mm, page_alloc: set alloc_flags only once in slowpath
[linux/fpc-iii.git] / drivers / media / platform / vsp1 / vsp1_rpf.c
blob38883891320518c4352ce24645d5da5f9184017a
1 /*
2 * vsp1_rpf.c -- R-Car VSP1 Read Pixel Formatter
4 * Copyright (C) 2013-2014 Renesas Electronics Corporation
6 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
14 #include <linux/device.h>
16 #include <media/v4l2-subdev.h>
18 #include "vsp1.h"
19 #include "vsp1_dl.h"
20 #include "vsp1_pipe.h"
21 #include "vsp1_rwpf.h"
22 #include "vsp1_video.h"
24 #define RPF_MAX_WIDTH 8190
25 #define RPF_MAX_HEIGHT 8190
27 /* -----------------------------------------------------------------------------
28 * Device Access
31 static inline void vsp1_rpf_write(struct vsp1_rwpf *rpf,
32 struct vsp1_dl_list *dl, u32 reg, u32 data)
34 vsp1_dl_list_write(dl, reg + rpf->entity.index * VI6_RPF_OFFSET, data);
37 /* -----------------------------------------------------------------------------
38 * V4L2 Subdevice Operations
41 static const struct v4l2_subdev_ops rpf_ops = {
42 .pad = &vsp1_rwpf_pad_ops,
45 /* -----------------------------------------------------------------------------
46 * VSP1 Entity Operations
49 static void rpf_set_memory(struct vsp1_entity *entity, struct vsp1_dl_list *dl)
51 struct vsp1_rwpf *rpf = entity_to_rwpf(entity);
53 vsp1_rpf_write(rpf, dl, VI6_RPF_SRCM_ADDR_Y,
54 rpf->mem.addr[0] + rpf->offsets[0]);
55 vsp1_rpf_write(rpf, dl, VI6_RPF_SRCM_ADDR_C0,
56 rpf->mem.addr[1] + rpf->offsets[1]);
57 vsp1_rpf_write(rpf, dl, VI6_RPF_SRCM_ADDR_C1,
58 rpf->mem.addr[2] + rpf->offsets[1]);
61 static void rpf_configure(struct vsp1_entity *entity,
62 struct vsp1_pipeline *pipe,
63 struct vsp1_dl_list *dl, bool full)
65 struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
66 const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
67 const struct v4l2_pix_format_mplane *format = &rpf->format;
68 const struct v4l2_mbus_framefmt *source_format;
69 const struct v4l2_mbus_framefmt *sink_format;
70 const struct v4l2_rect *crop;
71 unsigned int left = 0;
72 unsigned int top = 0;
73 u32 pstride;
74 u32 infmt;
76 if (!full) {
77 vsp1_rpf_write(rpf, dl, VI6_RPF_VRTCOL_SET,
78 rpf->alpha << VI6_RPF_VRTCOL_SET_LAYA_SHIFT);
79 vsp1_rpf_write(rpf, dl, VI6_RPF_MULT_ALPHA, rpf->mult_alpha |
80 (rpf->alpha << VI6_RPF_MULT_ALPHA_RATIO_SHIFT));
82 vsp1_pipeline_propagate_alpha(pipe, dl, rpf->alpha);
83 return;
86 /* Source size, stride and crop offsets.
88 * The crop offsets correspond to the location of the crop rectangle top
89 * left corner in the plane buffer. Only two offsets are needed, as
90 * planes 2 and 3 always have identical strides.
92 crop = vsp1_rwpf_get_crop(rpf, rpf->entity.config);
94 vsp1_rpf_write(rpf, dl, VI6_RPF_SRC_BSIZE,
95 (crop->width << VI6_RPF_SRC_BSIZE_BHSIZE_SHIFT) |
96 (crop->height << VI6_RPF_SRC_BSIZE_BVSIZE_SHIFT));
97 vsp1_rpf_write(rpf, dl, VI6_RPF_SRC_ESIZE,
98 (crop->width << VI6_RPF_SRC_ESIZE_EHSIZE_SHIFT) |
99 (crop->height << VI6_RPF_SRC_ESIZE_EVSIZE_SHIFT));
101 rpf->offsets[0] = crop->top * format->plane_fmt[0].bytesperline
102 + crop->left * fmtinfo->bpp[0] / 8;
103 pstride = format->plane_fmt[0].bytesperline
104 << VI6_RPF_SRCM_PSTRIDE_Y_SHIFT;
106 if (format->num_planes > 1) {
107 rpf->offsets[1] = crop->top * format->plane_fmt[1].bytesperline
108 + crop->left * fmtinfo->bpp[1] / 8;
109 pstride |= format->plane_fmt[1].bytesperline
110 << VI6_RPF_SRCM_PSTRIDE_C_SHIFT;
111 } else {
112 rpf->offsets[1] = 0;
115 vsp1_rpf_write(rpf, dl, VI6_RPF_SRCM_PSTRIDE, pstride);
117 /* Format */
118 sink_format = vsp1_entity_get_pad_format(&rpf->entity,
119 rpf->entity.config,
120 RWPF_PAD_SINK);
121 source_format = vsp1_entity_get_pad_format(&rpf->entity,
122 rpf->entity.config,
123 RWPF_PAD_SOURCE);
125 infmt = VI6_RPF_INFMT_CIPM
126 | (fmtinfo->hwfmt << VI6_RPF_INFMT_RDFMT_SHIFT);
128 if (fmtinfo->swap_yc)
129 infmt |= VI6_RPF_INFMT_SPYCS;
130 if (fmtinfo->swap_uv)
131 infmt |= VI6_RPF_INFMT_SPUVS;
133 if (sink_format->code != source_format->code)
134 infmt |= VI6_RPF_INFMT_CSC;
136 vsp1_rpf_write(rpf, dl, VI6_RPF_INFMT, infmt);
137 vsp1_rpf_write(rpf, dl, VI6_RPF_DSWAP, fmtinfo->swap);
139 /* Output location */
140 if (pipe->bru) {
141 const struct v4l2_rect *compose;
143 compose = vsp1_entity_get_pad_selection(pipe->bru,
144 pipe->bru->config,
145 rpf->bru_input,
146 V4L2_SEL_TGT_COMPOSE);
147 left = compose->left;
148 top = compose->top;
151 vsp1_rpf_write(rpf, dl, VI6_RPF_LOC,
152 (left << VI6_RPF_LOC_HCOORD_SHIFT) |
153 (top << VI6_RPF_LOC_VCOORD_SHIFT));
155 /* On Gen2 use the alpha channel (extended to 8 bits) when available or
156 * a fixed alpha value set through the V4L2_CID_ALPHA_COMPONENT control
157 * otherwise.
