tty: serial: lpuart: avoid leaking struct tty_struct
[linux/fpc-iii.git] / net / sched / sch_pie.c
blob18d30bb86881aba8a5c5521181cba11038945672
1 /* Copyright (C) 2013 Cisco Systems, Inc, 2013.
3 * This program is free software; you can redistribute it and/or
4 * modify it under the terms of the GNU General Public License
5 * as published by the Free Software Foundation; either version 2
6 * of the License.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * Author: Vijay Subramanian <vijaynsu@cisco.com>
14 * Author: Mythili Prabhu <mysuryan@cisco.com>
16 * ECN support is added by Naeem Khademi <naeemk@ifi.uio.no>
17 * University of Oslo, Norway.
19 * References:
20 * IETF draft submission: http://tools.ietf.org/html/draft-pan-aqm-pie-00
21 * IEEE Conference on High Performance Switching and Routing 2013 :
22 * "PIE: A * Lightweight Control Scheme to Address the Bufferbloat Problem"
25 #include <linux/module.h>
26 #include <linux/slab.h>
27 #include <linux/types.h>
28 #include <linux/kernel.h>
29 #include <linux/errno.h>
30 #include <linux/skbuff.h>
31 #include <net/pkt_sched.h>
32 #include <net/inet_ecn.h>
34 #define QUEUE_THRESHOLD 10000
35 #define DQCOUNT_INVALID -1
36 #define MAX_PROB 0xffffffff
37 #define PIE_SCALE 8
39 /* parameters used */
40 struct pie_params {
41 psched_time_t target; /* user specified target delay in pschedtime */
42 u32 tupdate; /* timer frequency (in jiffies) */
43 u32 limit; /* number of packets that can be enqueued */
44 u32 alpha; /* alpha and beta are between 0 and 32 */
45 u32 beta; /* and are used for shift relative to 1 */
46 bool ecn; /* true if ecn is enabled */
47 bool bytemode; /* to scale drop early prob based on pkt size */
50 /* variables used */
51 struct pie_vars {
52 u32 prob; /* probability but scaled by u32 limit. */
53 psched_time_t burst_time;
54 psched_time_t qdelay;
55 psched_time_t qdelay_old;
56 u64 dq_count; /* measured in bytes */
57 psched_time_t dq_tstamp; /* drain rate */
58 u32 avg_dq_rate; /* bytes per pschedtime tick,scaled */
59 u32 qlen_old; /* in bytes */
62 /* statistics gathering */
63 struct pie_stats {
64 u32 packets_in; /* total number of packets enqueued */
65 u32 dropped; /* packets dropped due to pie_action */
66 u32 overlimit; /* dropped due to lack of space in queue */
67 u32 maxq; /* maximum queue size */
68 u32 ecn_mark; /* packets marked with ECN */
71 /* private data for the Qdisc */
72 struct pie_sched_data {
73 struct pie_params params;
74 struct pie_vars vars;
75 struct pie_stats stats;
76 struct timer_list adapt_timer;
77 struct Qdisc *sch;
80 static void pie_params_init(struct pie_params *params)
82 params->alpha = 2;
83 params->beta = 20;
84 params->tupdate = usecs_to_jiffies(30 * USEC_PER_MSEC); /* 30 ms */
85 params->limit = 1000; /* default of 1000 packets */
86 params->target = PSCHED_NS2TICKS(20 * NSEC_PER_MSEC); /* 20 ms */
87 params->ecn = false;
88 params->bytemode = false;
91 static void pie_vars_init(struct pie_vars *vars)
93 vars->dq_count = DQCOUNT_INVALID;
94 vars->avg_dq_rate = 0;
95 /* default of 100 ms in pschedtime */
96 vars->burst_time = PSCHED_NS2TICKS(100 * NSEC_PER_MSEC);
99 static bool drop_early(struct Qdisc *sch, u32 packet_size)
101 struct pie_sched_data *q = qdisc_priv(sch);
102 u32 rnd;
103 u32 local_prob = q->vars.prob;
104 u32 mtu = psched_mtu(qdisc_dev(sch));
106 /* If there is still burst allowance left skip random early drop */
107 if (q->vars.burst_time > 0)
108 return false;
110 /* If current delay is less than half of target, and
111 * if drop prob is low already, disable early_drop
113 if ((q->vars.qdelay < q->params.target / 2)
114 && (q->vars.prob < MAX_PROB / 5))
115 return false;
117 /* If we have fewer than 2 mtu-sized packets, disable drop_early,
