drm/exynos: Stop using drm_framebuffer_unregister_private
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / intel_display.c
blob0f4272f98648c57a9212a7b86b9cf30ba1dbf6c5
1 /*
2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "intel_dsi.h"
41 #include "i915_trace.h"
42 #include <drm/drm_atomic.h>
43 #include <drm/drm_atomic_helper.h>
44 #include <drm/drm_dp_helper.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_plane_helper.h>
47 #include <drm/drm_rect.h>
48 #include <linux/dma_remapping.h>
49 #include <linux/reservation.h>
51 static bool is_mmio_work(struct intel_flip_work *work)
53 return work->mmio_work.func;
56 /* Primary plane formats for gen <= 3 */
57 static const uint32_t i8xx_primary_formats[] = {
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB1555,
61 DRM_FORMAT_XRGB8888,
64 /* Primary plane formats for gen >= 4 */
65 static const uint32_t i965_primary_formats[] = {
66 DRM_FORMAT_C8,
67 DRM_FORMAT_RGB565,
68 DRM_FORMAT_XRGB8888,
69 DRM_FORMAT_XBGR8888,
70 DRM_FORMAT_XRGB2101010,
71 DRM_FORMAT_XBGR2101010,
74 static const uint32_t skl_primary_formats[] = {
75 DRM_FORMAT_C8,
76 DRM_FORMAT_RGB565,
77 DRM_FORMAT_XRGB8888,
78 DRM_FORMAT_XBGR8888,
79 DRM_FORMAT_ARGB8888,
80 DRM_FORMAT_ABGR8888,
81 DRM_FORMAT_XRGB2101010,
82 DRM_FORMAT_XBGR2101010,
83 DRM_FORMAT_YUYV,
84 DRM_FORMAT_YVYU,
85 DRM_FORMAT_UYVY,
86 DRM_FORMAT_VYUY,
89 /* Cursor formats */
90 static const uint32_t intel_cursor_formats[] = {
91 DRM_FORMAT_ARGB8888,
94 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
95 struct intel_crtc_state *pipe_config);
96 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
97 struct intel_crtc_state *pipe_config);
99 static int intel_framebuffer_init(struct drm_device *dev,
100 struct intel_framebuffer *ifb,
101 struct drm_mode_fb_cmd2 *mode_cmd,
102 struct drm_i915_gem_object *obj);
103 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
106 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
107 struct intel_link_m_n *m_n,
108 struct intel_link_m_n *m2_n2);
109 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
110 static void haswell_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipemisc(struct drm_crtc *crtc);
112 static void vlv_prepare_pll(struct intel_crtc *crtc,
113 const struct intel_crtc_state *pipe_config);
114 static void chv_prepare_pll(struct intel_crtc *crtc,
115 const struct intel_crtc_state *pipe_config);
116 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
119 struct intel_crtc_state *crtc_state);
120 static void skylake_pfit_enable(struct intel_crtc *crtc);
121 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
122 static void ironlake_pfit_enable(struct intel_crtc *crtc);
123 static void intel_modeset_setup_hw_state(struct drm_device *dev);
124 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
125 static int ilk_max_pixel_rate(struct drm_atomic_state *state);
126 static int glk_calc_cdclk(int max_pixclk);
127 static int bxt_calc_cdclk(int max_pixclk);
129 struct intel_limit {
130 struct {
131 int min, max;
132 } dot, vco, n, m, m1, m2, p, p1;
134 struct {
135 int dot_limit;
136 int p2_slow, p2_fast;
137 } p2;
140 /* returns HPLL frequency in kHz */
141 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
143 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
145 /* Obtain SKU information */
146 mutex_lock(&dev_priv->sb_lock);
147 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
148 CCK_FUSE_HPLL_FREQ_MASK;
149 mutex_unlock(&dev_priv->sb_lock);
151 return vco_freq[hpll_freq] * 1000;
154 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
155 const char *name, u32 reg, int ref_freq)
157 u32 val;
158 int divider;
160 mutex_lock(&dev_priv->sb_lock);
161 val = vlv_cck_read(dev_priv, reg);
162 mutex_unlock(&dev_priv->sb_lock);
164 divider = val & CCK_FREQUENCY_VALUES;
166 WARN((val & CCK_FREQUENCY_STATUS) !=
167 (divider << CCK_FREQUENCY_STATUS_SHIFT),
168 "%s change in progress\n", name);
170 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
173 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
174 const char *name, u32 reg)
176 if (dev_priv->hpll_freq == 0)
177 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
179 return vlv_get_cck_clock(dev_priv, name, reg,
180 dev_priv->hpll_freq);
183 static int
184 intel_pch_rawclk(struct drm_i915_private *dev_priv)
186 return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
189 static int
190 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
192 /* RAWCLK_FREQ_VLV register updated from power well code */
193 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
194 CCK_DISPLAY_REF_CLOCK_CONTROL);
197 static int
198 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
200 uint32_t clkcfg;
202 /* hrawclock is 1/4 the FSB frequency */
203 clkcfg = I915_READ(CLKCFG);
204 switch (clkcfg & CLKCFG_FSB_MASK) {
205 case CLKCFG_FSB_400:
206 return 100000;
207 case CLKCFG_FSB_533:
208 return 133333;
209 case CLKCFG_FSB_667:
210 return 166667;
211 case CLKCFG_FSB_800:
212 return 200000;
213 case CLKCFG_FSB_1067:
214 return 266667;
215 case CLKCFG_FSB_1333:
216 return 333333;
217 /* these two are just a guess; one of them might be right */
218 case CLKCFG_FSB_1600:
219 case CLKCFG_FSB_1600_ALT:
220 return 400000;
221 default:
222 return 133333;
226 void intel_update_rawclk(struct drm_i915_private *dev_priv)
228 if (HAS_PCH_SPLIT(dev_priv))
229 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
230 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
231 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
232 else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
233 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
234 else
235 return; /* no rawclk on other platforms, or no need to know it */
237 DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
240 static void intel_update_czclk(struct drm_i915_private *dev_priv)
242 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
243 return;
245 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
246 CCK_CZ_CLOCK_CONTROL);
248 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
251 static inline u32 /* units of 100MHz */
252 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
253 const struct intel_crtc_state *pipe_config)
255 if (HAS_DDI(dev_priv))
256 return pipe_config->port_clock; /* SPLL */
257 else if (IS_GEN5(dev_priv))
258 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
259 else
260 return 270000;
263 static const struct intel_limit intel_limits_i8xx_dac = {
264 .dot = { .min = 25000, .max = 350000 },
265 .vco = { .min = 908000, .max = 1512000 },
266 .n = { .min = 2, .max = 16 },
267 .m = { .min = 96, .max = 140 },
268 .m1 = { .min = 18, .max = 26 },
269 .m2 = { .min = 6, .max = 16 },
270 .p = { .min = 4, .max = 128 },
271 .p1 = { .min = 2, .max = 33 },
272 .p2 = { .dot_limit = 165000,
273 .p2_slow = 4, .p2_fast = 2 },
276 static const struct intel_limit intel_limits_i8xx_dvo = {
277 .dot = { .min = 25000, .max = 350000 },
278 .vco = { .min = 908000, .max = 1512000 },
279 .n = { .min = 2, .max = 16 },
280 .m = { .min = 96, .max = 140 },
281 .m1 = { .min = 18, .max = 26 },
282 .m2 = { .min = 6, .max = 16 },
283 .p = { .min = 4, .max = 128 },
284 .p1 = { .min = 2, .max = 33 },
285 .p2 = { .dot_limit = 165000,
286 .p2_slow = 4, .p2_fast = 4 },
289 static const struct intel_limit intel_limits_i8xx_lvds = {
290 .dot = { .min = 25000, .max = 350000 },
291 .vco = { .min = 908000, .max = 1512000 },
292 .n = { .min = 2, .max = 16 },
293 .m = { .min = 96, .max = 140 },
294 .m1 = { .min = 18, .max = 26 },
295 .m2 = { .min = 6, .max = 16 },
296 .p = { .min = 4, .max = 128 },
297 .p1 = { .min = 1, .max = 6 },
298 .p2 = { .dot_limit = 165000,
299 .p2_slow = 14, .p2_fast = 7 },
302 static const struct intel_limit intel_limits_i9xx_sdvo = {
303 .dot = { .min = 20000, .max = 400000 },
304 .vco = { .min = 1400000, .max = 2800000 },
305 .n = { .min = 1, .max = 6 },
306 .m = { .min = 70, .max = 120 },
307 .m1 = { .min = 8, .max = 18 },
308 .m2 = { .min = 3, .max = 7 },
309 .p = { .min = 5, .max = 80 },
310 .p1 = { .min = 1, .max = 8 },
311 .p2 = { .dot_limit = 200000,
312 .p2_slow = 10, .p2_fast = 5 },
315 static const struct intel_limit intel_limits_i9xx_lvds = {
316 .dot = { .min = 20000, .max = 400000 },
317 .vco = { .min = 1400000, .max = 2800000 },
318 .n = { .min = 1, .max = 6 },
319 .m = { .min = 70, .max = 120 },
320 .m1 = { .min = 8, .max = 18 },
321 .m2 = { .min = 3, .max = 7 },
322 .p = { .min = 7, .max = 98 },
323 .p1 = { .min = 1, .max = 8 },
324 .p2 = { .dot_limit = 112000,
325 .p2_slow = 14, .p2_fast = 7 },
329 static const struct intel_limit intel_limits_g4x_sdvo = {
330 .dot = { .min = 25000, .max = 270000 },
331 .vco = { .min = 1750000, .max = 3500000},
332 .n = { .min = 1, .max = 4 },
333 .m = { .min = 104, .max = 138 },
334 .m1 = { .min = 17, .max = 23 },
335 .m2 = { .min = 5, .max = 11 },
336 .p = { .min = 10, .max = 30 },
337 .p1 = { .min = 1, .max = 3},
338 .p2 = { .dot_limit = 270000,
339 .p2_slow = 10,
340 .p2_fast = 10
344 static const struct intel_limit intel_limits_g4x_hdmi = {
345 .dot = { .min = 22000, .max = 400000 },
346 .vco = { .min = 1750000, .max = 3500000},
347 .n = { .min = 1, .max = 4 },
348 .m = { .min = 104, .max = 138 },
349 .m1 = { .min = 16, .max = 23 },
350 .m2 = { .min = 5, .max = 11 },
351 .p = { .min = 5, .max = 80 },
352 .p1 = { .min = 1, .max = 8},
353 .p2 = { .dot_limit = 165000,
354 .p2_slow = 10, .p2_fast = 5 },
357 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
358 .dot = { .min = 20000, .max = 115000 },
359 .vco = { .min = 1750000, .max = 3500000 },
360 .n = { .min = 1, .max = 3 },
361 .m = { .min = 104, .max = 138 },
362 .m1 = { .min = 17, .max = 23 },
363 .m2 = { .min = 5, .max = 11 },
364 .p = { .min = 28, .max = 112 },
365 .p1 = { .min = 2, .max = 8 },
366 .p2 = { .dot_limit = 0,
367 .p2_slow = 14, .p2_fast = 14
371 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
372 .dot = { .min = 80000, .max = 224000 },
373 .vco = { .min = 1750000, .max = 3500000 },
374 .n = { .min = 1, .max = 3 },
375 .m = { .min = 104, .max = 138 },
376 .m1 = { .min = 17, .max = 23 },
377 .m2 = { .min = 5, .max = 11 },
378 .p = { .min = 14, .max = 42 },
379 .p1 = { .min = 2, .max = 6 },
380 .p2 = { .dot_limit = 0,
381 .p2_slow = 7, .p2_fast = 7
385 static const struct intel_limit intel_limits_pineview_sdvo = {
386 .dot = { .min = 20000, .max = 400000},
387 .vco = { .min = 1700000, .max = 3500000 },
388 /* Pineview's Ncounter is a ring counter */
389 .n = { .min = 3, .max = 6 },
390 .m = { .min = 2, .max = 256 },
391 /* Pineview only has one combined m divider, which we treat as m2. */
392 .m1 = { .min = 0, .max = 0 },
393 .m2 = { .min = 0, .max = 254 },
394 .p = { .min = 5, .max = 80 },
395 .p1 = { .min = 1, .max = 8 },
396 .p2 = { .dot_limit = 200000,
397 .p2_slow = 10, .p2_fast = 5 },
400 static const struct intel_limit intel_limits_pineview_lvds = {
401 .dot = { .min = 20000, .max = 400000 },
402 .vco = { .min = 1700000, .max = 3500000 },
403 .n = { .min = 3, .max = 6 },
404 .m = { .min = 2, .max = 256 },
405 .m1 = { .min = 0, .max = 0 },
406 .m2 = { .min = 0, .max = 254 },
407 .p = { .min = 7, .max = 112 },
408 .p1 = { .min = 1, .max = 8 },
409 .p2 = { .dot_limit = 112000,
410 .p2_slow = 14, .p2_fast = 14 },
413 /* Ironlake / Sandybridge
415 * We calculate clock using (register_value + 2) for N/M1/M2, so here
416 * the range value for them is (actual_value - 2).
418 static const struct intel_limit intel_limits_ironlake_dac = {
419 .dot = { .min = 25000, .max = 350000 },
420 .vco = { .min = 1760000, .max = 3510000 },
421 .n = { .min = 1, .max = 5 },
422 .m = { .min = 79, .max = 127 },
423 .m1 = { .min = 12, .max = 22 },
424 .m2 = { .min = 5, .max = 9 },
425 .p = { .min = 5, .max = 80 },
426 .p1 = { .min = 1, .max = 8 },
427 .p2 = { .dot_limit = 225000,
428 .p2_slow = 10, .p2_fast = 5 },
431 static const struct intel_limit intel_limits_ironlake_single_lvds = {
432 .dot = { .min = 25000, .max = 350000 },
433 .vco = { .min = 1760000, .max = 3510000 },
434 .n = { .min = 1, .max = 3 },
435 .m = { .min = 79, .max = 118 },
436 .m1 = { .min = 12, .max = 22 },
437 .m2 = { .min = 5, .max = 9 },
438 .p = { .min = 28, .max = 112 },
439 .p1 = { .min = 2, .max = 8 },
440 .p2 = { .dot_limit = 225000,
441 .p2_slow = 14, .p2_fast = 14 },
444 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
445 .dot = { .min = 25000, .max = 350000 },
446 .vco = { .min = 1760000, .max = 3510000 },
447 .n = { .min = 1, .max = 3 },
448 .m = { .min = 79, .max = 127 },
449 .m1 = { .min = 12, .max = 22 },
450 .m2 = { .min = 5, .max = 9 },
451 .p = { .min = 14, .max = 56 },
452 .p1 = { .min = 2, .max = 8 },
453 .p2 = { .dot_limit = 225000,
454 .p2_slow = 7, .p2_fast = 7 },
457 /* LVDS 100mhz refclk limits. */
458 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
459 .dot = { .min = 25000, .max = 350000 },
460 .vco = { .min = 1760000, .max = 3510000 },
461 .n = { .min = 1, .max = 2 },
462 .m = { .min = 79, .max = 126 },
463 .m1 = { .min = 12, .max = 22 },
464 .m2 = { .min = 5, .max = 9 },
465 .p = { .min = 28, .max = 112 },
466 .p1 = { .min = 2, .max = 8 },
467 .p2 = { .dot_limit = 225000,
468 .p2_slow = 14, .p2_fast = 14 },
471 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
472 .dot = { .min = 25000, .max = 350000 },
473 .vco = { .min = 1760000, .max = 3510000 },
474 .n = { .min = 1, .max = 3 },
475 .m = { .min = 79, .max = 126 },
476 .m1 = { .min = 12, .max = 22 },
477 .m2 = { .min = 5, .max = 9 },
478 .p = { .min = 14, .max = 42 },
479 .p1 = { .min = 2, .max = 6 },
480 .p2 = { .dot_limit = 225000,
481 .p2_slow = 7, .p2_fast = 7 },
484 static const struct intel_limit intel_limits_vlv = {
486 * These are the data rate limits (measured in fast clocks)
487 * since those are the strictest limits we have. The fast
488 * clock and actual rate limits are more relaxed, so checking
489 * them would make no difference.
491 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
492 .vco = { .min = 4000000, .max = 6000000 },
493 .n = { .min = 1, .max = 7 },
494 .m1 = { .min = 2, .max = 3 },
495 .m2 = { .min = 11, .max = 156 },
496 .p1 = { .min = 2, .max = 3 },
497 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
500 static const struct intel_limit intel_limits_chv = {
502 * These are the data rate limits (measured in fast clocks)
503 * since those are the strictest limits we have. The fast
504 * clock and actual rate limits are more relaxed, so checking
505 * them would make no difference.
507 .dot = { .min = 25000 * 5, .max = 540000 * 5},
508 .vco = { .min = 4800000, .max = 6480000 },
509 .n = { .min = 1, .max = 1 },
510 .m1 = { .min = 2, .max = 2 },
511 .m2 = { .min = 24 << 22, .max = 175 << 22 },
512 .p1 = { .min = 2, .max = 4 },
513 .p2 = { .p2_slow = 1, .p2_fast = 14 },
516 static const struct intel_limit intel_limits_bxt = {
517 /* FIXME: find real dot limits */
518 .dot = { .min = 0, .max = INT_MAX },
519 .vco = { .min = 4800000, .max = 6700000 },
520 .n = { .min = 1, .max = 1 },
521 .m1 = { .min = 2, .max = 2 },
522 /* FIXME: find real m2 limits */
523 .m2 = { .min = 2 << 22, .max = 255 << 22 },
524 .p1 = { .min = 2, .max = 4 },
525 .p2 = { .p2_slow = 1, .p2_fast = 20 },
528 static bool
529 needs_modeset(struct drm_crtc_state *state)
531 return drm_atomic_crtc_needs_modeset(state);
535 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
536 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
537 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
538 * The helpers' return value is the rate of the clock that is fed to the
539 * display engine's pipe which can be the above fast dot clock rate or a
540 * divided-down version of it.
542 /* m1 is reserved as 0 in Pineview, n is a ring counter */
543 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
545 clock->m = clock->m2 + 2;
546 clock->p = clock->p1 * clock->p2;
547 if (WARN_ON(clock->n == 0 || clock->p == 0))
548 return 0;
549 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
550 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
552 return clock->dot;
555 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
557 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
560 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
562 clock->m = i9xx_dpll_compute_m(clock);
563 clock->p = clock->p1 * clock->p2;
564 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
565 return 0;
566 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
567 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
569 return clock->dot;
572 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
574 clock->m = clock->m1 * clock->m2;
575 clock->p = clock->p1 * clock->p2;
576 if (WARN_ON(clock->n == 0 || clock->p == 0))
577 return 0;
578 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
579 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
581 return clock->dot / 5;
584 int chv_calc_dpll_params(int refclk, struct dpll *clock)
586 clock->m = clock->m1 * clock->m2;
587 clock->p = clock->p1 * clock->p2;
588 if (WARN_ON(clock->n == 0 || clock->p == 0))
589 return 0;
590 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
591 clock->n << 22);
592 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
594 return clock->dot / 5;
597 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
599 * Returns whether the given set of divisors are valid for a given refclk with
600 * the given connectors.