159 * The Gen3 RPF has extended alpha capability and can both multiply the
160 * alpha channel by a fixed global alpha value, and multiply the pixel
161 * components to convert the input to premultiplied alpha.
163 * As alpha premultiplication is available in the BRU for both Gen2 and
164 * Gen3 we handle it there and use the Gen3 alpha multiplier for global
165 * alpha multiplication only. This however prevents conversion to
166 * premultiplied alpha if no BRU is present in the pipeline. If that use
167 * case turns out to be useful we will revisit the implementation (for
168 * Gen3 only).
170 * We enable alpha multiplication on Gen3 using the fixed alpha value
171 * set through the V4L2_CID_ALPHA_COMPONENT control when the input
172 * contains an alpha channel. On Gen2 the global alpha is ignored in
173 * that case.
175 * In all cases, disable color keying.
177 vsp1_rpf_write(rpf, dl, VI6_RPF_ALPH_SEL, VI6_RPF_ALPH_SEL_AEXT_EXT |
178 (fmtinfo->alpha ? VI6_RPF_ALPH_SEL_ASEL_PACKED
179 : VI6_RPF_ALPH_SEL_ASEL_FIXED));
181 if (entity->vsp1->info->gen == 3) {
182 u32 mult;
184 if (fmtinfo->alpha) {
185 /* When the input contains an alpha channel enable the
186 * alpha multiplier. If the input is premultiplied we
187 * need to multiply both the alpha channel and the pixel
188 * components by the global alpha value to keep them
189 * premultiplied. Otherwise multiply the alpha channel
190 * only.
192 bool premultiplied = format->flags
193 & V4L2_PIX_FMT_FLAG_PREMUL_ALPHA;
195 mult = VI6_RPF_MULT_ALPHA_A_MMD_RATIO
196 | (premultiplied ?
197 VI6_RPF_MULT_ALPHA_P_MMD_RATIO :
198 VI6_RPF_MULT_ALPHA_P_MMD_NONE);
199 } else {
200 /* When the input doesn't contain an alpha channel the
201 * global alpha value is applied in the unpacking unit,
202 * the alpha multiplier isn't needed and must be
203 * disabled.
205 mult = VI6_RPF_MULT_ALPHA_A_MMD_NONE
206 | VI6_RPF_MULT_ALPHA_P_MMD_NONE;
209 rpf->mult_alpha = mult;
212 vsp1_rpf_write(rpf, dl, VI6_RPF_MSK_CTRL, 0);
213 vsp1_rpf_write(rpf, dl, VI6_RPF_CKEY_CTRL, 0);
217 static const struct vsp1_entity_operations rpf_entity_ops = {
218 .set_memory = rpf_set_memory,
219 .configure = rpf_configure,
222 /* -----------------------------------------------------------------------------
223 * Initialization and Cleanup
226 struct vsp1_rwpf *vsp1_rpf_create(struct vsp1_device *vsp1, unsigned int index)
228 struct vsp1_rwpf *rpf;
229 char name[6];
230 int ret;
232 rpf = devm_kzalloc(vsp1->dev, sizeof(*rpf), GFP_KERNEL);
233 if (rpf == NULL)
234 return ERR_PTR(-ENOMEM);
236 rpf->max_width = RPF_MAX_WIDTH;
237 rpf->max_height = RPF_MAX_HEIGHT;
239 rpf->entity.ops = &rpf_entity_ops;
240 rpf->entity.type = VSP1_ENTITY_RPF;
241 rpf->entity.index = index;
243 sprintf(name, "rpf.%u", index);
244 ret = vsp1_entity_init(vsp1, &rpf->entity, name, 2, &rpf_ops,
245 MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER);
246 if (ret < 0)
247 return ERR_PTR(ret);
249 /* Initialize the control handler. */
250 ret = vsp1_rwpf_init_ctrls(rpf, 0);
251 if (ret < 0) {
252 dev_err(vsp1->dev, "rpf%u: failed to initialize controls\n",
253 index);
254 goto error;
257 v4l2_ctrl_handler_setup(&rpf->ctrls);
259 return rpf;
261 error:
262 vsp1_entity_destroy(&rpf->entity);
263 return ERR_PTR(ret);