mei: fix regressions caused by removing ext_msg
[linux/fpc-iii.git] / tools / perf / builtin-timechart.c
blob25526d6eae59f65a4a0405c9186d93b9cd5d3d59
1 /*
2 * builtin-timechart.c - make an svg timechart of system activity
4 * (C) Copyright 2009 Intel Corporation
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
15 #include <traceevent/event-parse.h>
17 #include "builtin.h"
19 #include "util/util.h"
21 #include "util/color.h"
22 #include <linux/list.h>
23 #include "util/cache.h"
24 #include "util/evlist.h"
25 #include "util/evsel.h"
26 #include <linux/rbtree.h>
27 #include "util/symbol.h"
28 #include "util/callchain.h"
29 #include "util/strlist.h"
31 #include "perf.h"
32 #include "util/header.h"
33 #include "util/parse-options.h"
34 #include "util/parse-events.h"
35 #include "util/event.h"
36 #include "util/session.h"
37 #include "util/svghelper.h"
38 #include "util/tool.h"
39 #include "util/data.h"
41 #define SUPPORT_OLD_POWER_EVENTS 1
42 #define PWR_EVENT_EXIT -1
44 struct per_pid;
45 struct power_event;
46 struct wake_event;
48 struct timechart {
49 struct perf_tool tool;
50 struct per_pid *all_data;
51 struct power_event *power_events;
52 struct wake_event *wake_events;
53 int proc_num;
54 unsigned int numcpus;
55 u64 min_freq, /* Lowest CPU frequency seen */
56 max_freq, /* Highest CPU frequency seen */
57 turbo_frequency,
58 first_time, last_time;
59 bool power_only,
60 tasks_only,
61 with_backtrace,
62 topology;
65 struct per_pidcomm;
66 struct cpu_sample;
69 * Datastructure layout:
70 * We keep an list of "pid"s, matching the kernels notion of a task struct.
71 * Each "pid" entry, has a list of "comm"s.
72 * this is because we want to track different programs different, while
73 * exec will reuse the original pid (by design).
74 * Each comm has a list of samples that will be used to draw
75 * final graph.
78 struct per_pid {
79 struct per_pid *next;
81 int pid;
82 int ppid;
84 u64 start_time;
85 u64 end_time;
86 u64 total_time;
87 int display;
89 struct per_pidcomm *all;
90 struct per_pidcomm *current;
94 struct per_pidcomm {
95 struct per_pidcomm *next;
97 u64 start_time;
98 u64 end_time;
99 u64 total_time;
101 int Y;
102 int display;
104 long state;
105 u64 state_since;
107 char *comm;
109 struct cpu_sample *samples;
112 struct sample_wrapper {
113 struct sample_wrapper *next;
115 u64 timestamp;
116 unsigned char data[0];
119 #define TYPE_NONE 0
120 #define TYPE_RUNNING 1
121 #define TYPE_WAITING 2
122 #define TYPE_BLOCKED 3
124 struct cpu_sample {
125 struct cpu_sample *next;
127 u64 start_time;
128 u64 end_time;
129 int type;
130 int cpu;
131 const char *backtrace;
134 #define CSTATE 1
135 #define PSTATE 2
137 struct power_event {
138 struct power_event *next;
139 int type;
140 int state;
141 u64 start_time;
142 u64 end_time;
143 int cpu;
146 struct wake_event {
147 struct wake_event *next;
148 int waker;
149 int wakee;
150 u64 time;
151 const char *backtrace;
154 struct process_filter {
155 char *name;
156 int pid;
157 struct process_filter *next;
160 static struct process_filter *process_filter;
163 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
165 struct per_pid *cursor = tchart->all_data;
167 while (cursor) {
168 if (cursor->pid == pid)
169 return cursor;
170 cursor = cursor->next;
172 cursor = zalloc(sizeof(*cursor));
173 assert(cursor != NULL);
174 cursor->pid = pid;
175 cursor->next = tchart->all_data;
176 tchart->all_data = cursor;
177 return cursor;
180 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
182 struct per_pid *p;
183 struct per_pidcomm *c;
184 p = find_create_pid(tchart, pid);
185 c = p->all;
186 while (c) {
187 if (c->comm && strcmp(c->comm, comm) == 0) {
188 p->current = c;
189 return;
191 if (!c->comm) {
192 c->comm = strdup(comm);
193 p->current = c;
