mac80211: share sta->supp_rates
[linux/fpc-iii.git] / arch / s390 / kernel / kprobes.c
blob569079ec4ff004f010d64df7d746b0a01caff44c
1 /*
2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2006
20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <asm/cacheflush.h>
29 #include <asm/sections.h>
30 #include <asm/uaccess.h>
31 #include <linux/module.h>
33 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
34 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
36 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
38 int __kprobes arch_prepare_kprobe(struct kprobe *p)
40 /* Make sure the probe isn't going on a difficult instruction */
41 if (is_prohibited_opcode((kprobe_opcode_t *) p->addr))
42 return -EINVAL;
44 if ((unsigned long)p->addr & 0x01)
45 return -EINVAL;
47 /* Use the get_insn_slot() facility for correctness */
48 if (!(p->ainsn.insn = get_insn_slot()))
49 return -ENOMEM;
51 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
53 get_instruction_type(&p->ainsn);
54 p->opcode = *p->addr;
55 return 0;
58 int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction)
60 switch (*(__u8 *) instruction) {
61 case 0x0c: /* bassm */
62 case 0x0b: /* bsm */
63 case 0x83: /* diag */
64 case 0x44: /* ex */
65 return -EINVAL;
67 switch (*(__u16 *) instruction) {
68 case 0x0101: /* pr */
69 case 0xb25a: /* bsa */
70 case 0xb240: /* bakr */
71 case 0xb258: /* bsg */
72 case 0xb218: /* pc */
73 case 0xb228: /* pt */
74 return -EINVAL;
76 return 0;
79 void __kprobes get_instruction_type(struct arch_specific_insn *ainsn)
81 /* default fixup method */
82 ainsn->fixup = FIXUP_PSW_NORMAL;
84 /* save r1 operand */
85 ainsn->reg = (*ainsn->insn & 0xf0) >> 4;
87 /* save the instruction length (pop 5-5) in bytes */
88 switch (*(__u8 *) (ainsn->insn) >> 6) {
89 case 0:
90 ainsn->ilen = 2;
91 break;
92 case 1:
93 case 2:
94 ainsn->ilen = 4;
95 break;
96 case 3:
97 ainsn->ilen = 6;
98 break;
101 switch (*(__u8 *) ainsn->insn) {
102 case 0x05: /* balr */
103 case 0x0d: /* basr */
104 ainsn->fixup = FIXUP_RETURN_REGISTER;
105 /* if r2 = 0, no branch will be taken */
106 if ((*ainsn->insn & 0x0f) == 0)
107 ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN;
108 break;
109 case 0x06: /* bctr */
110 case 0x07: /* bcr */
111 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
112 break;
113 case 0x45: /* bal */
114 case 0x4d: /* bas */
115 ainsn->fixup = FIXUP_RETURN_REGISTER;
116 break;
117 case 0x47: /* bc */
118 case 0x46: /* bct */
119 case 0x86: /* bxh */
120 case 0x87: /* bxle */
121 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
122 break;
123 case 0x82: /* lpsw */
124 ainsn->fixup = FIXUP_NOT_REQUIRED;
125 break;
126 case 0xb2: /* lpswe */
127 if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) {
128 ainsn->fixup = FIXUP_NOT_REQUIRED;
130 break;
131 case 0xa7: /* bras */
132 if ((*ainsn->insn & 0x0f) == 0x05) {
133 ainsn->fixup |= FIXUP_RETURN_REGISTER;
135 break;
136 case 0xc0:
137 if ((*ainsn->insn & 0x0f) == 0x00 /* larl */
138 || (*ainsn->insn & 0x0f) == 0x05) /* brasl */
139 ainsn->fixup |= FIXUP_RETURN_REGISTER;
140 break;
141 case 0xeb:
142 if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 || /* bxhg */
143 *(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */
144 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
146 break;
147 case 0xe3: /* bctg */
148 if (*(((__u8 *) ainsn->insn) + 5) == 0x46) {
149 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
151 break;
155 static int __kprobes swap_instruction(void *aref)
157 struct ins_replace_args *args = aref;
158 u32 *addr;
159 u32 instr;
160 int err = -EFAULT;
163 * Text segment is read-only, hence we use stura to bypass dynamic
164 * address translation to exchange the instruction. Since stura
165 * always operates on four bytes, but we only want to exchange two
166 * bytes do some calculations to get things right. In addition we
167 * shall not cross any page boundaries (vmalloc area!) when writing
168 * the new instruction.
