mm, page_alloc: set alloc_flags only once in slowpath
[linux/fpc-iii.git] / drivers / clk / sunxi / clk-sunxi.c
blob838b22aa8b67fbabdfef5386485d5c3316adf296
1 /*
2 * Copyright 2013 Emilio López
4 * Emilio López <emilio@elopez.com.ar>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
17 #include <linux/clk.h>
18 #include <linux/clk-provider.h>
19 #include <linux/clkdev.h>
20 #include <linux/of.h>
21 #include <linux/of_address.h>
22 #include <linux/reset-controller.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/log2.h>
27 #include "clk-factors.h"
29 static DEFINE_SPINLOCK(clk_lock);
31 /* Maximum number of parents our clocks have */
32 #define SUNXI_MAX_PARENTS 5
34 /**
35 * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
36 * PLL1 rate is calculated as follows
37 * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
38 * parent_rate is always 24Mhz
41 static void sun4i_get_pll1_factors(struct factors_request *req)
43 u8 div;
45 /* Normalize value to a 6M multiple */
46 div = req->rate / 6000000;
47 req->rate = 6000000 * div;
49 /* m is always zero for pll1 */
50 req->m = 0;
52 /* k is 1 only on these cases */
53 if (req->rate >= 768000000 || req->rate == 42000000 ||
54 req->rate == 54000000)
55 req->k = 1;
56 else
57 req->k = 0;
59 /* p will be 3 for divs under 10 */
60 if (div < 10)
61 req->p = 3;
63 /* p will be 2 for divs between 10 - 20 and odd divs under 32 */
64 else if (div < 20 || (div < 32 && (div & 1)))
65 req->p = 2;
67 /* p will be 1 for even divs under 32, divs under 40 and odd pairs
68 * of divs between 40-62 */
69 else if (div < 40 || (div < 64 && (div & 2)))
70 req->p = 1;
72 /* any other entries have p = 0 */
73 else
74 req->p = 0;
76 /* calculate a suitable n based on k and p */
77 div <<= req->p;
78 div /= (req->k + 1);
79 req->n = div / 4;
82 /**
83 * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
84 * PLL1 rate is calculated as follows
85 * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
86 * parent_rate should always be 24MHz
88 static void sun6i_a31_get_pll1_factors(struct factors_request *req)
91 * We can operate only on MHz, this will make our life easier
92 * later.
94 u32 freq_mhz = req->rate / 1000000;
95 u32 parent_freq_mhz = req->parent_rate / 1000000;
98 * Round down the frequency to the closest multiple of either
99 * 6 or 16
101 u32 round_freq_6 = round_down(freq_mhz, 6);
102 u32 round_freq_16 = round_down(freq_mhz, 16);
104 if (round_freq_6 > round_freq_16)
105 freq_mhz = round_freq_6;
106 else
107 freq_mhz = round_freq_16;
109 req->rate = freq_mhz * 1000000;
111 /* If the frequency is a multiple of 32 MHz, k is always 3 */
112 if (!(freq_mhz % 32))
113 req->k = 3;
114 /* If the frequency is a multiple of 9 MHz, k is always 2 */
115 else if (!(freq_mhz % 9))
116 req->k = 2;
117 /* If the frequency is a multiple of 8 MHz, k is always 1 */
118 else if (!(freq_mhz % 8))
119 req->k = 1;
120 /* Otherwise, we don't use the k factor */
121 else
122 req->k = 0;
125 * If the frequency is a multiple of 2 but not a multiple of
126 * 3, m is 3. This is the first time we use 6 here, yet we
127 * will use it on several other places.
128 * We use this number because it's the lowest frequency we can
129 * generate (with n = 0, k = 0, m = 3), so every other frequency
130 * somehow relates to this frequency.
132 if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
133 req->m = 2;
135 * If the frequency is a multiple of 6MHz, but the factor is
136 * odd, m will be 3
138 else if ((freq_mhz / 6) & 1)
139 req->m = 3;
140 /* Otherwise, we end up with m = 1 */
141 else
142 req->m = 1;
144 /* Calculate n thanks to the above factors we already got */
145 req->n = freq_mhz * (req->m + 1) / ((req->k + 1) * parent_freq_mhz)
146 - 1;
149 * If n end up being outbound, and that we can still decrease
150 * m, do it.