194 return;
196 c = c->next;
198 c = zalloc(sizeof(*c));
199 assert(c != NULL);
200 c->comm = strdup(comm);
201 p->current = c;
202 c->next = p->all;
203 p->all = c;
206 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
208 struct per_pid *p, *pp;
209 p = find_create_pid(tchart, pid);
210 pp = find_create_pid(tchart, ppid);
211 p->ppid = ppid;
212 if (pp->current && pp->current->comm && !p->current)
213 pid_set_comm(tchart, pid, pp->current->comm);
215 p->start_time = timestamp;
216 if (p->current) {
217 p->current->start_time = timestamp;
218 p->current->state_since = timestamp;
222 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
224 struct per_pid *p;
225 p = find_create_pid(tchart, pid);
226 p->end_time = timestamp;
227 if (p->current)
228 p->current->end_time = timestamp;
231 static void pid_put_sample(struct timechart *tchart, int pid, int type,
232 unsigned int cpu, u64 start, u64 end,
233 const char *backtrace)
235 struct per_pid *p;
236 struct per_pidcomm *c;
237 struct cpu_sample *sample;
239 p = find_create_pid(tchart, pid);
240 c = p->current;
241 if (!c) {
242 c = zalloc(sizeof(*c));
243 assert(c != NULL);
244 p->current = c;
245 c->next = p->all;
246 p->all = c;
249 sample = zalloc(sizeof(*sample));
250 assert(sample != NULL);
251 sample->start_time = start;
252 sample->end_time = end;
253 sample->type = type;
254 sample->next = c->samples;
255 sample->cpu = cpu;
256 sample->backtrace = backtrace;
257 c->samples = sample;
259 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
260 c->total_time += (end-start);
261 p->total_time += (end-start);
264 if (c->start_time == 0 || c->start_time > start)
265 c->start_time = start;
266 if (p->start_time == 0 || p->start_time > start)
267 p->start_time = start;
270 #define MAX_CPUS 4096
272 static u64 cpus_cstate_start_times[MAX_CPUS];
273 static int cpus_cstate_state[MAX_CPUS];
274 static u64 cpus_pstate_start_times[MAX_CPUS];
275 static u64 cpus_pstate_state[MAX_CPUS];
277 static int process_comm_event(struct perf_tool *tool,
278 union perf_event *event,
279 struct perf_sample *sample __maybe_unused,
280 struct machine *machine __maybe_unused)
282 struct timechart *tchart = container_of(tool, struct timechart, tool);
283 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
284 return 0;
287 static int process_fork_event(struct perf_tool *tool,
288 union perf_event *event,
289 struct perf_sample *sample __maybe_unused,
290 struct machine *machine __maybe_unused)
292 struct timechart *tchart = container_of(tool, struct timechart, tool);
293 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
294 return 0;
297 static int process_exit_event(struct perf_tool *tool,
298 union perf_event *event,
299 struct perf_sample *sample __maybe_unused,
300 struct machine *machine __maybe_unused)
302 struct timechart *tchart = container_of(tool, struct timechart, tool);
303 pid_exit(tchart, event->fork.pid, event->fork.time);
304 return 0;
307 #ifdef SUPPORT_OLD_POWER_EVENTS
308 static int use_old_power_events;
309 #endif
311 static void c_state_start(int cpu, u64 timestamp, int state)
313 cpus_cstate_start_times[cpu] = timestamp;
314 cpus_cstate_state[cpu] = state;
317 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
319 struct power_event *pwr = zalloc(sizeof(*pwr));
321 if (!pwr)
322 return;
324 pwr->state = cpus_cstate_state[cpu];
325 pwr->start_time = cpus_cstate_start_times[cpu];
326 pwr->end_time = timestamp;
327 pwr->cpu = cpu;
328 pwr->type = CSTATE;
329 pwr->next = tchart->power_events;
331 tchart->power_events = pwr;
334 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
336 struct power_event *pwr;
338 if (new_freq > 8000000) /* detect invalid data */
339 return;
341 pwr = zalloc(sizeof(*pwr));
342 if (!pwr)
343 return;
