2 * CCI cache coherent interconnect driver
4 * Copyright (C) 2013 ARM Ltd.
5 * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12 * kind, whether express or implied; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
17 #include <linux/arm-cci.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_platform.h>
24 #include <linux/perf_event.h>
25 #include <linux/platform_device.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
29 #include <asm/cacheflush.h>
30 #include <asm/smp_plat.h>
32 static void __iomem
*cci_ctrl_base
;
33 static unsigned long cci_ctrl_phys
;
35 #ifdef CONFIG_ARM_CCI400_PORT_CTRL
38 unsigned int nb_ace_lite
;
41 static const struct cci_nb_ports cci400_ports
= {
46 #define CCI400_PORTS_DATA (&cci400_ports)
48 #define CCI400_PORTS_DATA (NULL)
51 static const struct of_device_id arm_cci_matches
[] = {
52 #ifdef CONFIG_ARM_CCI400_COMMON
53 {.compatible
= "arm,cci-400", .data
= CCI400_PORTS_DATA
},
55 #ifdef CONFIG_ARM_CCI5xx_PMU
56 { .compatible
= "arm,cci-500", },
57 { .compatible
= "arm,cci-550", },
62 #ifdef CONFIG_ARM_CCI_PMU
64 #define DRIVER_NAME "ARM-CCI"
65 #define DRIVER_NAME_PMU DRIVER_NAME " PMU"
67 #define CCI_PMCR 0x0100
68 #define CCI_PID2 0x0fe8
70 #define CCI_PMCR_CEN 0x00000001
71 #define CCI_PMCR_NCNT_MASK 0x0000f800
72 #define CCI_PMCR_NCNT_SHIFT 11
74 #define CCI_PID2_REV_MASK 0xf0
75 #define CCI_PID2_REV_SHIFT 4
77 #define CCI_PMU_EVT_SEL 0x000
78 #define CCI_PMU_CNTR 0x004
79 #define CCI_PMU_CNTR_CTRL 0x008
80 #define CCI_PMU_OVRFLW 0x00c
82 #define CCI_PMU_OVRFLW_FLAG 1
84 #define CCI_PMU_CNTR_SIZE(model) ((model)->cntr_size)
85 #define CCI_PMU_CNTR_BASE(model, idx) ((idx) * CCI_PMU_CNTR_SIZE(model))
86 #define CCI_PMU_CNTR_MASK ((1ULL << 32) -1)
87 #define CCI_PMU_CNTR_LAST(cci_pmu) (cci_pmu->num_cntrs - 1)
89 #define CCI_PMU_MAX_HW_CNTRS(model) \
90 ((model)->num_hw_cntrs + (model)->fixed_hw_cntrs)
92 /* Types of interfaces that can generate events */
96 #ifdef CONFIG_ARM_CCI5xx_PMU
107 struct cci_pmu_hw_events
{
108 struct perf_event
**events
;
109 unsigned long *used_mask
;
110 raw_spinlock_t pmu_lock
;
115 * struct cci_pmu_model:
116 * @fixed_hw_cntrs - Number of fixed event counters
117 * @num_hw_cntrs - Maximum number of programmable event counters
118 * @cntr_size - Size of an event counter mapping
120 struct cci_pmu_model
{
125 struct attribute
**format_attrs
;
126 struct attribute
**event_attrs
;
127 struct event_range event_ranges
[CCI_IF_MAX
];
128 int (*validate_hw_event
)(struct cci_pmu
*, unsigned long);
129 int (*get_event_idx
)(struct cci_pmu
*, struct cci_pmu_hw_events
*, unsigned long);
130 void (*write_counters
)(struct cci_pmu
*, unsigned long *);
133 static struct cci_pmu_model cci_pmu_models
[];
140 unsigned long active_irqs
;
141 const struct cci_pmu_model
*model
;
142 struct cci_pmu_hw_events hw_events
;
143 struct platform_device
*plat_device
;
145 atomic_t active_events
;
146 struct mutex reserve_mutex
;
147 struct notifier_block cpu_nb
;
151 #define to_cci_pmu(c) (container_of(c, struct cci_pmu, pmu))
154 #ifdef CONFIG_ARM_CCI400_PMU
158 #ifdef CONFIG_ARM_CCI5xx_PMU
165 static void pmu_write_counters(struct cci_pmu
*cci_pmu
,
166 unsigned long *mask
);
167 static ssize_t
cci_pmu_format_show(struct device
*dev
,
168 struct device_attribute
*attr
, char *buf
);
169 static ssize_t
cci_pmu_event_show(struct device
*dev
,
170 struct device_attribute
*attr
, char *buf
);
172 #define CCI_EXT_ATTR_ENTRY(_name, _func, _config) \
173 &((struct dev_ext_attribute[]) { \
174 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_config } \
177 #define CCI_FORMAT_EXT_ATTR_ENTRY(_name, _config) \
178 CCI_EXT_ATTR_ENTRY(_name, cci_pmu_format_show, (char *)_config)
179 #define CCI_EVENT_EXT_ATTR_ENTRY(_name, _config) \
180 CCI_EXT_ATTR_ENTRY(_name, cci_pmu_event_show, (unsigned long)_config)
182 /* CCI400 PMU Specific definitions */
184 #ifdef CONFIG_ARM_CCI400_PMU
187 #define CCI400_PORT_S0 0
188 #define CCI400_PORT_S1 1
189 #define CCI400_PORT_S2 2
190 #define CCI400_PORT_S3 3
191 #define CCI400_PORT_S4 4
192 #define CCI400_PORT_M0 5
193 #define CCI400_PORT_M1 6
194 #define CCI400_PORT_M2 7
196 #define CCI400_R1_PX 5
199 * Instead of an event id to monitor CCI cycles, a dedicated counter is
200 * provided. Use 0xff to represent CCI cycles and hope that no future revisions
201 * make use of this event in hardware.
203 enum cci400_perf_events
{
204 CCI400_PMU_CYCLES
= 0xff
207 #define CCI400_PMU_CYCLE_CNTR_IDX 0
208 #define CCI400_PMU_CNTR0_IDX 1
211 * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
212 * ports and bits 4:0 are event codes. There are different event codes
213 * associated with each port type.
215 * Additionally, the range of events associated with the port types changed
216 * between Rev0 and Rev1.
218 * The constants below define the range of valid codes for each port type for
219 * the different revisions and are used to validate the event to be monitored.
222 #define CCI400_PMU_EVENT_MASK 0xffUL
223 #define CCI400_PMU_EVENT_SOURCE_SHIFT 5
224 #define CCI400_PMU_EVENT_SOURCE_MASK 0x7
225 #define CCI400_PMU_EVENT_CODE_SHIFT 0
226 #define CCI400_PMU_EVENT_CODE_MASK 0x1f
227 #define CCI400_PMU_EVENT_SOURCE(event) \
228 ((event >> CCI400_PMU_EVENT_SOURCE_SHIFT) & \
229 CCI400_PMU_EVENT_SOURCE_MASK)
230 #define CCI400_PMU_EVENT_CODE(event) \
231 ((event >> CCI400_PMU_EVENT_CODE_SHIFT) & CCI400_PMU_EVENT_CODE_MASK)
233 #define CCI400_R0_SLAVE_PORT_MIN_EV 0x00
234 #define CCI400_R0_SLAVE_PORT_MAX_EV 0x13
235 #define CCI400_R0_MASTER_PORT_MIN_EV 0x14
236 #define CCI400_R0_MASTER_PORT_MAX_EV 0x1a
238 #define CCI400_R1_SLAVE_PORT_MIN_EV 0x00
239 #define CCI400_R1_SLAVE_PORT_MAX_EV 0x14
240 #define CCI400_R1_MASTER_PORT_MIN_EV 0x00
241 #define CCI400_R1_MASTER_PORT_MAX_EV 0x11
243 #define CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(_name, _config) \
244 CCI_EXT_ATTR_ENTRY(_name, cci400_pmu_cycle_event_show, \
245 (unsigned long)_config)
247 static ssize_t
cci400_pmu_cycle_event_show(struct device
*dev
,
248 struct device_attribute
*attr
, char *buf
);
250 static struct attribute
*cci400_pmu_format_attrs
[] = {
251 CCI_FORMAT_EXT_ATTR_ENTRY(event
, "config:0-4"),
252 CCI_FORMAT_EXT_ATTR_ENTRY(source
, "config:5-7"),
256 static struct attribute
*cci400_r0_pmu_event_attrs
[] = {
258 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any
, 0x0),
259 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device
, 0x01),
260 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable
, 0x2),
261 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable
, 0x3),
262 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance
, 0x4),
263 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier
, 0x5),
264 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier
, 0x6),
265 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg
, 0x7),
266 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync
, 0x8),
267 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full
, 0x9),
268 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop
, 0xA),
269 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l
, 0xB),
270 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any
, 0xC),
271 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device
, 0xD),
272 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable
, 0xE),
273 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean
, 0xF),
274 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique
, 0x10),
275 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique
, 0x11),
276 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict
, 0x12),
277 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full
, 0x13),
279 CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch
, 0x14),
280 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_addr_hazard
, 0x15),
281 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_id_hazard
, 0x16),
282 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_tt_full
, 0x17),
283 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard
, 0x18),
284 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard
, 0x19),
285 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_tt_full
, 0x1A),
286 /* Special event for cycles counter */
287 CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles
, 0xff),
291 static struct attribute
*cci400_r1_pmu_event_attrs
[] = {
293 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any
, 0x0),
294 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device
, 0x01),
295 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable
, 0x2),
296 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable
, 0x3),
297 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance
, 0x4),
298 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier
, 0x5),
299 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier
, 0x6),
300 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg
, 0x7),
301 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync
, 0x8),
302 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full
, 0x9),
303 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop
, 0xA),
304 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l
, 0xB),
305 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any
, 0xC),
306 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device
, 0xD),
307 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable
, 0xE),
308 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean
, 0xF),
309 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique
, 0x10),
310 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique
, 0x11),
311 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict
, 0x12),
312 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full