603 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
604 const struct intel_limit *limit,
605 const struct dpll *clock)
607 if (clock->n < limit->n.min || limit->n.max < clock->n)
608 INTELPllInvalid("n out of range\n");
609 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
610 INTELPllInvalid("p1 out of range\n");
611 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
612 INTELPllInvalid("m2 out of range\n");
613 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
614 INTELPllInvalid("m1 out of range\n");
616 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
617 !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
618 if (clock->m1 <= clock->m2)
619 INTELPllInvalid("m1 <= m2\n");
621 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
622 !IS_GEN9_LP(dev_priv)) {
623 if (clock->p < limit->p.min || limit->p.max < clock->p)
624 INTELPllInvalid("p out of range\n");
625 if (clock->m < limit->m.min || limit->m.max < clock->m)
626 INTELPllInvalid("m out of range\n");
629 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
630 INTELPllInvalid("vco out of range\n");
631 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
632 * connector, etc., rather than just a single range.
634 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
635 INTELPllInvalid("dot out of range\n");
637 return true;
640 static int
641 i9xx_select_p2_div(const struct intel_limit *limit,
642 const struct intel_crtc_state *crtc_state,
643 int target)
645 struct drm_device *dev = crtc_state->base.crtc->dev;
647 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
649 * For LVDS just rely on its current settings for dual-channel.
650 * We haven't figured out how to reliably set up different
651 * single/dual channel state, if we even can.
653 if (intel_is_dual_link_lvds(dev))
654 return limit->p2.p2_fast;
655 else
656 return limit->p2.p2_slow;
657 } else {
658 if (target < limit->p2.dot_limit)
659 return limit->p2.p2_slow;
660 else
661 return limit->p2.p2_fast;
666 * Returns a set of divisors for the desired target clock with the given
667 * refclk, or FALSE. The returned values represent the clock equation:
668 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
670 * Target and reference clocks are specified in kHz.
672 * If match_clock is provided, then best_clock P divider must match the P
673 * divider from @match_clock used for LVDS downclocking.
675 static bool
676 i9xx_find_best_dpll(const struct intel_limit *limit,
677 struct intel_crtc_state *crtc_state,
678 int target, int refclk, struct dpll *match_clock,
679 struct dpll *best_clock)
681 struct drm_device *dev = crtc_state->base.crtc->dev;
682 struct dpll clock;
683 int err = target;
685 memset(best_clock, 0, sizeof(*best_clock));
687 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
689 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
690 clock.m1++) {
691 for (clock.m2 = limit->m2.min;
692 clock.m2 <= limit->m2.max; clock.m2++) {
693 if (clock.m2 >= clock.m1)
694 break;
695 for (clock.n = limit->n.min;
696 clock.n <= limit->n.max; clock.n++) {
697 for (clock.p1 = limit->p1.min;
698 clock.p1 <= limit->p1.max; clock.p1++) {
699 int this_err;
701 i9xx_calc_dpll_params(refclk, &clock);
702 if (!intel_PLL_is_valid(to_i915(dev),
703 limit,
704 &clock))
705 continue;
706 if (match_clock &&
707 clock.p != match_clock->p)
708 continue;
710 this_err = abs(clock.dot - target);
711 if (this_err < err) {
712 *best_clock = clock;
713 err = this_err;
720 return (err != target);
724 * Returns a set of divisors for the desired target clock with the given
725 * refclk, or FALSE. The returned values represent the clock equation:
726 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
728 * Target and reference clocks are specified in kHz.
730 * If match_clock is provided, then best_clock P divider must match the P
731 * divider from @match_clock used for LVDS downclocking.
733 static bool
734 pnv_find_best_dpll(const struct intel_limit *limit,
735 struct intel_crtc_state *crtc_state,
736 int target, int refclk, struct dpll *match_clock,
737 struct dpll *best_clock)
739 struct drm_device *dev = crtc_state->base.crtc->dev;
740 struct dpll clock;
741 int err = target;
743 memset(best_clock, 0, sizeof(*best_clock));
745 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
747 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
748 clock.m1++) {
749 for (clock.m2 = limit->m2.min;
750 clock.m2 <= limit->m2.max; clock.m2++) {
751 for (clock.n = limit->n.min;
752 clock.n <= limit->n.max; clock.n++) {
753 for (clock.p1 = limit->p1.min;
754 clock.p1 <= limit->p1.max; clock.p1++) {
755 int this_err;
757 pnv_calc_dpll_params(refclk, &clock);
758 if (!intel_PLL_is_valid(to_i915(dev),
759 limit,
760 &clock))
761 continue;
762 if (match_clock &&
763 clock.p != match_clock->p)
764 continue;
766 this_err = abs(clock.dot - target);
767 if (this_err < err) {
768 *best_clock = clock;
769 err = this_err;
776 return (err != target);
780 * Returns a set of divisors for the desired target clock with the given
781 * refclk, or FALSE. The returned values represent the clock equation:
782 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
784 * Target and reference clocks are specified in kHz.
786 * If match_clock is provided, then best_clock P divider must match the P
787 * divider from @match_clock used for LVDS downclocking.
789 static bool
790 g4x_find_best_dpll(const struct intel_limit *limit,
791 struct intel_crtc_state *crtc_state,
792 int target, int refclk, struct dpll *match_clock,
793 struct dpll *best_clock)
795 struct drm_device *dev = crtc_state->base.crtc->dev;
796 struct dpll clock;
797 int max_n;
798 bool found = false;
799 /* approximately equals target * 0.00585 */
800 int err_most = (target >> 8) + (target >> 9);
802 memset(best_clock, 0, sizeof(*best_clock));
804 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
806 max_n = limit->n.max;
807 /* based on hardware requirement, prefer smaller n to precision */
808 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
809 /* based on hardware requirement, prefere larger m1,m2 */
810 for (clock.m1 = limit->m1.max;
811 clock.m1 >= limit->m1.min; clock.m1--) {
812 for (clock.m2 = limit->m2.max;
813 clock.m2 >= limit->m2.min; clock.m2--) {
814 for (clock.p1 = limit->p1.max;
815 clock.p1 >= limit->p1.min; clock.p1--) {
816 int this_err;
818 i9xx_calc_dpll_params(refclk, &clock);
819 if (!intel_PLL_is_valid(to_i915(dev),
820 limit,
821 &clock))
822 continue;
824 this_err = abs(clock.dot - target);
825 if (this_err < err_most) {
826 *best_clock = clock;
827 err_most = this_err;
828 max_n = clock.n;
829 found = true;
835 return found;
839 * Check if the calculated PLL configuration is more optimal compared to the
840 * best configuration and error found so far. Return the calculated error.
842 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
843 const struct dpll *calculated_clock,
844 const struct dpll *best_clock,
845 unsigned int best_error_ppm,
846 unsigned int *error_ppm)
849 * For CHV ignore the error and consider only the P value.
850 * Prefer a bigger P value based on HW requirements.
852 if (IS_CHERRYVIEW(to_i915(dev))) {
853 *error_ppm = 0;
855 return calculated_clock->p > best_clock->p;
858 if (WARN_ON_ONCE(!target_freq))
859 return false;
861 *error_ppm = div_u64(1000000ULL *
862 abs(target_freq - calculated_clock->dot),
863 target_freq);
865 * Prefer a better P value over a better (smaller) error if the error
866 * is small. Ensure this preference for future configurations too by
867 * setting the error to 0.
869 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
870 *error_ppm = 0;
872 return true;
875 return *error_ppm + 10 < best_error_ppm;
879 * Returns a set of divisors for the desired target clock with the given
880 * refclk, or FALSE. The returned values represent the clock equation:
881 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
883 static bool
884 vlv_find_best_dpll(const struct intel_limit *limit,
885 struct intel_crtc_state *crtc_state,
886 int target, int refclk, struct dpll *match_clock,
887 struct dpll *best_clock)
889 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
890 struct drm_device *dev = crtc->base.dev;
891 struct dpll clock;
892 unsigned int bestppm = 1000000;
893 /* min update 19.2 MHz */
894 int max_n = min(limit->n.max, refclk / 19200);
895 bool found = false;
897 target *= 5; /* fast clock */
899 memset(best_clock, 0, sizeof(*best_clock));
901 /* based on hardware requirement, prefer smaller n to precision */
902 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
903 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
904 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
905 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
906 clock.p = clock.p1 * clock.p2;
907 /* based on hardware requirement, prefer bigger m1,m2 values */
908 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
909 unsigned int ppm;
911 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
912 refclk * clock.m1);
914 vlv_calc_dpll_params(refclk, &clock);
916 if (!intel_PLL_is_valid(to_i915(dev),
917 limit,
918 &clock))
919 continue;
921 if (!vlv_PLL_is_optimal(dev, target,
922 &clock,
923 best_clock,
924 bestppm, &ppm))
925 continue;
927 *best_clock = clock;
928 bestppm = ppm;
929 found = true;
935 return found;
939 * Returns a set of divisors for the desired target clock with the given
940 * refclk, or FALSE. The returned values represent the clock equation:
941 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
943 static bool
944 chv_find_best_dpll(const struct intel_limit *limit,
945 struct intel_crtc_state *crtc_state,
946 int target, int refclk, struct dpll *match_clock,
947 struct dpll *best_clock)
949 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
950 struct drm_device *dev = crtc->base.dev;
951 unsigned int best_error_ppm;
952 struct dpll clock;
953 uint64_t m2;
954 int found = false;
956 memset(best_clock, 0, sizeof(*best_clock));
957 best_error_ppm = 1000000;
960 * Based on hardware doc, the n always set to 1, and m1 always
961 * set to 2. If requires to support 200Mhz refclk, we need to
962 * revisit this because n may not 1 anymore.
964 clock.n = 1, clock.m1 = 2;
965 target *= 5; /* fast clock */
967 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
968 for (clock.p2 = limit->p2.p2_fast;
969 clock.p2 >= limit->p2.p2_slow;
970 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
971 unsigned int error_ppm;
973 clock.p = clock.p1 * clock.p2;
975 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
976 clock.n) << 22, refclk * clock.m1);
978 if (m2 > INT_MAX/clock.m1)
979 continue;
981 clock.m2 = m2;
983 chv_calc_dpll_params(refclk, &clock);
985 if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
986 continue;
988 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
989 best_error_ppm, &error_ppm))
990 continue;
992 *best_clock = clock;
993 best_error_ppm = error_ppm;
994 found = true;
998 return found;
1001 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1002 struct dpll *best_clock)
1004 int refclk = 100000;
1005 const struct intel_limit *limit = &intel_limits_bxt;
1007 return chv_find_best_dpll(limit, crtc_state,
1008 target_clock, refclk, NULL, best_clock);
1011 bool intel_crtc_active(struct intel_crtc *crtc)
1013 /* Be paranoid as we can arrive here with only partial
1014 * state retrieved from the hardware during setup.
1016 * We can ditch the adjusted_mode.crtc_clock check as soon
1017 * as Haswell has gained clock readout/fastboot support.
1019 * We can ditch the crtc->primary->fb check as soon as we can
1020 * properly reconstruct framebuffers.
1022 * FIXME: The intel_crtc->active here should be switched to
1023 * crtc->state->active once we have proper CRTC states wired up
1024 * for atomic.
1026 return crtc->active && crtc->base.primary->state->fb &&
1027 crtc->config->base.adjusted_mode.crtc_clock;
1030 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1031 enum pipe pipe)
1033 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1035 return crtc->config->cpu_transcoder;
1038 static bool pipe_dsl_stopped(struct drm_i915_private *dev_priv, enum pipe pipe)
1040 i915_reg_t reg = PIPEDSL(pipe);
1041 u32 line1, line2;
1042 u32 line_mask;
1044 if (IS_GEN2(dev_priv))
1045 line_mask = DSL_LINEMASK_GEN2;
1046 else
1047 line_mask = DSL_LINEMASK_GEN3;
1049 line1 = I915_READ(reg) & line_mask;
1050 msleep(5);
1051 line2 = I915_READ(reg) & line_mask;
1053 return line1 == line2;
1057 * intel_wait_for_pipe_off - wait for pipe to turn off
1058 * @crtc: crtc whose pipe to wait for
1060 * After disabling a pipe, we can't wait for vblank in the usual way,
1061 * spinning on the vblank interrupt status bit, since we won't actually
1062 * see an interrupt when the pipe is disabled.
1064 * On Gen4 and above:
1065 * wait for the pipe register state bit to turn off
1067 * Otherwise:
1068 * wait for the display line value to settle (it usually
1069 * ends up stopping at the start of the next frame).
1072 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1074 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1075 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1076 enum pipe pipe = crtc->pipe;
1078 if (INTEL_GEN(dev_priv) >= 4) {
1079 i915_reg_t reg = PIPECONF(cpu_transcoder);
1081 /* Wait for the Pipe State to go off */
1082 if (intel_wait_for_register(dev_priv,
1083 reg, I965_PIPECONF_ACTIVE, 0,
1084 100))
1085 WARN(1, "pipe_off wait timed out\n");
1086 } else {
1087 /* Wait for the display line to settle */
1088 if (wait_for(pipe_dsl_stopped(dev_priv, pipe), 100))
1089 WARN(1, "pipe_off wait timed out\n");
1093 /* Only for pre-ILK configs */
1094 void assert_pll(struct drm_i915_private *dev_priv,
1095 enum pipe pipe, bool state)
1097 u32 val;
1098 bool cur_state;
1100 val = I915_READ(DPLL(pipe));
1101 cur_state = !!(val & DPLL_VCO_ENABLE);
1102 I915_STATE_WARN(cur_state != state,
1103 "PLL state assertion failure (expected %s, current %s)\n",
1104 onoff(state), onoff(cur_state));
1107 /* XXX: the dsi pll is shared between MIPI DSI ports */
1108 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1110 u32 val;
1111 bool cur_state;
1113 mutex_lock(&dev_priv->sb_lock);
1114 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1115 mutex_unlock(&dev_priv->sb_lock);
1117 cur_state = val & DSI_PLL_VCO_EN;
1118 I915_STATE_WARN(cur_state != state,
1119 "DSI PLL state assertion failure (expected %s, current %s)\n",
1120 onoff(state), onoff(cur_state));
1123 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1124 enum pipe pipe, bool state)
1126 bool cur_state;
1127 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128 pipe);
1130 if (HAS_DDI(dev_priv)) {
1131 /* DDI does not have a specific FDI_TX register */
1132 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1133 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1134 } else {
1135 u32 val = I915_READ(FDI_TX_CTL(pipe));
1136 cur_state = !!(val & FDI_TX_ENABLE);
1138 I915_STATE_WARN(cur_state != state,
1139 "FDI TX state assertion failure (expected %s, current %s)\n",
1140 onoff(state), onoff(cur_state));
1142 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1145 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146 enum pipe pipe, bool state)
1148 u32 val;
1149 bool cur_state;
1151 val = I915_READ(FDI_RX_CTL(pipe));
1152 cur_state = !!(val & FDI_RX_ENABLE);
1153 I915_STATE_WARN(cur_state != state,
1154 "FDI RX state assertion failure (expected %s, current %s)\n",
1155 onoff(state), onoff(cur_state));
1157 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1158 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1160 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1161 enum pipe pipe)
1163 u32 val;
1165 /* ILK FDI PLL is always enabled */
1166 if (IS_GEN5(dev_priv))
1167 return;
1169 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1170 if (HAS_DDI(dev_priv))
1171 return;
1173 val = I915_READ(FDI_TX_CTL(pipe));
1174 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1177 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178 enum pipe pipe, bool state)
1180 u32 val;
1181 bool cur_state;
1183 val = I915_READ(FDI_RX_CTL(pipe));
1184 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1185 I915_STATE_WARN(cur_state != state,
1186 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1187 onoff(state), onoff(cur_state));
1190 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1192 i915_reg_t pp_reg;
1193 u32 val;
1194 enum pipe panel_pipe = PIPE_A;
1195 bool locked = true;
1197 if (WARN_ON(HAS_DDI(dev_priv)))
1198 return;
1200 if (HAS_PCH_SPLIT(dev_priv)) {
1201 u32 port_sel;
1203 pp_reg = PP_CONTROL(0);
1204 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1206 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1207 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1208 panel_pipe = PIPE_B;
1209 /* XXX: else fix for eDP */
1210 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1211 /* presumably write lock depends on pipe, not port select */
1212 pp_reg = PP_CONTROL(pipe);
1213 panel_pipe = pipe;
1214 } else {
1215 pp_reg = PP_CONTROL(0);
1216 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1217 panel_pipe = PIPE_B;
1220 val = I915_READ(pp_reg);
1221 if (!(val & PANEL_POWER_ON) ||
1222 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1223 locked = false;
1225 I915_STATE_WARN(panel_pipe == pipe && locked,
1226 "panel assertion failure, pipe %c regs locked\n",
1227 pipe_name(pipe));
1230 static void assert_cursor(struct drm_i915_private *dev_priv,
1231 enum pipe pipe, bool state)
1233 bool cur_state;
1235 if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
1236 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1237 else
1238 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1240 I915_STATE_WARN(cur_state != state,
1241 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1242 pipe_name(pipe), onoff(state), onoff(cur_state));
1244 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1245 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1247 void assert_pipe(struct drm_i915_private *dev_priv,
1248 enum pipe pipe, bool state)
1250 bool cur_state;
1251 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1252 pipe);
1253 enum intel_display_power_domain power_domain;
1255 /* if we need the pipe quirk it must be always on */
1256 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1257 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1258 state = true;
1260 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1261 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1262 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1263 cur_state = !!(val & PIPECONF_ENABLE);
1265 intel_display_power_put(dev_priv, power_domain);
1266 } else {
1267 cur_state = false;
1270 I915_STATE_WARN(cur_state != state,
1271 "pipe %c assertion failure (expected %s, current %s)\n",
1272 pipe_name(pipe), onoff(state), onoff(cur_state));
1275 static void assert_plane(struct drm_i915_private *dev_priv,
1276 enum plane plane, bool state)
1278 u32 val;
1279 bool cur_state;
1281 val = I915_READ(DSPCNTR(plane));
1282 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1283 I915_STATE_WARN(cur_state != state,
1284 "plane %c assertion failure (expected %s, current %s)\n",
1285 plane_name(plane), onoff(state), onoff(cur_state));
1288 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1289 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1291 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1292 enum pipe pipe)
1294 int i;
1296 /* Primary planes are fixed to pipes on gen4+ */
1297 if (INTEL_GEN(dev_priv) >= 4) {
1298 u32 val = I915_READ(DSPCNTR(pipe));
1299 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1300 "plane %c assertion failure, should be disabled but not\n",
1301 plane_name(pipe));
1302 return;
1305 /* Need to check both planes against the pipe */
1306 for_each_pipe(dev_priv, i) {
1307 u32 val = I915_READ(DSPCNTR(i));
1308 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1309 DISPPLANE_SEL_PIPE_SHIFT;
1310 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1311 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1312 plane_name(i), pipe_name(pipe));
1316 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1317 enum pipe pipe)
1319 int sprite;
1321 if (INTEL_GEN(dev_priv) >= 9) {
1322 for_each_sprite(dev_priv, pipe, sprite) {
1323 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1324 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1325 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1326 sprite, pipe_name(pipe));
1328 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1329 for_each_sprite(dev_priv, pipe, sprite) {
1330 u32 val = I915_READ(SPCNTR(pipe, PLANE_SPRITE0 + sprite));
1331 I915_STATE_WARN(val & SP_ENABLE,
1332 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1333 sprite_name(pipe, sprite), pipe_name(pipe));
1335 } else if (INTEL_GEN(dev_priv) >= 7) {
1336 u32 val = I915_READ(SPRCTL(pipe));
1337 I915_STATE_WARN(val & SPRITE_ENABLE,
1338 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1339 plane_name(pipe), pipe_name(pipe));
1340 } else if (INTEL_GEN(dev_priv) >= 5) {
1341 u32 val = I915_READ(DVSCNTR(pipe));
1342 I915_STATE_WARN(val & DVS_ENABLE,
1343 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1344 plane_name(pipe), pipe_name(pipe));
1348 static void assert_vblank_disabled(struct drm_crtc *crtc)
1350 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1351 drm_crtc_vblank_put(crtc);
1354 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1355 enum pipe pipe)
1357 u32 val;
1358 bool enabled;
1360 val = I915_READ(PCH_TRANSCONF(pipe));
1361 enabled = !!(val & TRANS_ENABLE);
1362 I915_STATE_WARN(enabled,
1363 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1364 pipe_name(pipe));
1367 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1368 enum pipe pipe, u32 port_sel, u32 val)
1370 if ((val & DP_PORT_EN) == 0)
1371 return false;
1373 if (HAS_PCH_CPT(dev_priv)) {
1374 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1375 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1376 return false;
1377 } else if (IS_CHERRYVIEW(dev_priv)) {
1378 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1379 return false;
1380 } else {
1381 if ((val & DP_PIPE_MASK) != (pipe << 30))
1382 return false;
1384 return true;
1387 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1388 enum pipe pipe, u32 val)
1390 if ((val & SDVO_ENABLE) == 0)
1391 return false;
1393 if (HAS_PCH_CPT(dev_priv)) {
1394 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1395 return false;
1396 } else if (IS_CHERRYVIEW(dev_priv)) {
1397 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1398 return false;
1399 } else {
1400 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1401 return false;
1403 return true;
1406 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1407 enum pipe pipe, u32 val)
1409 if ((val & LVDS_PORT_EN) == 0)
1410 return false;
1412 if (HAS_PCH_CPT(dev_priv)) {
1413 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1414 return false;
1415 } else {
1416 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1417 return false;
1419 return true;
1422 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1423 enum pipe pipe, u32 val)
1425 if ((val & ADPA_DAC_ENABLE) == 0)
1426 return false;
1427 if (HAS_PCH_CPT(dev_priv)) {
1428 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1429 return false;
1430 } else {
1431 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1432 return false;
1434 return true;
1437 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1438 enum pipe pipe, i915_reg_t reg,
1439 u32 port_sel)
1441 u32 val = I915_READ(reg);
1442 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1443 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1444 i915_mmio_reg_offset(reg), pipe_name(pipe));
1446 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1447 && (val & DP_PIPEB_SELECT),
1448 "IBX PCH dp port still using transcoder B\n");
1451 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1452 enum pipe pipe, i915_reg_t reg)
1454 u32 val = I915_READ(reg);
1455 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1456 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1457 i915_mmio_reg_offset(reg), pipe_name(pipe));
1459 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1460 && (val & SDVO_PIPE_B_SELECT),
1461 "IBX PCH hdmi port still using transcoder B\n");
1464 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1465 enum pipe pipe)
1467 u32 val;
1469 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1470 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1471 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1473 val = I915_READ(PCH_ADPA);
1474 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1475 "PCH VGA enabled on transcoder %c, should be disabled\n",
1476 pipe_name(pipe));
1478 val = I915_READ(PCH_LVDS);
1479 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1480 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1481 pipe_name(pipe));
1483 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1484 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1485 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1488 static void _vlv_enable_pll(struct intel_crtc *crtc,
1489 const struct intel_crtc_state *pipe_config)
1491 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1492 enum pipe pipe = crtc->pipe;
1494 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1495 POSTING_READ(DPLL(pipe));
1496 udelay(150);
1498 if (intel_wait_for_register(dev_priv,
1499 DPLL(pipe),
1500 DPLL_LOCK_VLV,
1501 DPLL_LOCK_VLV,
1503 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1506 static void vlv_enable_pll(struct intel_crtc *crtc,
1507 const struct intel_crtc_state *pipe_config)
1509 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1510 enum pipe pipe = crtc->pipe;
1512 assert_pipe_disabled(dev_priv, pipe);
1514 /* PLL is protected by panel, make sure we can write it */
1515 assert_panel_unlocked(dev_priv, pipe);
1517 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1518 _vlv_enable_pll(crtc, pipe_config);
1520 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1521 POSTING_READ(DPLL_MD(pipe));
1525 static void _chv_enable_pll(struct intel_crtc *crtc,
1526 const struct intel_crtc_state *pipe_config)
1528 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1529 enum pipe pipe = crtc->pipe;
1530 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1531 u32 tmp;
1533 mutex_lock(&dev_priv->sb_lock);
1535 /* Enable back the 10bit clock to display controller */
1536 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1537 tmp |= DPIO_DCLKP_EN;
1538 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1540 mutex_unlock(&dev_priv->sb_lock);
1543 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1545 udelay(1);
1547 /* Enable PLL */
1548 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1550 /* Check PLL is locked */
1551 if (intel_wait_for_register(dev_priv,
1552 DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1554 DRM_ERROR("PLL %d failed to lock\n", pipe);
1557 static void chv_enable_pll(struct intel_crtc *crtc,
1558 const struct intel_crtc_state *pipe_config)
1560 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1561 enum pipe pipe = crtc->pipe;
1563 assert_pipe_disabled(dev_priv, pipe);
1565 /* PLL is protected by panel, make sure we can write it */
1566 assert_panel_unlocked(dev_priv, pipe);
1568 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1569 _chv_enable_pll(crtc, pipe_config);
1571 if (pipe != PIPE_A) {
1573 * WaPixelRepeatModeFixForC0:chv
1575 * DPLLCMD is AWOL. Use chicken bits to propagate
1576 * the value from DPLLBMD to either pipe B or C.