152 if ((req->n + 1) > 31 && (req->m + 1) > 1) {
153 req->n = (req->n + 1) / 2 - 1;
154 req->m = (req->m + 1) / 2 - 1;
159 * sun8i_a23_get_pll1_factors() - calculates n, k, m, p factors for PLL1
160 * PLL1 rate is calculated as follows
161 * rate = (parent_rate * (n + 1) * (k + 1) >> p) / (m + 1);
162 * parent_rate is always 24Mhz
165 static void sun8i_a23_get_pll1_factors(struct factors_request *req)
167 u8 div;
169 /* Normalize value to a 6M multiple */
170 div = req->rate / 6000000;
171 req->rate = 6000000 * div;
173 /* m is always zero for pll1 */
174 req->m = 0;
176 /* k is 1 only on these cases */
177 if (req->rate >= 768000000 || req->rate == 42000000 ||
178 req->rate == 54000000)
179 req->k = 1;
180 else
181 req->k = 0;
183 /* p will be 2 for divs under 20 and odd divs under 32 */
184 if (div < 20 || (div < 32 && (div & 1)))
185 req->p = 2;
187 /* p will be 1 for even divs under 32, divs under 40 and odd pairs
188 * of divs between 40-62 */
189 else if (div < 40 || (div < 64 && (div & 2)))
190 req->p = 1;
192 /* any other entries have p = 0 */
193 else
194 req->p = 0;
196 /* calculate a suitable n based on k and p */
197 div <<= req->p;
198 div /= (req->k + 1);
199 req->n = div / 4 - 1;
203 * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
204 * PLL5 rate is calculated as follows
205 * rate = parent_rate * n * (k + 1)
206 * parent_rate is always 24Mhz
209 static void sun4i_get_pll5_factors(struct factors_request *req)
211 u8 div;
213 /* Normalize value to a parent_rate multiple (24M) */
214 div = req->rate / req->parent_rate;
215 req->rate = req->parent_rate * div;
217 if (div < 31)
218 req->k = 0;
219 else if (div / 2 < 31)
220 req->k = 1;
221 else if (div / 3 < 31)
222 req->k = 2;
223 else
224 req->k = 3;
226 req->n = DIV_ROUND_UP(div, (req->k + 1));
230 * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6x2
231 * PLL6x2 rate is calculated as follows
232 * rate = parent_rate * (n + 1) * (k + 1)
233 * parent_rate is always 24Mhz
236 static void sun6i_a31_get_pll6_factors(struct factors_request *req)
238 u8 div;
240 /* Normalize value to a parent_rate multiple (24M) */
241 div = req->rate / req->parent_rate;
242 req->rate = req->parent_rate * div;
244 req->k = div / 32;
245 if (req->k > 3)
246 req->k = 3;
248 req->n = DIV_ROUND_UP(div, (req->k + 1)) - 1;
252 * sun5i_a13_get_ahb_factors() - calculates m, p factors for AHB
253 * AHB rate is calculated as follows
254 * rate = parent_rate >> p
257 static void sun5i_a13_get_ahb_factors(struct factors_request *req)
259 u32 div;
261 /* divide only */
262 if (req->parent_rate < req->rate)
263 req->rate = req->parent_rate;
266 * user manual says valid speed is 8k ~ 276M, but tests show it
267 * can work at speeds up to 300M, just after reparenting to pll6
269 if (req->rate < 8000)
270 req->rate = 8000;
271 if (req->rate > 300000000)
272 req->rate = 300000000;
274 div = order_base_2(DIV_ROUND_UP(req->parent_rate, req->rate));
276 /* p = 0 ~ 3 */
277 if (div > 3)
278 div = 3;
280 req->rate = req->parent_rate >> div;
282 req->p = div;
285 #define SUN6I_AHB1_PARENT_PLL6 3
288 * sun6i_a31_get_ahb_factors() - calculates m, p factors for AHB
289 * AHB rate is calculated as follows
290 * rate = parent_rate >> p
292 * if parent is pll6, then
293 * parent_rate = pll6 rate / (m + 1)
296 static void sun6i_get_ahb1_factors(struct factors_request *req)
298 u8 div, calcp, calcm = 1;
301 * clock can only divide, so we will never be able to achieve
302 * frequencies higher than the parent frequency
304 if (req->parent_rate && req->rate > req->parent_rate)