118 * similar to min_th in RED
120 if (sch->qstats.backlog < 2 * mtu)
121 return false;
123 /* If bytemode is turned on, use packet size to compute new
124 * probablity. Smaller packets will have lower drop prob in this case
126 if (q->params.bytemode && packet_size <= mtu)
127 local_prob = (local_prob / mtu) * packet_size;
128 else
129 local_prob = q->vars.prob;
131 rnd = prandom_u32();
132 if (rnd < local_prob)
133 return true;
135 return false;
138 static int pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch,
139 struct sk_buff **to_free)
141 struct pie_sched_data *q = qdisc_priv(sch);
142 bool enqueue = false;
144 if (unlikely(qdisc_qlen(sch) >= sch->limit)) {
145 q->stats.overlimit++;
146 goto out;
149 if (!drop_early(sch, skb->len)) {
150 enqueue = true;
151 } else if (q->params.ecn && (q->vars.prob <= MAX_PROB / 10) &&
152 INET_ECN_set_ce(skb)) {
153 /* If packet is ecn capable, mark it if drop probability
154 * is lower than 10%, else drop it.
156 q->stats.ecn_mark++;
157 enqueue = true;
160 /* we can enqueue the packet */
161 if (enqueue) {
162 q->stats.packets_in++;
163 if (qdisc_qlen(sch) > q->stats.maxq)
164 q->stats.maxq = qdisc_qlen(sch);
166 return qdisc_enqueue_tail(skb, sch);
169 out:
170 q->stats.dropped++;
171 return qdisc_drop(skb, sch, to_free);
174 static const struct nla_policy pie_policy[TCA_PIE_MAX + 1] = {
175 [TCA_PIE_TARGET] = {.type = NLA_U32},
176 [TCA_PIE_LIMIT] = {.type = NLA_U32},
177 [TCA_PIE_TUPDATE] = {.type = NLA_U32},
178 [TCA_PIE_ALPHA] = {.type = NLA_U32},
179 [TCA_PIE_BETA] = {.type = NLA_U32},
180 [TCA_PIE_ECN] = {.type = NLA_U32},
181 [TCA_PIE_BYTEMODE] = {.type = NLA_U32},
184 static int pie_change(struct Qdisc *sch, struct nlattr *opt,
185 struct netlink_ext_ack *extack)
187 struct pie_sched_data *q = qdisc_priv(sch);
188 struct nlattr *tb[TCA_PIE_MAX + 1];
189 unsigned int qlen, dropped = 0;
190 int err;
192 if (!opt)
193 return -EINVAL;
195 err = nla_parse_nested(tb, TCA_PIE_MAX, opt, pie_policy, NULL);
196 if (err < 0)
197 return err;
199 sch_tree_lock(sch);
201 /* convert from microseconds to pschedtime */
202 if (tb[TCA_PIE_TARGET]) {
203 /* target is in us */
204 u32 target = nla_get_u32(tb[TCA_PIE_TARGET]);
206 /* convert to pschedtime */
207 q->params.target = PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC);
210 /* tupdate is in jiffies */
211 if (tb[TCA_PIE_TUPDATE])
212 q->params.tupdate = usecs_to_jiffies(nla_get_u32(tb[TCA_PIE_TUPDATE]));
214 if (tb[TCA_PIE_LIMIT]) {
215 u32 limit = nla_get_u32(tb[TCA_PIE_LIMIT]);
217 q->params.limit = limit;
218 sch->limit = limit;
221 if (tb[TCA_PIE_ALPHA])
222 q->params.alpha = nla_get_u32(tb[TCA_PIE_ALPHA]);
224 if (tb[TCA_PIE_BETA])
225 q->params.beta = nla_get_u32(tb[TCA_PIE_BETA]);
227 if (tb[TCA_PIE_ECN])
228 q->params.ecn = nla_get_u32(tb[TCA_PIE_ECN]);
230 if (tb[TCA_PIE_BYTEMODE])
231 q->params.bytemode = nla_get_u32(tb[TCA_PIE_BYTEMODE]);
233 /* Drop excess packets if new limit is lower */
234 qlen = sch->q.qlen;
235 while (sch->q.qlen > sch->limit) {
236 struct sk_buff *skb = __qdisc_dequeue_head(&sch->q);
238 dropped += qdisc_pkt_len(skb);
239 qdisc_qstats_backlog_dec(sch, skb);
240 rtnl_qdisc_drop(skb, sch);
242 qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped);
244 sch_tree_unlock(sch);
245 return 0;
248 static void pie_process_dequeue(struct Qdisc *sch, struct sk_buff *skb)
251 struct pie_sched_data *q = qdisc_priv(sch);
252 int qlen = sch->qstats.backlog; /* current queue size in bytes */
254 /* If current queue is about 10 packets or more and dq_count is unset
255 * we have enough packets to calculate the drain rate. Save
256 * current time as dq_tstamp and start measurement cycle.