170 addr = (u32 *)((unsigned long)args->ptr & -4UL);
171 if ((unsigned long)args->ptr & 2)
172 instr = ((*addr) & 0xffff0000) | args->new;
173 else
174 instr = ((*addr) & 0x0000ffff) | args->new << 16;
176 asm volatile(
177 " lra %1,0(%1)\n"
178 "0: stura %2,%1\n"
179 "1: la %0,0\n"
180 "2:\n"
181 EX_TABLE(0b,2b)
182 : "+d" (err)
183 : "a" (addr), "d" (instr)
184 : "memory", "cc");
186 return err;
189 void __kprobes arch_arm_kprobe(struct kprobe *p)
191 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
192 unsigned long status = kcb->kprobe_status;
193 struct ins_replace_args args;
195 args.ptr = p->addr;
196 args.old = p->opcode;
197 args.new = BREAKPOINT_INSTRUCTION;
199 kcb->kprobe_status = KPROBE_SWAP_INST;
200 stop_machine(swap_instruction, &args, NULL);
201 kcb->kprobe_status = status;
204 void __kprobes arch_disarm_kprobe(struct kprobe *p)
206 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
207 unsigned long status = kcb->kprobe_status;
208 struct ins_replace_args args;
210 args.ptr = p->addr;
211 args.old = BREAKPOINT_INSTRUCTION;
212 args.new = p->opcode;
214 kcb->kprobe_status = KPROBE_SWAP_INST;
215 stop_machine(swap_instruction, &args, NULL);
216 kcb->kprobe_status = status;
219 void __kprobes arch_remove_kprobe(struct kprobe *p)
221 mutex_lock(&kprobe_mutex);
222 free_insn_slot(p->ainsn.insn, 0);
223 mutex_unlock(&kprobe_mutex);
226 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
228 per_cr_bits kprobe_per_regs[1];
230 memset(kprobe_per_regs, 0, sizeof(per_cr_bits));
231 regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE;
233 /* Set up the per control reg info, will pass to lctl */
234 kprobe_per_regs[0].em_instruction_fetch = 1;
235 kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn;
236 kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1;
238 /* Set the PER control regs, turns on single step for this address */
239 __ctl_load(kprobe_per_regs, 9, 11);
240 regs->psw.mask |= PSW_MASK_PER;
241 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
244 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
246 kcb->prev_kprobe.kp = kprobe_running();
247 kcb->prev_kprobe.status = kcb->kprobe_status;
248 kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask;
249 memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl,
250 sizeof(kcb->kprobe_saved_ctl));
253 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
255 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
256 kcb->kprobe_status = kcb->prev_kprobe.status;
257 kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask;
258 memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl,
259 sizeof(kcb->kprobe_saved_ctl));
262 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
263 struct kprobe_ctlblk *kcb)
265 __get_cpu_var(current_kprobe) = p;
266 /* Save the interrupt and per flags */
267 kcb->kprobe_saved_imask = regs->psw.mask &
268 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
269 /* Save the control regs that govern PER */
270 __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
273 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
274 struct pt_regs *regs)
276 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
278 /* Replace the return addr with trampoline addr */
279 regs->gprs[14] = (unsigned long)&kretprobe_trampoline;
282 static int __kprobes kprobe_handler(struct pt_regs *regs)
284 struct kprobe *p;
285 int ret = 0;
286 unsigned long *addr = (unsigned long *)
287 ((regs->psw.addr & PSW_ADDR_INSN) - 2);
288 struct kprobe_ctlblk *kcb;
291 * We don't want to be preempted for the entire
292 * duration of kprobe processing
294 preempt_disable();
295 kcb = get_kprobe_ctlblk();
297 /* Check we're not actually recursing */
298 if (kprobe_running()) {
299 p = get_kprobe(addr);
300 if (p) {
301 if (kcb->kprobe_status == KPROBE_HIT_SS &&
302 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
303 regs->psw.mask &= ~PSW_MASK_PER;
304 regs->psw.mask |= kcb->kprobe_saved_imask;
305 goto no_kprobe;
307 /* We have reentered the kprobe_handler(), since
308 * another probe was hit while within the handler.
309 * We here save the original kprobes variables and
310 * just single step on the instruction of the new probe
311 * without calling any user handlers.