305 req->rate = req->parent_rate;
307 div = DIV_ROUND_UP(req->parent_rate, req->rate);
309 /* calculate pre-divider if parent is pll6 */
310 if (req->parent_index == SUN6I_AHB1_PARENT_PLL6) {
311 if (div < 4)
312 calcp = 0;
313 else if (div / 2 < 4)
314 calcp = 1;
315 else if (div / 4 < 4)
316 calcp = 2;
317 else
318 calcp = 3;
320 calcm = DIV_ROUND_UP(div, 1 << calcp);
321 } else {
322 calcp = __roundup_pow_of_two(div);
323 calcp = calcp > 3 ? 3 : calcp;
326 req->rate = (req->parent_rate / calcm) >> calcp;
327 req->p = calcp;
328 req->m = calcm - 1;
332 * sun6i_ahb1_recalc() - calculates AHB clock rate from m, p factors and
333 * parent index
335 static void sun6i_ahb1_recalc(struct factors_request *req)
337 req->rate = req->parent_rate;
339 /* apply pre-divider first if parent is pll6 */
340 if (req->parent_index == SUN6I_AHB1_PARENT_PLL6)
341 req->rate /= req->m + 1;
343 /* clk divider */
344 req->rate >>= req->p;
348 * sun4i_get_apb1_factors() - calculates m, p factors for APB1
349 * APB1 rate is calculated as follows
350 * rate = (parent_rate >> p) / (m + 1);
353 static void sun4i_get_apb1_factors(struct factors_request *req)
355 u8 calcm, calcp;
356 int div;
358 if (req->parent_rate < req->rate)
359 req->rate = req->parent_rate;
361 div = DIV_ROUND_UP(req->parent_rate, req->rate);
363 /* Invalid rate! */
364 if (div > 32)
365 return;
367 if (div <= 4)
368 calcp = 0;
369 else if (div <= 8)
370 calcp = 1;
371 else if (div <= 16)
372 calcp = 2;
373 else
374 calcp = 3;
376 calcm = (req->parent_rate >> calcp) - 1;
378 req->rate = (req->parent_rate >> calcp) / (calcm + 1);
379 req->m = calcm;
380 req->p = calcp;
387 * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
388 * CLK_OUT rate is calculated as follows
389 * rate = (parent_rate >> p) / (m + 1);
392 static void sun7i_a20_get_out_factors(struct factors_request *req)
394 u8 div, calcm, calcp;
396 /* These clocks can only divide, so we will never be able to achieve
397 * frequencies higher than the parent frequency */
398 if (req->rate > req->parent_rate)
399 req->rate = req->parent_rate;
401 div = DIV_ROUND_UP(req->parent_rate, req->rate);
403 if (div < 32)
404 calcp = 0;
405 else if (div / 2 < 32)
406 calcp = 1;
407 else if (div / 4 < 32)
408 calcp = 2;
409 else
410 calcp = 3;
412 calcm = DIV_ROUND_UP(div, 1 << calcp);
414 req->rate = (req->parent_rate >> calcp) / calcm;
415 req->m = calcm - 1;
416 req->p = calcp;
420 * sunxi_factors_clk_setup() - Setup function for factor clocks
423 static const struct clk_factors_config sun4i_pll1_config = {
424 .nshift = 8,
425 .nwidth = 5,
426 .kshift = 4,
427 .kwidth = 2,
428 .mshift = 0,
429 .mwidth = 2,
430 .pshift = 16,
431 .pwidth = 2,
434 static const struct clk_factors_config sun6i_a31_pll1_config = {
435 .nshift = 8,
436 .nwidth = 5,
437 .kshift = 4,
438 .kwidth = 2,
439 .mshift = 0,
440 .mwidth = 2,
441 .n_start = 1,
444 static const struct clk_factors_config sun8i_a23_pll1_config = {
445 .nshift = 8,
446 .nwidth = 5,
447 .kshift = 4,
448 .kwidth = 2,
449 .mshift = 0,
450 .mwidth = 2,
451 .pshift = 16,
452 .pwidth = 2,
453 .n_start = 1,
456 static const struct clk_factors_config sun4i_pll5_config = {
457 .nshift = 8,
458 .nwidth = 5,
459 .kshift = 4,
460 .kwidth = 2,
463 static const struct clk_factors_config sun6i_a31_pll6_config = {
464 .nshift = 8,
465 .nwidth = 5,
466 .kshift = 4,
467 .kwidth = 2,
468 .n_start = 1,
471 static const struct clk_factors_config sun5i_a13_ahb_config = {
472 .pshift = 4,
473 .pwidth = 2,
476 static const struct clk_factors_config sun6i_ahb1_config = {