345 pwr->state = cpus_pstate_state[cpu];
346 pwr->start_time = cpus_pstate_start_times[cpu];
347 pwr->end_time = timestamp;
348 pwr->cpu = cpu;
349 pwr->type = PSTATE;
350 pwr->next = tchart->power_events;
352 if (!pwr->start_time)
353 pwr->start_time = tchart->first_time;
355 tchart->power_events = pwr;
357 cpus_pstate_state[cpu] = new_freq;
358 cpus_pstate_start_times[cpu] = timestamp;
360 if ((u64)new_freq > tchart->max_freq)
361 tchart->max_freq = new_freq;
363 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
364 tchart->min_freq = new_freq;
366 if (new_freq == tchart->max_freq - 1000)
367 tchart->turbo_frequency = tchart->max_freq;
370 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
371 int waker, int wakee, u8 flags, const char *backtrace)
373 struct per_pid *p;
374 struct wake_event *we = zalloc(sizeof(*we));
376 if (!we)
377 return;
379 we->time = timestamp;
380 we->waker = waker;
381 we->backtrace = backtrace;
383 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
384 we->waker = -1;
386 we->wakee = wakee;
387 we->next = tchart->wake_events;
388 tchart->wake_events = we;
389 p = find_create_pid(tchart, we->wakee);
391 if (p && p->current && p->current->state == TYPE_NONE) {
392 p->current->state_since = timestamp;
393 p->current->state = TYPE_WAITING;
395 if (p && p->current && p->current->state == TYPE_BLOCKED) {
396 pid_put_sample(tchart, p->pid, p->current->state, cpu,
397 p->current->state_since, timestamp, NULL);
398 p->current->state_since = timestamp;
399 p->current->state = TYPE_WAITING;
403 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
404 int prev_pid, int next_pid, u64 prev_state,
405 const char *backtrace)
407 struct per_pid *p = NULL, *prev_p;
409 prev_p = find_create_pid(tchart, prev_pid);
411 p = find_create_pid(tchart, next_pid);
413 if (prev_p->current && prev_p->current->state != TYPE_NONE)
414 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
415 prev_p->current->state_since, timestamp,
416 backtrace);
417 if (p && p->current) {
418 if (p->current->state != TYPE_NONE)
419 pid_put_sample(tchart, next_pid, p->current->state, cpu,
420 p->current->state_since, timestamp,
421 backtrace);
423 p->current->state_since = timestamp;
424 p->current->state = TYPE_RUNNING;
427 if (prev_p->current) {
428 prev_p->current->state = TYPE_NONE;
429 prev_p->current->state_since = timestamp;
430 if (prev_state & 2)
431 prev_p->current->state = TYPE_BLOCKED;
432 if (prev_state == 0)
433 prev_p->current->state = TYPE_WAITING;
437 static const char *cat_backtrace(union perf_event *event,
438 struct perf_sample *sample,
439 struct machine *machine)
441 struct addr_location al;
442 unsigned int i;
443 char *p = NULL;
444 size_t p_len;
445 u8 cpumode = PERF_RECORD_MISC_USER;
446 struct addr_location tal;
447 struct ip_callchain *chain = sample->callchain;
448 FILE *f = open_memstream(&p, &p_len);
450 if (!f) {
451 perror("open_memstream error");
452 return NULL;
455 if (!chain)
456 goto exit;
458 if (perf_event__preprocess_sample(event, machine, &al, sample) < 0) {
459 fprintf(stderr, "problem processing %d event, skipping it.\n",
460 event->header.type);
461 goto exit;
464 for (i = 0; i < chain->nr; i++) {
465 u64 ip;
467 if (callchain_param.order == ORDER_CALLEE)
468 ip = chain->ips[i];
469 else
470 ip = chain->ips[chain->nr - i - 1];
472 if (ip >= PERF_CONTEXT_MAX) {
473 switch (ip) {
474 case PERF_CONTEXT_HV:
475 cpumode = PERF_RECORD_MISC_HYPERVISOR;
476 break;
477 case PERF_CONTEXT_KERNEL:
478 cpumode = PERF_RECORD_MISC_KERNEL;
479 break;
480 case PERF_CONTEXT_USER:
481 cpumode = PERF_RECORD_MISC_USER;
482 break;
483 default:
484 pr_debug("invalid callchain context: "
485 "%"PRId64"\n", (s64) ip);
488 * It seems the callchain is corrupted.
489 * Discard all.
