queues
> nr_cpu_ids
)
2984 nr_hw_queues
= nr_cpu_ids
;
2985 if (nr_hw_queues
< 1 || nr_hw_queues
== set
->nr_hw_queues
)
2988 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2989 blk_mq_freeze_queue(q
);
2991 * Sync with blk_mq_queue_tag_busy_iter.
2995 * Switch IO scheduler to 'none', cleaning up the data associated
2996 * with the previous scheduler. We will switch back once we are done
2997 * updating the new sw to hw queue mappings.
2999 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3000 if (!blk_mq_elv_switch_none(&head
, q
))
3003 set
->nr_hw_queues
= nr_hw_queues
;
3004 blk_mq_update_queue_map(set
);
3005 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
3006 blk_mq_realloc_hw_ctxs(set
, q
);
3007 blk_mq_queue_reinit(q
);
3011 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3012 blk_mq_elv_switch_back(&head
, q
);
3014 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
3015 blk_mq_unfreeze_queue(q
);
3018 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
, int nr_hw_queues
)
3020 mutex_lock(&set
->tag_list_lock
);
3021 __blk_mq_update_nr_hw_queues(set
, nr_hw_queues
);
3022 mutex_unlock(&set
->tag_list_lock
);
3024 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues
);
3026 /* Enable polling stats and return whether they were already enabled. */
3027 static bool blk_poll_stats_enable(struct request_queue
*q
)
3029 if (test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
3030 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS
, q
))
3032 blk_stat_add_callback(q
, q
->poll_cb
);
3036 static void blk_mq_poll_stats_start(struct request_queue
*q
)
3039 * We don't arm the callback if polling stats are not enabled or the
3040 * callback is already active.
3042 if (!test_bit(QUEUE_FLAG_POLL_STATS
, &q
->queue_flags
) ||
3043 blk_stat_is_active(q
->poll_cb
))
3046 blk_stat_activate_msecs(q
->poll_cb
, 100);
3049 static void blk_mq_poll_stats_fn(struct blk_stat_callback
*cb
)
3051 struct request_queue
*q
= cb
->data
;
3054 for (bucket
= 0; bucket
< BLK_MQ_POLL_STATS_BKTS
; bucket
++) {
3055 if (cb
->stat
[bucket
].nr_samples
)
3056 q
->poll_stat
[bucket
] = cb
->stat
[bucket
];
3060 static unsigned long blk_mq_poll_nsecs(struct request_queue
*q
,
3061 struct blk_mq_hw_ctx
*hctx
,
3064 unsigned long ret
= 0;
3068 * If stats collection isn't on, don't sleep but turn it on for
3071 if (!blk_poll_stats_enable(q
))
3075 * As an optimistic guess, use half of the mean service time
3076 * for this type of request. We can (and should) make this smarter.
3077 * For instance, if the completion latencies are tight, we can
3078 * get closer than just half the mean. This is especially
3079 * important on devices where the completion latencies are longer
3080 * than ~10 usec. We do use the stats for the relevant IO size
3081 * if available which does lead to better estimates.
3083 bucket
= blk_mq_poll_stats_bkt(rq
);
3087 if (q
->poll_stat
[bucket
].nr_samples
)
3088 ret
= (q
->poll_stat
[bucket
].mean
+ 1) / 2;
3093 static bool blk_mq_poll_hybrid_sleep(struct request_queue
*q
,
3094 struct blk_mq_hw_ctx
*hctx
,
3097 struct hrtimer_sleeper hs
;
3098 enum hrtimer_mode mode
;
3102 if (rq
->rq_flags
& RQF_MQ_POLL_SLEPT
)
3108 * -1: don't ever hybrid sleep
3109 * 0: use half of prev avg
3110 * >0: use this specific value
3112 if (q
->poll_nsec
== -1)
3114 else if (q
->poll_nsec
> 0)
3115 nsecs
= q
->poll_nsec
;
3117 nsecs
= blk_mq_poll_nsecs(q
, hctx
, rq
);
3122 rq
->rq_flags
|= RQF_MQ_POLL_SLEPT
;
3125 * This will be replaced with the stats tracking code, using
3126 * 'avg_completion_time / 2' as the pre-sleep target.
3130 mode
= HRTIMER_MODE_REL
;
3131 hrtimer_init_on_stack(&hs
.timer
, CLOCK_MONOTONIC
, mode
);
3132 hrtimer_set_expires(&hs
.timer
, kt
);
3134 hrtimer_init_sleeper(&hs
, current
);
3136 if (blk_mq_rq_state(rq
) == MQ_RQ_COMPLETE
)
3138 set_current_state(TASK_UNINTERRUPTIBLE
);
3139 hrtimer_start_expires(&hs
.timer
, mode
);
3142 hrtimer_cancel(&hs
.timer
);
3143 mode
= HRTIMER_MODE_ABS
;
3144 } while (hs
.task
&& !signal_pending(current
));
3146 __set_current_state(TASK_RUNNING
);
3147 destroy_hrtimer_on_stack(&hs
.timer
);
3151 static bool __blk_mq_poll(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
3153 struct request_queue
*q
= hctx
->queue
;
3157 * If we sleep, have the caller restart the poll loop to reset
3158 * the state. Like for the other success return cases, the
3159 * caller is responsible for checking if the IO completed. If
3160 * the IO isn't complete, we'll get called again and will go
3161 * straight to the busy poll loop.
3163 if (blk_mq_poll_hybrid_sleep(q
, hctx
, rq
))
3166 hctx
->poll_considered
++;
3168 state
= current
->state
;
3169 while (!need_resched()) {
3172 hctx
->poll_invoked
++;
3174 ret
= q
->mq_ops
->poll(hctx
, rq
->tag
);
3176 hctx
->poll_success
++;
3177 set_current_state(TASK_RUNNING
);
3181 if (signal_pending_state(state
, current
))
3182 set_current_state(TASK_RUNNING
);
3184 if (current
->state
== TASK_RUNNING
)
3191 __set_current_state(TASK_RUNNING
);
3195 static bool blk_mq_poll(struct request_queue
*q
, blk_qc_t cookie
)
3197 struct blk_mq_hw_ctx
*hctx
;
3200 if (!test_bit(QUEUE_FLAG_POLL
, &q
->queue_flags
))
3203 hctx
= q
->queue_hw_ctx
[blk_qc_t_to_queue_num(cookie
)];
3204 if (!blk_qc_t_is_internal(cookie
))
3205 rq
= blk_mq_tag_to_rq(hctx
->tags
, blk_qc_t_to_tag(cookie
));
3207 rq
= blk_mq_tag_to_rq(hctx
->sched_tags
, blk_qc_t_to_tag(cookie
));
3209 * With scheduling, if the request has completed, we'll
3210 * get a NULL return here, as we clear the sched tag when
3211 * that happens. The request still remains valid, like always,
3212 * so we should be safe with just the NULL check.
3218 return __blk_mq_poll(hctx
, rq
);
3221 static int __init
blk_mq_init(void)
3223 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD
, "block/mq:dead", NULL
,
3224 blk_mq_hctx_notify_dead
);
3227 subsys_initcall(blk_mq_init
);