477 .mshift = 6,
478 .mwidth = 2,
479 .pshift = 4,
480 .pwidth = 2,
483 static const struct clk_factors_config sun4i_apb1_config = {
484 .mshift = 0,
485 .mwidth = 5,
486 .pshift = 16,
487 .pwidth = 2,
490 /* user manual says "n" but it's really "p" */
491 static const struct clk_factors_config sun7i_a20_out_config = {
492 .mshift = 8,
493 .mwidth = 5,
494 .pshift = 20,
495 .pwidth = 2,
498 static const struct factors_data sun4i_pll1_data __initconst = {
499 .enable = 31,
500 .table = &sun4i_pll1_config,
501 .getter = sun4i_get_pll1_factors,
504 static const struct factors_data sun6i_a31_pll1_data __initconst = {
505 .enable = 31,
506 .table = &sun6i_a31_pll1_config,
507 .getter = sun6i_a31_get_pll1_factors,
510 static const struct factors_data sun8i_a23_pll1_data __initconst = {
511 .enable = 31,
512 .table = &sun8i_a23_pll1_config,
513 .getter = sun8i_a23_get_pll1_factors,
516 static const struct factors_data sun7i_a20_pll4_data __initconst = {
517 .enable = 31,
518 .table = &sun4i_pll5_config,
519 .getter = sun4i_get_pll5_factors,
522 static const struct factors_data sun4i_pll5_data __initconst = {
523 .enable = 31,
524 .table = &sun4i_pll5_config,
525 .getter = sun4i_get_pll5_factors,
528 static const struct factors_data sun6i_a31_pll6_data __initconst = {
529 .enable = 31,
530 .table = &sun6i_a31_pll6_config,
531 .getter = sun6i_a31_get_pll6_factors,
534 static const struct factors_data sun5i_a13_ahb_data __initconst = {
535 .mux = 6,
536 .muxmask = BIT(1) | BIT(0),
537 .table = &sun5i_a13_ahb_config,
538 .getter = sun5i_a13_get_ahb_factors,
541 static const struct factors_data sun6i_ahb1_data __initconst = {
542 .mux = 12,
543 .muxmask = BIT(1) | BIT(0),
544 .table = &sun6i_ahb1_config,
545 .getter = sun6i_get_ahb1_factors,
546 .recalc = sun6i_ahb1_recalc,
549 static const struct factors_data sun4i_apb1_data __initconst = {
550 .mux = 24,
551 .muxmask = BIT(1) | BIT(0),
552 .table = &sun4i_apb1_config,
553 .getter = sun4i_get_apb1_factors,
556 static const struct factors_data sun7i_a20_out_data __initconst = {
557 .enable = 31,
558 .mux = 24,
559 .muxmask = BIT(1) | BIT(0),
560 .table = &sun7i_a20_out_config,
561 .getter = sun7i_a20_get_out_factors,
564 static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
565 const struct factors_data *data)
567 void __iomem *reg;
569 reg = of_iomap(node, 0);
570 if (!reg) {
571 pr_err("Could not get registers for factors-clk: %s\n",
572 node->name);
573 return NULL;
576 return sunxi_factors_register(node, data, &clk_lock, reg);
579 static void __init sun4i_pll1_clk_setup(struct device_node *node)
581 sunxi_factors_clk_setup(node, &sun4i_pll1_data);
583 CLK_OF_DECLARE(sun4i_pll1, "allwinner,sun4i-a10-pll1-clk",
584 sun4i_pll1_clk_setup);
586 static void __init sun6i_pll1_clk_setup(struct device_node *node)
588 sunxi_factors_clk_setup(node, &sun6i_a31_pll1_data);
590 CLK_OF_DECLARE(sun6i_pll1, "allwinner,sun6i-a31-pll1-clk",
591 sun6i_pll1_clk_setup);
593 static void __init sun8i_pll1_clk_setup(struct device_node *node)
595 sunxi_factors_clk_setup(node, &sun8i_a23_pll1_data);
597 CLK_OF_DECLARE(sun8i_pll1, "allwinner,sun8i-a23-pll1-clk",
598 sun8i_pll1_clk_setup);
600 static void __init sun7i_pll4_clk_setup(struct device_node *node)
602 sunxi_factors_clk_setup(node, &sun7i_a20_pll4_data);
604 CLK_OF_DECLARE(sun7i_pll4, "allwinner,sun7i-a20-pll4-clk",
605 sun7i_pll4_clk_setup);
607 static void __init sun5i_ahb_clk_setup(struct device_node *node)
609 sunxi_factors_clk_setup(node, &sun5i_a13_ahb_data);