491 zfree(&p);
492 goto exit;
494 continue;
497 tal.filtered = false;
498 thread__find_addr_location(al.thread, machine, cpumode,
499 MAP__FUNCTION, ip, &tal);
501 if (tal.sym)
502 fprintf(f, "..... %016" PRIx64 " %s\n", ip,
503 tal.sym->name);
504 else
505 fprintf(f, "..... %016" PRIx64 "\n", ip);
508 exit:
509 fclose(f);
511 return p;
514 typedef int (*tracepoint_handler)(struct timechart *tchart,
515 struct perf_evsel *evsel,
516 struct perf_sample *sample,
517 const char *backtrace);
519 static int process_sample_event(struct perf_tool *tool,
520 union perf_event *event,
521 struct perf_sample *sample,
522 struct perf_evsel *evsel,
523 struct machine *machine)
525 struct timechart *tchart = container_of(tool, struct timechart, tool);
527 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
528 if (!tchart->first_time || tchart->first_time > sample->time)
529 tchart->first_time = sample->time;
530 if (tchart->last_time < sample->time)
531 tchart->last_time = sample->time;
534 if (evsel->handler != NULL) {
535 tracepoint_handler f = evsel->handler;
536 return f(tchart, evsel, sample,
537 cat_backtrace(event, sample, machine));
540 return 0;
543 static int
544 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
545 struct perf_evsel *evsel,
546 struct perf_sample *sample,
547 const char *backtrace __maybe_unused)
549 u32 state = perf_evsel__intval(evsel, sample, "state");
550 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
552 if (state == (u32)PWR_EVENT_EXIT)
553 c_state_end(tchart, cpu_id, sample->time);
554 else
555 c_state_start(cpu_id, sample->time, state);
556 return 0;
559 static int
560 process_sample_cpu_frequency(struct timechart *tchart,
561 struct perf_evsel *evsel,
562 struct perf_sample *sample,
563 const char *backtrace __maybe_unused)
565 u32 state = perf_evsel__intval(evsel, sample, "state");
566 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
568 p_state_change(tchart, cpu_id, sample->time, state);
569 return 0;
572 static int
573 process_sample_sched_wakeup(struct timechart *tchart,
574 struct perf_evsel *evsel,
575 struct perf_sample *sample,
576 const char *backtrace)
578 u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
579 int waker = perf_evsel__intval(evsel, sample, "common_pid");
580 int wakee = perf_evsel__intval(evsel, sample, "pid");
582 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
583 return 0;
586 static int
587 process_sample_sched_switch(struct timechart *tchart,
588 struct perf_evsel *evsel,
589 struct perf_sample *sample,
590 const char *backtrace)
592 int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
593 int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
594 u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
596 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
597 prev_state, backtrace);
598 return 0;
601 #ifdef SUPPORT_OLD_POWER_EVENTS
602 static int
603 process_sample_power_start(struct timechart *tchart __maybe_unused,
604 struct perf_evsel *evsel,
605 struct perf_sample *sample,
606 const char *backtrace __maybe_unused)
608 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
609 u64 value = perf_evsel__intval(evsel, sample, "value");
611 c_state_start(cpu_id, sample->time, value);
612 return 0;
615 static int
616 process_sample_power_end(struct timechart *tchart,
617 struct perf_evsel *evsel __maybe_unused,
618 struct perf_sample *sample,
619 const char *backtrace __maybe_unused)
621 c_state_end(tchart, sample->cpu, sample->time);
622 return 0;
625 static int
626 process_sample_power_frequency(struct timechart *tchart,
627 struct perf_evsel *evsel,
628 struct perf_sample *sample,
629 const char *backtrace __maybe_unused)
631 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
632 u64 value = perf_evsel__intval(evsel, sample, "value");
634 p_state_change(tchart, cpu_id, sample->time, value);
635 return 0;
637 #endif /* SUPPORT_OLD_POWER_EVENTS */
640 * After the last sample we need to wrap up the current C/P state
641 * and close out each CPU for these.