1578 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1579 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1580 I915_WRITE(CBR4_VLV, 0);
1581 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1584 * DPLLB VGA mode also seems to cause problems.
1585 * We should always have it disabled.
1587 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1588 } else {
1589 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1590 POSTING_READ(DPLL_MD(pipe));
1594 static int intel_num_dvo_pipes(struct drm_i915_private *dev_priv)
1596 struct intel_crtc *crtc;
1597 int count = 0;
1599 for_each_intel_crtc(&dev_priv->drm, crtc) {
1600 count += crtc->base.state->active &&
1601 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1604 return count;
1607 static void i9xx_enable_pll(struct intel_crtc *crtc)
1609 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1610 i915_reg_t reg = DPLL(crtc->pipe);
1611 u32 dpll = crtc->config->dpll_hw_state.dpll;
1613 assert_pipe_disabled(dev_priv, crtc->pipe);
1615 /* PLL is protected by panel, make sure we can write it */
1616 if (IS_MOBILE(dev_priv) && !IS_I830(dev_priv))
1617 assert_panel_unlocked(dev_priv, crtc->pipe);
1619 /* Enable DVO 2x clock on both PLLs if necessary */
1620 if (IS_I830(dev_priv) && intel_num_dvo_pipes(dev_priv) > 0) {
1622 * It appears to be important that we don't enable this
1623 * for the current pipe before otherwise configuring the
1624 * PLL. No idea how this should be handled if multiple
1625 * DVO outputs are enabled simultaneosly.
1627 dpll |= DPLL_DVO_2X_MODE;
1628 I915_WRITE(DPLL(!crtc->pipe),
1629 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1633 * Apparently we need to have VGA mode enabled prior to changing
1634 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1635 * dividers, even though the register value does change.
1637 I915_WRITE(reg, 0);
1639 I915_WRITE(reg, dpll);
1641 /* Wait for the clocks to stabilize. */
1642 POSTING_READ(reg);
1643 udelay(150);
1645 if (INTEL_GEN(dev_priv) >= 4) {
1646 I915_WRITE(DPLL_MD(crtc->pipe),
1647 crtc->config->dpll_hw_state.dpll_md);
1648 } else {
1649 /* The pixel multiplier can only be updated once the
1650 * DPLL is enabled and the clocks are stable.
1652 * So write it again.
1654 I915_WRITE(reg, dpll);
1657 /* We do this three times for luck */
1658 I915_WRITE(reg, dpll);
1659 POSTING_READ(reg);
1660 udelay(150); /* wait for warmup */
1661 I915_WRITE(reg, dpll);
1662 POSTING_READ(reg);
1663 udelay(150); /* wait for warmup */
1664 I915_WRITE(reg, dpll);
1665 POSTING_READ(reg);
1666 udelay(150); /* wait for warmup */
1670 * i9xx_disable_pll - disable a PLL
1671 * @dev_priv: i915 private structure
1672 * @pipe: pipe PLL to disable
1674 * Disable the PLL for @pipe, making sure the pipe is off first.
1676 * Note! This is for pre-ILK only.
1678 static void i9xx_disable_pll(struct intel_crtc *crtc)
1680 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1681 enum pipe pipe = crtc->pipe;
1683 /* Disable DVO 2x clock on both PLLs if necessary */
1684 if (IS_I830(dev_priv) &&
1685 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1686 !intel_num_dvo_pipes(dev_priv)) {
1687 I915_WRITE(DPLL(PIPE_B),
1688 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1689 I915_WRITE(DPLL(PIPE_A),
1690 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1693 /* Don't disable pipe or pipe PLLs if needed */
1694 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1695 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1696 return;
1698 /* Make sure the pipe isn't still relying on us */
1699 assert_pipe_disabled(dev_priv, pipe);
1701 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1702 POSTING_READ(DPLL(pipe));
1705 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1707 u32 val;
1709 /* Make sure the pipe isn't still relying on us */
1710 assert_pipe_disabled(dev_priv, pipe);
1712 val = DPLL_INTEGRATED_REF_CLK_VLV |
1713 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1714 if (pipe != PIPE_A)
1715 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1717 I915_WRITE(DPLL(pipe), val);
1718 POSTING_READ(DPLL(pipe));
1721 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1723 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1724 u32 val;
1726 /* Make sure the pipe isn't still relying on us */
1727 assert_pipe_disabled(dev_priv, pipe);
1729 val = DPLL_SSC_REF_CLK_CHV |
1730 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1731 if (pipe != PIPE_A)
1732 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1734 I915_WRITE(DPLL(pipe), val);
1735 POSTING_READ(DPLL(pipe));
1737 mutex_lock(&dev_priv->sb_lock);
1739 /* Disable 10bit clock to display controller */
1740 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1741 val &= ~DPIO_DCLKP_EN;
1742 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1744 mutex_unlock(&dev_priv->sb_lock);
1747 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1748 struct intel_digital_port *dport,
1749 unsigned int expected_mask)
1751 u32 port_mask;
1752 i915_reg_t dpll_reg;
1754 switch (dport->port) {
1755 case PORT_B:
1756 port_mask = DPLL_PORTB_READY_MASK;
1757 dpll_reg = DPLL(0);
1758 break;
1759 case PORT_C:
1760 port_mask = DPLL_PORTC_READY_MASK;
1761 dpll_reg = DPLL(0);
1762 expected_mask <<= 4;
1763 break;
1764 case PORT_D:
1765 port_mask = DPLL_PORTD_READY_MASK;
1766 dpll_reg = DPIO_PHY_STATUS;
1767 break;
1768 default:
1769 BUG();
1772 if (intel_wait_for_register(dev_priv,
1773 dpll_reg, port_mask, expected_mask,
1774 1000))
1775 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1776 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1779 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1780 enum pipe pipe)
1782 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1783 pipe);
1784 i915_reg_t reg;
1785 uint32_t val, pipeconf_val;
1787 /* Make sure PCH DPLL is enabled */
1788 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1790 /* FDI must be feeding us bits for PCH ports */
1791 assert_fdi_tx_enabled(dev_priv, pipe);
1792 assert_fdi_rx_enabled(dev_priv, pipe);
1794 if (HAS_PCH_CPT(dev_priv)) {
1795 /* Workaround: Set the timing override bit before enabling the
1796 * pch transcoder. */
1797 reg = TRANS_CHICKEN2(pipe);
1798 val = I915_READ(reg);
1799 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1800 I915_WRITE(reg, val);
1803 reg = PCH_TRANSCONF(pipe);
1804 val = I915_READ(reg);
1805 pipeconf_val = I915_READ(PIPECONF(pipe));
1807 if (HAS_PCH_IBX(dev_priv)) {
1809 * Make the BPC in transcoder be consistent with
1810 * that in pipeconf reg. For HDMI we must use 8bpc
1811 * here for both 8bpc and 12bpc.
1813 val &= ~PIPECONF_BPC_MASK;
1814 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1815 val |= PIPECONF_8BPC;
1816 else
1817 val |= pipeconf_val & PIPECONF_BPC_MASK;
1820 val &= ~TRANS_INTERLACE_MASK;
1821 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1822 if (HAS_PCH_IBX(dev_priv) &&
1823 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1824 val |= TRANS_LEGACY_INTERLACED_ILK;
1825 else
1826 val |= TRANS_INTERLACED;
1827 else
1828 val |= TRANS_PROGRESSIVE;
1830 I915_WRITE(reg, val | TRANS_ENABLE);
1831 if (intel_wait_for_register(dev_priv,
1832 reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1833 100))
1834 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1837 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1838 enum transcoder cpu_transcoder)
1840 u32 val, pipeconf_val;
1842 /* FDI must be feeding us bits for PCH ports */
1843 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1844 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1846 /* Workaround: set timing override bit. */
1847 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1848 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1849 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1851 val = TRANS_ENABLE;
1852 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1854 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1855 PIPECONF_INTERLACED_ILK)
1856 val |= TRANS_INTERLACED;
1857 else
1858 val |= TRANS_PROGRESSIVE;
1860 I915_WRITE(LPT_TRANSCONF, val);
1861 if (intel_wait_for_register(dev_priv,
1862 LPT_TRANSCONF,
1863 TRANS_STATE_ENABLE,
1864 TRANS_STATE_ENABLE,
1865 100))
1866 DRM_ERROR("Failed to enable PCH transcoder\n");
1869 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1870 enum pipe pipe)
1872 i915_reg_t reg;
1873 uint32_t val;
1875 /* FDI relies on the transcoder */
1876 assert_fdi_tx_disabled(dev_priv, pipe);
1877 assert_fdi_rx_disabled(dev_priv, pipe);
1879 /* Ports must be off as well */
1880 assert_pch_ports_disabled(dev_priv, pipe);
1882 reg = PCH_TRANSCONF(pipe);
1883 val = I915_READ(reg);
1884 val &= ~TRANS_ENABLE;
1885 I915_WRITE(reg, val);
1886 /* wait for PCH transcoder off, transcoder state */
1887 if (intel_wait_for_register(dev_priv,
1888 reg, TRANS_STATE_ENABLE, 0,
1889 50))
1890 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1892 if (HAS_PCH_CPT(dev_priv)) {
1893 /* Workaround: Clear the timing override chicken bit again. */
1894 reg = TRANS_CHICKEN2(pipe);
1895 val = I915_READ(reg);
1896 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1897 I915_WRITE(reg, val);
1901 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1903 u32 val;
1905 val = I915_READ(LPT_TRANSCONF);
1906 val &= ~TRANS_ENABLE;
1907 I915_WRITE(LPT_TRANSCONF, val);
1908 /* wait for PCH transcoder off, transcoder state */
1909 if (intel_wait_for_register(dev_priv,
1910 LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1911 50))
1912 DRM_ERROR("Failed to disable PCH transcoder\n");
1914 /* Workaround: clear timing override bit. */
1915 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1916 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1917 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1920 enum transcoder intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1922 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1924 WARN_ON(!crtc->config->has_pch_encoder);
1926 if (HAS_PCH_LPT(dev_priv))
1927 return TRANSCODER_A;
1928 else
1929 return (enum transcoder) crtc->pipe;
1933 * intel_enable_pipe - enable a pipe, asserting requirements
1934 * @crtc: crtc responsible for the pipe
1936 * Enable @crtc's pipe, making sure that various hardware specific requirements
1937 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1939 static void intel_enable_pipe(struct intel_crtc *crtc)
1941 struct drm_device *dev = crtc->base.dev;
1942 struct drm_i915_private *dev_priv = to_i915(dev);
1943 enum pipe pipe = crtc->pipe;
1944 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1945 i915_reg_t reg;
1946 u32 val;
1948 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1950 assert_planes_disabled(dev_priv, pipe);
1951 assert_cursor_disabled(dev_priv, pipe);
1952 assert_sprites_disabled(dev_priv, pipe);
1955 * A pipe without a PLL won't actually be able to drive bits from
1956 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1957 * need the check.
1959 if (HAS_GMCH_DISPLAY(dev_priv)) {
1960 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1961 assert_dsi_pll_enabled(dev_priv);
1962 else
1963 assert_pll_enabled(dev_priv, pipe);
1964 } else {
1965 if (crtc->config->has_pch_encoder) {
1966 /* if driving the PCH, we need FDI enabled */
1967 assert_fdi_rx_pll_enabled(dev_priv,
1968 (enum pipe) intel_crtc_pch_transcoder(crtc));
1969 assert_fdi_tx_pll_enabled(dev_priv,
1970 (enum pipe) cpu_transcoder);
1972 /* FIXME: assert CPU port conditions for SNB+ */
1975 reg = PIPECONF(cpu_transcoder);
1976 val = I915_READ(reg);
1977 if (val & PIPECONF_ENABLE) {
1978 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1979 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1980 return;
1983 I915_WRITE(reg, val | PIPECONF_ENABLE);
1984 POSTING_READ(reg);
1987 * Until the pipe starts DSL will read as 0, which would cause
1988 * an apparent vblank timestamp jump, which messes up also the
1989 * frame count when it's derived from the timestamps. So let's
1990 * wait for the pipe to start properly before we call
1991 * drm_crtc_vblank_on()
1993 if (dev->max_vblank_count == 0 &&
1994 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1995 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1999 * intel_disable_pipe - disable a pipe, asserting requirements
2000 * @crtc: crtc whose pipes is to be disabled
2002 * Disable the pipe of @crtc, making sure that various hardware
2003 * specific requirements are met, if applicable, e.g. plane
2004 * disabled, panel fitter off, etc.
2006 * Will wait until the pipe has shut down before returning.
2008 static void intel_disable_pipe(struct intel_crtc *crtc)
2010 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2011 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2012 enum pipe pipe = crtc->pipe;
2013 i915_reg_t reg;
2014 u32 val;
2016 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2019 * Make sure planes won't keep trying to pump pixels to us,
2020 * or we might hang the display.
2022 assert_planes_disabled(dev_priv, pipe);
2023 assert_cursor_disabled(dev_priv, pipe);
2024 assert_sprites_disabled(dev_priv, pipe);
2026 reg = PIPECONF(cpu_transcoder);
2027 val = I915_READ(reg);
2028 if ((val & PIPECONF_ENABLE) == 0)
2029 return;
2032 * Double wide has implications for planes
2033 * so best keep it disabled when not needed.