, 0x13),
313 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_slave_id_hazard
, 0x14),
315 CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch
, 0x0),
316 CCI_EVENT_EXT_ATTR_ENTRY(mi_stall_cycle_addr_hazard
, 0x1),
317 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_master_id_hazard
, 0x2),
318 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_hi_prio_rtq_full
, 0x3),
319 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard
, 0x4),
320 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard
, 0x5),
321 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_wtq_full
, 0x6),
322 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_low_prio_rtq_full
, 0x7),
323 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_mid_prio_rtq_full
, 0x8),
324 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn0
, 0x9),
325 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn1
, 0xA),
326 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn2
, 0xB),
327 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn3
, 0xC),
328 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn0
, 0xD),
329 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn1
, 0xE),
330 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn2
, 0xF),
331 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn3
, 0x10),
332 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_unique_or_line_unique_addr_hazard
, 0x11),
333 /* Special event for cycles counter */
334 CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles
, 0xff),
338 static ssize_t
cci400_pmu_cycle_event_show(struct device
*dev
,
339 struct device_attribute
*attr
, char *buf
)
341 struct dev_ext_attribute
*eattr
= container_of(attr
,
342 struct dev_ext_attribute
, attr
);
343 return snprintf(buf
, PAGE_SIZE
, "config=0x%lx\n", (unsigned long)eattr
->var
);
346 static int cci400_get_event_idx(struct cci_pmu
*cci_pmu
,
347 struct cci_pmu_hw_events
*hw
,
348 unsigned long cci_event
)
352 /* cycles event idx is fixed */
353 if (cci_event
== CCI400_PMU_CYCLES
) {
354 if (test_and_set_bit(CCI400_PMU_CYCLE_CNTR_IDX
, hw
->used_mask
))
357 return CCI400_PMU_CYCLE_CNTR_IDX
;
360 for (idx
= CCI400_PMU_CNTR0_IDX
; idx
<= CCI_PMU_CNTR_LAST(cci_pmu
); ++idx
)
361 if (!test_and_set_bit(idx
, hw
->used_mask
))
364 /* No counters available */
368 static int cci400_validate_hw_event(struct cci_pmu
*cci_pmu
, unsigned long hw_event
)
370 u8 ev_source
= CCI400_PMU_EVENT_SOURCE(hw_event
);
371 u8 ev_code
= CCI400_PMU_EVENT_CODE(hw_event
);
374 if (hw_event
& ~CCI400_PMU_EVENT_MASK
)
377 if (hw_event
== CCI400_PMU_CYCLES
)
386 /* Slave Interface */
387 if_type
= CCI_IF_SLAVE
;
392 /* Master Interface */
393 if_type
= CCI_IF_MASTER
;
399 if (ev_code
>= cci_pmu
->model
->event_ranges
[if_type
].min
&&
400 ev_code
<= cci_pmu
->model
->event_ranges
[if_type
].max
)
406 static int probe_cci400_revision(void)
409 rev
= readl_relaxed(cci_ctrl_base
+ CCI_PID2
) & CCI_PID2_REV_MASK
;
410 rev
>>= CCI_PID2_REV_SHIFT
;
412 if (rev
< CCI400_R1_PX
)
418 static const struct cci_pmu_model
*probe_cci_model(struct platform_device
*pdev
)
420 if (platform_has_secure_cci_access())
421 return &cci_pmu_models
[probe_cci400_revision()];
424 #else /* !CONFIG_ARM_CCI400_PMU */
425 static inline struct cci_pmu_model
*probe_cci_model(struct platform_device
*pdev
)
429 #endif /* CONFIG_ARM_CCI400_PMU */
431 #ifdef CONFIG_ARM_CCI5xx_PMU
434 * CCI5xx PMU event id is an 9-bit value made of two parts.
435 * bits [8:5] - Source for the event
436 * bits [4:0] - Event code (specific to type of interface)
442 #define CCI5xx_PORT_S0 0x0
443 #define CCI5xx_PORT_S1 0x1
444 #define CCI5xx_PORT_S2 0x2
445 #define CCI5xx_PORT_S3 0x3
446 #define CCI5xx_PORT_S4 0x4
447 #define CCI5xx_PORT_S5 0x5
448 #define CCI5xx_PORT_S6 0x6
450 #define CCI5xx_PORT_M0 0x8
451 #define CCI5xx_PORT_M1 0x9
452 #define CCI5xx_PORT_M2 0xa
453 #define CCI5xx_PORT_M3 0xb
454 #define CCI5xx_PORT_M4 0xc
455 #define CCI5xx_PORT_M5 0xd
456 #define CCI5xx_PORT_M6 0xe
458 #define CCI5xx_PORT_GLOBAL 0xf
460 #define CCI5xx_PMU_EVENT_MASK 0x1ffUL
461 #define CCI5xx_PMU_EVENT_SOURCE_SHIFT 0x5
462 #define CCI5xx_PMU_EVENT_SOURCE_MASK 0xf
463 #define CCI5xx_PMU_EVENT_CODE_SHIFT 0x0
464 #define CCI5xx_PMU_EVENT_CODE_MASK 0x1f
466 #define CCI5xx_PMU_EVENT_SOURCE(event) \
467 ((event >> CCI5xx_PMU_EVENT_SOURCE_SHIFT) & CCI5xx_PMU_EVENT_SOURCE_MASK)
468 #define CCI5xx_PMU_EVENT_CODE(event) \
469 ((event >> CCI5xx_PMU_EVENT_CODE_SHIFT) & CCI5xx_PMU_EVENT_CODE_MASK)
471 #define CCI5xx_SLAVE_PORT_MIN_EV 0x00
472 #define CCI5xx_SLAVE_PORT_MAX_EV 0x1f
473 #define CCI5xx_MASTER_PORT_MIN_EV 0x00
474 #define CCI5xx_MASTER_PORT_MAX_EV 0x06
475 #define CCI5xx_GLOBAL_PORT_MIN_EV 0x00
476 #define CCI5xx_GLOBAL_PORT_MAX_EV 0x0f
479 #define CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(_name, _config) \
480 CCI_EXT_ATTR_ENTRY(_name, cci5xx_pmu_global_event_show, \
481 (unsigned long) _config)
483 static ssize_t
cci5xx_pmu_global_event_show(struct device
*dev
,
484 struct device_attribute
*attr
, char *buf
);
486 static struct attribute
*cci5xx_pmu_format_attrs
[] = {
487 CCI_FORMAT_EXT_ATTR_ENTRY(event
, "config:0-4"),
488 CCI_FORMAT_EXT_ATTR_ENTRY(source
, "config:5-8"),
492 static struct attribute
*cci5xx_pmu_event_attrs
[] = {
494 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_arvalid
, 0x0),
495 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_dev
, 0x1),
496 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_nonshareable
, 0x2),
497 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_non_alloc
, 0x3),
498 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_alloc
, 0x4),
499 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_invalidate
, 0x5),
500 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maint
, 0x6),
501 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg
, 0x7),
502 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rval
, 0x8),
503 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rlast_snoop
, 0x9),
504 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_awalid
, 0xA),
505 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_dev
, 0xB),
506 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_non_shareable
, 0xC),
507 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wb
, 0xD),
508 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wlu
, 0xE),
509 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wunique
, 0xF),
510 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_evict
, 0x10),
511 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_wrevict
, 0x11),
512 CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_beat
, 0x12),
513 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_acvalid
, 0x13),
514 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_read
, 0x14),
515 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_clean
, 0x15),
516 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_data_transfer_low
, 0x16),
517 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_arvalid
, 0x17),
518 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall
, 0x18),
519 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall
, 0x19),
520 CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_stall
, 0x1A),
521 CCI_EVENT_EXT_ATTR_ENTRY(si_w_resp_stall
, 0x1B),
522 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_stall
, 0x1C),
523 CCI_EVENT_EXT_ATTR_ENTRY(si_s_data_stall
, 0x1D),
524 CCI_EVENT_EXT_ATTR_ENTRY(si_rq_stall_ot_limit
, 0x1E),
525 CCI_EVENT_EXT_ATTR_ENTRY(si_r_stall_arbit
, 0x1F),
528 CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_beat_any
, 0x0),
529 CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_beat_any
, 0x1),
530 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall
, 0x2),
531 CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_stall
, 0x3),
532 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall
, 0x4),
533 CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_stall
, 0x5),
534 CCI_EVENT_EXT_ATTR_ENTRY(mi_w_resp_stall
, 0x6),
537 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_0_1
, 0x0),
538 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_2_3
, 0x1),
539 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_4_5
, 0x2),
540 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_6_7
, 0x3),
541 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_0_1
, 0x4),
542 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_2_3
, 0x5),
543 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_4_5
, 0x6),
544 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_6_7
, 0x7),
545 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_back_invalidation
, 0x8),
546 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_alloc_busy
, 0x9),
547 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_tt_full
, 0xA),
548 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_wrq
, 0xB),
549 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_cd_hs
, 0xC),
550 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_rq_stall_addr_hazard
, 0xD),
551 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snopp_rq_stall_tt_full
, 0xE),
552 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_tzmp1_prot
, 0xF),
556 static ssize_t
cci5xx_pmu_global_event_show(struct device
*dev
,
557 struct device_attribute
*attr
, char *buf
)
559 struct dev_ext_attribute
*eattr
= container_of(attr
,
560 struct dev_ext_attribute
, attr
);
561 /* Global events have single fixed source code */
562 return snprintf(buf
, PAGE_SIZE
, "event=0x%lx,source=0x%x\n",
563 (unsigned long)eattr
->var
, CCI5xx_PORT_GLOBAL
);
567 * CCI500 provides 8 independent event counters that can count
568 * any of the events available.