258 if (qlen >= QUEUE_THRESHOLD && q->vars.dq_count == DQCOUNT_INVALID) {
259 q->vars.dq_tstamp = psched_get_time();
260 q->vars.dq_count = 0;
263 /* Calculate the average drain rate from this value. If queue length
264 * has receded to a small value viz., <= QUEUE_THRESHOLD bytes,reset
265 * the dq_count to -1 as we don't have enough packets to calculate the
266 * drain rate anymore The following if block is entered only when we
267 * have a substantial queue built up (QUEUE_THRESHOLD bytes or more)
268 * and we calculate the drain rate for the threshold here. dq_count is
269 * in bytes, time difference in psched_time, hence rate is in
270 * bytes/psched_time.
272 if (q->vars.dq_count != DQCOUNT_INVALID) {
273 q->vars.dq_count += skb->len;
275 if (q->vars.dq_count >= QUEUE_THRESHOLD) {
276 psched_time_t now = psched_get_time();
277 u32 dtime = now - q->vars.dq_tstamp;
278 u32 count = q->vars.dq_count << PIE_SCALE;
280 if (dtime == 0)
281 return;
283 count = count / dtime;
285 if (q->vars.avg_dq_rate == 0)
286 q->vars.avg_dq_rate = count;
287 else
288 q->vars.avg_dq_rate =
289 (q->vars.avg_dq_rate -
290 (q->vars.avg_dq_rate >> 3)) + (count >> 3);
292 /* If the queue has receded below the threshold, we hold
293 * on to the last drain rate calculated, else we reset
294 * dq_count to 0 to re-enter the if block when the next
295 * packet is dequeued
297 if (qlen < QUEUE_THRESHOLD)
298 q->vars.dq_count = DQCOUNT_INVALID;
299 else {
300 q->vars.dq_count = 0;
301 q->vars.dq_tstamp = psched_get_time();
304 if (q->vars.burst_time > 0) {
305 if (q->vars.burst_time > dtime)
306 q->vars.burst_time -= dtime;
307 else
308 q->vars.burst_time = 0;
314 static void calculate_probability(struct Qdisc *sch)
316 struct pie_sched_data *q = qdisc_priv(sch);
317 u32 qlen = sch->qstats.backlog; /* queue size in bytes */
318 psched_time_t qdelay = 0; /* in pschedtime */
319 psched_time_t qdelay_old = q->vars.qdelay; /* in pschedtime */
320 s32 delta = 0; /* determines the change in probability */
321 u32 oldprob;
322 u32 alpha, beta;
323 bool update_prob = true;
325 q->vars.qdelay_old = q->vars.qdelay;
327 if (q->vars.avg_dq_rate > 0)
328 qdelay = (qlen << PIE_SCALE) / q->vars.avg_dq_rate;
329 else
330 qdelay = 0;
332 /* If qdelay is zero and qlen is not, it means qlen is very small, less
333 * than dequeue_rate, so we do not update probabilty in this round
335 if (qdelay == 0 && qlen != 0)
336 update_prob = false;
338 /* In the algorithm, alpha and beta are between 0 and 2 with typical
339 * value for alpha as 0.125. In this implementation, we use values 0-32
340 * passed from user space to represent this. Also, alpha and beta have
341 * unit of HZ and need to be scaled before they can used to update
342 * probability. alpha/beta are updated locally below by 1) scaling them
343 * appropriately 2) scaling down by 16 to come to 0-2 range.