611 CLK_OF_DECLARE(sun5i_ahb, "allwinner,sun5i-a13-ahb-clk",
612 sun5i_ahb_clk_setup);
614 static void __init sun6i_ahb1_clk_setup(struct device_node *node)
616 sunxi_factors_clk_setup(node, &sun6i_ahb1_data);
618 CLK_OF_DECLARE(sun6i_a31_ahb1, "allwinner,sun6i-a31-ahb1-clk",
619 sun6i_ahb1_clk_setup);
621 static void __init sun4i_apb1_clk_setup(struct device_node *node)
623 sunxi_factors_clk_setup(node, &sun4i_apb1_data);
625 CLK_OF_DECLARE(sun4i_apb1, "allwinner,sun4i-a10-apb1-clk",
626 sun4i_apb1_clk_setup);
628 static void __init sun7i_out_clk_setup(struct device_node *node)
630 sunxi_factors_clk_setup(node, &sun7i_a20_out_data);
632 CLK_OF_DECLARE(sun7i_out, "allwinner,sun7i-a20-out-clk",
633 sun7i_out_clk_setup);
637 * sunxi_mux_clk_setup() - Setup function for muxes
640 #define SUNXI_MUX_GATE_WIDTH 2
642 struct mux_data {
643 u8 shift;
646 static const struct mux_data sun4i_cpu_mux_data __initconst = {
647 .shift = 16,
650 static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
651 .shift = 12,
654 static const struct mux_data sun8i_h3_ahb2_mux_data __initconst = {
655 .shift = 0,
658 static struct clk * __init sunxi_mux_clk_setup(struct device_node *node,
659 const struct mux_data *data)
661 struct clk *clk;
662 const char *clk_name = node->name;
663 const char *parents[SUNXI_MAX_PARENTS];
664 void __iomem *reg;
665 int i;
667 reg = of_iomap(node, 0);
668 if (!reg) {
669 pr_err("Could not map registers for mux-clk: %s\n",
670 of_node_full_name(node));
671 return NULL;
674 i = of_clk_parent_fill(node, parents, SUNXI_MAX_PARENTS);
675 if (of_property_read_string(node, "clock-output-names", &clk_name)) {
676 pr_err("%s: could not read clock-output-names from \"%s\"\n",
677 __func__, of_node_full_name(node));
678 goto out_unmap;
681 clk = clk_register_mux(NULL, clk_name, parents, i,
682 CLK_SET_RATE_PARENT, reg,
683 data->shift, SUNXI_MUX_GATE_WIDTH,
684 0, &clk_lock);
686 if (IS_ERR(clk)) {
687 pr_err("%s: failed to register mux clock %s: %ld\n", __func__,
688 clk_name, PTR_ERR(clk));
689 goto out_unmap;
692 if (of_clk_add_provider(node, of_clk_src_simple_get, clk)) {
693 pr_err("%s: failed to add clock provider for %s\n",
694 __func__, clk_name);
695 clk_unregister_divider(clk);
696 goto out_unmap;
699 return clk;
700 out_unmap:
701 iounmap(reg);
702 return NULL;
705 static void __init sun4i_cpu_clk_setup(struct device_node *node)
707 struct clk *clk;
709 clk = sunxi_mux_clk_setup(node, &sun4i_cpu_mux_data);
710 if (!clk)
711 return;
713 /* Protect CPU clock */
714 __clk_get(clk);
715 clk_prepare_enable(clk);
717 CLK_OF_DECLARE(sun4i_cpu, "allwinner,sun4i-a10-cpu-clk",
718 sun4i_cpu_clk_setup);
720 static void __init sun6i_ahb1_mux_clk_setup(struct device_node *node)
722 sunxi_mux_clk_setup(node, &sun6i_a31_ahb1_mux_data);
724 CLK_OF_DECLARE(sun6i_ahb1_mux, "allwinner,sun6i-a31-ahb1-mux-clk",
725 sun6i_ahb1_mux_clk_setup);
727 static void __init sun8i_ahb2_clk_setup(struct device_node *node)
729 sunxi_mux_clk_setup(node, &sun8i_h3_ahb2_mux_data);
731 CLK_OF_DECLARE(sun8i_ahb2, "allwinner,sun8i-h3-ahb2-clk",
732 sun8i_ahb2_clk_setup);
736 * sunxi_divider_clk_setup() - Setup function for simple divider clocks
739 struct div_data {
740 u8 shift;
741 u8 pow;
742 u8 width;
743 const struct clk_div_table *table;
746 static const struct div_data sun4i_axi_data __initconst = {
747 .shift = 0,
748 .pow = 0,
749 .width = 2,
752 static const struct clk_div_table sun8i_a23_axi_table[] __initconst = {
753 { .val = 0, .div = 1 },
754 { .val = 1, .div = 2 },
755 { .val = 2, .div = 3 },