569 * CCI500 PMU event source ids
570 * 0x0-0x6 - Slave interfaces
571 * 0x8-0xD - Master interfaces
572 * 0xf - Global Events
575 static int cci500_validate_hw_event(struct cci_pmu
*cci_pmu
,
576 unsigned long hw_event
)
578 u32 ev_source
= CCI5xx_PMU_EVENT_SOURCE(hw_event
);
579 u32 ev_code
= CCI5xx_PMU_EVENT_CODE(hw_event
);
582 if (hw_event
& ~CCI5xx_PMU_EVENT_MASK
)
593 if_type
= CCI_IF_SLAVE
;
601 if_type
= CCI_IF_MASTER
;
603 case CCI5xx_PORT_GLOBAL
:
604 if_type
= CCI_IF_GLOBAL
;
610 if (ev_code
>= cci_pmu
->model
->event_ranges
[if_type
].min
&&
611 ev_code
<= cci_pmu
->model
->event_ranges
[if_type
].max
)
618 * CCI550 provides 8 independent event counters that can count
619 * any of the events available.
620 * CCI550 PMU event source ids
621 * 0x0-0x6 - Slave interfaces
622 * 0x8-0xe - Master interfaces
623 * 0xf - Global Events
626 static int cci550_validate_hw_event(struct cci_pmu
*cci_pmu
,
627 unsigned long hw_event
)
629 u32 ev_source
= CCI5xx_PMU_EVENT_SOURCE(hw_event
);
630 u32 ev_code
= CCI5xx_PMU_EVENT_CODE(hw_event
);
633 if (hw_event
& ~CCI5xx_PMU_EVENT_MASK
)
644 if_type
= CCI_IF_SLAVE
;
653 if_type
= CCI_IF_MASTER
;
655 case CCI5xx_PORT_GLOBAL
:
656 if_type
= CCI_IF_GLOBAL
;
662 if (ev_code
>= cci_pmu
->model
->event_ranges
[if_type
].min
&&
663 ev_code
<= cci_pmu
->model
->event_ranges
[if_type
].max
)
669 #endif /* CONFIG_ARM_CCI5xx_PMU */
672 * Program the CCI PMU counters which have PERF_HES_ARCH set
673 * with the event period and mark them ready before we enable
676 static void cci_pmu_sync_counters(struct cci_pmu
*cci_pmu
)
679 struct cci_pmu_hw_events
*cci_hw
= &cci_pmu
->hw_events
;
681 DECLARE_BITMAP(mask
, cci_pmu
->num_cntrs
);
683 bitmap_zero(mask
, cci_pmu
->num_cntrs
);
684 for_each_set_bit(i
, cci_pmu
->hw_events
.used_mask
, cci_pmu
->num_cntrs
) {
685 struct perf_event
*event
= cci_hw
->events
[i
];
690 /* Leave the events which are not counting */
691 if (event
->hw
.state
& PERF_HES_STOPPED
)
693 if (event
->hw
.state
& PERF_HES_ARCH
) {
695 event
->hw
.state
&= ~PERF_HES_ARCH
;
699 pmu_write_counters(cci_pmu
, mask
);
702 /* Should be called with cci_pmu->hw_events->pmu_lock held */
703 static void __cci_pmu_enable_nosync(struct cci_pmu
*cci_pmu
)
707 /* Enable all the PMU counters. */
708 val
= readl_relaxed(cci_ctrl_base
+ CCI_PMCR
) | CCI_PMCR_CEN
;
709 writel(val
, cci_ctrl_base
+ CCI_PMCR
);
712 /* Should be called with cci_pmu->hw_events->pmu_lock held */
713 static void __cci_pmu_enable_sync(struct cci_pmu
*cci_pmu
)
715 cci_pmu_sync_counters(cci_pmu
);
716 __cci_pmu_enable_nosync(cci_pmu
);
719 /* Should be called with cci_pmu->hw_events->pmu_lock held */
720 static void __cci_pmu_disable(void)
724 /* Disable all the PMU counters. */
725 val
= readl_relaxed(cci_ctrl_base
+ CCI_PMCR
) & ~CCI_PMCR_CEN
;
726 writel(val
, cci_ctrl_base
+ CCI_PMCR
);
729 static ssize_t
cci_pmu_format_show(struct device
*dev
,
730 struct device_attribute
*attr
, char *buf
)
732 struct dev_ext_attribute
*eattr
= container_of(attr
,
733 struct dev_ext_attribute
, attr
);
734 return snprintf(buf
, PAGE_SIZE
, "%s\n", (char *)eattr
->var
);
737 static ssize_t
cci_pmu_event_show(struct device
*dev
,
738 struct device_attribute
*attr
, char *buf
)
740 struct dev_ext_attribute
*eattr
= container_of(attr
,
741 struct dev_ext_attribute
, attr
);
742 /* source parameter is mandatory for normal PMU events */
743 return snprintf(buf
, PAGE_SIZE
, "source=?,event=0x%lx\n",
744 (unsigned long)eattr
->var
);
747 static int pmu_is_valid_counter(struct cci_pmu
*cci_pmu
, int idx
)
749 return 0 <= idx
&& idx
<= CCI_PMU_CNTR_LAST(cci_pmu
);
752 static u32
pmu_read_register(struct cci_pmu
*cci_pmu
, int idx
, unsigned int offset
)
754 return readl_relaxed(cci_pmu
->base
+
755 CCI_PMU_CNTR_BASE(cci_pmu
->model
, idx
) + offset
);
758 static void pmu_write_register(struct cci_pmu
*cci_pmu
, u32 value
,
759 int idx
, unsigned int offset
)
761 writel_relaxed(value
, cci_pmu
->base
+
762 CCI_PMU_CNTR_BASE(cci_pmu
->model
, idx
) + offset
);
765 static void pmu_disable_counter(struct cci_pmu
*cci_pmu
, int idx
)
767 pmu_write_register(cci_pmu
, 0, idx
, CCI_PMU_CNTR_CTRL
);
770 static void pmu_enable_counter(struct cci_pmu
*cci_pmu
, int idx
)
772 pmu_write_register(cci_pmu
, 1, idx
, CCI_PMU_CNTR_CTRL
);
775 static bool __maybe_unused
776 pmu_counter_is_enabled(struct cci_pmu
*cci_pmu
, int idx
)
778 return (pmu_read_register(cci_pmu
, idx
, CCI_PMU_CNTR_CTRL
) & 0x1) != 0;
781 static void pmu_set_event(struct cci_pmu
*cci_pmu
, int idx
, unsigned long event
)
783 pmu_write_register(cci_pmu
, event
, idx
, CCI_PMU_EVT_SEL
);
787 * For all counters on the CCI-PMU, disable any 'enabled' counters,
788 * saving the changed counters in the mask, so that we can restore
789 * it later using pmu_restore_counters. The mask is private to the
790 * caller. We cannot rely on the used_mask maintained by the CCI_PMU
791 * as it only tells us if the counter is assigned to perf_event or not.
792 * The state of the perf_event cannot be locked by the PMU layer, hence
793 * we check the individual counter status (which can be locked by
794 * cci_pm->hw_events->pmu_lock).
796 * @mask should be initialised to empty by the caller.
798 static void __maybe_unused
799 pmu_save_counters(struct cci_pmu
*cci_pmu
, unsigned long *mask
)
803 for (i
= 0; i
< cci_pmu
->num_cntrs
; i
++) {
804 if (pmu_counter_is_enabled(cci_pmu
, i
)) {
806 pmu_disable_counter(cci_pmu
, i
);
812 * Restore the status of the counters. Reversal of the pmu_save_counters().
813 * For each counter set in the mask, enable the counter back.
815 static void __maybe_unused
816 pmu_restore_counters(struct cci_pmu
*cci_pmu
, unsigned long *mask
)
820 for_each_set_bit(i
, mask
, cci_pmu
->num_cntrs
)
821 pmu_enable_counter(cci_pmu
, i
);
825 * Returns the number of programmable counters actually implemented
828 static u32
pmu_get_max_counters(void)
830 return (readl_relaxed(cci_ctrl_base
+ CCI_PMCR
) &
831 CCI_PMCR_NCNT_MASK
) >> CCI_PMCR_NCNT_SHIFT
;
834 static int pmu_get_event_idx(struct cci_pmu_hw_events
*hw
, struct perf_event
*event
)
836 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
837 unsigned long cci_event
= event
->hw
.config_base
;
840 if (cci_pmu
->model
->get_event_idx
)
841 return cci_pmu
->model
->get_event_idx(cci_pmu
, hw
, cci_event
);
843 /* Generic code to find an unused idx from the mask */
844 for(idx
= 0; idx
<= CCI_PMU_CNTR_LAST(cci_pmu
); idx
++)
845 if (!test_and_set_bit(idx
, hw
->used_mask
))
848 /* No counters available */
852 static int pmu_map_event(struct perf_event
*event
)
854 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
856 if (event
->attr
.type
< PERF_TYPE_MAX
||
857 !cci_pmu
->model
->validate_hw_event
)
860 return cci_pmu
->model
->validate_hw_event(cci_pmu
, event
->attr
.config
);
863 static int pmu_request_irq(struct cci_pmu
*cci_pmu
, irq_handler_t handler
)
866 struct platform_device
*pmu_device
= cci_pmu
->plat_device
;
868 if (unlikely(!pmu_device
))
871 if (cci_pmu
->nr_irqs
< 1) {
872 dev_err(&pmu_device
->dev
, "no irqs for CCI PMUs defined\n");
877 * Register all available CCI PMU interrupts. In the interrupt handler
878 * we iterate over the counters checking for interrupt source (the
879 * overflowing counter) and clear it.