643 static void end_sample_processing(struct timechart *tchart)
645 u64 cpu;
646 struct power_event *pwr;
648 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
649 /* C state */
650 #if 0
651 pwr = zalloc(sizeof(*pwr));
652 if (!pwr)
653 return;
655 pwr->state = cpus_cstate_state[cpu];
656 pwr->start_time = cpus_cstate_start_times[cpu];
657 pwr->end_time = tchart->last_time;
658 pwr->cpu = cpu;
659 pwr->type = CSTATE;
660 pwr->next = tchart->power_events;
662 tchart->power_events = pwr;
663 #endif
664 /* P state */
666 pwr = zalloc(sizeof(*pwr));
667 if (!pwr)
668 return;
670 pwr->state = cpus_pstate_state[cpu];
671 pwr->start_time = cpus_pstate_start_times[cpu];
672 pwr->end_time = tchart->last_time;
673 pwr->cpu = cpu;
674 pwr->type = PSTATE;
675 pwr->next = tchart->power_events;
677 if (!pwr->start_time)
678 pwr->start_time = tchart->first_time;
679 if (!pwr->state)
680 pwr->state = tchart->min_freq;
681 tchart->power_events = pwr;
686 * Sort the pid datastructure
688 static void sort_pids(struct timechart *tchart)
690 struct per_pid *new_list, *p, *cursor, *prev;
691 /* sort by ppid first, then by pid, lowest to highest */
693 new_list = NULL;
695 while (tchart->all_data) {
696 p = tchart->all_data;
697 tchart->all_data = p->next;
698 p->next = NULL;
700 if (new_list == NULL) {
701 new_list = p;
702 p->next = NULL;
703 continue;
705 prev = NULL;
706 cursor = new_list;
707 while (cursor) {
708 if (cursor->ppid > p->ppid ||
709 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
710 /* must insert before */
711 if (prev) {
712 p->next = prev->next;
713 prev->next = p;
714 cursor = NULL;
715 continue;
716 } else {
717 p->next = new_list;
718 new_list = p;
719 cursor = NULL;
720 continue;
724 prev = cursor;
725 cursor = cursor->next;
726 if (!cursor)
727 prev->next = p;
730 tchart->all_data = new_list;
734 static void draw_c_p_states(struct timechart *tchart)
736 struct power_event *pwr;
737 pwr = tchart->power_events;
740 * two pass drawing so that the P state bars are on top of the C state blocks
742 while (pwr) {
743 if (pwr->type == CSTATE)
744 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
745 pwr = pwr->next;
748 pwr = tchart->power_events;
749 while (pwr) {
750 if (pwr->type == PSTATE) {
751 if (!pwr->state)
752 pwr->state = tchart->min_freq;
753 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
755 pwr = pwr->next;
759 static void draw_wakeups(struct timechart *tchart)
761 struct wake_event *we;
762 struct per_pid *p;
763 struct per_pidcomm *c;
765 we = tchart->wake_events;
766 while (we) {
767 int from = 0, to = 0;
768 char *task_from = NULL, *task_to = NULL;
770 /* locate the column of the waker and wakee */
771 p = tchart->all_data;
772 while (p) {
773 if (p->pid == we->waker || p->pid == we->wakee) {
774 c = p->all;
775 while (c) {
776 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
777 if (p->pid == we->waker && !from) {
778 from = c->Y;
779 task_from = strdup(c->comm);
781 if (p->pid == we->wakee && !to) {
782 to = c->Y;
783 task_to = strdup(c->comm);
786 c = c->next;
788 c = p->all;
789 while (c) {
790 if (p->pid == we->waker && !from) {
791 from = c->Y;
792 task_from = strdup(c->comm);
794 if (p->pid == we->wakee && !to) {
795 to = c->Y;
796 task_to = strdup(c->comm);
798 c = c->next;
801 p = p->next;
804 if (!task_from) {
805 task_from = malloc(40);
806 sprintf(task_from, "[%i]", we->waker);
808 if (!task_to) {
809 task_to = malloc(40);
810 sprintf(task_to, "[%i]", we->wakee);
813 if (we->waker == -1)
814 svg_interrupt(we->time, to, we->backtrace);
815 else if (from && to && abs(from - to) == 1)
816 svg_wakeline(we->time, from, to, we->backtrace);
817 else
818 svg_partial_wakeline(we->time, from, task_from, to,
819 task_to, we->backtrace);
820 we = we->next;
822 free(task_from);
823 free(task_to);
827 static void draw_cpu_usage(struct timechart *tchart)
829 struct per_pid *p;
830 struct per_pidcomm *c;
831 struct cpu_sample *sample;
832 p = tchart->all_data;
833 while (p) {
834 c = p->all;
835 while (c) {
836 sample = c->samples;