756 { .val = 3, .div = 4 },
757 { .val = 4, .div = 4 },
758 { .val = 5, .div = 4 },
759 { .val = 6, .div = 4 },
760 { .val = 7, .div = 4 },
761 { } /* sentinel */
764 static const struct div_data sun8i_a23_axi_data __initconst = {
765 .width = 3,
766 .table = sun8i_a23_axi_table,
769 static const struct div_data sun4i_ahb_data __initconst = {
770 .shift = 4,
771 .pow = 1,
772 .width = 2,
775 static const struct clk_div_table sun4i_apb0_table[] __initconst = {
776 { .val = 0, .div = 2 },
777 { .val = 1, .div = 2 },
778 { .val = 2, .div = 4 },
779 { .val = 3, .div = 8 },
780 { } /* sentinel */
783 static const struct div_data sun4i_apb0_data __initconst = {
784 .shift = 8,
785 .pow = 1,
786 .width = 2,
787 .table = sun4i_apb0_table,
790 static void __init sunxi_divider_clk_setup(struct device_node *node,
791 const struct div_data *data)
793 struct clk *clk;
794 const char *clk_name = node->name;
795 const char *clk_parent;
796 void __iomem *reg;
798 reg = of_iomap(node, 0);
799 if (!reg) {
800 pr_err("Could not map registers for mux-clk: %s\n",
801 of_node_full_name(node));
802 return;
805 clk_parent = of_clk_get_parent_name(node, 0);
807 if (of_property_read_string(node, "clock-output-names", &clk_name)) {
808 pr_err("%s: could not read clock-output-names from \"%s\"\n",
809 __func__, of_node_full_name(node));
810 goto out_unmap;
813 clk = clk_register_divider_table(NULL, clk_name, clk_parent, 0,
814 reg, data->shift, data->width,
815 data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
816 data->table, &clk_lock);
817 if (IS_ERR(clk)) {
818 pr_err("%s: failed to register divider clock %s: %ld\n",
819 __func__, clk_name, PTR_ERR(clk));
820 goto out_unmap;
823 if (of_clk_add_provider(node, of_clk_src_simple_get, clk)) {
824 pr_err("%s: failed to add clock provider for %s\n",
825 __func__, clk_name);
826 goto out_unregister;
829 if (clk_register_clkdev(clk, clk_name, NULL)) {
830 of_clk_del_provider(node);
831 goto out_unregister;
834 return;
835 out_unregister:
836 clk_unregister_divider(clk);
838 out_unmap:
839 iounmap(reg);
842 static void __init sun4i_ahb_clk_setup(struct device_node *node)
844 sunxi_divider_clk_setup(node, &sun4i_ahb_data);
846 CLK_OF_DECLARE(sun4i_ahb, "allwinner,sun4i-a10-ahb-clk",
847 sun4i_ahb_clk_setup);
849 static void __init sun4i_apb0_clk_setup(struct device_node *node)
851 sunxi_divider_clk_setup(node, &sun4i_apb0_data);
853 CLK_OF_DECLARE(sun4i_apb0, "allwinner,sun4i-a10-apb0-clk",
854 sun4i_apb0_clk_setup);
856 static void __init sun4i_axi_clk_setup(struct device_node *node)
858 sunxi_divider_clk_setup(node, &sun4i_axi_data);
860 CLK_OF_DECLARE(sun4i_axi, "allwinner,sun4i-a10-axi-clk",
861 sun4i_axi_clk_setup);
863 static void __init sun8i_axi_clk_setup(struct device_node *node)
865 sunxi_divider_clk_setup(node, &sun8i_a23_axi_data);
867 CLK_OF_DECLARE(sun8i_axi, "allwinner,sun8i-a23-axi-clk",
868 sun8i_axi_clk_setup);
873 * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
876 #define SUNXI_GATES_MAX_SIZE 64
878 struct gates_data {
879 DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
883 * sunxi_divs_clk_setup() helper data
886 #define SUNXI_DIVS_MAX_QTY 4
887 #define SUNXI_DIVISOR_WIDTH 2
889 struct divs_data {
890 const struct factors_data *factors; /* data for the factor clock */
891 int ndivs; /* number of outputs */
893 * List of outputs. Refer to the diagram for sunxi_divs_clk_setup():
894 * self or base factor clock refers to the output from the pll
895 * itself. The remaining refer to fixed or configurable divider
896 * outputs.