881 * This should allow handling of non-unique interrupt for the counters.
883 for (i
= 0; i
< cci_pmu
->nr_irqs
; i
++) {
884 int err
= request_irq(cci_pmu
->irqs
[i
], handler
, IRQF_SHARED
,
885 "arm-cci-pmu", cci_pmu
);
887 dev_err(&pmu_device
->dev
, "unable to request IRQ%d for ARM CCI PMU counters\n",
892 set_bit(i
, &cci_pmu
->active_irqs
);
898 static void pmu_free_irq(struct cci_pmu
*cci_pmu
)
902 for (i
= 0; i
< cci_pmu
->nr_irqs
; i
++) {
903 if (!test_and_clear_bit(i
, &cci_pmu
->active_irqs
))
906 free_irq(cci_pmu
->irqs
[i
], cci_pmu
);
910 static u32
pmu_read_counter(struct perf_event
*event
)
912 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
913 struct hw_perf_event
*hw_counter
= &event
->hw
;
914 int idx
= hw_counter
->idx
;
917 if (unlikely(!pmu_is_valid_counter(cci_pmu
, idx
))) {
918 dev_err(&cci_pmu
->plat_device
->dev
, "Invalid CCI PMU counter %d\n", idx
);
921 value
= pmu_read_register(cci_pmu
, idx
, CCI_PMU_CNTR
);
926 static void pmu_write_counter(struct cci_pmu
*cci_pmu
, u32 value
, int idx
)
928 pmu_write_register(cci_pmu
, value
, idx
, CCI_PMU_CNTR
);
931 static void __pmu_write_counters(struct cci_pmu
*cci_pmu
, unsigned long *mask
)
934 struct cci_pmu_hw_events
*cci_hw
= &cci_pmu
->hw_events
;
936 for_each_set_bit(i
, mask
, cci_pmu
->num_cntrs
) {
937 struct perf_event
*event
= cci_hw
->events
[i
];
941 pmu_write_counter(cci_pmu
, local64_read(&event
->hw
.prev_count
), i
);
945 static void pmu_write_counters(struct cci_pmu
*cci_pmu
, unsigned long *mask
)
947 if (cci_pmu
->model
->write_counters
)
948 cci_pmu
->model
->write_counters(cci_pmu
, mask
);
950 __pmu_write_counters(cci_pmu
, mask
);
953 #ifdef CONFIG_ARM_CCI5xx_PMU
956 * CCI-500/CCI-550 has advanced power saving policies, which could gate the
957 * clocks to the PMU counters, which makes the writes to them ineffective.
958 * The only way to write to those counters is when the global counters
959 * are enabled and the particular counter is enabled.
961 * So we do the following :
963 * 1) Disable all the PMU counters, saving their current state
964 * 2) Enable the global PMU profiling, now that all counters are
967 * For each counter to be programmed, repeat steps 3-7:
969 * 3) Write an invalid event code to the event control register for the
970 counter, so that the counters are not modified.
971 * 4) Enable the counter control for the counter.
972 * 5) Set the counter value
973 * 6) Disable the counter
974 * 7) Restore the event in the target counter
976 * 8) Disable the global PMU.
977 * 9) Restore the status of the rest of the counters.
979 * We choose an event which for CCI-5xx is guaranteed not to count.
980 * We use the highest possible event code (0x1f) for the master interface 0.
982 #define CCI5xx_INVALID_EVENT ((CCI5xx_PORT_M0 << CCI5xx_PMU_EVENT_SOURCE_SHIFT) | \
983 (CCI5xx_PMU_EVENT_CODE_MASK << CCI5xx_PMU_EVENT_CODE_SHIFT))
984 static void cci5xx_pmu_write_counters(struct cci_pmu
*cci_pmu
, unsigned long *mask
)
987 DECLARE_BITMAP(saved_mask
, cci_pmu
->num_cntrs
);
989 bitmap_zero(saved_mask
, cci_pmu
->num_cntrs
);
990 pmu_save_counters(cci_pmu
, saved_mask
);
993 * Now that all the counters are disabled, we can safely turn the PMU on,
994 * without syncing the status of the counters
996 __cci_pmu_enable_nosync(cci_pmu
);
998 for_each_set_bit(i
, mask
, cci_pmu
->num_cntrs
) {
999 struct perf_event
*event
= cci_pmu
->hw_events
.events
[i
];
1001 if (WARN_ON(!event
))
1004 pmu_set_event(cci_pmu
, i
, CCI5xx_INVALID_EVENT
);
1005 pmu_enable_counter(cci_pmu
, i
);
1006 pmu_write_counter(cci_pmu
, local64_read(&event
->hw
.prev_count
), i
);
1007 pmu_disable_counter(cci_pmu
, i
);
1008 pmu_set_event(cci_pmu
, i
, event
->hw
.config_base
);
1011 __cci_pmu_disable();
1013 pmu_restore_counters(cci_pmu
, saved_mask
);
1016 #endif /* CONFIG_ARM_CCI5xx_PMU */
1018 static u64
pmu_event_update(struct perf_event
*event
)
1020 struct hw_perf_event
*hwc
= &event
->hw
;
1021 u64 delta
, prev_raw_count
, new_raw_count
;
1024 prev_raw_count
= local64_read(&hwc
->prev_count
);
1025 new_raw_count
= pmu_read_counter(event
);
1026 } while (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
1027 new_raw_count
) != prev_raw_count
);
1029 delta
= (new_raw_count
- prev_raw_count
) & CCI_PMU_CNTR_MASK
;
1031 local64_add(delta
, &event
->count
);
1033 return new_raw_count
;
1036 static void pmu_read(struct perf_event
*event
)
1038 pmu_event_update(event
);
1041 static void pmu_event_set_period(struct perf_event
*event
)
1043 struct hw_perf_event
*hwc
= &event
->hw
;
1045 * The CCI PMU counters have a period of 2^32. To account for the
1046 * possiblity of extreme interrupt latency we program for a period of
1047 * half that. Hopefully we can handle the interrupt before another 2^31
1048 * events occur and the counter overtakes its previous value.
1050 u64 val
= 1ULL << 31;
1051 local64_set(&hwc
->prev_count
, val
);
1054 * CCI PMU uses PERF_HES_ARCH to keep track of the counters, whose
1055 * values needs to be sync-ed with the s/w state before the PMU is
1057 * Mark this counter for sync.
1059 hwc
->state
|= PERF_HES_ARCH
;
1062 static irqreturn_t
pmu_handle_irq(int irq_num
, void *dev
)
1064 unsigned long flags
;
1065 struct cci_pmu
*cci_pmu
= dev
;
1066 struct cci_pmu_hw_events
*events
= &cci_pmu
->hw_events
;
1067 int idx
, handled
= IRQ_NONE
;
1069 raw_spin_lock_irqsave(&events
->pmu_lock
, flags
);
1071 /* Disable the PMU while we walk through the counters */
1072 __cci_pmu_disable();
1074 * Iterate over counters and update the corresponding perf events.
1075 * This should work regardless of whether we have per-counter overflow
1076 * interrupt or a combined overflow interrupt.
1078 for (idx
= 0; idx
<= CCI_PMU_CNTR_LAST(cci_pmu
); idx
++) {
1079 struct perf_event
*event
= events
->events
[idx
];
1084 /* Did this counter overflow? */
1085 if (!(pmu_read_register(cci_pmu
, idx
, CCI_PMU_OVRFLW
) &
1086 CCI_PMU_OVRFLW_FLAG
))
1089 pmu_write_register(cci_pmu
, CCI_PMU_OVRFLW_FLAG
, idx
,
1092 pmu_event_update(event
);
1093 pmu_event_set_period(event
);
1094 handled
= IRQ_HANDLED
;
1097 /* Enable the PMU and sync possibly overflowed counters */
1098 __cci_pmu_enable_sync(cci_pmu
);
1099 raw_spin_unlock_irqrestore(&events
->pmu_lock
, flags
);
1101 return IRQ_RETVAL(handled
);
1104 static int cci_pmu_get_hw(struct cci_pmu
*cci_pmu
)
1106 int ret
= pmu_request_irq(cci_pmu
, pmu_handle_irq
);
1108 pmu_free_irq(cci_pmu
);
1114 static void cci_pmu_put_hw(struct cci_pmu
*cci_pmu
)
1116 pmu_free_irq(cci_pmu
);
1119 static void hw_perf_event_destroy(struct perf_event
*event
)
1121 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
1122 atomic_t
*active_events
= &cci_pmu
->active_events
;
1123 struct mutex
*reserve_mutex
= &cci_pmu
->reserve_mutex
;
1125 if (atomic_dec_and_mutex_lock(active_events
, reserve_mutex
)) {
1126 cci_pmu_put_hw(cci_pmu
);
1127 mutex_unlock(reserve_mutex
);
1131 static void cci_pmu_enable(struct pmu
*pmu
)
1133 struct cci_pmu
*cci_pmu
= to_cci_pmu(pmu
);
1134 struct cci_pmu_hw_events
*hw_events
= &cci_pmu
->hw_events
;
1135 int enabled
= bitmap_weight(hw_events
->used_mask
, cci_pmu
->num_cntrs
);
1136 unsigned long flags
;
1141 raw_spin_lock_irqsave(&hw_events
->pmu_lock
, flags
);
1142 __cci_pmu_enable_sync(cci_pmu
);
1143 raw_spin_unlock_irqrestore(&hw_events
->pmu_lock
, flags
);
1147 static void cci_pmu_disable(struct pmu
*pmu
)
1149 struct cci_pmu
*cci_pmu
= to_cci_pmu(pmu
);
1150 struct cci_pmu_hw_events
*hw_events
= &cci_pmu
->hw_events
;
1151 unsigned long flags
;
1153 raw_spin_lock_irqsave(&hw_events
->pmu_lock
, flags
);
1154 __cci_pmu_disable();
1155 raw_spin_unlock_irqrestore(&hw_events
->pmu_lock
, flags
);
1159 * Check if the idx represents a non-programmable counter.