837 while (sample) {
838 if (sample->type == TYPE_RUNNING) {
839 svg_process(sample->cpu,
840 sample->start_time,
841 sample->end_time,
842 p->pid,
843 c->comm,
844 sample->backtrace);
847 sample = sample->next;
849 c = c->next;
851 p = p->next;
855 static void draw_process_bars(struct timechart *tchart)
857 struct per_pid *p;
858 struct per_pidcomm *c;
859 struct cpu_sample *sample;
860 int Y = 0;
862 Y = 2 * tchart->numcpus + 2;
864 p = tchart->all_data;
865 while (p) {
866 c = p->all;
867 while (c) {
868 if (!c->display) {
869 c->Y = 0;
870 c = c->next;
871 continue;
874 svg_box(Y, c->start_time, c->end_time, "process");
875 sample = c->samples;
876 while (sample) {
877 if (sample->type == TYPE_RUNNING)
878 svg_running(Y, sample->cpu,
879 sample->start_time,
880 sample->end_time,
881 sample->backtrace);
882 if (sample->type == TYPE_BLOCKED)
883 svg_blocked(Y, sample->cpu,
884 sample->start_time,
885 sample->end_time,
886 sample->backtrace);
887 if (sample->type == TYPE_WAITING)
888 svg_waiting(Y, sample->cpu,
889 sample->start_time,
890 sample->end_time,
891 sample->backtrace);
892 sample = sample->next;
895 if (c->comm) {
896 char comm[256];
897 if (c->total_time > 5000000000) /* 5 seconds */
898 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
899 else
900 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
902 svg_text(Y, c->start_time, comm);
904 c->Y = Y;
905 Y++;
906 c = c->next;
908 p = p->next;
912 static void add_process_filter(const char *string)
914 int pid = strtoull(string, NULL, 10);
915 struct process_filter *filt = malloc(sizeof(*filt));
917 if (!filt)
918 return;
920 filt->name = strdup(string);
921 filt->pid = pid;
922 filt->next = process_filter;
924 process_filter = filt;
927 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
929 struct process_filter *filt;
930 if (!process_filter)
931 return 1;
933 filt = process_filter;
934 while (filt) {
935 if (filt->pid && p->pid == filt->pid)
936 return 1;
937 if (strcmp(filt->name, c->comm) == 0)
938 return 1;
939 filt = filt->next;
941 return 0;
944 static int determine_display_tasks_filtered(struct timechart *tchart)
946 struct per_pid *p;
947 struct per_pidcomm *c;
948 int count = 0;
950 p = tchart->all_data;
951 while (p) {
952 p->display = 0;
953 if (p->start_time == 1)
954 p->start_time = tchart->first_time;
956 /* no exit marker, task kept running to the end */
957 if (p->end_time == 0)
958 p->end_time = tchart->last_time;
960 c = p->all;
962 while (c) {
963 c->display = 0;
965 if (c->start_time == 1)
966 c->start_time = tchart->first_time;
968 if (passes_filter(p, c)) {
969 c->display = 1;
970 p->display = 1;
971 count++;
974 if (c->end_time == 0)
975 c->end_time = tchart->last_time;
977 c = c->next;
979 p = p->next;
981 return count;
984 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
986 struct per_pid *p;
987 struct per_pidcomm *c;
988 int count = 0;
990 if (process_filter)
991 return determine_display_tasks_filtered(tchart);
993 p = tchart->all_data;
994 while (p) {
995 p->display = 0;
996 if (p->start_time == 1)
997 p->start_time = tchart->first_time;
999 /* no exit marker, task kept running to the end */
1000 if (p->end_time == 0)
1001 p->end_time = tchart->last_time;
1002 if (p->total_time >= threshold)
1003 p->display = 1;
1005 c = p->all;
1007 while (c) {
1008 c->display = 0;
1010 if (c->start_time == 1)
1011 c->start_time = tchart->first_time;
1013 if (c->total_time >= threshold) {
1014 c->display = 1;
1015 count++;
1018 if (c->end_time == 0)
1019 c->end_time = tchart->last_time;
1021 c = c->next;
1023 p = p->next;
1025 return count;
1030 #define TIME_THRESH 10000000
1032 static void write_svg_file(struct timechart *tchart, const char *filename)
1034 u64 i;
1035 int count;
1036 int thresh = TIME_THRESH;
1038 if (tchart->power_only)
1039 tchart->proc_num = 0;
1041 /* We'd like to show at least proc_num tasks;
1042 * be less picky if we have fewer */
1043 do {
1044 count = determine_display_tasks(tchart, thresh);
1045 thresh /= 10;
1046 } while (!process_filter && thresh && count < tchart->proc_num);