313 save_previous_kprobe(kcb);
314 set_current_kprobe(p, regs, kcb);
315 kprobes_inc_nmissed_count(p);
316 prepare_singlestep(p, regs);
317 kcb->kprobe_status = KPROBE_REENTER;
318 return 1;
319 } else {
320 p = __get_cpu_var(current_kprobe);
321 if (p->break_handler && p->break_handler(p, regs)) {
322 goto ss_probe;
325 goto no_kprobe;
328 p = get_kprobe(addr);
329 if (!p)
331 * No kprobe at this address. The fault has not been
332 * caused by a kprobe breakpoint. The race of breakpoint
333 * vs. kprobe remove does not exist because on s390 we
334 * use stop_machine to arm/disarm the breakpoints.
336 goto no_kprobe;
338 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
339 set_current_kprobe(p, regs, kcb);
340 if (p->pre_handler && p->pre_handler(p, regs))
341 /* handler has already set things up, so skip ss setup */
342 return 1;
344 ss_probe:
345 prepare_singlestep(p, regs);
346 kcb->kprobe_status = KPROBE_HIT_SS;
347 return 1;
349 no_kprobe:
350 preempt_enable_no_resched();
351 return ret;
355 * Function return probe trampoline:
356 * - init_kprobes() establishes a probepoint here
357 * - When the probed function returns, this probe
358 * causes the handlers to fire
360 static void __used kretprobe_trampoline_holder(void)
362 asm volatile(".global kretprobe_trampoline\n"
363 "kretprobe_trampoline: bcr 0,0\n");
367 * Called when the probe at kretprobe trampoline is hit
369 static int __kprobes trampoline_probe_handler(struct kprobe *p,
370 struct pt_regs *regs)
372 struct kretprobe_instance *ri = NULL;
373 struct hlist_head *head, empty_rp;
374 struct hlist_node *node, *tmp;
375 unsigned long flags, orig_ret_address = 0;
376 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
378 INIT_HLIST_HEAD(&empty_rp);
379 kretprobe_hash_lock(current, &head, &flags);
382 * It is possible to have multiple instances associated with a given
383 * task either because an multiple functions in the call path
384 * have a return probe installed on them, and/or more then one return
385 * return probe was registered for a target function.
387 * We can handle this because:
388 * - instances are always inserted at the head of the list
389 * - when multiple return probes are registered for the same
390 * function, the first instance's ret_addr will point to the
391 * real return address, and all the rest will point to
392 * kretprobe_trampoline
394 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
395 if (ri->task != current)
396 /* another task is sharing our hash bucket */
397 continue;
399 if (ri->rp && ri->rp->handler)
400 ri->rp->handler(ri, regs);
402 orig_ret_address = (unsigned long)ri->ret_addr;
403 recycle_rp_inst(ri, &empty_rp);
405 if (orig_ret_address != trampoline_address) {
407 * This is the real return address. Any other
408 * instances associated with this task are for
409 * other calls deeper on the call stack
411 break;
414 kretprobe_assert(ri, orig_ret_address, trampoline_address);
415 regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
417 reset_current_kprobe();
418 kretprobe_hash_unlock(current, &flags);
419 preempt_enable_no_resched();
421 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
422 hlist_del(&ri->hlist);
423 kfree(ri);
426 * By returning a non-zero value, we are telling
427 * kprobe_handler() that we don't want the post_handler
428 * to run (and have re-enabled preemption)
430 return 1;
434 * Called after single-stepping. p->addr is the address of the
435 * instruction whose first byte has been replaced by the "breakpoint"
436 * instruction. To avoid the SMP problems that can occur when we
437 * temporarily put back the original opcode to single-step, we
438 * single-stepped a copy of the instruction. The address of this
439 * copy is p->ainsn.insn.
441 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
443 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
445 regs->psw.addr &= PSW_ADDR_INSN;
447 if (p->ainsn.fixup & FIXUP_PSW_NORMAL)
448 regs->psw.addr = (unsigned long)p->addr +
449 ((unsigned long)regs->psw.addr -
450 (unsigned long)p->ainsn.insn);
452 if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN)
453 if ((unsigned long)regs->psw.addr -
454 (unsigned long)p->ainsn.insn == p->ainsn.ilen)
455 regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen;
457 if (p->ainsn.fixup & FIXUP_RETURN_REGISTER)
458 regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr +
459 (regs->gprs[p->ainsn.reg] -
460 (unsigned long)p->ainsn.insn))
461 | PSW_ADDR_AMODE;
463 regs->psw.addr |= PSW_ADDR_AMODE;
464 /* turn off PER mode */
465 regs->psw.mask &= ~PSW_MASK_PER;
466 /* Restore the original per control regs */
467 __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
468 regs->psw.mask |= kcb->kprobe_saved_imask;
471 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
473 struct kprobe *cur = kprobe_running();
474 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
476 if (!cur)
477 return 0;
479 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
480 kcb->kprobe_status = KPROBE_HIT_SSDONE;
481 cur->post_handler(cur, regs, 0);
484 resume_execution(cur, regs);
486 /*Restore back the original saved kprobes variables and continue. */
487 if (kcb->kprobe_status == KPROBE_REENTER) {
488 restore_previous_kprobe(kcb);
489 goto out;
491 reset_current_kprobe();
492 out:
493 preempt_enable_no_resched();
496 * if somebody else is singlestepping across a probe point, psw mask
497 * will have PER set, in which case, continue the remaining processing
498 * of do_single_step, as if this is not a probe hit.