898 struct {
899 u8 self; /* is it the base factor clock? (only one) */
900 u8 fixed; /* is it a fixed divisor? if not... */
901 struct clk_div_table *table; /* is it a table based divisor? */
902 u8 shift; /* otherwise it's a normal divisor with this shift */
903 u8 pow; /* is it power-of-two based? */
904 u8 gate; /* is it independently gateable? */
905 } div[SUNXI_DIVS_MAX_QTY];
908 static struct clk_div_table pll6_sata_tbl[] = {
909 { .val = 0, .div = 6, },
910 { .val = 1, .div = 12, },
911 { .val = 2, .div = 18, },
912 { .val = 3, .div = 24, },
913 { } /* sentinel */
916 static const struct divs_data pll5_divs_data __initconst = {
917 .factors = &sun4i_pll5_data,
918 .ndivs = 2,
919 .div = {
920 { .shift = 0, .pow = 0, }, /* M, DDR */
921 { .shift = 16, .pow = 1, }, /* P, other */
922 /* No output for the base factor clock */
926 static const struct divs_data pll6_divs_data __initconst = {
927 .factors = &sun4i_pll5_data,
928 .ndivs = 4,
929 .div = {
930 { .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
931 { .fixed = 2 }, /* P, other */
932 { .self = 1 }, /* base factor clock, 2x */
933 { .fixed = 4 }, /* pll6 / 4, used as ahb input */
937 static const struct divs_data sun6i_a31_pll6_divs_data __initconst = {
938 .factors = &sun6i_a31_pll6_data,
939 .ndivs = 2,
940 .div = {
941 { .fixed = 2 }, /* normal output */
942 { .self = 1 }, /* base factor clock, 2x */
947 * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
949 * These clocks look something like this
950 * ________________________
951 * | ___divisor 1---|----> to consumer
952 * parent >--| pll___/___divisor 2---|----> to consumer
953 * | \_______________|____> to consumer
954 * |________________________|
957 static struct clk ** __init sunxi_divs_clk_setup(struct device_node *node,
958 const struct divs_data *data)
960 struct clk_onecell_data *clk_data;
961 const char *parent;
962 const char *clk_name;
963 struct clk **clks, *pclk;
964 struct clk_hw *gate_hw, *rate_hw;
965 const struct clk_ops *rate_ops;
966 struct clk_gate *gate = NULL;
967 struct clk_fixed_factor *fix_factor;
968 struct clk_divider *divider;
969 struct factors_data factors = *data->factors;
970 char *derived_name = NULL;
971 void __iomem *reg;
972 int ndivs = SUNXI_DIVS_MAX_QTY, i = 0;
973 int flags, clkflags;
975 /* if number of children known, use it */
976 if (data->ndivs)
977 ndivs = data->ndivs;
979 /* Try to find a name for base factor clock */
980 for (i = 0; i < ndivs; i++) {
981 if (data->div[i].self) {
982 of_property_read_string_index(node, "clock-output-names",
983 i, &factors.name);
984 break;
987 /* If we don't have a .self clk use the first output-name up to '_' */
988 if (factors.name == NULL) {
989 char *endp;
991 of_property_read_string_index(node, "clock-output-names",
992 0, &clk_name);
993 endp = strchr(clk_name, '_');
994 if (endp) {
995 derived_name = kstrndup(clk_name, endp - clk_name,
996 GFP_KERNEL);
997 factors.name = derived_name;
998 } else {
999 factors.name = clk_name;
1003 /* Set up factor clock that we will be dividing */
1004 pclk = sunxi_factors_clk_setup(node, &factors);
1005 if (!pclk)
1006 return NULL;
1008 parent = __clk_get_name(pclk);
1009 kfree(derived_name);
1011 reg = of_iomap(node, 0);
1012 if (!reg) {
1013 pr_err("Could not map registers for divs-clk: %s\n",
1014 of_node_full_name(node));
1015 return NULL;
1018 clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
1019 if (!clk_data)
1020 goto out_unmap;
1022 clks = kcalloc(ndivs, sizeof(*clks), GFP_KERNEL);
1023 if (!clks)
1024 goto free_clkdata;
1026 clk_data->clks = clks;
1028 /* It's not a good idea to have automatic reparenting changing
1029 * our RAM clock! */
1030 clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
1032 for (i = 0; i < ndivs; i++) {