2035 if (crtc->config->double_wide)
2036 val &= ~PIPECONF_DOUBLE_WIDE;
2038 /* Don't disable pipe or pipe PLLs if needed */
2039 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2040 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2041 val &= ~PIPECONF_ENABLE;
2043 I915_WRITE(reg, val);
2044 if ((val & PIPECONF_ENABLE) == 0)
2045 intel_wait_for_pipe_off(crtc);
2048 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2050 return IS_GEN2(dev_priv) ? 2048 : 4096;
2053 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2054 uint64_t fb_modifier, unsigned int cpp)
2056 switch (fb_modifier) {
2057 case DRM_FORMAT_MOD_NONE:
2058 return cpp;
2059 case I915_FORMAT_MOD_X_TILED:
2060 if (IS_GEN2(dev_priv))
2061 return 128;
2062 else
2063 return 512;
2064 case I915_FORMAT_MOD_Y_TILED:
2065 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2066 return 128;
2067 else
2068 return 512;
2069 case I915_FORMAT_MOD_Yf_TILED:
2070 switch (cpp) {
2071 case 1:
2072 return 64;
2073 case 2:
2074 case 4:
2075 return 128;
2076 case 8:
2077 case 16:
2078 return 256;
2079 default:
2080 MISSING_CASE(cpp);
2081 return cpp;
2083 break;
2084 default:
2085 MISSING_CASE(fb_modifier);
2086 return cpp;
2090 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2091 uint64_t fb_modifier, unsigned int cpp)
2093 if (fb_modifier == DRM_FORMAT_MOD_NONE)
2094 return 1;
2095 else
2096 return intel_tile_size(dev_priv) /
2097 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2100 /* Return the tile dimensions in pixel units */
2101 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2102 unsigned int *tile_width,
2103 unsigned int *tile_height,
2104 uint64_t fb_modifier,
2105 unsigned int cpp)
2107 unsigned int tile_width_bytes =
2108 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2110 *tile_width = tile_width_bytes / cpp;
2111 *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2114 unsigned int
2115 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2116 uint32_t pixel_format, uint64_t fb_modifier)
2118 unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2119 unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2121 return ALIGN(height, tile_height);
2124 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2126 unsigned int size = 0;
2127 int i;
2129 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2130 size += rot_info->plane[i].width * rot_info->plane[i].height;
2132 return size;
2135 static void
2136 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2137 const struct drm_framebuffer *fb,
2138 unsigned int rotation)
2140 view->type = I915_GGTT_VIEW_NORMAL;
2141 if (drm_rotation_90_or_270(rotation)) {
2142 view->type = I915_GGTT_VIEW_ROTATED;
2143 view->rotated = to_intel_framebuffer(fb)->rot_info;
2147 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2149 if (INTEL_INFO(dev_priv)->gen >= 9)
2150 return 256 * 1024;
2151 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2152 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2153 return 128 * 1024;
2154 else if (INTEL_INFO(dev_priv)->gen >= 4)
2155 return 4 * 1024;
2156 else
2157 return 0;
2160 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2161 uint64_t fb_modifier)
2163 switch (fb_modifier) {
2164 case DRM_FORMAT_MOD_NONE:
2165 return intel_linear_alignment(dev_priv);
2166 case I915_FORMAT_MOD_X_TILED:
2167 if (INTEL_INFO(dev_priv)->gen >= 9)
2168 return 256 * 1024;
2169 return 0;
2170 case I915_FORMAT_MOD_Y_TILED:
2171 case I915_FORMAT_MOD_Yf_TILED:
2172 return 1 * 1024 * 1024;
2173 default:
2174 MISSING_CASE(fb_modifier);
2175 return 0;
2179 struct i915_vma *
2180 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2182 struct drm_device *dev = fb->dev;
2183 struct drm_i915_private *dev_priv = to_i915(dev);
2184 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2185 struct i915_ggtt_view view;
2186 struct i915_vma *vma;
2187 u32 alignment;
2189 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2191 alignment = intel_surf_alignment(dev_priv, fb->modifier);
2193 intel_fill_fb_ggtt_view(&view, fb, rotation);
2195 /* Note that the w/a also requires 64 PTE of padding following the
2196 * bo. We currently fill all unused PTE with the shadow page and so
2197 * we should always have valid PTE following the scanout preventing
2198 * the VT-d warning.
2200 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2201 alignment = 256 * 1024;
2204 * Global gtt pte registers are special registers which actually forward
2205 * writes to a chunk of system memory. Which means that there is no risk
2206 * that the register values disappear as soon as we call
2207 * intel_runtime_pm_put(), so it is correct to wrap only the
2208 * pin/unpin/fence and not more.
2210 intel_runtime_pm_get(dev_priv);
2212 vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2213 if (IS_ERR(vma))
2214 goto err;
2216 if (i915_vma_is_map_and_fenceable(vma)) {
2217 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2218 * fence, whereas 965+ only requires a fence if using
2219 * framebuffer compression. For simplicity, we always, when
2220 * possible, install a fence as the cost is not that onerous.
2222 * If we fail to fence the tiled scanout, then either the
2223 * modeset will reject the change (which is highly unlikely as
2224 * the affected systems, all but one, do not have unmappable
2225 * space) or we will not be able to enable full powersaving
2226 * techniques (also likely not to apply due to various limits
2227 * FBC and the like impose on the size of the buffer, which
2228 * presumably we violated anyway with this unmappable buffer).
2229 * Anyway, it is presumably better to stumble onwards with
2230 * something and try to run the system in a "less than optimal"
2231 * mode that matches the user configuration.
2233 if (i915_vma_get_fence(vma) == 0)
2234 i915_vma_pin_fence(vma);
2237 i915_vma_get(vma);
2238 err:
2239 intel_runtime_pm_put(dev_priv);
2240 return vma;
2243 void intel_unpin_fb_vma(struct i915_vma *vma)
2245 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
2247 i915_vma_unpin_fence(vma);
2248 i915_gem_object_unpin_from_display_plane(vma);
2249 i915_vma_put(vma);
2252 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2253 unsigned int rotation)
2255 if (drm_rotation_90_or_270(rotation))
2256 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2257 else
2258 return fb->pitches[plane];
2262 * Convert the x/y offsets into a linear offset.
2263 * Only valid with 0/180 degree rotation, which is fine since linear
2264 * offset is only used with linear buffers on pre-hsw and tiled buffers
2265 * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2267 u32 intel_fb_xy_to_linear(int x, int y,
2268 const struct intel_plane_state *state,
2269 int plane)
2271 const struct drm_framebuffer *fb = state->base.fb;
2272 unsigned int cpp = fb->format->cpp[plane];
2273 unsigned int pitch = fb->pitches[plane];
2275 return y * pitch + x * cpp;
2279 * Add the x/y offsets derived from fb->offsets[] to the user
2280 * specified plane src x/y offsets. The resulting x/y offsets
2281 * specify the start of scanout from the beginning of the gtt mapping.
2283 void intel_add_fb_offsets(int *x, int *y,
2284 const struct intel_plane_state *state,
2285 int plane)
2288 const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2289 unsigned int rotation = state->base.rotation;
2291 if (drm_rotation_90_or_270(rotation)) {
2292 *x += intel_fb->rotated[plane].x;
2293 *y += intel_fb->rotated[plane].y;
2294 } else {
2295 *x += intel_fb->normal[plane].x;
2296 *y += intel_fb->normal[plane].y;
2301 * Input tile dimensions and pitch must already be
2302 * rotated to match x and y, and in pixel units.
2304 static u32 _intel_adjust_tile_offset(int *x, int *y,
2305 unsigned int tile_width,
2306 unsigned int tile_height,
2307 unsigned int tile_size,
2308 unsigned int pitch_tiles,
2309 u32 old_offset,
2310 u32 new_offset)
2312 unsigned int pitch_pixels = pitch_tiles * tile_width;
2313 unsigned int tiles;
2315 WARN_ON(old_offset & (tile_size - 1));
2316 WARN_ON(new_offset & (tile_size - 1));
2317 WARN_ON(new_offset > old_offset);
2319 tiles = (old_offset - new_offset) / tile_size;
2321 *y += tiles / pitch_tiles * tile_height;
2322 *x += tiles % pitch_tiles * tile_width;
2324 /* minimize x in case it got needlessly big */
2325 *y += *x / pitch_pixels * tile_height;
2326 *x %= pitch_pixels;
2328 return new_offset;
2332 * Adjust the tile offset by moving the difference into
2333 * the x/y offsets.
2335 static u32 intel_adjust_tile_offset(int *x, int *y,
2336 const struct intel_plane_state *state, int plane,
2337 u32 old_offset, u32 new_offset)
2339 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2340 const struct drm_framebuffer *fb = state->base.fb;
2341 unsigned int cpp = fb->format->cpp[plane];
2342 unsigned int rotation = state->base.rotation;
2343 unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2345 WARN_ON(new_offset > old_offset);
2347 if (fb->modifier != DRM_FORMAT_MOD_NONE) {
2348 unsigned int tile_size, tile_width, tile_height;
2349 unsigned int pitch_tiles;
2351 tile_size = intel_tile_size(dev_priv);
2352 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2353 fb->modifier, cpp);
2355 if (drm_rotation_90_or_270(rotation)) {
2356 pitch_tiles = pitch / tile_height;
2357 swap(tile_width, tile_height);
2358 } else {
2359 pitch_tiles = pitch / (tile_width * cpp);
2362 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2363 tile_size, pitch_tiles,
2364 old_offset, new_offset);
2365 } else {
2366 old_offset += *y * pitch + *x * cpp;
2368 *y = (old_offset - new_offset) / pitch;
2369 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2372 return new_offset;
2376 * Computes the linear offset to the base tile and adjusts
2377 * x, y. bytes per pixel is assumed to be a power-of-two.
2379 * In the 90/270 rotated case, x and y are assumed
2380 * to be already rotated to match the rotated GTT view, and
2381 * pitch is the tile_height aligned framebuffer height.
2383 * This function is used when computing the derived information
2384 * under intel_framebuffer, so using any of that information
2385 * here is not allowed. Anything under drm_framebuffer can be
2386 * used. This is why the user has to pass in the pitch since it
2387 * is specified in the rotated orientation.
2389 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2390 int *x, int *y,
2391 const struct drm_framebuffer *fb, int plane,
2392 unsigned int pitch,
2393 unsigned int rotation,
2394 u32 alignment)
2396 uint64_t fb_modifier = fb->modifier;
2397 unsigned int cpp = fb->format->cpp[plane];
2398 u32 offset, offset_aligned;
2400 if (alignment)
2401 alignment--;
2403 if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2404 unsigned int tile_size, tile_width, tile_height;
2405 unsigned int tile_rows, tiles, pitch_tiles;
2407 tile_size = intel_tile_size(dev_priv);
2408 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2409 fb_modifier, cpp);
2411 if (drm_rotation_90_or_270(rotation)) {
2412 pitch_tiles = pitch / tile_height;
2413 swap(tile_width, tile_height);
2414 } else {
2415 pitch_tiles = pitch / (tile_width * cpp);
2418 tile_rows = *y / tile_height;
2419 *y %= tile_height;
2421 tiles = *x / tile_width;
2422 *x %= tile_width;
2424 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2425 offset_aligned = offset & ~alignment;
2427 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2428 tile_size, pitch_tiles,
2429 offset, offset_aligned);
2430 } else {
2431 offset = *y * pitch + *x * cpp;
2432 offset_aligned = offset & ~alignment;
2434 *y = (offset & alignment) / pitch;
2435 *x = ((offset & alignment) - *y * pitch) / cpp;
2438 return offset_aligned;
2441 u32 intel_compute_tile_offset(int *x, int *y,
2442 const struct intel_plane_state *state,
2443 int plane)
2445 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2446 const struct drm_framebuffer *fb = state->base.fb;
2447 unsigned int rotation = state->base.rotation;
2448 int pitch = intel_fb_pitch(fb, plane, rotation);
2449 u32 alignment;
2451 /* AUX_DIST needs only 4K alignment */
2452 if (fb->format->format == DRM_FORMAT_NV12 && plane == 1)
2453 alignment = 4096;
2454 else
2455 alignment = intel_surf_alignment(dev_priv, fb->modifier);
2457 return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2458 rotation, alignment);
2461 /* Convert the fb->offset[] linear offset into x/y offsets */
2462 static void intel_fb_offset_to_xy(int *x, int *y,
2463 const struct drm_framebuffer *fb, int plane)
2465 unsigned int cpp = fb->format->cpp[plane];
2466 unsigned int pitch = fb->pitches[plane];
2467 u32 linear_offset = fb->offsets[plane];
2469 *y = linear_offset / pitch;
2470 *x = linear_offset % pitch / cpp;
2473 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2475 switch (fb_modifier) {
2476 case I915_FORMAT_MOD_X_TILED:
2477 return I915_TILING_X;
2478 case I915_FORMAT_MOD_Y_TILED:
2479 return I915_TILING_Y;
2480 default:
2481 return I915_TILING_NONE;
2485 static int
2486 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2487 struct drm_framebuffer *fb)
2489 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2490 struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2491 u32 gtt_offset_rotated = 0;
2492 unsigned int max_size = 0;
2493 int i, num_planes = fb->format->num_planes;
2494 unsigned int tile_size = intel_tile_size(dev_priv);
2496 for (i = 0; i < num_planes; i++) {
2497 unsigned int width, height;
2498 unsigned int cpp, size;
2499 u32 offset;
2500 int x, y;
2502 cpp = fb->format->cpp[i];
2503 width = drm_framebuffer_plane_width(fb->width, fb, i);
2504 height = drm_framebuffer_plane_height(fb->height, fb, i);
2506 intel_fb_offset_to_xy(&x, &y, fb, i);
2509 * The fence (if used) is aligned to the start of the object
2510 * so having the framebuffer wrap around across the edge of the
2511 * fenced region doesn't really work. We have no API to configure
2512 * the fence start offset within the object (nor could we probably
2513 * on gen2/3). So it's just easier if we just require that the
2514 * fb layout agrees with the fence layout. We already check that the
2515 * fb stride matches the fence stride elsewhere.
2517 if (i915_gem_object_is_tiled(intel_fb->obj) &&
2518 (x + width) * cpp > fb->pitches[i]) {
2519 DRM_DEBUG("bad fb plane %d offset: 0x%x\n",
2520 i, fb->offsets[i]);
2521 return -EINVAL;
2525 * First pixel of the framebuffer from
2526 * the start of the normal gtt mapping.
2528 intel_fb->normal[i].x = x;
2529 intel_fb->normal[i].y = y;
2531 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2532 fb, 0, fb->pitches[i],
2533 DRM_ROTATE_0, tile_size);
2534 offset /= tile_size;
2536 if (fb->modifier != DRM_FORMAT_MOD_NONE) {
2537 unsigned int tile_width, tile_height;
2538 unsigned int pitch_tiles;
2539 struct drm_rect r;
2541 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2542 fb->modifier, cpp);
2544 rot_info->plane[i].offset = offset;
2545 rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2546 rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2547 rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2549 intel_fb->rotated[i].pitch =
2550 rot_info->plane[i].height * tile_height;
2552 /* how many tiles does this plane need */
2553 size = rot_info->plane[i].stride * rot_info->plane[i].height;
2555 * If the plane isn't horizontally tile aligned,
2556 * we need one more tile.
2558 if (x != 0)
2559 size++;
2561 /* rotate the x/y offsets to match the GTT view */
2562 r.x1 = x;
2563 r.y1 = y;
2564 r.x2 = x + width;
2565 r.y2 = y + height;
2566 drm_rect_rotate(&r,
2567 rot_info->plane[i].width * tile_width,
2568 rot_info->plane[i].height * tile_height,
2569 DRM_ROTATE_270);
2570 x = r.x1;
2571 y = r.y1;
2573 /* rotate the tile dimensions to match the GTT view */
2574 pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2575 swap(tile_width, tile_height);
2578 * We only keep the x/y offsets, so push all of the
2579 * gtt offset into the x/y offsets.
2581 _intel_adjust_tile_offset(&x, &y, tile_size,
2582 tile_width, tile_height, pitch_tiles,
2583 gtt_offset_rotated * tile_size, 0);
2585 gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2588 * First pixel of the framebuffer from
2589 * the start of the rotated gtt mapping.
2591 intel_fb->rotated[i].x = x;
2592 intel_fb->rotated[i].y = y;
2593 } else {
2594 size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2595 x * cpp, tile_size);
2598 /* how many tiles in total needed in the bo */
2599 max_size = max(max_size, offset + size);
2602 if (max_size * tile_size > to_intel_framebuffer(fb)->obj->base.size) {
2603 DRM_DEBUG("fb too big for bo (need %u bytes, have %zu bytes)\n",
2604 max_size * tile_size, to_intel_framebuffer(fb)->obj->base.size);
2605 return -EINVAL;
2608 return 0;
2611 static int i9xx_format_to_fourcc(int format)
2613 switch (format) {
2614 case DISPPLANE_8BPP:
2615 return DRM_FORMAT_C8;
2616 case DISPPLANE_BGRX555:
2617 return DRM_FORMAT_XRGB1555;
2618 case DISPPLANE_BGRX565:
2619 return DRM_FORMAT_RGB565;
2620 default:
2621 case DISPPLANE_BGRX888:
2622 return DRM_FORMAT_XRGB8888;
2623 case DISPPLANE_RGBX888:
2624 return DRM_FORMAT_XBGR8888;
2625 case DISPPLANE_BGRX101010:
2626 return DRM_FORMAT_XRGB2101010;
2627 case DISPPLANE_RGBX101010:
2628 return DRM_FORMAT_XBGR2101010;
2632 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2634 switch (format) {
2635 case PLANE_CTL_FORMAT_RGB_565:
2636 return DRM_FORMAT_RGB565;
2637 default:
2638 case PLANE_CTL_FORMAT_XRGB_8888:
2639 if (rgb_order) {
2640 if (alpha)
2641 return DRM_FORMAT_ABGR8888;
2642 else
2643 return DRM_FORMAT_XBGR8888;
2644 } else {
2645 if (alpha)
2646 return DRM_FORMAT_ARGB8888;
2647 else
2648 return DRM_FORMAT_XRGB8888;
2650 case PLANE_CTL_FORMAT_XRGB_2101010:
2651 if (rgb_order)
2652 return DRM_FORMAT_XBGR2101010;
2653 else
2654 return DRM_FORMAT_XRGB2101010;
2658 static bool
2659 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2660 struct intel_initial_plane_config *plane_config)
2662 struct drm_device *dev = crtc->base.dev;
2663 struct drm_i915_private *dev_priv = to_i915(dev);
2664 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2665 struct drm_i915_gem_object *obj = NULL;
2666 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2667 struct drm_framebuffer *fb = &plane_config->fb->base;
2668 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2669 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2670 PAGE_SIZE);
2672 size_aligned -= base_aligned;
2674 if (plane_config->size == 0)
2675 return false;
2677 /* If the FB is too big, just don't use it since fbdev is not very
2678 * important and we should probably use that space with FBC or other
2679 * features. */
2680 if (size_aligned * 2 > ggtt->stolen_usable_size)
2681 return false;
2683 mutex_lock(&dev->struct_mutex);
2685 obj = i915_gem_object_create_stolen_for_preallocated(dev_priv,
2686 base_aligned,
2687 base_aligned,
2688 size_aligned);
2689 if (!obj) {
2690 mutex_unlock(&dev->struct_mutex);
2691 return false;
2694 if (plane_config->tiling == I915_TILING_X)
2695 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2697 mode_cmd.pixel_format = fb->format->format;
2698 mode_cmd.width = fb->width;
2699 mode_cmd.height = fb->height;
2700 mode_cmd.pitches[0] = fb->pitches[0];
2701 mode_cmd.modifier[0] = fb->modifier;
2702 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2704 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2705 &mode_cmd, obj)) {
2706 DRM_DEBUG_KMS("intel fb init failed\n");
2707 goto out_unref_obj;
2710 mutex_unlock(&dev->struct_mutex);
2712 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2713 return true;
2715 out_unref_obj:
2716 i915_gem_object_put(obj);
2717 mutex_unlock(&dev->struct_mutex);
2718 return false;
2721 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2722 static void
2723 update_state_fb(struct drm_plane *plane)
2725 if (plane->fb == plane->state->fb)
2726 return;
2728 if (plane->state->fb)
2729 drm_framebuffer_unreference(plane->state->fb);
2730 plane->state->fb = plane->fb;
2731 if (plane->state->fb)
2732 drm_framebuffer_reference(plane->state->fb);
2735 static void
2736 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2737 struct intel_initial_plane_config *plane_config)
2739 struct drm_device *dev = intel_crtc->base.dev;
2740 struct drm_i915_private *dev_priv = to_i915(dev);
2741 struct drm_crtc *c;
2742 struct drm_i915_gem_object *obj;
2743 struct drm_plane *primary = intel_crtc->base.primary;
2744 struct drm_plane_state *plane_state = primary->state;
2745 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2746 struct intel_plane *intel_plane = to_intel_plane(primary);
2747 struct intel_plane_state *intel_state =
2748 to_intel_plane_state(plane_state);
2749 struct drm_framebuffer *fb;
2751 if (!plane_config->fb)
2752 return;
2754 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2755 fb = &plane_config->fb->base;
2756 goto valid_fb;
2759 kfree(plane_config->fb);
2762 * Failed to alloc the obj, check to see if we should share
2763 * an fb with another CRTC instead
2765 for_each_crtc(dev, c) {
2766 struct intel_plane_state *state;
2768 if (c == &intel_crtc->base)
2769 continue;
2771 if (!to_intel_crtc(c)->active)
2772 continue;
2774 state = to_intel_plane_state(c->primary->state);
2775 if (!state->vma)
2776 continue;
2778 if (intel_plane_ggtt_offset(state) == plane_config->base) {
2779 fb = c->primary->fb;
2780 drm_framebuffer_reference(fb);
2781 goto valid_fb;
2786 * We've failed to reconstruct the BIOS FB. Current display state
2787 * indicates that the primary plane is visible, but has a NULL FB,
2788 * which will lead to problems later if we don't fix it up. The
2789 * simplest solution is to just disable the primary plane now and
2790 * pretend the BIOS never had it enabled.