344 * Please see paper for details.
346 * We scale alpha and beta differently depending on whether we are in
347 * light, medium or high dropping mode.
349 if (q->vars.prob < MAX_PROB / 100) {
350 alpha =
351 (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 7;
352 beta =
353 (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 7;
354 } else if (q->vars.prob < MAX_PROB / 10) {
355 alpha =
356 (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 5;
357 beta =
358 (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 5;
359 } else {
360 alpha =
361 (q->params.alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
362 beta =
363 (q->params.beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
366 /* alpha and beta should be between 0 and 32, in multiples of 1/16 */
367 delta += alpha * ((qdelay - q->params.target));
368 delta += beta * ((qdelay - qdelay_old));
370 oldprob = q->vars.prob;
372 /* to ensure we increase probability in steps of no more than 2% */
373 if (delta > (s32) (MAX_PROB / (100 / 2)) &&
374 q->vars.prob >= MAX_PROB / 10)
375 delta = (MAX_PROB / 100) * 2;
377 /* Non-linear drop:
378 * Tune drop probability to increase quickly for high delays(>= 250ms)
379 * 250ms is derived through experiments and provides error protection
382 if (qdelay > (PSCHED_NS2TICKS(250 * NSEC_PER_MSEC)))
383 delta += MAX_PROB / (100 / 2);
385 q->vars.prob += delta;
387 if (delta > 0) {
388 /* prevent overflow */
389 if (q->vars.prob < oldprob) {
390 q->vars.prob = MAX_PROB;
391 /* Prevent normalization error. If probability is at
392 * maximum value already, we normalize it here, and
393 * skip the check to do a non-linear drop in the next
394 * section.
396 update_prob = false;
398 } else {
399 /* prevent underflow */
400 if (q->vars.prob > oldprob)
401 q->vars.prob = 0;
404 /* Non-linear drop in probability: Reduce drop probability quickly if
405 * delay is 0 for 2 consecutive Tupdate periods.
408 if ((qdelay == 0) && (qdelay_old == 0) && update_prob)
409 q->vars.prob = (q->vars.prob * 98) / 100;
411 q->vars.qdelay = qdelay;
412 q->vars.qlen_old = qlen;
414 /* We restart the measurement cycle if the following conditions are met
415 * 1. If the delay has been low for 2 consecutive Tupdate periods
416 * 2. Calculated drop probability is zero
417 * 3. We have atleast one estimate for the avg_dq_rate ie.,
418 * is a non-zero value
420 if ((q->vars.qdelay < q->params.target / 2) &&
421 (q->vars.qdelay_old < q->params.target / 2) &&
422 (q->vars.prob == 0) &&
423 (q->vars.avg_dq_rate > 0))
424 pie_vars_init(&q->vars);
427 static void pie_timer(struct timer_list *t)
429 struct pie_sched_data *q = from_timer(q, t, adapt_timer);
430 struct Qdisc *sch = q->sch;
431 spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch));
433 spin_lock(root_lock);
434 calculate_probability(sch);
436 /* reset the timer to fire after 'tupdate'. tupdate is in jiffies. */
437 if (q->params.tupdate)
438 mod_timer(&q->adapt_timer, jiffies + q->params.tupdate);
439 spin_unlock(root_lock);
443 static int pie_init(struct Qdisc *sch, struct nlattr *opt,
444 struct netlink_ext_ack *extack)
446 struct pie_sched_data *q = qdisc_priv(sch);