1048 if (!tchart->proc_num)
1049 count = 0;
1051 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1053 svg_time_grid();
1054 svg_legenda();
1056 for (i = 0; i < tchart->numcpus; i++)
1057 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1059 draw_cpu_usage(tchart);
1060 if (tchart->proc_num)
1061 draw_process_bars(tchart);
1062 if (!tchart->tasks_only)
1063 draw_c_p_states(tchart);
1064 if (tchart->proc_num)
1065 draw_wakeups(tchart);
1067 svg_close();
1070 static int process_header(struct perf_file_section *section __maybe_unused,
1071 struct perf_header *ph,
1072 int feat,
1073 int fd __maybe_unused,
1074 void *data)
1076 struct timechart *tchart = data;
1078 switch (feat) {
1079 case HEADER_NRCPUS:
1080 tchart->numcpus = ph->env.nr_cpus_avail;
1081 break;
1083 case HEADER_CPU_TOPOLOGY:
1084 if (!tchart->topology)
1085 break;
1087 if (svg_build_topology_map(ph->env.sibling_cores,
1088 ph->env.nr_sibling_cores,
1089 ph->env.sibling_threads,
1090 ph->env.nr_sibling_threads))
1091 fprintf(stderr, "problem building topology\n");
1092 break;
1094 default:
1095 break;
1098 return 0;
1101 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1103 const struct perf_evsel_str_handler power_tracepoints[] = {
1104 { "power:cpu_idle", process_sample_cpu_idle },
1105 { "power:cpu_frequency", process_sample_cpu_frequency },
1106 { "sched:sched_wakeup", process_sample_sched_wakeup },
1107 { "sched:sched_switch", process_sample_sched_switch },
1108 #ifdef SUPPORT_OLD_POWER_EVENTS
1109 { "power:power_start", process_sample_power_start },
1110 { "power:power_end", process_sample_power_end },
1111 { "power:power_frequency", process_sample_power_frequency },
1112 #endif
1114 struct perf_data_file file = {
1115 .path = input_name,
1116 .mode = PERF_DATA_MODE_READ,
1119 struct perf_session *session = perf_session__new(&file, false,
1120 &tchart->tool);
1121 int ret = -EINVAL;
1123 if (session == NULL)
1124 return -ENOMEM;
1126 (void)perf_header__process_sections(&session->header,
1127 perf_data_file__fd(session->file),
1128 tchart,
1129 process_header);
1131 if (!perf_session__has_traces(session, "timechart record"))
1132 goto out_delete;
1134 if (perf_session__set_tracepoints_handlers(session,
1135 power_tracepoints)) {
1136 pr_err("Initializing session tracepoint handlers failed\n");
1137 goto out_delete;
1140 ret = perf_session__process_events(session, &tchart->tool);
1141 if (ret)
1142 goto out_delete;
1144 end_sample_processing(tchart);
1146 sort_pids(tchart);
1148 write_svg_file(tchart, output_name);
1150 pr_info("Written %2.1f seconds of trace to %s.\n",
1151 (tchart->last_time - tchart->first_time) / 1000000000.0, output_name);
1152 out_delete:
1153 perf_session__delete(session);
1154 return ret;
1157 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1159 unsigned int rec_argc, i, j;
1160 const char **rec_argv;
1161 const char **p;
1162 unsigned int record_elems;
1164 const char * const common_args[] = {
1165 "record", "-a", "-R", "-c", "1",
1167 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1169 const char * const backtrace_args[] = {
1170 "-g",
1172 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1174 const char * const power_args[] = {
1175 "-e", "power:cpu_frequency",
1176 "-e", "power:cpu_idle",
1178 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1180 const char * const old_power_args[] = {
1181 #ifdef SUPPORT_OLD_POWER_EVENTS
1182 "-e", "power:power_start",
1183 "-e", "power:power_end",
1184 "-e", "power:power_frequency",
1185 #endif
1187 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1189 const char * const tasks_args[] = {
1190 "-e", "sched:sched_wakeup",
1191 "-e", "sched:sched_switch",
1193 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1195 #ifdef SUPPORT_OLD_POWER_EVENTS
1196 if (!is_valid_tracepoint("power:cpu_idle") &&
1197 is_valid_tracepoint("power:power_start")) {
1198 use_old_power_events = 1;
1199 power_args_nr = 0;
1200 } else {
1201 old_power_args_nr = 0;
1203 #endif
1205 if (tchart->power_only)