2792 plane_state->visible = false;
2793 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2794 intel_pre_disable_primary_noatomic(&intel_crtc->base);
2795 intel_plane->disable_plane(primary, &intel_crtc->base);
2797 return;
2799 valid_fb:
2800 mutex_lock(&dev->struct_mutex);
2801 intel_state->vma =
2802 intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
2803 mutex_unlock(&dev->struct_mutex);
2804 if (IS_ERR(intel_state->vma)) {
2805 DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
2806 intel_crtc->pipe, PTR_ERR(intel_state->vma));
2808 intel_state->vma = NULL;
2809 drm_framebuffer_unreference(fb);
2810 return;
2813 plane_state->src_x = 0;
2814 plane_state->src_y = 0;
2815 plane_state->src_w = fb->width << 16;
2816 plane_state->src_h = fb->height << 16;
2818 plane_state->crtc_x = 0;
2819 plane_state->crtc_y = 0;
2820 plane_state->crtc_w = fb->width;
2821 plane_state->crtc_h = fb->height;
2823 intel_state->base.src = drm_plane_state_src(plane_state);
2824 intel_state->base.dst = drm_plane_state_dest(plane_state);
2826 obj = intel_fb_obj(fb);
2827 if (i915_gem_object_is_tiled(obj))
2828 dev_priv->preserve_bios_swizzle = true;
2830 drm_framebuffer_reference(fb);
2831 primary->fb = primary->state->fb = fb;
2832 primary->crtc = primary->state->crtc = &intel_crtc->base;
2833 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2834 atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2835 &obj->frontbuffer_bits);
2838 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2839 unsigned int rotation)
2841 int cpp = fb->format->cpp[plane];
2843 switch (fb->modifier) {
2844 case DRM_FORMAT_MOD_NONE:
2845 case I915_FORMAT_MOD_X_TILED:
2846 switch (cpp) {
2847 case 8:
2848 return 4096;
2849 case 4:
2850 case 2:
2851 case 1:
2852 return 8192;
2853 default:
2854 MISSING_CASE(cpp);
2855 break;
2857 break;
2858 case I915_FORMAT_MOD_Y_TILED:
2859 case I915_FORMAT_MOD_Yf_TILED:
2860 switch (cpp) {
2861 case 8:
2862 return 2048;
2863 case 4:
2864 return 4096;
2865 case 2:
2866 case 1:
2867 return 8192;
2868 default:
2869 MISSING_CASE(cpp);
2870 break;
2872 break;
2873 default:
2874 MISSING_CASE(fb->modifier);
2877 return 2048;
2880 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2882 const struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev);
2883 const struct drm_framebuffer *fb = plane_state->base.fb;
2884 unsigned int rotation = plane_state->base.rotation;
2885 int x = plane_state->base.src.x1 >> 16;
2886 int y = plane_state->base.src.y1 >> 16;
2887 int w = drm_rect_width(&plane_state->base.src) >> 16;
2888 int h = drm_rect_height(&plane_state->base.src) >> 16;
2889 int max_width = skl_max_plane_width(fb, 0, rotation);
2890 int max_height = 4096;
2891 u32 alignment, offset, aux_offset = plane_state->aux.offset;
2893 if (w > max_width || h > max_height) {
2894 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2895 w, h, max_width, max_height);
2896 return -EINVAL;
2899 intel_add_fb_offsets(&x, &y, plane_state, 0);
2900 offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2902 alignment = intel_surf_alignment(dev_priv, fb->modifier);
2905 * AUX surface offset is specified as the distance from the
2906 * main surface offset, and it must be non-negative. Make
2907 * sure that is what we will get.
2909 if (offset > aux_offset)
2910 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2911 offset, aux_offset & ~(alignment - 1));
2914 * When using an X-tiled surface, the plane blows up
2915 * if the x offset + width exceed the stride.
2917 * TODO: linear and Y-tiled seem fine, Yf untested,
2919 if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
2920 int cpp = fb->format->cpp[0];
2922 while ((x + w) * cpp > fb->pitches[0]) {
2923 if (offset == 0) {
2924 DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2925 return -EINVAL;
2928 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2929 offset, offset - alignment);
2933 plane_state->main.offset = offset;
2934 plane_state->main.x = x;
2935 plane_state->main.y = y;
2937 return 0;
2940 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2942 const struct drm_framebuffer *fb = plane_state->base.fb;
2943 unsigned int rotation = plane_state->base.rotation;
2944 int max_width = skl_max_plane_width(fb, 1, rotation);
2945 int max_height = 4096;
2946 int x = plane_state->base.src.x1 >> 17;
2947 int y = plane_state->base.src.y1 >> 17;
2948 int w = drm_rect_width(&plane_state->base.src) >> 17;
2949 int h = drm_rect_height(&plane_state->base.src) >> 17;
2950 u32 offset;
2952 intel_add_fb_offsets(&x, &y, plane_state, 1);
2953 offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2955 /* FIXME not quite sure how/if these apply to the chroma plane */
2956 if (w > max_width || h > max_height) {
2957 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2958 w, h, max_width, max_height);
2959 return -EINVAL;
2962 plane_state->aux.offset = offset;
2963 plane_state->aux.x = x;
2964 plane_state->aux.y = y;
2966 return 0;
2969 int skl_check_plane_surface(struct intel_plane_state *plane_state)
2971 const struct drm_framebuffer *fb = plane_state->base.fb;
2972 unsigned int rotation = plane_state->base.rotation;
2973 int ret;
2975 if (!plane_state->base.visible)
2976 return 0;
2978 /* Rotate src coordinates to match rotated GTT view */
2979 if (drm_rotation_90_or_270(rotation))
2980 drm_rect_rotate(&plane_state->base.src,
2981 fb->width << 16, fb->height << 16,
2982 DRM_ROTATE_270);
2985 * Handle the AUX surface first since
2986 * the main surface setup depends on it.
2988 if (fb->format->format == DRM_FORMAT_NV12) {
2989 ret = skl_check_nv12_aux_surface(plane_state);
2990 if (ret)
2991 return ret;
2992 } else {
2993 plane_state->aux.offset = ~0xfff;
2994 plane_state->aux.x = 0;
2995 plane_state->aux.y = 0;
2998 ret = skl_check_main_surface(plane_state);
2999 if (ret)
3000 return ret;
3002 return 0;
3005 static void i9xx_update_primary_plane(struct drm_plane *primary,
3006 const struct intel_crtc_state *crtc_state,
3007 const struct intel_plane_state *plane_state)
3009 struct drm_i915_private *dev_priv = to_i915(primary->dev);
3010 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3011 struct drm_framebuffer *fb = plane_state->base.fb;
3012 int plane = intel_crtc->plane;
3013 u32 linear_offset;
3014 u32 dspcntr;
3015 i915_reg_t reg = DSPCNTR(plane);
3016 unsigned int rotation = plane_state->base.rotation;
3017 int x = plane_state->base.src.x1 >> 16;
3018 int y = plane_state->base.src.y1 >> 16;
3020 dspcntr = DISPPLANE_GAMMA_ENABLE;
3022 dspcntr |= DISPLAY_PLANE_ENABLE;
3024 if (INTEL_GEN(dev_priv) < 4) {
3025 if (intel_crtc->pipe == PIPE_B)
3026 dspcntr |= DISPPLANE_SEL_PIPE_B;
3028 /* pipesrc and dspsize control the size that is scaled from,
3029 * which should always be the user's requested size.
3031 I915_WRITE(DSPSIZE(plane),
3032 ((crtc_state->pipe_src_h - 1) << 16) |
3033 (crtc_state->pipe_src_w - 1));
3034 I915_WRITE(DSPPOS(plane), 0);
3035 } else if (IS_CHERRYVIEW(dev_priv) && plane == PLANE_B) {
3036 I915_WRITE(PRIMSIZE(plane),
3037 ((crtc_state->pipe_src_h - 1) << 16) |
3038 (crtc_state->pipe_src_w - 1));
3039 I915_WRITE(PRIMPOS(plane), 0);
3040 I915_WRITE(PRIMCNSTALPHA(plane), 0);
3043 switch (fb->format->format) {
3044 case DRM_FORMAT_C8:
3045 dspcntr |= DISPPLANE_8BPP;
3046 break;
3047 case DRM_FORMAT_XRGB1555:
3048 dspcntr |= DISPPLANE_BGRX555;
3049 break;
3050 case DRM_FORMAT_RGB565:
3051 dspcntr |= DISPPLANE_BGRX565;
3052 break;
3053 case DRM_FORMAT_XRGB8888:
3054 dspcntr |= DISPPLANE_BGRX888;
3055 break;
3056 case DRM_FORMAT_XBGR8888:
3057 dspcntr |= DISPPLANE_RGBX888;
3058 break;
3059 case DRM_FORMAT_XRGB2101010:
3060 dspcntr |= DISPPLANE_BGRX101010;
3061 break;
3062 case DRM_FORMAT_XBGR2101010:
3063 dspcntr |= DISPPLANE_RGBX101010;
3064 break;
3065 default:
3066 BUG();
3069 if (INTEL_GEN(dev_priv) >= 4 &&
3070 fb->modifier == I915_FORMAT_MOD_X_TILED)
3071 dspcntr |= DISPPLANE_TILED;
3073 if (rotation & DRM_ROTATE_180)
3074 dspcntr |= DISPPLANE_ROTATE_180;
3076 if (rotation & DRM_REFLECT_X)
3077 dspcntr |= DISPPLANE_MIRROR;
3079 if (IS_G4X(dev_priv))
3080 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3082 intel_add_fb_offsets(&x, &y, plane_state, 0);
3084 if (INTEL_GEN(dev_priv) >= 4)
3085 intel_crtc->dspaddr_offset =
3086 intel_compute_tile_offset(&x, &y, plane_state, 0);
3088 if (rotation & DRM_ROTATE_180) {
3089 x += crtc_state->pipe_src_w - 1;
3090 y += crtc_state->pipe_src_h - 1;
3091 } else if (rotation & DRM_REFLECT_X) {
3092 x += crtc_state->pipe_src_w - 1;
3095 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3097 if (INTEL_GEN(dev_priv) < 4)
3098 intel_crtc->dspaddr_offset = linear_offset;
3100 intel_crtc->adjusted_x = x;
3101 intel_crtc->adjusted_y = y;
3103 I915_WRITE(reg, dspcntr);
3105 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3106 if (INTEL_GEN(dev_priv) >= 4) {
3107 I915_WRITE(DSPSURF(plane),
3108 intel_plane_ggtt_offset(plane_state) +
3109 intel_crtc->dspaddr_offset);
3110 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3111 I915_WRITE(DSPLINOFF(plane), linear_offset);
3112 } else {
3113 I915_WRITE(DSPADDR(plane),
3114 intel_plane_ggtt_offset(plane_state) +
3115 intel_crtc->dspaddr_offset);
3117 POSTING_READ(reg);
3120 static void i9xx_disable_primary_plane(struct drm_plane *primary,
3121 struct drm_crtc *crtc)
3123 struct drm_device *dev = crtc->dev;
3124 struct drm_i915_private *dev_priv = to_i915(dev);
3125 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3126 int plane = intel_crtc->plane;
3128 I915_WRITE(DSPCNTR(plane), 0);
3129 if (INTEL_INFO(dev_priv)->gen >= 4)
3130 I915_WRITE(DSPSURF(plane), 0);
3131 else
3132 I915_WRITE(DSPADDR(plane), 0);
3133 POSTING_READ(DSPCNTR(plane));
3136 static void ironlake_update_primary_plane(struct drm_plane *primary,
3137 const struct intel_crtc_state *crtc_state,
3138 const struct intel_plane_state *plane_state)
3140 struct drm_device *dev = primary->dev;
3141 struct drm_i915_private *dev_priv = to_i915(dev);
3142 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3143 struct drm_framebuffer *fb = plane_state->base.fb;
3144 int plane = intel_crtc->plane;
3145 u32 linear_offset;
3146 u32 dspcntr;
3147 i915_reg_t reg = DSPCNTR(plane);
3148 unsigned int rotation = plane_state->base.rotation;
3149 int x = plane_state->base.src.x1 >> 16;
3150 int y = plane_state->base.src.y1 >> 16;
3152 dspcntr = DISPPLANE_GAMMA_ENABLE;
3153 dspcntr |= DISPLAY_PLANE_ENABLE;
3155 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3156 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3158 switch (fb->format->format) {
3159 case DRM_FORMAT_C8:
3160 dspcntr |= DISPPLANE_8BPP;
3161 break;
3162 case DRM_FORMAT_RGB565:
3163 dspcntr |= DISPPLANE_BGRX565;
3164 break;
3165 case DRM_FORMAT_XRGB8888:
3166 dspcntr |= DISPPLANE_BGRX888;
3167 break;
3168 case DRM_FORMAT_XBGR8888:
3169 dspcntr |= DISPPLANE_RGBX888;
3170 break;
3171 case DRM_FORMAT_XRGB2101010:
3172 dspcntr |= DISPPLANE_BGRX101010;
3173 break;
3174 case DRM_FORMAT_XBGR2101010:
3175 dspcntr |= DISPPLANE_RGBX101010;
3176 break;
3177 default:
3178 BUG();
3181 if (fb->modifier == I915_FORMAT_MOD_X_TILED)
3182 dspcntr |= DISPPLANE_TILED;
3184 if (rotation & DRM_ROTATE_180)
3185 dspcntr |= DISPPLANE_ROTATE_180;
3187 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv))
3188 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3190 intel_add_fb_offsets(&x, &y, plane_state, 0);
3192 intel_crtc->dspaddr_offset =
3193 intel_compute_tile_offset(&x, &y, plane_state, 0);
3195 /* HSW+ does this automagically in hardware */
3196 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv) &&
3197 rotation & DRM_ROTATE_180) {
3198 x += crtc_state->pipe_src_w - 1;
3199 y += crtc_state->pipe_src_h - 1;
3202 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3204 intel_crtc->adjusted_x = x;
3205 intel_crtc->adjusted_y = y;
3207 I915_WRITE(reg, dspcntr);
3209 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3210 I915_WRITE(DSPSURF(plane),
3211 intel_plane_ggtt_offset(plane_state) +
3212 intel_crtc->dspaddr_offset);
3213 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3214 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
3215 } else {
3216 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3217 I915_WRITE(DSPLINOFF(plane), linear_offset);
3219 POSTING_READ(reg);
3222 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
3223 uint64_t fb_modifier, uint32_t pixel_format)
3225 if (fb_modifier == DRM_FORMAT_MOD_NONE) {
3226 return 64;
3227 } else {
3228 int cpp = drm_format_plane_cpp(pixel_format, 0);
3230 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
3234 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3236 struct drm_device *dev = intel_crtc->base.dev;
3237 struct drm_i915_private *dev_priv = to_i915(dev);
3239 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3240 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3241 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3245 * This function detaches (aka. unbinds) unused scalers in hardware
3247 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3249 struct intel_crtc_scaler_state *scaler_state;
3250 int i;
3252 scaler_state = &intel_crtc->config->scaler_state;
3254 /* loop through and disable scalers that aren't in use */
3255 for (i = 0; i < intel_crtc->num_scalers; i++) {
3256 if (!scaler_state->scalers[i].in_use)
3257 skl_detach_scaler(intel_crtc, i);
3261 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3262 unsigned int rotation)
3264 const struct drm_i915_private *dev_priv = to_i915(fb->dev);
3265 u32 stride = intel_fb_pitch(fb, plane, rotation);
3268 * The stride is either expressed as a multiple of 64 bytes chunks for
3269 * linear buffers or in number of tiles for tiled buffers.
3271 if (drm_rotation_90_or_270(rotation)) {
3272 int cpp = fb->format->cpp[plane];
3274 stride /= intel_tile_height(dev_priv, fb->modifier, cpp);
3275 } else {
3276 stride /= intel_fb_stride_alignment(dev_priv, fb->modifier,
3277 fb->format->format);
3280 return stride;
3283 u32 skl_plane_ctl_format(uint32_t pixel_format)
3285 switch (pixel_format) {
3286 case DRM_FORMAT_C8:
3287 return PLANE_CTL_FORMAT_INDEXED;
3288 case DRM_FORMAT_RGB565:
3289 return PLANE_CTL_FORMAT_RGB_565;
3290 case DRM_FORMAT_XBGR8888:
3291 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3292 case DRM_FORMAT_XRGB8888:
3293 return PLANE_CTL_FORMAT_XRGB_8888;
3295 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3296 * to be already pre-multiplied. We need to add a knob (or a different
3297 * DRM_FORMAT) for user-space to configure that.
3299 case DRM_FORMAT_ABGR8888:
3300 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3301 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3302 case DRM_FORMAT_ARGB8888:
3303 return PLANE_CTL_FORMAT_XRGB_8888 |
3304 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3305 case DRM_FORMAT_XRGB2101010:
3306 return PLANE_CTL_FORMAT_XRGB_2101010;
3307 case DRM_FORMAT_XBGR2101010:
3308 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3309 case DRM_FORMAT_YUYV:
3310 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3311 case DRM_FORMAT_YVYU:
3312 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3313 case DRM_FORMAT_UYVY:
3314 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3315 case DRM_FORMAT_VYUY:
3316 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3317 default:
3318 MISSING_CASE(pixel_format);
3321 return 0;
3324 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3326 switch (fb_modifier) {
3327 case DRM_FORMAT_MOD_NONE:
3328 break;
3329 case I915_FORMAT_MOD_X_TILED:
3330 return PLANE_CTL_TILED_X;
3331 case I915_FORMAT_MOD_Y_TILED:
3332 return PLANE_CTL_TILED_Y;
3333 case I915_FORMAT_MOD_Yf_TILED:
3334 return PLANE_CTL_TILED_YF;
3335 default:
3336 MISSING_CASE(fb_modifier);
3339 return 0;
3342 u32 skl_plane_ctl_rotation(unsigned int rotation)
3344 switch (rotation) {
3345 case DRM_ROTATE_0:
3346 break;
3348 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3349 * while i915 HW rotation is clockwise, thats why this swapping.