1160 * All the fixed event counters are mapped before the programmable
1163 static bool pmu_fixed_hw_idx(struct cci_pmu
*cci_pmu
, int idx
)
1165 return (idx
>= 0) && (idx
< cci_pmu
->model
->fixed_hw_cntrs
);
1168 static void cci_pmu_start(struct perf_event
*event
, int pmu_flags
)
1170 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
1171 struct cci_pmu_hw_events
*hw_events
= &cci_pmu
->hw_events
;
1172 struct hw_perf_event
*hwc
= &event
->hw
;
1174 unsigned long flags
;
1177 * To handle interrupt latency, we always reprogram the period
1178 * regardlesss of PERF_EF_RELOAD.
1180 if (pmu_flags
& PERF_EF_RELOAD
)
1181 WARN_ON_ONCE(!(hwc
->state
& PERF_HES_UPTODATE
));
1185 if (unlikely(!pmu_is_valid_counter(cci_pmu
, idx
))) {
1186 dev_err(&cci_pmu
->plat_device
->dev
, "Invalid CCI PMU counter %d\n", idx
);
1190 raw_spin_lock_irqsave(&hw_events
->pmu_lock
, flags
);
1192 /* Configure the counter unless you are counting a fixed event */
1193 if (!pmu_fixed_hw_idx(cci_pmu
, idx
))
1194 pmu_set_event(cci_pmu
, idx
, hwc
->config_base
);
1196 pmu_event_set_period(event
);
1197 pmu_enable_counter(cci_pmu
, idx
);
1199 raw_spin_unlock_irqrestore(&hw_events
->pmu_lock
, flags
);
1202 static void cci_pmu_stop(struct perf_event
*event
, int pmu_flags
)
1204 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
1205 struct hw_perf_event
*hwc
= &event
->hw
;
1208 if (hwc
->state
& PERF_HES_STOPPED
)
1211 if (unlikely(!pmu_is_valid_counter(cci_pmu
, idx
))) {
1212 dev_err(&cci_pmu
->plat_device
->dev
, "Invalid CCI PMU counter %d\n", idx
);
1217 * We always reprogram the counter, so ignore PERF_EF_UPDATE. See
1220 pmu_disable_counter(cci_pmu
, idx
);
1221 pmu_event_update(event
);
1222 hwc
->state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
1225 static int cci_pmu_add(struct perf_event
*event
, int flags
)
1227 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
1228 struct cci_pmu_hw_events
*hw_events
= &cci_pmu
->hw_events
;
1229 struct hw_perf_event
*hwc
= &event
->hw
;
1233 perf_pmu_disable(event
->pmu
);
1235 /* If we don't have a space for the counter then finish early. */
1236 idx
= pmu_get_event_idx(hw_events
, event
);
1242 event
->hw
.idx
= idx
;
1243 hw_events
->events
[idx
] = event
;
1245 hwc
->state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
1246 if (flags
& PERF_EF_START
)
1247 cci_pmu_start(event
, PERF_EF_RELOAD
);
1249 /* Propagate our changes to the userspace mapping. */
1250 perf_event_update_userpage(event
);
1253 perf_pmu_enable(event
->pmu
);
1257 static void cci_pmu_del(struct perf_event
*event
, int flags
)
1259 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
1260 struct cci_pmu_hw_events
*hw_events
= &cci_pmu
->hw_events
;
1261 struct hw_perf_event
*hwc
= &event
->hw
;
1264 cci_pmu_stop(event
, PERF_EF_UPDATE
);
1265 hw_events
->events
[idx
] = NULL
;
1266 clear_bit(idx
, hw_events
->used_mask
);
1268 perf_event_update_userpage(event
);
1272 validate_event(struct pmu
*cci_pmu
,
1273 struct cci_pmu_hw_events
*hw_events
,
1274 struct perf_event
*event
)
1276 if (is_software_event(event
))
1280 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
1281 * core perf code won't check that the pmu->ctx == leader->ctx
1282 * until after pmu->event_init(event).
1284 if (event
->pmu
!= cci_pmu
)
1287 if (event
->state
< PERF_EVENT_STATE_OFF
)
1290 if (event
->state
== PERF_EVENT_STATE_OFF
&& !event
->attr
.enable_on_exec
)
1293 return pmu_get_event_idx(hw_events
, event
) >= 0;
1297 validate_group(struct perf_event
*event
)
1299 struct perf_event
*sibling
, *leader
= event
->group_leader
;
1300 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
1301 unsigned long mask
[BITS_TO_LONGS(cci_pmu
->num_cntrs
)];
1302 struct cci_pmu_hw_events fake_pmu
= {
1304 * Initialise the fake PMU. We only need to populate the
1305 * used_mask for the purposes of validation.
1309 memset(mask
, 0, BITS_TO_LONGS(cci_pmu
->num_cntrs
) * sizeof(unsigned long));
1311 if (!validate_event(event
->pmu
, &fake_pmu
, leader
))
1314 list_for_each_entry(sibling
, &leader
->sibling_list
, group_entry
) {
1315 if (!validate_event(event
->pmu
, &fake_pmu
, sibling
))
1319 if (!validate_event(event
->pmu
, &fake_pmu
, event
))
1326 __hw_perf_event_init(struct perf_event
*event
)
1328 struct hw_perf_event
*hwc
= &event
->hw
;
1331 mapping
= pmu_map_event(event
);
1334 pr_debug("event %x:%llx not supported\n", event
->attr
.type
,
1335 event
->attr
.config
);
1340 * We don't assign an index until we actually place the event onto
1341 * hardware. Use -1 to signify that we haven't decided where to put it
1345 hwc
->config_base
= 0;
1347 hwc
->event_base
= 0;
1350 * Store the event encoding into the config_base field.
1352 hwc
->config_base
|= (unsigned long)mapping
;
1355 * Limit the sample_period to half of the counter width. That way, the
1356 * new counter value is far less likely to overtake the previous one
1357 * unless you have some serious IRQ latency issues.
1359 hwc
->sample_period
= CCI_PMU_CNTR_MASK
>> 1;
1360 hwc
->last_period
= hwc
->sample_period
;
1361 local64_set(&hwc
->period_left
, hwc
->sample_period
);
1363 if (event
->group_leader
!= event
) {
1364 if (validate_group(event
) != 0)
1371 static int cci_pmu_event_init(struct perf_event
*event
)
1373 struct cci_pmu
*cci_pmu
= to_cci_pmu(event
->pmu
);
1374 atomic_t
*active_events
= &cci_pmu
->active_events
;
1378 if (event
->attr
.type
!= event
->pmu
->type
)
1381 /* Shared by all CPUs, no meaningful state to sample */
1382 if (is_sampling_event(event
) || event
->attach_state
& PERF_ATTACH_TASK
)
1385 /* We have no filtering of any kind */
1386 if (event
->attr
.exclude_user
||
1387 event
->attr
.exclude_kernel
||
1388 event
->attr
.exclude_hv
||
1389 event
->attr
.exclude_idle
||
1390 event
->attr
.exclude_host
||
1391 event
->attr
.exclude_guest
)
1395 * Following the example set by other "uncore" PMUs, we accept any CPU
1396 * and rewrite its affinity dynamically rather than having perf core
1397 * handle cpu == -1 and pid == -1 for this case.
1399 * The perf core will pin online CPUs for the duration of this call and
1400 * the event being installed into its context, so the PMU's CPU can't
1401 * change under our feet.