448 pie_params_init(&q->params);
449 pie_vars_init(&q->vars);
450 sch->limit = q->params.limit;
452 q->sch = sch;
453 timer_setup(&q->adapt_timer, pie_timer, 0);
455 if (opt) {
456 int err = pie_change(sch, opt, extack);
458 if (err)
459 return err;
462 mod_timer(&q->adapt_timer, jiffies + HZ / 2);
463 return 0;
466 static int pie_dump(struct Qdisc *sch, struct sk_buff *skb)
468 struct pie_sched_data *q = qdisc_priv(sch);
469 struct nlattr *opts;
471 opts = nla_nest_start(skb, TCA_OPTIONS);
472 if (opts == NULL)
473 goto nla_put_failure;
475 /* convert target from pschedtime to us */
476 if (nla_put_u32(skb, TCA_PIE_TARGET,
477 ((u32) PSCHED_TICKS2NS(q->params.target)) /
478 NSEC_PER_USEC) ||
479 nla_put_u32(skb, TCA_PIE_LIMIT, sch->limit) ||
480 nla_put_u32(skb, TCA_PIE_TUPDATE, jiffies_to_usecs(q->params.tupdate)) ||
481 nla_put_u32(skb, TCA_PIE_ALPHA, q->params.alpha) ||
482 nla_put_u32(skb, TCA_PIE_BETA, q->params.beta) ||
483 nla_put_u32(skb, TCA_PIE_ECN, q->params.ecn) ||
484 nla_put_u32(skb, TCA_PIE_BYTEMODE, q->params.bytemode))
485 goto nla_put_failure;
487 return nla_nest_end(skb, opts);
489 nla_put_failure:
490 nla_nest_cancel(skb, opts);
491 return -1;
495 static int pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
497 struct pie_sched_data *q = qdisc_priv(sch);
498 struct tc_pie_xstats st = {
499 .prob = q->vars.prob,
500 .delay = ((u32) PSCHED_TICKS2NS(q->vars.qdelay)) /
501 NSEC_PER_USEC,
502 /* unscale and return dq_rate in bytes per sec */
503 .avg_dq_rate = q->vars.avg_dq_rate *
504 (PSCHED_TICKS_PER_SEC) >> PIE_SCALE,
505 .packets_in = q->stats.packets_in,
506 .overlimit = q->stats.overlimit,
507 .maxq = q->stats.maxq,
508 .dropped = q->stats.dropped,
509 .ecn_mark = q->stats.ecn_mark,
512 return gnet_stats_copy_app(d, &st, sizeof(st));
515 static struct sk_buff *pie_qdisc_dequeue(struct Qdisc *sch)
517 struct sk_buff *skb;
518 skb = qdisc_dequeue_head(sch);
520 if (!skb)
521 return NULL;
523 pie_process_dequeue(sch, skb);
524 return skb;
527 static void pie_reset(struct Qdisc *sch)
529 struct pie_sched_data *q = qdisc_priv(sch);
530 qdisc_reset_queue(sch);
531 pie_vars_init(&q->vars);
534 static void pie_destroy(struct Qdisc *sch)
536 struct pie_sched_data *q = qdisc_priv(sch);
537 q->params.tupdate = 0;
538 del_timer_sync(&q->adapt_timer);
541 static struct Qdisc_ops pie_qdisc_ops __read_mostly = {
542 .id = "pie",
543 .priv_size = sizeof(struct pie_sched_data),
544 .enqueue = pie_qdisc_enqueue,
545 .dequeue = pie_qdisc_dequeue,
546 .peek = qdisc_peek_dequeued,
547 .init = pie_init,
548 .destroy = pie_destroy,
549 .reset = pie_reset,
550 .change = pie_change,
551 .dump = pie_dump,
552 .dump_stats = pie_dump_stats,
553 .owner = THIS_MODULE,
556 static int __init pie_module_init(void)
558 return register_qdisc(&pie_qdisc_ops);
561 static void __exit pie_module_exit(void)
563 unregister_qdisc(&pie_qdisc_ops);
566 module_init(pie_module_init);
567 module_exit(pie_module_exit);
569 MODULE_DESCRIPTION("Proportional Integral controller Enhanced (PIE) scheduler");
570 MODULE_AUTHOR("Vijay Subramanian");
571 MODULE_AUTHOR("Mythili Prabhu");
572 MODULE_LICENSE("GPL");