3351 case DRM_ROTATE_90:
3352 return PLANE_CTL_ROTATE_270;
3353 case DRM_ROTATE_180:
3354 return PLANE_CTL_ROTATE_180;
3355 case DRM_ROTATE_270:
3356 return PLANE_CTL_ROTATE_90;
3357 default:
3358 MISSING_CASE(rotation);
3361 return 0;
3364 static void skylake_update_primary_plane(struct drm_plane *plane,
3365 const struct intel_crtc_state *crtc_state,
3366 const struct intel_plane_state *plane_state)
3368 struct drm_device *dev = plane->dev;
3369 struct drm_i915_private *dev_priv = to_i915(dev);
3370 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3371 struct drm_framebuffer *fb = plane_state->base.fb;
3372 enum plane_id plane_id = to_intel_plane(plane)->id;
3373 enum pipe pipe = to_intel_plane(plane)->pipe;
3374 u32 plane_ctl;
3375 unsigned int rotation = plane_state->base.rotation;
3376 u32 stride = skl_plane_stride(fb, 0, rotation);
3377 u32 surf_addr = plane_state->main.offset;
3378 int scaler_id = plane_state->scaler_id;
3379 int src_x = plane_state->main.x;
3380 int src_y = plane_state->main.y;
3381 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3382 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3383 int dst_x = plane_state->base.dst.x1;
3384 int dst_y = plane_state->base.dst.y1;
3385 int dst_w = drm_rect_width(&plane_state->base.dst);
3386 int dst_h = drm_rect_height(&plane_state->base.dst);
3388 plane_ctl = PLANE_CTL_ENABLE |
3389 PLANE_CTL_PIPE_GAMMA_ENABLE |
3390 PLANE_CTL_PIPE_CSC_ENABLE;
3392 plane_ctl |= skl_plane_ctl_format(fb->format->format);
3393 plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
3394 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3395 plane_ctl |= skl_plane_ctl_rotation(rotation);
3397 /* Sizes are 0 based */
3398 src_w--;
3399 src_h--;
3400 dst_w--;
3401 dst_h--;
3403 intel_crtc->dspaddr_offset = surf_addr;
3405 intel_crtc->adjusted_x = src_x;
3406 intel_crtc->adjusted_y = src_y;
3408 I915_WRITE(PLANE_CTL(pipe, plane_id), plane_ctl);
3409 I915_WRITE(PLANE_OFFSET(pipe, plane_id), (src_y << 16) | src_x);
3410 I915_WRITE(PLANE_STRIDE(pipe, plane_id), stride);
3411 I915_WRITE(PLANE_SIZE(pipe, plane_id), (src_h << 16) | src_w);
3413 if (scaler_id >= 0) {
3414 uint32_t ps_ctrl = 0;
3416 WARN_ON(!dst_w || !dst_h);
3417 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(plane_id) |
3418 crtc_state->scaler_state.scalers[scaler_id].mode;
3419 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3420 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3421 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3422 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3423 I915_WRITE(PLANE_POS(pipe, plane_id), 0);
3424 } else {
3425 I915_WRITE(PLANE_POS(pipe, plane_id), (dst_y << 16) | dst_x);
3428 I915_WRITE(PLANE_SURF(pipe, plane_id),
3429 intel_plane_ggtt_offset(plane_state) + surf_addr);
3431 POSTING_READ(PLANE_SURF(pipe, plane_id));
3434 static void skylake_disable_primary_plane(struct drm_plane *primary,
3435 struct drm_crtc *crtc)
3437 struct drm_device *dev = crtc->dev;
3438 struct drm_i915_private *dev_priv = to_i915(dev);
3439 enum plane_id plane_id = to_intel_plane(primary)->id;
3440 enum pipe pipe = to_intel_plane(primary)->pipe;
3442 I915_WRITE(PLANE_CTL(pipe, plane_id), 0);
3443 I915_WRITE(PLANE_SURF(pipe, plane_id), 0);
3444 POSTING_READ(PLANE_SURF(pipe, plane_id));
3447 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3448 static int
3449 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3450 int x, int y, enum mode_set_atomic state)
3452 /* Support for kgdboc is disabled, this needs a major rework. */
3453 DRM_ERROR("legacy panic handler not supported any more.\n");
3455 return -ENODEV;
3458 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3460 struct intel_crtc *crtc;
3462 for_each_intel_crtc(&dev_priv->drm, crtc)
3463 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3466 static void intel_update_primary_planes(struct drm_device *dev)
3468 struct drm_crtc *crtc;
3470 for_each_crtc(dev, crtc) {
3471 struct intel_plane *plane = to_intel_plane(crtc->primary);
3472 struct intel_plane_state *plane_state =
3473 to_intel_plane_state(plane->base.state);
3475 if (plane_state->base.visible)
3476 plane->update_plane(&plane->base,
3477 to_intel_crtc_state(crtc->state),
3478 plane_state);
3482 static int
3483 __intel_display_resume(struct drm_device *dev,
3484 struct drm_atomic_state *state)
3486 struct drm_crtc_state *crtc_state;
3487 struct drm_crtc *crtc;
3488 int i, ret;
3490 intel_modeset_setup_hw_state(dev);
3491 i915_redisable_vga(to_i915(dev));
3493 if (!state)
3494 return 0;
3496 for_each_crtc_in_state(state, crtc, crtc_state, i) {
3498 * Force recalculation even if we restore
3499 * current state. With fast modeset this may not result
3500 * in a modeset when the state is compatible.
3502 crtc_state->mode_changed = true;
3505 /* ignore any reset values/BIOS leftovers in the WM registers */
3506 to_intel_atomic_state(state)->skip_intermediate_wm = true;
3508 ret = drm_atomic_commit(state);
3510 WARN_ON(ret == -EDEADLK);
3511 return ret;
3514 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3516 return intel_has_gpu_reset(dev_priv) &&
3517 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3520 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3522 struct drm_device *dev = &dev_priv->drm;
3523 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3524 struct drm_atomic_state *state;
3525 int ret;
3528 * Need mode_config.mutex so that we don't
3529 * trample ongoing ->detect() and whatnot.
3531 mutex_lock(&dev->mode_config.mutex);
3532 drm_modeset_acquire_init(ctx, 0);
3533 while (1) {
3534 ret = drm_modeset_lock_all_ctx(dev, ctx);
3535 if (ret != -EDEADLK)
3536 break;
3538 drm_modeset_backoff(ctx);
3541 /* reset doesn't touch the display, but flips might get nuked anyway, */
3542 if (!i915.force_reset_modeset_test &&
3543 !gpu_reset_clobbers_display(dev_priv))
3544 return;
3547 * Disabling the crtcs gracefully seems nicer. Also the
3548 * g33 docs say we should at least disable all the planes.
3550 state = drm_atomic_helper_duplicate_state(dev, ctx);
3551 if (IS_ERR(state)) {
3552 ret = PTR_ERR(state);
3553 DRM_ERROR("Duplicating state failed with %i\n", ret);
3554 return;
3557 ret = drm_atomic_helper_disable_all(dev, ctx);
3558 if (ret) {
3559 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3560 drm_atomic_state_put(state);
3561 return;
3564 dev_priv->modeset_restore_state = state;
3565 state->acquire_ctx = ctx;
3568 void intel_finish_reset(struct drm_i915_private *dev_priv)
3570 struct drm_device *dev = &dev_priv->drm;
3571 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3572 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3573 int ret;
3576 * Flips in the rings will be nuked by the reset,
3577 * so complete all pending flips so that user space
3578 * will get its events and not get stuck.
3580 intel_complete_page_flips(dev_priv);
3582 dev_priv->modeset_restore_state = NULL;
3584 /* reset doesn't touch the display */
3585 if (!gpu_reset_clobbers_display(dev_priv)) {
3586 if (!state) {
3588 * Flips in the rings have been nuked by the reset,
3589 * so update the base address of all primary
3590 * planes to the the last fb to make sure we're
3591 * showing the correct fb after a reset.
3593 * FIXME: Atomic will make this obsolete since we won't schedule
3594 * CS-based flips (which might get lost in gpu resets) any more.
3596 intel_update_primary_planes(dev);
3597 } else {
3598 ret = __intel_display_resume(dev, state);
3599 if (ret)
3600 DRM_ERROR("Restoring old state failed with %i\n", ret);
3602 } else {
3604 * The display has been reset as well,
3605 * so need a full re-initialization.
3607 intel_runtime_pm_disable_interrupts(dev_priv);
3608 intel_runtime_pm_enable_interrupts(dev_priv);
3610 intel_pps_unlock_regs_wa(dev_priv);
3611 intel_modeset_init_hw(dev);
3613 spin_lock_irq(&dev_priv->irq_lock);
3614 if (dev_priv->display.hpd_irq_setup)
3615 dev_priv->display.hpd_irq_setup(dev_priv);
3616 spin_unlock_irq(&dev_priv->irq_lock);
3618 ret = __intel_display_resume(dev, state);
3619 if (ret)
3620 DRM_ERROR("Restoring old state failed with %i\n", ret);
3622 intel_hpd_init(dev_priv);
3625 if (state)
3626 drm_atomic_state_put(state);
3627 drm_modeset_drop_locks(ctx);
3628 drm_modeset_acquire_fini(ctx);
3629 mutex_unlock(&dev->mode_config.mutex);
3632 static bool abort_flip_on_reset(struct intel_crtc *crtc)
3634 struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
3636 if (i915_reset_in_progress(error))
3637 return true;
3639 if (crtc->reset_count != i915_reset_count(error))
3640 return true;
3642 return false;
3645 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3647 struct drm_device *dev = crtc->dev;
3648 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3649 bool pending;
3651 if (abort_flip_on_reset(intel_crtc))
3652 return false;
3654 spin_lock_irq(&dev->event_lock);
3655 pending = to_intel_crtc(crtc)->flip_work != NULL;
3656 spin_unlock_irq(&dev->event_lock);
3658 return pending;
3661 static void intel_update_pipe_config(struct intel_crtc *crtc,
3662 struct intel_crtc_state *old_crtc_state)
3664 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3665 struct intel_crtc_state *pipe_config =
3666 to_intel_crtc_state(crtc->base.state);
3668 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3669 crtc->base.mode = crtc->base.state->mode;
3671 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3672 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3673 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3676 * Update pipe size and adjust fitter if needed: the reason for this is
3677 * that in compute_mode_changes we check the native mode (not the pfit
3678 * mode) to see if we can flip rather than do a full mode set. In the
3679 * fastboot case, we'll flip, but if we don't update the pipesrc and
3680 * pfit state, we'll end up with a big fb scanned out into the wrong
3681 * sized surface.
3684 I915_WRITE(PIPESRC(crtc->pipe),
3685 ((pipe_config->pipe_src_w - 1) << 16) |
3686 (pipe_config->pipe_src_h - 1));
3688 /* on skylake this is done by detaching scalers */
3689 if (INTEL_GEN(dev_priv) >= 9) {
3690 skl_detach_scalers(crtc);
3692 if (pipe_config->pch_pfit.enabled)
3693 skylake_pfit_enable(crtc);
3694 } else if (HAS_PCH_SPLIT(dev_priv)) {
3695 if (pipe_config->pch_pfit.enabled)
3696 ironlake_pfit_enable(crtc);
3697 else if (old_crtc_state->pch_pfit.enabled)
3698 ironlake_pfit_disable(crtc, true);
3702 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3704 struct drm_device *dev = crtc->dev;
3705 struct drm_i915_private *dev_priv = to_i915(dev);
3706 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3707 int pipe = intel_crtc->pipe;
3708 i915_reg_t reg;
3709 u32 temp;
3711 /* enable normal train */
3712 reg = FDI_TX_CTL(pipe);
3713 temp = I915_READ(reg);
3714 if (IS_IVYBRIDGE(dev_priv)) {
3715 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3716 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3717 } else {
3718 temp &= ~FDI_LINK_TRAIN_NONE;
3719 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3721 I915_WRITE(reg, temp);
3723 reg = FDI_RX_CTL(pipe);
3724 temp = I915_READ(reg);
3725 if (HAS_PCH_CPT(dev_priv)) {
3726 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3727 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3728 } else {
3729 temp &= ~FDI_LINK_TRAIN_NONE;
3730 temp |= FDI_LINK_TRAIN_NONE;
3732 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3734 /* wait one idle pattern time */
3735 POSTING_READ(reg);
3736 udelay(1000);
3738 /* IVB wants error correction enabled */
3739 if (IS_IVYBRIDGE(dev_priv))
3740 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3741 FDI_FE_ERRC_ENABLE);
3744 /* The FDI link training functions for ILK/Ibexpeak. */
3745 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3747 struct drm_device *dev = crtc->dev;
3748 struct drm_i915_private *dev_priv = to_i915(dev);
3749 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3750 int pipe = intel_crtc->pipe;
3751 i915_reg_t reg;
3752 u32 temp, tries;
3754 /* FDI needs bits from pipe first */
3755 assert_pipe_enabled(dev_priv, pipe);
3757 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3758 for train result */
3759 reg = FDI_RX_IMR(pipe);
3760 temp = I915_READ(reg);
3761 temp &= ~FDI_RX_SYMBOL_LOCK;
3762 temp &= ~FDI_RX_BIT_LOCK;
3763 I915_WRITE(reg, temp);
3764 I915_READ(reg);
3765 udelay(150);
3767 /* enable CPU FDI TX and PCH FDI RX */
3768 reg = FDI_TX_CTL(pipe);
3769 temp = I915_READ(reg);
3770 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3771 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3772 temp &= ~FDI_LINK_TRAIN_NONE;
3773 temp |= FDI_LINK_TRAIN_PATTERN_1;
3774 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3776 reg = FDI_RX_CTL(pipe);
3777 temp = I915_READ(reg);
3778 temp &= ~FDI_LINK_TRAIN_NONE;
3779 temp |= FDI_LINK_TRAIN_PATTERN_1;
3780 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3782 POSTING_READ(reg);
3783 udelay(150);
3785 /* Ironlake workaround, enable clock pointer after FDI enable*/
3786 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3787 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3788 FDI_RX_PHASE_SYNC_POINTER_EN);
3790 reg = FDI_RX_IIR(pipe);
3791 for (tries = 0; tries < 5; tries++) {
3792 temp = I915_READ(reg);
3793 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3795 if ((temp & FDI_RX_BIT_LOCK)) {
3796 DRM_DEBUG_KMS("FDI train 1 done.\n");
3797 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3798 break;
3801 if (tries == 5)
3802 DRM_ERROR("FDI train 1 fail!\n");
3804 /* Train 2 */
3805 reg = FDI_TX_CTL(pipe);
3806 temp = I915_READ(reg);
3807 temp &= ~FDI_LINK_TRAIN_NONE;
3808 temp |= FDI_LINK_TRAIN_PATTERN_2;
3809 I915_WRITE(reg, temp);
3811 reg = FDI_RX_CTL(pipe);
3812 temp = I915_READ(reg);
3813 temp &= ~FDI_LINK_TRAIN_NONE;
3814 temp |= FDI_LINK_TRAIN_PATTERN_2;
3815 I915_WRITE(reg, temp);
3817 POSTING_READ(reg);
3818 udelay(150);
3820 reg = FDI_RX_IIR(pipe);
3821 for (tries = 0; tries < 5; tries++) {
3822 temp = I915_READ(reg);
3823 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3825 if (temp & FDI_RX_SYMBOL_LOCK) {
3826 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3827 DRM_DEBUG_KMS("FDI train 2 done.\n");
3828 break;
3831 if (tries == 5)
3832 DRM_ERROR("FDI train 2 fail!\n");
3834 DRM_DEBUG_KMS("FDI train done\n");
3838 static const int snb_b_fdi_train_param[] = {
3839 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3840 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3841 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3842 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3845 /* The FDI link training functions for SNB/Cougarpoint. */
3846 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3848 struct drm_device *dev = crtc->dev;
3849 struct drm_i915_private *dev_priv = to_i915(dev);
3850 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3851 int pipe = intel_crtc->pipe;
3852 i915_reg_t reg;
3853 u32 temp, i, retry;
3855 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3856 for train result */
3857 reg = FDI_RX_IMR(pipe);
3858 temp = I915_READ(reg);
3859 temp &= ~FDI_RX_SYMBOL_LOCK;
3860 temp &= ~FDI_RX_BIT_LOCK;
3861 I915_WRITE(reg, temp);
3863 POSTING_READ(reg);
3864 udelay(150);
3866 /* enable CPU FDI TX and PCH FDI RX */
3867 reg = FDI_TX_CTL(pipe);
3868 temp = I915_READ(reg);
3869 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3870 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3871 temp &= ~FDI_LINK_TRAIN_NONE;
3872 temp |= FDI_LINK_TRAIN_PATTERN_1;
3873 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3874 /* SNB-B */
3875 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3876 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3878 I915_WRITE(FDI_RX_MISC(pipe),
3879 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3881 reg = FDI_RX_CTL(pipe);
3882 temp = I915_READ(reg);
3883 if (HAS_PCH_CPT(dev_priv)) {
3884 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3885 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3886 } else {
3887 temp &= ~FDI_LINK_TRAIN_NONE;
3888 temp |= FDI_LINK_TRAIN_PATTERN_1;
3890 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3892 POSTING_READ(reg);
3893 udelay(150);
3895 for (i = 0; i < 4; i++) {
3896 reg = FDI_TX_CTL(pipe);
3897 temp = I915_READ(reg);
3898 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3899 temp |= snb_b_fdi_train_param[i];
3900 I915_WRITE(reg, temp);
3902 POSTING_READ(reg);
3903 udelay(500);
3905 for (retry = 0; retry < 5; retry++) {
3906 reg = FDI_RX_IIR(pipe);
3907 temp = I915_READ(reg);
3908 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3909 if (temp & FDI_RX_BIT_LOCK) {
3910 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3911 DRM_DEBUG_KMS("FDI train 1 done.\n");
3912 break;
3914 udelay(50);
3916 if (retry < 5)
3917 break;
3919 if (i == 4)
3920 DRM_ERROR("FDI train 1 fail!\n");
3922 /* Train 2 */
3923 reg = FDI_TX_CTL(pipe);
3924 temp = I915_READ(reg);
3925 temp &= ~FDI_LINK_TRAIN_NONE;
3926 temp |= FDI_LINK_TRAIN_PATTERN_2;
3927 if (IS_GEN6(dev_priv)) {
3928 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3929 /* SNB-B */
3930 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3932 I915_WRITE(reg, temp);
3934 reg = FDI_RX_CTL(pipe);
3935 temp = I915_READ(reg);
3936 if (HAS_PCH_CPT(dev_priv)) {
3937 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3938 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3939 } else {
3940 temp &= ~FDI_LINK_TRAIN_NONE;
3941 temp |= FDI_LINK_TRAIN_PATTERN_2;
3943 I915_WRITE(reg, temp);
3945 POSTING_READ(reg);
3946 udelay(150);
3948 for (i = 0; i < 4; i++) {
3949 reg = FDI_TX_CTL(pipe);
3950 temp = I915_READ(reg);
3951 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3952 temp |= snb_b_fdi_train_param[i];
3953 I915_WRITE(reg, temp);
3955 POSTING_READ(reg);
3956 udelay(500);
3958 for (retry = 0; retry < 5; retry++) {
3959 reg = FDI_RX_IIR(pipe);
3960 temp = I915_READ(reg);
3961 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3962 if (temp & FDI_RX_SYMBOL_LOCK) {
3963 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3964 DRM_DEBUG_KMS("FDI train 2 done.\n");
3965 break;
3967 udelay(50);
3969 if (retry < 5)
3970 break;
3972 if (i == 4)
3973 DRM_ERROR("FDI train 2 fail!\n");
3975 DRM_DEBUG_KMS("FDI train done.\n");
3978 /* Manual link training for Ivy Bridge A0 parts */
3979 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3981 struct drm_device *dev = crtc->dev;
3982 struct drm_i915_private *dev_priv = to_i915(dev);
3983 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3984 int pipe = intel_crtc->pipe;
3985 i915_reg_t reg;
3986 u32 temp, i, j;
3988 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3989 for train result */
3990 reg = FDI_RX_IMR(pipe);
3991 temp = I915_READ(reg);
3992 temp &= ~FDI_RX_SYMBOL_LOCK;
3993 temp &= ~FDI_RX_BIT_LOCK;
3994 I915_WRITE(reg, temp);
3996 POSTING_READ(reg);
3997 udelay(150);
3999 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4000 I915_READ(FDI_RX_IIR(pipe)));
4002 /* Try each vswing and preemphasis setting twice before moving on */
4003 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
4004 /* disable first in case we need to retry */
4005 reg = FDI_TX_CTL(pipe);
4006 temp = I915_READ(reg);
4007 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4008 temp &= ~FDI_TX_ENABLE;
4009 I915_WRITE(reg, temp);