1403 cpu
= cpumask_first(&cci_pmu
->cpus
);
1404 if (event
->cpu
< 0 || cpu
< 0)
1408 event
->destroy
= hw_perf_event_destroy
;
1409 if (!atomic_inc_not_zero(active_events
)) {
1410 mutex_lock(&cci_pmu
->reserve_mutex
);
1411 if (atomic_read(active_events
) == 0)
1412 err
= cci_pmu_get_hw(cci_pmu
);
1414 atomic_inc(active_events
);
1415 mutex_unlock(&cci_pmu
->reserve_mutex
);
1420 err
= __hw_perf_event_init(event
);
1422 hw_perf_event_destroy(event
);
1427 static ssize_t
pmu_cpumask_attr_show(struct device
*dev
,
1428 struct device_attribute
*attr
, char *buf
)
1430 struct pmu
*pmu
= dev_get_drvdata(dev
);
1431 struct cci_pmu
*cci_pmu
= to_cci_pmu(pmu
);
1433 int n
= scnprintf(buf
, PAGE_SIZE
- 1, "%*pbl",
1434 cpumask_pr_args(&cci_pmu
->cpus
));
1440 static struct device_attribute pmu_cpumask_attr
=
1441 __ATTR(cpumask
, S_IRUGO
, pmu_cpumask_attr_show
, NULL
);
1443 static struct attribute
*pmu_attrs
[] = {
1444 &pmu_cpumask_attr
.attr
,
1448 static struct attribute_group pmu_attr_group
= {
1452 static struct attribute_group pmu_format_attr_group
= {
1454 .attrs
= NULL
, /* Filled in cci_pmu_init_attrs */
1457 static struct attribute_group pmu_event_attr_group
= {
1459 .attrs
= NULL
, /* Filled in cci_pmu_init_attrs */
1462 static const struct attribute_group
*pmu_attr_groups
[] = {
1464 &pmu_format_attr_group
,
1465 &pmu_event_attr_group
,
1469 static int cci_pmu_init(struct cci_pmu
*cci_pmu
, struct platform_device
*pdev
)
1471 const struct cci_pmu_model
*model
= cci_pmu
->model
;
1472 char *name
= model
->name
;
1475 pmu_event_attr_group
.attrs
= model
->event_attrs
;
1476 pmu_format_attr_group
.attrs
= model
->format_attrs
;
1478 cci_pmu
->pmu
= (struct pmu
) {
1479 .name
= cci_pmu
->model
->name
,
1480 .task_ctx_nr
= perf_invalid_context
,
1481 .pmu_enable
= cci_pmu_enable
,
1482 .pmu_disable
= cci_pmu_disable
,
1483 .event_init
= cci_pmu_event_init
,
1486 .start
= cci_pmu_start
,
1487 .stop
= cci_pmu_stop
,
1489 .attr_groups
= pmu_attr_groups
,
1492 cci_pmu
->plat_device
= pdev
;
1493 num_cntrs
= pmu_get_max_counters();
1494 if (num_cntrs
> cci_pmu
->model
->num_hw_cntrs
) {
1495 dev_warn(&pdev
->dev
,
1496 "PMU implements more counters(%d) than supported by"
1497 " the model(%d), truncated.",
1498 num_cntrs
, cci_pmu
->model
->num_hw_cntrs
);
1499 num_cntrs
= cci_pmu
->model
->num_hw_cntrs
;
1501 cci_pmu
->num_cntrs
= num_cntrs
+ cci_pmu
->model
->fixed_hw_cntrs
;
1503 return perf_pmu_register(&cci_pmu
->pmu
, name
, -1);
1506 static int cci_pmu_cpu_notifier(struct notifier_block
*self
,
1507 unsigned long action
, void *hcpu
)
1509 struct cci_pmu
*cci_pmu
= container_of(self
,
1510 struct cci_pmu
, cpu_nb
);
1511 unsigned int cpu
= (long)hcpu
;
1512 unsigned int target
;
1514 switch (action
& ~CPU_TASKS_FROZEN
) {
1515 case CPU_DOWN_PREPARE
:
1516 if (!cpumask_test_and_clear_cpu(cpu
, &cci_pmu
->cpus
))
1518 target
= cpumask_any_but(cpu_online_mask
, cpu
);
1519 if (target
>= nr_cpu_ids
) // UP, last CPU
1522 * TODO: migrate context once core races on event->ctx have
1525 cpumask_set_cpu(target
, &cci_pmu
->cpus
);
1533 static struct cci_pmu_model cci_pmu_models
[] = {
1534 #ifdef CONFIG_ARM_CCI400_PMU
1537 .fixed_hw_cntrs
= 1, /* Cycle counter */
1540 .format_attrs
= cci400_pmu_format_attrs
,
1541 .event_attrs
= cci400_r0_pmu_event_attrs
,
1544 CCI400_R0_SLAVE_PORT_MIN_EV
,
1545 CCI400_R0_SLAVE_PORT_MAX_EV
,
1548 CCI400_R0_MASTER_PORT_MIN_EV
,
1549 CCI400_R0_MASTER_PORT_MAX_EV
,
1552 .validate_hw_event
= cci400_validate_hw_event
,
1553 .get_event_idx
= cci400_get_event_idx
,
1556 .name
= "CCI_400_r1",
1557 .fixed_hw_cntrs
= 1, /* Cycle counter */
1560 .format_attrs
= cci400_pmu_format_attrs
,
1561 .event_attrs
= cci400_r1_pmu_event_attrs
,
1564 CCI400_R1_SLAVE_PORT_MIN_EV
,
1565 CCI400_R1_SLAVE_PORT_MAX_EV
,
1568 CCI400_R1_MASTER_PORT_MIN_EV
,
1569 CCI400_R1_MASTER_PORT_MAX_EV
,
1572 .validate_hw_event
= cci400_validate_hw_event
,
1573 .get_event_idx
= cci400_get_event_idx
,
1576 #ifdef CONFIG_ARM_CCI5xx_PMU
1579 .fixed_hw_cntrs
= 0,
1581 .cntr_size
= SZ_64K
,
1582 .format_attrs
= cci5xx_pmu_format_attrs
,
1583 .event_attrs
= cci5xx_pmu_event_attrs
,
1586 CCI5xx_SLAVE_PORT_MIN_EV
,
1587 CCI5xx_SLAVE_PORT_MAX_EV
,
1590 CCI5xx_MASTER_PORT_MIN_EV
,
1591 CCI5xx_MASTER_PORT_MAX_EV
,
1594 CCI5xx_GLOBAL_PORT_MIN_EV
,
1595 CCI5xx_GLOBAL_PORT_MAX_EV
,
1598 .validate_hw_event
= cci500_validate_hw_event
,
1599 .write_counters
= cci5xx_pmu_write_counters
,
1603 .fixed_hw_cntrs
= 0,
1605 .cntr_size
= SZ_64K
,
1606 .format_attrs
= cci5xx_pmu_format_attrs
,
1607 .event_attrs
= cci5xx_pmu_event_attrs
,
1610 CCI5xx_SLAVE_PORT_MIN_EV
,
1611 CCI5xx_SLAVE_PORT_MAX_EV
,
1614 CCI5xx_MASTER_PORT_MIN_EV
,
1615 CCI5xx_MASTER_PORT_MAX_EV
,
1618 CCI5xx_GLOBAL_PORT_MIN_EV
,
1619 CCI5xx_GLOBAL_PORT_MAX_EV
,
1622 .validate_hw_event
= cci550_validate_hw_event
,
1623 .write_counters
= cci5xx_pmu_write_counters
,
1628 static const struct of_device_id arm_cci_pmu_matches
[] = {
1629 #ifdef CONFIG_ARM_CCI400_PMU
1631 .compatible
= "arm,cci-400-pmu",
1635 .compatible
= "arm,cci-400-pmu,r0",
1636 .data
= &cci_pmu_models
[CCI400_R0
],
1639 .compatible
= "arm,cci-400-pmu,r1",
1640 .data
= &cci_pmu_models
[CCI400_R1
],
1643 #ifdef CONFIG_ARM_CCI5xx_PMU
1645 .compatible
= "arm,cci-500-pmu,r0",
1646 .data
= &cci_pmu_models
[CCI500_R0
],
1649 .compatible
= "arm,cci-550-pmu,r0",
1650 .data
= &cci_pmu_models
[CCI550_R0
],
1656 static inline const struct cci_pmu_model
*get_cci_model(struct platform_device
*pdev
)
1658 const struct of_device_id
*match
= of_match_node(arm_cci_pmu_matches
,
1665 dev_warn(&pdev
->dev
, "DEPRECATED compatible property,"
1666 "requires secure access to CCI registers");
1667 return probe_cci_model(pdev
);
1670 static bool is_duplicate_irq(int irq
, int *irqs
, int nr_irqs
)
1674 for (i
= 0; i
< nr_irqs
; i
++)
1681 static struct cci_pmu
*cci_pmu_alloc(struct platform_device
*pdev
)
1683 struct cci_pmu
*cci_pmu
;
1684 const struct cci_pmu_model
*model
;
1687 * All allocations are devm_* hence we don't have to free
1688 * them explicitly on an error, as it would end up in driver
1691 model
= get_cci_model(pdev
);
1693 dev_warn(&pdev
->dev
, "CCI PMU version not supported\n");
1694 return ERR_PTR(-ENODEV
);
1697 cci_pmu
= devm_kzalloc(&pdev
->dev
, sizeof(*cci_pmu
), GFP_KERNEL
);
1699 return ERR_PTR(-ENOMEM
);
1701 cci_pmu
->model
= model
;
1702 cci_pmu
->irqs
= devm_kcalloc(&pdev
->dev
, CCI_PMU_MAX_HW_CNTRS(model
),
1703 sizeof(*cci_pmu
->irqs
), GFP_KERNEL
);
1705 return ERR_PTR(-ENOMEM
);
1706 cci_pmu
->hw_events
.events
= devm_kcalloc(&pdev
->dev
,
1707 CCI_PMU_MAX_HW_CNTRS(model
),
1708 sizeof(*cci_pmu
->hw_events
.events
),
1710 if (!cci_pmu
->hw_events
.events
)
1711 return ERR_PTR(-ENOMEM
);
1712 cci_pmu
->hw_events
.used_mask
= devm_kcalloc(&pdev
->dev
,
1713 BITS_TO_LONGS(CCI_PMU_MAX_HW_CNTRS(model
)),
1714 sizeof(*cci_pmu
->hw_events
.used_mask
),
1716 if (!cci_pmu
->hw_events
.used_mask
)
1717 return ERR_PTR(-ENOMEM
);
1723 static int cci_pmu_probe(struct platform_device
*pdev
)
1725 struct resource
*res
;
1726 struct cci_pmu
*cci_pmu
;
1729 cci_pmu
= cci_pmu_alloc(pdev
);
1730 if (IS_ERR(cci_pmu
))
1731 return PTR_ERR(cci_pmu
);
1733 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1734 cci_pmu
->base
= devm_ioremap_resource(&pdev
->dev
, res
);
1735 if (IS_ERR(cci_pmu
->base
))
1739 * CCI PMU has one overflow interrupt per counter; but some may be tied
1740 * together to a common interrupt.