1206 tasks_args_nr = 0;
1208 if (tchart->tasks_only) {
1209 power_args_nr = 0;
1210 old_power_args_nr = 0;
1213 if (!tchart->with_backtrace)
1214 backtrace_args_no = 0;
1216 record_elems = common_args_nr + tasks_args_nr +
1217 power_args_nr + old_power_args_nr + backtrace_args_no;
1219 rec_argc = record_elems + argc;
1220 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1222 if (rec_argv == NULL)
1223 return -ENOMEM;
1225 p = rec_argv;
1226 for (i = 0; i < common_args_nr; i++)
1227 *p++ = strdup(common_args[i]);
1229 for (i = 0; i < backtrace_args_no; i++)
1230 *p++ = strdup(backtrace_args[i]);
1232 for (i = 0; i < tasks_args_nr; i++)
1233 *p++ = strdup(tasks_args[i]);
1235 for (i = 0; i < power_args_nr; i++)
1236 *p++ = strdup(power_args[i]);
1238 for (i = 0; i < old_power_args_nr; i++)
1239 *p++ = strdup(old_power_args[i]);
1241 for (j = 1; j < (unsigned int)argc; j++)
1242 *p++ = argv[j];
1244 return cmd_record(rec_argc, rec_argv, NULL);
1247 static int
1248 parse_process(const struct option *opt __maybe_unused, const char *arg,
1249 int __maybe_unused unset)
1251 if (arg)
1252 add_process_filter(arg);
1253 return 0;
1256 static int
1257 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1258 int __maybe_unused unset)
1260 unsigned long duration = strtoul(arg, NULL, 0);
1262 if (svg_highlight || svg_highlight_name)
1263 return -1;
1265 if (duration)
1266 svg_highlight = duration;
1267 else
1268 svg_highlight_name = strdup(arg);
1270 return 0;
1273 int cmd_timechart(int argc, const char **argv,
1274 const char *prefix __maybe_unused)
1276 struct timechart tchart = {
1277 .tool = {
1278 .comm = process_comm_event,
1279 .fork = process_fork_event,
1280 .exit = process_exit_event,
1281 .sample = process_sample_event,
1282 .ordered_samples = true,
1284 .proc_num = 15,
1286 const char *output_name = "output.svg";
1287 const struct option timechart_options[] = {
1288 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1289 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1290 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1291 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1292 "highlight tasks. Pass duration in ns or process name.",
1293 parse_highlight),
1294 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1295 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1296 "output processes data only"),
1297 OPT_CALLBACK('p', "process", NULL, "process",
1298 "process selector. Pass a pid or process name.",
1299 parse_process),
1300 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1301 "Look for files with symbols relative to this directory"),
1302 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1303 "min. number of tasks to print"),
1304 OPT_BOOLEAN('t', "topology", &tchart.topology,
1305 "sort CPUs according to topology"),
1306 OPT_END()
1308 const char * const timechart_usage[] = {
1309 "perf timechart [<options>] {record}",
1310 NULL
1313 const struct option record_options[] = {
1314 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1315 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1316 "output processes data only"),
1317 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1318 OPT_END()
1320 const char * const record_usage[] = {
1321 "perf timechart record [<options>]",
1322 NULL
1324 argc = parse_options(argc, argv, timechart_options, timechart_usage,
1325 PARSE_OPT_STOP_AT_NON_OPTION);
1327 if (tchart.power_only && tchart.tasks_only) {
1328 pr_err("-P and -T options cannot be used at the same time.\n");
1329 return -1;
1332 symbol__init();
1334 if (argc && !strncmp(argv[0], "rec", 3)) {
1335 argc = parse_options(argc, argv, record_options, record_usage,
1336 PARSE_OPT_STOP_AT_NON_OPTION);
1338 if (tchart.power_only && tchart.tasks_only) {
1339 pr_err("-P and -T options cannot be used at the same time.\n");
1340 return -1;
1343 return timechart__record(&tchart, argc, argv);
1344 } else if (argc)
1345 usage_with_options(timechart_usage, timechart_options);
1347 setup_pager();
1349 return __cmd_timechart(&tchart, output_name);