4011 reg = FDI_RX_CTL(pipe);
4012 temp = I915_READ(reg);
4013 temp &= ~FDI_LINK_TRAIN_AUTO;
4014 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4015 temp &= ~FDI_RX_ENABLE;
4016 I915_WRITE(reg, temp);
4018 /* enable CPU FDI TX and PCH FDI RX */
4019 reg = FDI_TX_CTL(pipe);
4020 temp = I915_READ(reg);
4021 temp &= ~FDI_DP_PORT_WIDTH_MASK;
4022 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4023 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
4024 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4025 temp |= snb_b_fdi_train_param[j/2];
4026 temp |= FDI_COMPOSITE_SYNC;
4027 I915_WRITE(reg, temp | FDI_TX_ENABLE);
4029 I915_WRITE(FDI_RX_MISC(pipe),
4030 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4032 reg = FDI_RX_CTL(pipe);
4033 temp = I915_READ(reg);
4034 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4035 temp |= FDI_COMPOSITE_SYNC;
4036 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4038 POSTING_READ(reg);
4039 udelay(1); /* should be 0.5us */
4041 for (i = 0; i < 4; i++) {
4042 reg = FDI_RX_IIR(pipe);
4043 temp = I915_READ(reg);
4044 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4046 if (temp & FDI_RX_BIT_LOCK ||
4047 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4048 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4049 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4051 break;
4053 udelay(1); /* should be 0.5us */
4055 if (i == 4) {
4056 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4057 continue;
4060 /* Train 2 */
4061 reg = FDI_TX_CTL(pipe);
4062 temp = I915_READ(reg);
4063 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4064 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4065 I915_WRITE(reg, temp);
4067 reg = FDI_RX_CTL(pipe);
4068 temp = I915_READ(reg);
4069 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4070 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4071 I915_WRITE(reg, temp);
4073 POSTING_READ(reg);
4074 udelay(2); /* should be 1.5us */
4076 for (i = 0; i < 4; i++) {
4077 reg = FDI_RX_IIR(pipe);
4078 temp = I915_READ(reg);
4079 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4081 if (temp & FDI_RX_SYMBOL_LOCK ||
4082 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4083 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4084 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4086 goto train_done;
4088 udelay(2); /* should be 1.5us */
4090 if (i == 4)
4091 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4094 train_done:
4095 DRM_DEBUG_KMS("FDI train done.\n");
4098 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4100 struct drm_device *dev = intel_crtc->base.dev;
4101 struct drm_i915_private *dev_priv = to_i915(dev);
4102 int pipe = intel_crtc->pipe;
4103 i915_reg_t reg;
4104 u32 temp;
4106 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4107 reg = FDI_RX_CTL(pipe);
4108 temp = I915_READ(reg);
4109 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4110 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4111 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4112 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4114 POSTING_READ(reg);
4115 udelay(200);
4117 /* Switch from Rawclk to PCDclk */
4118 temp = I915_READ(reg);
4119 I915_WRITE(reg, temp | FDI_PCDCLK);
4121 POSTING_READ(reg);
4122 udelay(200);
4124 /* Enable CPU FDI TX PLL, always on for Ironlake */
4125 reg = FDI_TX_CTL(pipe);
4126 temp = I915_READ(reg);
4127 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4128 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4130 POSTING_READ(reg);
4131 udelay(100);
4135 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4137 struct drm_device *dev = intel_crtc->base.dev;
4138 struct drm_i915_private *dev_priv = to_i915(dev);
4139 int pipe = intel_crtc->pipe;
4140 i915_reg_t reg;
4141 u32 temp;
4143 /* Switch from PCDclk to Rawclk */
4144 reg = FDI_RX_CTL(pipe);
4145 temp = I915_READ(reg);
4146 I915_WRITE(reg, temp & ~FDI_PCDCLK);
4148 /* Disable CPU FDI TX PLL */
4149 reg = FDI_TX_CTL(pipe);
4150 temp = I915_READ(reg);
4151 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4153 POSTING_READ(reg);
4154 udelay(100);
4156 reg = FDI_RX_CTL(pipe);
4157 temp = I915_READ(reg);
4158 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4160 /* Wait for the clocks to turn off. */
4161 POSTING_READ(reg);
4162 udelay(100);
4165 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4167 struct drm_device *dev = crtc->dev;
4168 struct drm_i915_private *dev_priv = to_i915(dev);
4169 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4170 int pipe = intel_crtc->pipe;
4171 i915_reg_t reg;
4172 u32 temp;
4174 /* disable CPU FDI tx and PCH FDI rx */
4175 reg = FDI_TX_CTL(pipe);
4176 temp = I915_READ(reg);
4177 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4178 POSTING_READ(reg);
4180 reg = FDI_RX_CTL(pipe);
4181 temp = I915_READ(reg);
4182 temp &= ~(0x7 << 16);
4183 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4184 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4186 POSTING_READ(reg);
4187 udelay(100);
4189 /* Ironlake workaround, disable clock pointer after downing FDI */
4190 if (HAS_PCH_IBX(dev_priv))
4191 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4193 /* still set train pattern 1 */
4194 reg = FDI_TX_CTL(pipe);
4195 temp = I915_READ(reg);
4196 temp &= ~FDI_LINK_TRAIN_NONE;
4197 temp |= FDI_LINK_TRAIN_PATTERN_1;
4198 I915_WRITE(reg, temp);
4200 reg = FDI_RX_CTL(pipe);
4201 temp = I915_READ(reg);
4202 if (HAS_PCH_CPT(dev_priv)) {
4203 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4204 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4205 } else {
4206 temp &= ~FDI_LINK_TRAIN_NONE;
4207 temp |= FDI_LINK_TRAIN_PATTERN_1;
4209 /* BPC in FDI rx is consistent with that in PIPECONF */
4210 temp &= ~(0x07 << 16);
4211 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4212 I915_WRITE(reg, temp);
4214 POSTING_READ(reg);
4215 udelay(100);
4218 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
4220 struct intel_crtc *crtc;
4222 /* Note that we don't need to be called with mode_config.lock here
4223 * as our list of CRTC objects is static for the lifetime of the
4224 * device and so cannot disappear as we iterate. Similarly, we can
4225 * happily treat the predicates as racy, atomic checks as userspace
4226 * cannot claim and pin a new fb without at least acquring the
4227 * struct_mutex and so serialising with us.
4229 for_each_intel_crtc(&dev_priv->drm, crtc) {
4230 if (atomic_read(&crtc->unpin_work_count) == 0)
4231 continue;
4233 if (crtc->flip_work)
4234 intel_wait_for_vblank(dev_priv, crtc->pipe);
4236 return true;
4239 return false;
4242 static void page_flip_completed(struct intel_crtc *intel_crtc)
4244 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4245 struct intel_flip_work *work = intel_crtc->flip_work;
4247 intel_crtc->flip_work = NULL;
4249 if (work->event)
4250 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
4252 drm_crtc_vblank_put(&intel_crtc->base);
4254 wake_up_all(&dev_priv->pending_flip_queue);
4255 queue_work(dev_priv->wq, &work->unpin_work);
4257 trace_i915_flip_complete(intel_crtc->plane,
4258 work->pending_flip_obj);
4261 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
4263 struct drm_device *dev = crtc->dev;
4264 struct drm_i915_private *dev_priv = to_i915(dev);
4265 long ret;
4267 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
4269 ret = wait_event_interruptible_timeout(
4270 dev_priv->pending_flip_queue,
4271 !intel_crtc_has_pending_flip(crtc),
4272 60*HZ);
4274 if (ret < 0)
4275 return ret;
4277 if (ret == 0) {
4278 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4279 struct intel_flip_work *work;
4281 spin_lock_irq(&dev->event_lock);
4282 work = intel_crtc->flip_work;
4283 if (work && !is_mmio_work(work)) {
4284 WARN_ONCE(1, "Removing stuck page flip\n");
4285 page_flip_completed(intel_crtc);
4287 spin_unlock_irq(&dev->event_lock);
4290 return 0;
4293 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4295 u32 temp;
4297 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4299 mutex_lock(&dev_priv->sb_lock);
4301 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4302 temp |= SBI_SSCCTL_DISABLE;
4303 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4305 mutex_unlock(&dev_priv->sb_lock);
4308 /* Program iCLKIP clock to the desired frequency */
4309 static void lpt_program_iclkip(struct drm_crtc *crtc)
4311 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4312 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
4313 u32 divsel, phaseinc, auxdiv, phasedir = 0;
4314 u32 temp;
4316 lpt_disable_iclkip(dev_priv);
4318 /* The iCLK virtual clock root frequency is in MHz,
4319 * but the adjusted_mode->crtc_clock in in KHz. To get the
4320 * divisors, it is necessary to divide one by another, so we
4321 * convert the virtual clock precision to KHz here for higher
4322 * precision.
4324 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4325 u32 iclk_virtual_root_freq = 172800 * 1000;
4326 u32 iclk_pi_range = 64;
4327 u32 desired_divisor;
4329 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4330 clock << auxdiv);
4331 divsel = (desired_divisor / iclk_pi_range) - 2;
4332 phaseinc = desired_divisor % iclk_pi_range;
4335 * Near 20MHz is a corner case which is
4336 * out of range for the 7-bit divisor
4338 if (divsel <= 0x7f)
4339 break;
4342 /* This should not happen with any sane values */
4343 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4344 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4345 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4346 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4348 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4349 clock,
4350 auxdiv,
4351 divsel,
4352 phasedir,
4353 phaseinc);
4355 mutex_lock(&dev_priv->sb_lock);
4357 /* Program SSCDIVINTPHASE6 */
4358 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4359 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4360 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4361 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4362 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4363 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4364 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4365 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4367 /* Program SSCAUXDIV */
4368 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4369 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4370 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4371 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4373 /* Enable modulator and associated divider */
4374 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4375 temp &= ~SBI_SSCCTL_DISABLE;
4376 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4378 mutex_unlock(&dev_priv->sb_lock);
4380 /* Wait for initialization time */
4381 udelay(24);
4383 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4386 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4388 u32 divsel, phaseinc, auxdiv;
4389 u32 iclk_virtual_root_freq = 172800 * 1000;
4390 u32 iclk_pi_range = 64;
4391 u32 desired_divisor;
4392 u32 temp;
4394 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4395 return 0;
4397 mutex_lock(&dev_priv->sb_lock);
4399 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4400 if (temp & SBI_SSCCTL_DISABLE) {
4401 mutex_unlock(&dev_priv->sb_lock);
4402 return 0;
4405 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4406 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4407 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4408 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4409 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4411 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4412 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4413 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4415 mutex_unlock(&dev_priv->sb_lock);
4417 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4419 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4420 desired_divisor << auxdiv);
4423 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4424 enum pipe pch_transcoder)
4426 struct drm_device *dev = crtc->base.dev;
4427 struct drm_i915_private *dev_priv = to_i915(dev);
4428 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4430 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4431 I915_READ(HTOTAL(cpu_transcoder)));
4432 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4433 I915_READ(HBLANK(cpu_transcoder)));
4434 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4435 I915_READ(HSYNC(cpu_transcoder)));
4437 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4438 I915_READ(VTOTAL(cpu_transcoder)));
4439 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4440 I915_READ(VBLANK(cpu_transcoder)));
4441 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4442 I915_READ(VSYNC(cpu_transcoder)));
4443 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4444 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4447 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4449 struct drm_i915_private *dev_priv = to_i915(dev);
4450 uint32_t temp;
4452 temp = I915_READ(SOUTH_CHICKEN1);
4453 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4454 return;
4456 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4457 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4459 temp &= ~FDI_BC_BIFURCATION_SELECT;
4460 if (enable)
4461 temp |= FDI_BC_BIFURCATION_SELECT;
4463 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4464 I915_WRITE(SOUTH_CHICKEN1, temp);
4465 POSTING_READ(SOUTH_CHICKEN1);
4468 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4470 struct drm_device *dev = intel_crtc->base.dev;
4472 switch (intel_crtc->pipe) {
4473 case PIPE_A:
4474 break;
4475 case PIPE_B:
4476 if (intel_crtc->config->fdi_lanes > 2)
4477 cpt_set_fdi_bc_bifurcation(dev, false);
4478 else
4479 cpt_set_fdi_bc_bifurcation(dev, true);
4481 break;
4482 case PIPE_C:
4483 cpt_set_fdi_bc_bifurcation(dev, true);
4485 break;
4486 default:
4487 BUG();
4491 /* Return which DP Port should be selected for Transcoder DP control */
4492 static enum port
4493 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4495 struct drm_device *dev = crtc->dev;
4496 struct intel_encoder *encoder;
4498 for_each_encoder_on_crtc(dev, crtc, encoder) {
4499 if (encoder->type == INTEL_OUTPUT_DP ||
4500 encoder->type == INTEL_OUTPUT_EDP)
4501 return enc_to_dig_port(&encoder->base)->port;
4504 return -1;
4508 * Enable PCH resources required for PCH ports:
4509 * - PCH PLLs
4510 * - FDI training & RX/TX
4511 * - update transcoder timings
4512 * - DP transcoding bits
4513 * - transcoder
4515 static void ironlake_pch_enable(struct drm_crtc *crtc)
4517 struct drm_device *dev = crtc->dev;
4518 struct drm_i915_private *dev_priv = to_i915(dev);
4519 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4520 int pipe = intel_crtc->pipe;
4521 u32 temp;
4523 assert_pch_transcoder_disabled(dev_priv, pipe);
4525 if (IS_IVYBRIDGE(dev_priv))
4526 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4528 /* Write the TU size bits before fdi link training, so that error
4529 * detection works. */
4530 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4531 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4533 /* For PCH output, training FDI link */
4534 dev_priv->display.fdi_link_train(crtc);
4536 /* We need to program the right clock selection before writing the pixel
4537 * mutliplier into the DPLL. */
4538 if (HAS_PCH_CPT(dev_priv)) {
4539 u32 sel;
4541 temp = I915_READ(PCH_DPLL_SEL);
4542 temp |= TRANS_DPLL_ENABLE(pipe);
4543 sel = TRANS_DPLLB_SEL(pipe);
4544 if (intel_crtc->config->shared_dpll ==
4545 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4546 temp |= sel;
4547 else
4548 temp &= ~sel;
4549 I915_WRITE(PCH_DPLL_SEL, temp);
4552 /* XXX: pch pll's can be enabled any time before we enable the PCH
4553 * transcoder, and we actually should do this to not upset any PCH
4554 * transcoder that already use the clock when we share it.
4556 * Note that enable_shared_dpll tries to do the right thing, but
4557 * get_shared_dpll unconditionally resets the pll - we need that to have
4558 * the right LVDS enable sequence. */
4559 intel_enable_shared_dpll(intel_crtc);
4561 /* set transcoder timing, panel must allow it */
4562 assert_panel_unlocked(dev_priv, pipe);
4563 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4565 intel_fdi_normal_train(crtc);
4567 /* For PCH DP, enable TRANS_DP_CTL */
4568 if (HAS_PCH_CPT(dev_priv) &&
4569 intel_crtc_has_dp_encoder(intel_crtc->config)) {
4570 const struct drm_display_mode *adjusted_mode =
4571 &intel_crtc->config->base.adjusted_mode;
4572 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4573 i915_reg_t reg = TRANS_DP_CTL(pipe);
4574 temp = I915_READ(reg);
4575 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4576 TRANS_DP_SYNC_MASK |
4577 TRANS_DP_BPC_MASK);
4578 temp |= TRANS_DP_OUTPUT_ENABLE;
4579 temp |= bpc << 9; /* same format but at 11:9 */
4581 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4582 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4583 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4584 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4586 switch (intel_trans_dp_port_sel(crtc)) {
4587 case PORT_B:
4588 temp |= TRANS_DP_PORT_SEL_B;
4589 break;
4590 case PORT_C:
4591 temp |= TRANS_DP_PORT_SEL_C;
4592 break;
4593 case PORT_D:
4594 temp |= TRANS_DP_PORT_SEL_D;
4595 break;
4596 default:
4597 BUG();
4600 I915_WRITE(reg, temp);
4603 ironlake_enable_pch_transcoder(dev_priv, pipe);
4606 static void lpt_pch_enable(struct drm_crtc *crtc)
4608 struct drm_device *dev = crtc->dev;
4609 struct drm_i915_private *dev_priv = to_i915(dev);
4610 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4611 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4613 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4615 lpt_program_iclkip(crtc);
4617 /* Set transcoder timing. */
4618 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4620 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4623 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4625 struct drm_i915_private *dev_priv = to_i915(dev);
4626 i915_reg_t dslreg = PIPEDSL(pipe);
4627 u32 temp;
4629 temp = I915_READ(dslreg);
4630 udelay(500);
4631 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4632 if (wait_for(I915_READ(dslreg) != temp, 5))
4633 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4637 static int
4638 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4639 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4640 int src_w, int src_h, int dst_w, int dst_h)
4642 struct intel_crtc_scaler_state *scaler_state =
4643 &crtc_state->scaler_state;
4644 struct intel_crtc *intel_crtc =
4645 to_intel_crtc(crtc_state->base.crtc);
4646 int need_scaling;
4648 need_scaling = drm_rotation_90_or_270(rotation) ?
4649 (src_h != dst_w || src_w != dst_h):
4650 (src_w != dst_w || src_h != dst_h);
4653 * if plane is being disabled or scaler is no more required or force detach
4654 * - free scaler binded to this plane/crtc
4655 * - in order to do this, update crtc->scaler_usage
4657 * Here scaler state in crtc_state is set free so that
4658 * scaler can be assigned to other user. Actual register
4659 * update to free the scaler is done in plane/panel-fit programming.