1742 cci_pmu
->nr_irqs
= 0;
1743 for (i
= 0; i
< CCI_PMU_MAX_HW_CNTRS(cci_pmu
->model
); i
++) {
1744 irq
= platform_get_irq(pdev
, i
);
1748 if (is_duplicate_irq(irq
, cci_pmu
->irqs
, cci_pmu
->nr_irqs
))
1751 cci_pmu
->irqs
[cci_pmu
->nr_irqs
++] = irq
;
1755 * Ensure that the device tree has as many interrupts as the number
1758 if (i
< CCI_PMU_MAX_HW_CNTRS(cci_pmu
->model
)) {
1759 dev_warn(&pdev
->dev
, "In-correct number of interrupts: %d, should be %d\n",
1760 i
, CCI_PMU_MAX_HW_CNTRS(cci_pmu
->model
));
1764 raw_spin_lock_init(&cci_pmu
->hw_events
.pmu_lock
);
1765 mutex_init(&cci_pmu
->reserve_mutex
);
1766 atomic_set(&cci_pmu
->active_events
, 0);
1767 cpumask_set_cpu(smp_processor_id(), &cci_pmu
->cpus
);
1769 cci_pmu
->cpu_nb
= (struct notifier_block
) {
1770 .notifier_call
= cci_pmu_cpu_notifier
,
1772 * to migrate uncore events, our notifier should be executed
1773 * before perf core's notifier.
1775 .priority
= CPU_PRI_PERF
+ 1,
1778 ret
= register_cpu_notifier(&cci_pmu
->cpu_nb
);
1782 ret
= cci_pmu_init(cci_pmu
, pdev
);
1784 unregister_cpu_notifier(&cci_pmu
->cpu_nb
);
1788 pr_info("ARM %s PMU driver probed", cci_pmu
->model
->name
);
1792 static int cci_platform_probe(struct platform_device
*pdev
)
1797 return of_platform_populate(pdev
->dev
.of_node
, NULL
, NULL
, &pdev
->dev
);
1800 static struct platform_driver cci_pmu_driver
= {
1802 .name
= DRIVER_NAME_PMU
,
1803 .of_match_table
= arm_cci_pmu_matches
,
1805 .probe
= cci_pmu_probe
,
1808 static struct platform_driver cci_platform_driver
= {
1810 .name
= DRIVER_NAME
,
1811 .of_match_table
= arm_cci_matches
,
1813 .probe
= cci_platform_probe
,
1816 static int __init
cci_platform_init(void)
1820 ret
= platform_driver_register(&cci_pmu_driver
);
1824 return platform_driver_register(&cci_platform_driver
);
1827 #else /* !CONFIG_ARM_CCI_PMU */
1829 static int __init
cci_platform_init(void)
1834 #endif /* CONFIG_ARM_CCI_PMU */
1836 #ifdef CONFIG_ARM_CCI400_PORT_CTRL
1838 #define CCI_PORT_CTRL 0x0
1839 #define CCI_CTRL_STATUS 0xc
1841 #define CCI_ENABLE_SNOOP_REQ 0x1
1842 #define CCI_ENABLE_DVM_REQ 0x2
1843 #define CCI_ENABLE_REQ (CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ)
1845 enum cci_ace_port_type
{
1846 ACE_INVALID_PORT
= 0x0,
1851 struct cci_ace_port
{
1854 enum cci_ace_port_type type
;
1855 struct device_node
*dn
;
1858 static struct cci_ace_port
*ports
;
1859 static unsigned int nb_cci_ports
;
1867 * Use the port MSB as valid flag, shift can be made dynamic
1868 * by computing number of bits required for port indexes.
1869 * Code disabling CCI cpu ports runs with D-cache invalidated
1870 * and SCTLR bit clear so data accesses must be kept to a minimum
1871 * to improve performance; for now shift is left static to
1872 * avoid one more data access while disabling the CCI port.
1874 #define PORT_VALID_SHIFT 31
1875 #define PORT_VALID (0x1 << PORT_VALID_SHIFT)
1877 static inline void init_cpu_port(struct cpu_port
*port
, u32 index
, u64 mpidr
)
1879 port
->port
= PORT_VALID
| index
;
1880 port
->mpidr
= mpidr
;
1883 static inline bool cpu_port_is_valid(struct cpu_port
*port
)
1885 return !!(port
->port
& PORT_VALID
);
1888 static inline bool cpu_port_match(struct cpu_port
*port
, u64 mpidr
)
1890 return port
->mpidr
== (mpidr
& MPIDR_HWID_BITMASK
);
1893 static struct cpu_port cpu_port
[NR_CPUS
];
1896 * __cci_ace_get_port - Function to retrieve the port index connected to
1899 * @dn: device node of the device to look-up
1903 * - CCI port index if success
1904 * - -ENODEV if failure
1906 static int __cci_ace_get_port(struct device_node
*dn
, int type
)
1910 struct device_node
*cci_portn
;
1912 cci_portn
= of_parse_phandle(dn
, "cci-control-port", 0);
1913 for (i
= 0; i
< nb_cci_ports
; i
++) {
1914 ace_match
= ports
[i
].type
== type
;
1915 if (ace_match
&& cci_portn
== ports
[i
].dn
)
1921 int cci_ace_get_port(struct device_node
*dn
)
1923 return __cci_ace_get_port(dn
, ACE_LITE_PORT
);
1925 EXPORT_SYMBOL_GPL(cci_ace_get_port
);
1927 static void cci_ace_init_ports(void)
1930 struct device_node
*cpun
;
1933 * Port index look-up speeds up the function disabling ports by CPU,
1934 * since the logical to port index mapping is done once and does
1935 * not change after system boot.
1936 * The stashed index array is initialized for all possible CPUs
1939 for_each_possible_cpu(cpu
) {
1940 /* too early to use cpu->of_node */
1941 cpun
= of_get_cpu_node(cpu
, NULL
);
1943 if (WARN(!cpun
, "Missing cpu device node\n"))
1946 port
= __cci_ace_get_port(cpun
, ACE_PORT
);
1950 init_cpu_port(&cpu_port
[cpu
], port
, cpu_logical_map(cpu
));
1953 for_each_possible_cpu(cpu
) {
1954 WARN(!cpu_port_is_valid(&cpu_port
[cpu
]),
1955 "CPU %u does not have an associated CCI port\n",
1960 * Functions to enable/disable a CCI interconnect slave port
1962 * They are called by low-level power management code to disable slave
1963 * interfaces snoops and DVM broadcast.
1964 * Since they may execute with cache data allocation disabled and
1965 * after the caches have been cleaned and invalidated the functions provide
1966 * no explicit locking since they may run with D-cache disabled, so normal
1967 * cacheable kernel locks based on ldrex/strex may not work.
1968 * Locking has to be provided by BSP implementations to ensure proper
1973 * cci_port_control() - function to control a CCI port
1975 * @port: index of the port to setup
1976 * @enable: if true enables the port, if false disables it
1978 static void notrace
cci_port_control(unsigned int port
, bool enable
)
1980 void __iomem
*base
= ports
[port
].base
;
1982 writel_relaxed(enable
? CCI_ENABLE_REQ
: 0, base
+ CCI_PORT_CTRL
);
1984 * This function is called from power down procedures
1985 * and must not execute any instruction that might
1986 * cause the processor to be put in a quiescent state
1987 * (eg wfi). Hence, cpu_relax() can not be added to this
1988 * read loop to optimize power, since it might hide possibly
1989 * disruptive operations.
1991 while (readl_relaxed(cci_ctrl_base
+ CCI_CTRL_STATUS
) & 0x1)
1996 * cci_disable_port_by_cpu() - function to disable a CCI port by CPU
1999 * @mpidr: mpidr of the CPU whose CCI port should be disabled
2001 * Disabling a CCI port for a CPU implies disabling the CCI port
2002 * controlling that CPU cluster. Code disabling CPU CCI ports
2003 * must make sure that the CPU running the code is the last active CPU
2004 * in the cluster ie all other CPUs are quiescent in a low power state.
2008 * -ENODEV on port look-up failure
2010 int notrace
cci_disable_port_by_cpu(u64 mpidr
)
2014 for (cpu
= 0; cpu
< nr_cpu_ids
; cpu
++) {
2015 is_valid
= cpu_port_is_valid(&cpu_port
[cpu
]);
2016 if (is_valid
&& cpu_port_match(&cpu_port
[cpu
], mpidr
)) {
2017 cci_port_control(cpu_port
[cpu
].port
, false);
2023 EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu
);
2026 * cci_enable_port_for_self() - enable a CCI port for calling CPU
2028 * Enabling a CCI port for the calling CPU implies enabling the CCI
2029 * port controlling that CPU's cluster. Caller must make sure that the
2030 * CPU running the code is the first active CPU in the cluster and all
2031 * other CPUs are quiescent in a low power state or waiting for this CPU
2032 * to complete the CCI initialization.