1033 if (of_property_read_string_index(node, "clock-output-names",
1034 i, &clk_name) != 0)
1035 break;
1037 /* If this is the base factor clock, only update clks */
1038 if (data->div[i].self) {
1039 clk_data->clks[i] = pclk;
1040 continue;
1043 gate_hw = NULL;
1044 rate_hw = NULL;
1045 rate_ops = NULL;
1047 /* If this leaf clock can be gated, create a gate */
1048 if (data->div[i].gate) {
1049 gate = kzalloc(sizeof(*gate), GFP_KERNEL);
1050 if (!gate)
1051 goto free_clks;
1053 gate->reg = reg;
1054 gate->bit_idx = data->div[i].gate;
1055 gate->lock = &clk_lock;
1057 gate_hw = &gate->hw;
1060 /* Leaves can be fixed or configurable divisors */
1061 if (data->div[i].fixed) {
1062 fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
1063 if (!fix_factor)
1064 goto free_gate;
1066 fix_factor->mult = 1;
1067 fix_factor->div = data->div[i].fixed;
1069 rate_hw = &fix_factor->hw;
1070 rate_ops = &clk_fixed_factor_ops;
1071 } else {
1072 divider = kzalloc(sizeof(*divider), GFP_KERNEL);
1073 if (!divider)
1074 goto free_gate;
1076 flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
1078 divider->reg = reg;
1079 divider->shift = data->div[i].shift;
1080 divider->width = SUNXI_DIVISOR_WIDTH;
1081 divider->flags = flags;
1082 divider->lock = &clk_lock;
1083 divider->table = data->div[i].table;
1085 rate_hw = &divider->hw;
1086 rate_ops = &clk_divider_ops;
1089 /* Wrap the (potential) gate and the divisor on a composite
1090 * clock to unify them */
1091 clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
1092 NULL, NULL,
1093 rate_hw, rate_ops,
1094 gate_hw, &clk_gate_ops,
1095 clkflags);
1097 WARN_ON(IS_ERR(clk_data->clks[i]));
1100 /* Adjust to the real max */
1101 clk_data->clk_num = i;
1103 if (of_clk_add_provider(node, of_clk_src_onecell_get, clk_data)) {
1104 pr_err("%s: failed to add clock provider for %s\n",
1105 __func__, clk_name);
1106 goto free_gate;
1109 return clks;
1110 free_gate:
1111 kfree(gate);
1112 free_clks:
1113 kfree(clks);
1114 free_clkdata:
1115 kfree(clk_data);
1116 out_unmap:
1117 iounmap(reg);
1118 return NULL;
1121 static void __init sun4i_pll5_clk_setup(struct device_node *node)
1123 struct clk **clks;
1125 clks = sunxi_divs_clk_setup(node, &pll5_divs_data);
1126 if (!clks)
1127 return;
1129 /* Protect PLL5_DDR */
1130 __clk_get(clks[0]);
1131 clk_prepare_enable(clks[0]);
1133 CLK_OF_DECLARE(sun4i_pll5, "allwinner,sun4i-a10-pll5-clk",
1134 sun4i_pll5_clk_setup);
1136 static void __init sun4i_pll6_clk_setup(struct device_node *node)
1138 sunxi_divs_clk_setup(node, &pll6_divs_data);
1140 CLK_OF_DECLARE(sun4i_pll6, "allwinner,sun4i-a10-pll6-clk",
1141 sun4i_pll6_clk_setup);
1143 static void __init sun6i_pll6_clk_setup(struct device_node *node)
1145 sunxi_divs_clk_setup(node, &sun6i_a31_pll6_divs_data);
1147 CLK_OF_DECLARE(sun6i_pll6, "allwinner,sun6i-a31-pll6-clk",
1148 sun6i_pll6_clk_setup);
1151 * sun6i display
1153 * rate = parent_rate / (m + 1);
1155 static void sun6i_display_factors(struct factors_request *req)
1157 u8 m;
1159 if (req->rate > req->parent_rate)
1160 req->rate = req->parent_rate;
1162 m = DIV_ROUND_UP(req->parent_rate, req->rate);
1164 req->rate = req->parent_rate / m;
1165 req->m = m - 1;
1168 static const struct clk_factors_config sun6i_display_config = {
1169 .mshift = 0,
1170 .mwidth = 4,
1173 static const struct factors_data sun6i_display_data __initconst = {
1174 .enable = 31,
1175 .mux = 24,
1176 .muxmask = BIT(2) | BIT(1) | BIT(0),
1177 .table = &sun6i_display_config,
1178 .getter = sun6i_display_factors,
1181 static void __init sun6i_display_setup(struct device_node *node)
1183 sunxi_factors_clk_setup(node, &sun6i_display_data);
1185 CLK_OF_DECLARE(sun6i_display, "allwinner,sun6i-a31-display-clk",
1186 sun6i_display_setup);