500 if (regs->psw.mask & PSW_MASK_PER) {
501 return 0;
504 return 1;
507 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
509 struct kprobe *cur = kprobe_running();
510 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
511 const struct exception_table_entry *entry;
513 switch(kcb->kprobe_status) {
514 case KPROBE_SWAP_INST:
515 /* We are here because the instruction replacement failed */
516 return 0;
517 case KPROBE_HIT_SS:
518 case KPROBE_REENTER:
520 * We are here because the instruction being single
521 * stepped caused a page fault. We reset the current
522 * kprobe and the nip points back to the probe address
523 * and allow the page fault handler to continue as a
524 * normal page fault.
526 regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE;
527 regs->psw.mask &= ~PSW_MASK_PER;
528 regs->psw.mask |= kcb->kprobe_saved_imask;
529 if (kcb->kprobe_status == KPROBE_REENTER)
530 restore_previous_kprobe(kcb);
531 else
532 reset_current_kprobe();
533 preempt_enable_no_resched();
534 break;
535 case KPROBE_HIT_ACTIVE:
536 case KPROBE_HIT_SSDONE:
538 * We increment the nmissed count for accounting,
539 * we can also use npre/npostfault count for accouting
540 * these specific fault cases.
542 kprobes_inc_nmissed_count(cur);
545 * We come here because instructions in the pre/post
546 * handler caused the page_fault, this could happen
547 * if handler tries to access user space by
548 * copy_from_user(), get_user() etc. Let the
549 * user-specified handler try to fix it first.
551 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
552 return 1;
555 * In case the user-specified fault handler returned
556 * zero, try to fix up.
558 entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
559 if (entry) {
560 regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
561 return 1;
565 * fixup_exception() could not handle it,
566 * Let do_page_fault() fix it.
568 break;
569 default:
570 break;
572 return 0;
576 * Wrapper routine to for handling exceptions.
578 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
579 unsigned long val, void *data)
581 struct die_args *args = (struct die_args *)data;
582 int ret = NOTIFY_DONE;
584 switch (val) {
585 case DIE_BPT:
586 if (kprobe_handler(args->regs))
587 ret = NOTIFY_STOP;
588 break;
589 case DIE_SSTEP:
590 if (post_kprobe_handler(args->regs))
591 ret = NOTIFY_STOP;
592 break;
593 case DIE_TRAP:
594 /* kprobe_running() needs smp_processor_id() */
595 preempt_disable();
596 if (kprobe_running() &&
597 kprobe_fault_handler(args->regs, args->trapnr))
598 ret = NOTIFY_STOP;
599 preempt_enable();
600 break;
601 default:
602 break;
604 return ret;
607 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
609 struct jprobe *jp = container_of(p, struct jprobe, kp);
610 unsigned long addr;
611 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
613 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
615 /* setup return addr to the jprobe handler routine */
616 regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE;
618 /* r14 is the function return address */
619 kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14];
620 /* r15 is the stack pointer */
621 kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15];
622 addr = (unsigned long)kcb->jprobe_saved_r15;
624 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
625 MIN_STACK_SIZE(addr));
626 return 1;
629 void __kprobes jprobe_return(void)
631 asm volatile(".word 0x0002");
634 void __kprobes jprobe_return_end(void)
636 asm volatile("bcr 0,0");
639 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
641 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
642 unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15);
644 /* Put the regs back */
645 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
646 /* put the stack back */
647 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
648 MIN_STACK_SIZE(stack_addr));
649 preempt_enable_no_resched();
650 return 1;
653 static struct kprobe trampoline_p = {
654 .addr = (kprobe_opcode_t *) & kretprobe_trampoline,
655 .pre_handler = trampoline_probe_handler
658 int __init arch_init_kprobes(void)
660 return register_kprobe(&trampoline_p);
663 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
665 if (p->addr == (kprobe_opcode_t *) & kretprobe_trampoline)
666 return 1;
667 return 0;