2034 * Because this is called when the MMU is still off and with no stack,
2035 * the code must be position independent and ideally rely on callee
2036 * clobbered registers only. To achieve this we must code this function
2037 * entirely in assembler.
2039 * On success this returns with the proper CCI port enabled. In case of
2040 * any failure this never returns as the inability to enable the CCI is
2041 * fatal and there is no possible recovery at this stage.
2043 asmlinkage
void __naked
cci_enable_port_for_self(void)
2047 " mrc p15, 0, r0, c0, c0, 5 @ get MPIDR value \n"
2048 " and r0, r0, #"__stringify(MPIDR_HWID_BITMASK
)" \n"
2051 " add r1, r1, r2 @ &cpu_port \n"
2052 " add ip, r1, %[sizeof_cpu_port] \n"
2054 /* Loop over the cpu_port array looking for a matching MPIDR */
2055 "1: ldr r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n"
2056 " cmp r2, r0 @ compare MPIDR \n"
2059 /* Found a match, now test port validity */
2060 " ldr r3, [r1, %[offsetof_cpu_port_port]] \n"
2061 " tst r3, #"__stringify(PORT_VALID
)" \n"
2064 /* no match, loop with the next cpu_port entry */
2065 "2: add r1, r1, %[sizeof_struct_cpu_port] \n"
2066 " cmp r1, ip @ done? \n"
2069 /* CCI port not found -- cheaply try to stall this CPU */
2070 "cci_port_not_found: \n"
2073 " b cci_port_not_found \n"
2075 /* Use matched port index to look up the corresponding ports entry */
2076 "3: bic r3, r3, #"__stringify(PORT_VALID
)" \n"
2078 " ldmia r0, {r1, r2} \n"
2079 " sub r1, r1, r0 @ virt - phys \n"
2080 " ldr r0, [r0, r2] @ *(&ports) \n"
2081 " mov r2, %[sizeof_struct_ace_port] \n"
2082 " mla r0, r2, r3, r0 @ &ports[index] \n"
2083 " sub r0, r0, r1 @ virt_to_phys() \n"
2085 /* Enable the CCI port */
2086 " ldr r0, [r0, %[offsetof_port_phys]] \n"
2087 " mov r3, %[cci_enable_req]\n"
2088 " str r3, [r0, #"__stringify(CCI_PORT_CTRL
)"] \n"
2090 /* poll the status reg for completion */
2093 " ldr r0, [r0, r1] @ cci_ctrl_base \n"
2094 "4: ldr r1, [r0, #"__stringify(CCI_CTRL_STATUS
)"] \n"
2095 " tst r1, %[cci_control_status_bits] \n"
2102 "5: .word cpu_port - . \n"
2104 " .word ports - 6b \n"
2105 "7: .word cci_ctrl_phys - . \n"
2107 [sizeof_cpu_port
] "i" (sizeof(cpu_port
)),
2108 [cci_enable_req
] "i" cpu_to_le32(CCI_ENABLE_REQ
),
2109 [cci_control_status_bits
] "i" cpu_to_le32(1),
2111 [offsetof_cpu_port_mpidr_lsb
] "i" (offsetof(struct cpu_port
, mpidr
)),
2113 [offsetof_cpu_port_mpidr_lsb
] "i" (offsetof(struct cpu_port
, mpidr
)+4),
2115 [offsetof_cpu_port_port
] "i" (offsetof(struct cpu_port
, port
)),
2116 [sizeof_struct_cpu_port
] "i" (sizeof(struct cpu_port
)),
2117 [sizeof_struct_ace_port
] "i" (sizeof(struct cci_ace_port
)),
2118 [offsetof_port_phys
] "i" (offsetof(struct cci_ace_port
, phys
)) );
2124 * __cci_control_port_by_device() - function to control a CCI port by device
2127 * @dn: device node pointer of the device whose CCI port should be
2129 * @enable: if true enables the port, if false disables it
2133 * -ENODEV on port look-up failure
2135 int notrace
__cci_control_port_by_device(struct device_node
*dn
, bool enable
)
2142 port
= __cci_ace_get_port(dn
, ACE_LITE_PORT
);
2143 if (WARN_ONCE(port
< 0, "node %s ACE lite port look-up failure\n",
2146 cci_port_control(port
, enable
);
2149 EXPORT_SYMBOL_GPL(__cci_control_port_by_device
);
2152 * __cci_control_port_by_index() - function to control a CCI port by port index
2154 * @port: port index previously retrieved with cci_ace_get_port()
2155 * @enable: if true enables the port, if false disables it
2159 * -ENODEV on port index out of range
2160 * -EPERM if operation carried out on an ACE PORT
2162 int notrace
__cci_control_port_by_index(u32 port
, bool enable
)
2164 if (port
>= nb_cci_ports
|| ports
[port
].type
== ACE_INVALID_PORT
)
2167 * CCI control for ports connected to CPUS is extremely fragile
2168 * and must be made to go through a specific and controlled
2169 * interface (ie cci_disable_port_by_cpu(); control by general purpose
2170 * indexing is therefore disabled for ACE ports.
2172 if (ports
[port
].type
== ACE_PORT
)
2175 cci_port_control(port
, enable
);
2178 EXPORT_SYMBOL_GPL(__cci_control_port_by_index
);
2180 static const struct of_device_id arm_cci_ctrl_if_matches
[] = {
2181 {.compatible
= "arm,cci-400-ctrl-if", },
2185 static int cci_probe_ports(struct device_node
*np
)
2187 struct cci_nb_ports
const *cci_config
;
2188 int ret
, i
, nb_ace
= 0, nb_ace_lite
= 0;
2189 struct device_node
*cp
;
2190 struct resource res
;
2191 const char *match_str
;
2195 cci_config
= of_match_node(arm_cci_matches
, np
)->data
;
2199 nb_cci_ports
= cci_config
->nb_ace
+ cci_config
->nb_ace_lite
;
2201 ports
= kcalloc(nb_cci_ports
, sizeof(*ports
), GFP_KERNEL
);
2205 for_each_child_of_node(np
, cp
) {
2206 if (!of_match_node(arm_cci_ctrl_if_matches
, cp
))
2209 i
= nb_ace
+ nb_ace_lite
;
2211 if (i
>= nb_cci_ports
)
2214 if (of_property_read_string(cp
, "interface-type",
2216 WARN(1, "node %s missing interface-type property\n",
2220 is_ace
= strcmp(match_str
, "ace") == 0;
2221 if (!is_ace
&& strcmp(match_str
, "ace-lite")) {
2222 WARN(1, "node %s containing invalid interface-type property, skipping it\n",
2227 ret
= of_address_to_resource(cp
, 0, &res
);
2229 ports
[i
].base
= ioremap(res
.start
, resource_size(&res
));
2230 ports
[i
].phys
= res
.start
;
2232 if (ret
|| !ports
[i
].base
) {
2233 WARN(1, "unable to ioremap CCI port %d\n", i
);
2238 if (WARN_ON(nb_ace
>= cci_config
->nb_ace
))
2240 ports
[i
].type
= ACE_PORT
;
2243 if (WARN_ON(nb_ace_lite
>= cci_config
->nb_ace_lite
))
2245 ports
[i
].type
= ACE_LITE_PORT
;
2251 /* initialize a stashed array of ACE ports to speed-up look-up */
2252 cci_ace_init_ports();
2255 * Multi-cluster systems may need this data when non-coherent, during
2256 * cluster power-up/power-down. Make sure it reaches main memory.
2258 sync_cache_w(&cci_ctrl_base
);
2259 sync_cache_w(&cci_ctrl_phys
);
2260 sync_cache_w(&ports
);
2261 sync_cache_w(&cpu_port
);
2262 __sync_cache_range_w(ports
, sizeof(*ports
) * nb_cci_ports
);
2263 pr_info("ARM CCI driver probed\n");
2267 #else /* !CONFIG_ARM_CCI400_PORT_CTRL */
2268 static inline int cci_probe_ports(struct device_node
*np
)
2272 #endif /* CONFIG_ARM_CCI400_PORT_CTRL */
2274 static int cci_probe(void)
2277 struct device_node
*np
;
2278 struct resource res
;
2280 np
= of_find_matching_node(NULL
, arm_cci_matches
);
2281 if(!np
|| !of_device_is_available(np
))
2284 ret
= of_address_to_resource(np
, 0, &res
);
2286 cci_ctrl_base
= ioremap(res
.start
, resource_size(&res
));
2287 cci_ctrl_phys
= res
.start
;
2289 if (ret
|| !cci_ctrl_base
) {
2290 WARN(1, "unable to ioremap CCI ctrl\n");
2294 return cci_probe_ports(np
);
2297 static int cci_init_status
= -EAGAIN
;
2298 static DEFINE_MUTEX(cci_probing
);
2300 static int cci_init(void)
2302 if (cci_init_status
!= -EAGAIN
)
2303 return cci_init_status
;
2305 mutex_lock(&cci_probing
);
2306 if (cci_init_status
== -EAGAIN
)
2307 cci_init_status
= cci_probe();
2308 mutex_unlock(&cci_probing
);
2309 return cci_init_status
;
2313 * To sort out early init calls ordering a helper function is provided to
2314 * check if the CCI driver has beed initialized. Function check if the driver
2315 * has been initialized, if not it calls the init function that probes
2316 * the driver and updates the return value.
2318 bool cci_probed(void)
2320 return cci_init() == 0;
2322 EXPORT_SYMBOL_GPL(cci_probed
);
2324 early_initcall(cci_init
);
2325 core_initcall(cci_platform_init
);
2326 MODULE_LICENSE("GPL");
2327 MODULE_DESCRIPTION("ARM CCI support");