4660 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4662 if (force_detach || !need_scaling) {
4663 if (*scaler_id >= 0) {
4664 scaler_state->scaler_users &= ~(1 << scaler_user);
4665 scaler_state->scalers[*scaler_id].in_use = 0;
4667 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4668 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4669 intel_crtc->pipe, scaler_user, *scaler_id,
4670 scaler_state->scaler_users);
4671 *scaler_id = -1;
4673 return 0;
4676 /* range checks */
4677 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4678 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4680 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4681 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4682 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4683 "size is out of scaler range\n",
4684 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4685 return -EINVAL;
4688 /* mark this plane as a scaler user in crtc_state */
4689 scaler_state->scaler_users |= (1 << scaler_user);
4690 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4691 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4692 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4693 scaler_state->scaler_users);
4695 return 0;
4699 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4701 * @state: crtc's scaler state
4703 * Return
4704 * 0 - scaler_usage updated successfully
4705 * error - requested scaling cannot be supported or other error condition
4707 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4709 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4711 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4712 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4713 state->pipe_src_w, state->pipe_src_h,
4714 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4718 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4720 * @state: crtc's scaler state
4721 * @plane_state: atomic plane state to update
4723 * Return
4724 * 0 - scaler_usage updated successfully
4725 * error - requested scaling cannot be supported or other error condition
4727 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4728 struct intel_plane_state *plane_state)
4731 struct intel_plane *intel_plane =
4732 to_intel_plane(plane_state->base.plane);
4733 struct drm_framebuffer *fb = plane_state->base.fb;
4734 int ret;
4736 bool force_detach = !fb || !plane_state->base.visible;
4738 ret = skl_update_scaler(crtc_state, force_detach,
4739 drm_plane_index(&intel_plane->base),
4740 &plane_state->scaler_id,
4741 plane_state->base.rotation,
4742 drm_rect_width(&plane_state->base.src) >> 16,
4743 drm_rect_height(&plane_state->base.src) >> 16,
4744 drm_rect_width(&plane_state->base.dst),
4745 drm_rect_height(&plane_state->base.dst));
4747 if (ret || plane_state->scaler_id < 0)
4748 return ret;
4750 /* check colorkey */
4751 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4752 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4753 intel_plane->base.base.id,
4754 intel_plane->base.name);
4755 return -EINVAL;
4758 /* Check src format */
4759 switch (fb->format->format) {
4760 case DRM_FORMAT_RGB565:
4761 case DRM_FORMAT_XBGR8888:
4762 case DRM_FORMAT_XRGB8888:
4763 case DRM_FORMAT_ABGR8888:
4764 case DRM_FORMAT_ARGB8888:
4765 case DRM_FORMAT_XRGB2101010:
4766 case DRM_FORMAT_XBGR2101010:
4767 case DRM_FORMAT_YUYV:
4768 case DRM_FORMAT_YVYU:
4769 case DRM_FORMAT_UYVY:
4770 case DRM_FORMAT_VYUY:
4771 break;
4772 default:
4773 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4774 intel_plane->base.base.id, intel_plane->base.name,
4775 fb->base.id, fb->format->format);
4776 return -EINVAL;
4779 return 0;
4782 static void skylake_scaler_disable(struct intel_crtc *crtc)
4784 int i;
4786 for (i = 0; i < crtc->num_scalers; i++)
4787 skl_detach_scaler(crtc, i);
4790 static void skylake_pfit_enable(struct intel_crtc *crtc)
4792 struct drm_device *dev = crtc->base.dev;
4793 struct drm_i915_private *dev_priv = to_i915(dev);
4794 int pipe = crtc->pipe;
4795 struct intel_crtc_scaler_state *scaler_state =
4796 &crtc->config->scaler_state;
4798 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4800 if (crtc->config->pch_pfit.enabled) {
4801 int id;
4803 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4804 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4805 return;
4808 id = scaler_state->scaler_id;
4809 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4810 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4811 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4812 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4814 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4818 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4820 struct drm_device *dev = crtc->base.dev;
4821 struct drm_i915_private *dev_priv = to_i915(dev);
4822 int pipe = crtc->pipe;
4824 if (crtc->config->pch_pfit.enabled) {
4825 /* Force use of hard-coded filter coefficients
4826 * as some pre-programmed values are broken,
4827 * e.g. x201.
4829 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
4830 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4831 PF_PIPE_SEL_IVB(pipe));
4832 else
4833 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4834 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4835 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4839 void hsw_enable_ips(struct intel_crtc *crtc)
4841 struct drm_device *dev = crtc->base.dev;
4842 struct drm_i915_private *dev_priv = to_i915(dev);
4844 if (!crtc->config->ips_enabled)
4845 return;
4848 * We can only enable IPS after we enable a plane and wait for a vblank
4849 * This function is called from post_plane_update, which is run after
4850 * a vblank wait.
4853 assert_plane_enabled(dev_priv, crtc->plane);
4854 if (IS_BROADWELL(dev_priv)) {
4855 mutex_lock(&dev_priv->rps.hw_lock);
4856 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4857 mutex_unlock(&dev_priv->rps.hw_lock);
4858 /* Quoting Art Runyan: "its not safe to expect any particular
4859 * value in IPS_CTL bit 31 after enabling IPS through the
4860 * mailbox." Moreover, the mailbox may return a bogus state,
4861 * so we need to just enable it and continue on.
4863 } else {
4864 I915_WRITE(IPS_CTL, IPS_ENABLE);
4865 /* The bit only becomes 1 in the next vblank, so this wait here
4866 * is essentially intel_wait_for_vblank. If we don't have this
4867 * and don't wait for vblanks until the end of crtc_enable, then
4868 * the HW state readout code will complain that the expected
4869 * IPS_CTL value is not the one we read. */
4870 if (intel_wait_for_register(dev_priv,
4871 IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4872 50))
4873 DRM_ERROR("Timed out waiting for IPS enable\n");
4877 void hsw_disable_ips(struct intel_crtc *crtc)
4879 struct drm_device *dev = crtc->base.dev;
4880 struct drm_i915_private *dev_priv = to_i915(dev);
4882 if (!crtc->config->ips_enabled)
4883 return;
4885 assert_plane_enabled(dev_priv, crtc->plane);
4886 if (IS_BROADWELL(dev_priv)) {
4887 mutex_lock(&dev_priv->rps.hw_lock);
4888 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4889 mutex_unlock(&dev_priv->rps.hw_lock);
4890 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4891 if (intel_wait_for_register(dev_priv,
4892 IPS_CTL, IPS_ENABLE, 0,
4893 42))
4894 DRM_ERROR("Timed out waiting for IPS disable\n");
4895 } else {
4896 I915_WRITE(IPS_CTL, 0);
4897 POSTING_READ(IPS_CTL);
4900 /* We need to wait for a vblank before we can disable the plane. */
4901 intel_wait_for_vblank(dev_priv, crtc->pipe);
4904 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4906 if (intel_crtc->overlay) {
4907 struct drm_device *dev = intel_crtc->base.dev;
4908 struct drm_i915_private *dev_priv = to_i915(dev);
4910 mutex_lock(&dev->struct_mutex);
4911 dev_priv->mm.interruptible = false;
4912 (void) intel_overlay_switch_off(intel_crtc->overlay);
4913 dev_priv->mm.interruptible = true;
4914 mutex_unlock(&dev->struct_mutex);
4917 /* Let userspace switch the overlay on again. In most cases userspace
4918 * has to recompute where to put it anyway.
4923 * intel_post_enable_primary - Perform operations after enabling primary plane
4924 * @crtc: the CRTC whose primary plane was just enabled
4926 * Performs potentially sleeping operations that must be done after the primary
4927 * plane is enabled, such as updating FBC and IPS. Note that this may be
4928 * called due to an explicit primary plane update, or due to an implicit
4929 * re-enable that is caused when a sprite plane is updated to no longer
4930 * completely hide the primary plane.
4932 static void
4933 intel_post_enable_primary(struct drm_crtc *crtc)
4935 struct drm_device *dev = crtc->dev;
4936 struct drm_i915_private *dev_priv = to_i915(dev);
4937 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4938 int pipe = intel_crtc->pipe;
4941 * FIXME IPS should be fine as long as one plane is
4942 * enabled, but in practice it seems to have problems
4943 * when going from primary only to sprite only and vice
4944 * versa.
4946 hsw_enable_ips(intel_crtc);
4949 * Gen2 reports pipe underruns whenever all planes are disabled.
4950 * So don't enable underrun reporting before at least some planes
4951 * are enabled.
4952 * FIXME: Need to fix the logic to work when we turn off all planes
4953 * but leave the pipe running.
4955 if (IS_GEN2(dev_priv))
4956 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4958 /* Underruns don't always raise interrupts, so check manually. */
4959 intel_check_cpu_fifo_underruns(dev_priv);
4960 intel_check_pch_fifo_underruns(dev_priv);
4963 /* FIXME move all this to pre_plane_update() with proper state tracking */
4964 static void
4965 intel_pre_disable_primary(struct drm_crtc *crtc)
4967 struct drm_device *dev = crtc->dev;
4968 struct drm_i915_private *dev_priv = to_i915(dev);
4969 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4970 int pipe = intel_crtc->pipe;
4973 * Gen2 reports pipe underruns whenever all planes are disabled.
4974 * So diasble underrun reporting before all the planes get disabled.
4975 * FIXME: Need to fix the logic to work when we turn off all planes
4976 * but leave the pipe running.
4978 if (IS_GEN2(dev_priv))
4979 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4982 * FIXME IPS should be fine as long as one plane is
4983 * enabled, but in practice it seems to have problems
4984 * when going from primary only to sprite only and vice
4985 * versa.
4987 hsw_disable_ips(intel_crtc);
4990 /* FIXME get rid of this and use pre_plane_update */
4991 static void
4992 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4994 struct drm_device *dev = crtc->dev;
4995 struct drm_i915_private *dev_priv = to_i915(dev);
4996 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4997 int pipe = intel_crtc->pipe;
4999 intel_pre_disable_primary(crtc);
5002 * Vblank time updates from the shadow to live plane control register
5003 * are blocked if the memory self-refresh mode is active at that
5004 * moment. So to make sure the plane gets truly disabled, disable
5005 * first the self-refresh mode. The self-refresh enable bit in turn
5006 * will be checked/applied by the HW only at the next frame start
5007 * event which is after the vblank start event, so we need to have a
5008 * wait-for-vblank between disabling the plane and the pipe.
5010 if (HAS_GMCH_DISPLAY(dev_priv) &&
5011 intel_set_memory_cxsr(dev_priv, false))
5012 intel_wait_for_vblank(dev_priv, pipe);
5015 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
5017 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5018 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5019 struct intel_crtc_state *pipe_config =
5020 to_intel_crtc_state(crtc->base.state);
5021 struct drm_plane *primary = crtc->base.primary;
5022 struct drm_plane_state *old_pri_state =
5023 drm_atomic_get_existing_plane_state(old_state, primary);
5025 intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5027 crtc->wm.cxsr_allowed = true;
5029 if (pipe_config->update_wm_post && pipe_config->base.active)
5030 intel_update_watermarks(crtc);
5032 if (old_pri_state) {
5033 struct intel_plane_state *primary_state =
5034 to_intel_plane_state(primary->state);
5035 struct intel_plane_state *old_primary_state =
5036 to_intel_plane_state(old_pri_state);
5038 intel_fbc_post_update(crtc);
5040 if (primary_state->base.visible &&
5041 (needs_modeset(&pipe_config->base) ||
5042 !old_primary_state->base.visible))
5043 intel_post_enable_primary(&crtc->base);
5047 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
5049 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5050 struct drm_device *dev = crtc->base.dev;
5051 struct drm_i915_private *dev_priv = to_i915(dev);
5052 struct intel_crtc_state *pipe_config =
5053 to_intel_crtc_state(crtc->base.state);
5054 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5055 struct drm_plane *primary = crtc->base.primary;
5056 struct drm_plane_state *old_pri_state =
5057 drm_atomic_get_existing_plane_state(old_state, primary);
5058 bool modeset = needs_modeset(&pipe_config->base);
5059 struct intel_atomic_state *old_intel_state =
5060 to_intel_atomic_state(old_state);
5062 if (old_pri_state) {
5063 struct intel_plane_state *primary_state =
5064 to_intel_plane_state(primary->state);
5065 struct intel_plane_state *old_primary_state =
5066 to_intel_plane_state(old_pri_state);
5068 intel_fbc_pre_update(crtc, pipe_config, primary_state);
5070 if (old_primary_state->base.visible &&
5071 (modeset || !primary_state->base.visible))
5072 intel_pre_disable_primary(&crtc->base);
5075 if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev_priv)) {
5076 crtc->wm.cxsr_allowed = false;
5079 * Vblank time updates from the shadow to live plane control register
5080 * are blocked if the memory self-refresh mode is active at that
5081 * moment. So to make sure the plane gets truly disabled, disable
5082 * first the self-refresh mode. The self-refresh enable bit in turn
5083 * will be checked/applied by the HW only at the next frame start
5084 * event which is after the vblank start event, so we need to have a
5085 * wait-for-vblank between disabling the plane and the pipe.
5087 if (old_crtc_state->base.active &&
5088 intel_set_memory_cxsr(dev_priv, false))
5089 intel_wait_for_vblank(dev_priv, crtc->pipe);
5093 * IVB workaround: must disable low power watermarks for at least
5094 * one frame before enabling scaling. LP watermarks can be re-enabled
5095 * when scaling is disabled.
5097 * WaCxSRDisabledForSpriteScaling:ivb
5099 if (pipe_config->disable_lp_wm && ilk_disable_lp_wm(dev))
5100 intel_wait_for_vblank(dev_priv, crtc->pipe);
5103 * If we're doing a modeset, we're done. No need to do any pre-vblank
5104 * watermark programming here.
5106 if (needs_modeset(&pipe_config->base))
5107 return;
5110 * For platforms that support atomic watermarks, program the
5111 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
5112 * will be the intermediate values that are safe for both pre- and
5113 * post- vblank; when vblank happens, the 'active' values will be set
5114 * to the final 'target' values and we'll do this again to get the
5115 * optimal watermarks. For gen9+ platforms, the values we program here
5116 * will be the final target values which will get automatically latched
5117 * at vblank time; no further programming will be necessary.
5119 * If a platform hasn't been transitioned to atomic watermarks yet,
5120 * we'll continue to update watermarks the old way, if flags tell
5121 * us to.
5123 if (dev_priv->display.initial_watermarks != NULL)
5124 dev_priv->display.initial_watermarks(old_intel_state,
5125 pipe_config);
5126 else if (pipe_config->update_wm_pre)
5127 intel_update_watermarks(crtc);
5130 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5132 struct drm_device *dev = crtc->dev;
5133 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5134 struct drm_plane *p;
5135 int pipe = intel_crtc->pipe;
5137 intel_crtc_dpms_overlay_disable(intel_crtc);
5139 drm_for_each_plane_mask(p, dev, plane_mask)
5140 to_intel_plane(p)->disable_plane(p, crtc);
5143 * FIXME: Once we grow proper nuclear flip support out of this we need
5144 * to compute the mask of flip planes precisely. For the time being
5145 * consider this a flip to a NULL plane.
5147 intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5150 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5151 struct intel_crtc_state *crtc_state,
5152 struct drm_atomic_state *old_state)
5154 struct drm_connector_state *old_conn_state;
5155 struct drm_connector *conn;
5156 int i;
5158 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5159 struct drm_connector_state *conn_state = conn->state;
5160 struct intel_encoder *encoder =
5161 to_intel_encoder(conn_state->best_encoder);
5163 if (conn_state->crtc != crtc)
5164 continue;
5166 if (encoder->pre_pll_enable)
5167 encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5171 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5172 struct intel_crtc_state *crtc_state,
5173 struct drm_atomic_state *old_state)
5175 struct drm_connector_state *old_conn_state;
5176 struct drm_connector *conn;
5177 int i;
5179 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5180 struct drm_connector_state *conn_state = conn->state;
5181 struct intel_encoder *encoder =
5182 to_intel_encoder(conn_state->best_encoder);
5184 if (conn_state->crtc != crtc)
5185 continue;
5187 if (encoder->pre_enable)
5188 encoder->pre_enable(encoder, crtc_state, conn_state);
5192 static void intel_encoders_enable(struct drm_crtc *crtc,
5193 struct intel_crtc_state *crtc_state,
5194 struct drm_atomic_state *old_state)
5196 struct drm_connector_state *old_conn_state;
5197 struct drm_connector *conn;
5198 int i;
5200 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5201 struct drm_connector_state *conn_state = conn->state;
5202 struct intel_encoder *encoder =
5203 to_intel_encoder(conn_state->best_encoder);
5205 if (conn_state->crtc != crtc)
5206 continue;
5208 encoder->enable(encoder, crtc_state, conn_state);
5209 intel_opregion_notify_encoder(encoder, true);
5213 static void intel_encoders_disable(struct drm_crtc *crtc,
5214 struct intel_crtc_state *old_crtc_state,
5215 struct drm_atomic_state *old_state)
5217 struct drm_connector_state *old_conn_state;
5218 struct drm_connector *conn;
5219 int i;
5221 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5222 struct intel_encoder *encoder =
5223 to_intel_encoder(old_conn_state->best_encoder);
5225 if (old_conn_state->crtc != crtc)
5226 continue;
5228 intel_opregion_notify_encoder(encoder, false);
5229 encoder->disable(encoder, old_crtc_state, old_conn_state);
5233 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5234 struct intel_crtc_state *old_crtc_state,
5235 struct drm_atomic_state *old_state)
5237 struct drm_connector_state *old_conn_state;
5238 struct drm_connector *conn;
5239 int i;
5241 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5242 struct intel_encoder *encoder =
5243 to_intel_encoder(old_conn_state->best_encoder);
5245 if (old_conn_state->crtc != crtc)
5246 continue;
5248 if (encoder->post_disable)
5249 encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5253 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5254 struct intel_crtc_state *old_crtc_state,
5255 struct drm_atomic_state *old_state)
5257 struct drm_connector_state *old_conn_state;
5258 struct drm_connector *conn;
5259 int i;
5261 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5262 struct intel_encoder *encoder =
5263 to_intel_encoder(old_conn_state->best_encoder);
5265 if (old_conn_state->crtc != crtc)
5266 continue;
5268 if (encoder->post_pll_disable)
5269 encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5273 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5274 struct drm_atomic_state *old_state)
5276 struct drm_crtc *crtc = pipe_config->base.crtc;
5277 struct drm_device *dev = crtc->dev;
5278 struct drm_i915_private *dev_priv = to_i915(dev);
5279 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5280 int pipe = intel_crtc->pipe;
5281 struct intel_atomic_state *old_intel_state =
5282 to_intel_atomic_state(old_state);
5284 if (WARN_ON(intel_crtc->active))
5285 return;
5288 * Sometimes spurious CPU pipe underruns happen during FDI
5289 * training, at least with VGA+HDMI cloning. Suppress them.
5291 * On ILK we get an occasional spurious CPU pipe underruns
5292 * between eDP port A enable and vdd enable. Also PCH port
5293 * enable seems to result in the occasional CPU pipe underrun.
5295 * Spurious PCH underruns also occur during PCH enabling.
5297 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5298 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5299 if (intel_crtc->config->has_pch_encoder)
5300 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5302 if (intel_crtc->config->has_pch_encoder)
5303 intel_prepare_shared_dpll(intel_crtc);
5305 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5306 intel_dp_set_m_n(intel_crtc, M1_N1);
5308 intel_set_pipe_timings(intel_crtc);
5309 intel_set_pipe_src_size(intel_crtc);
5311 if (intel_crtc->config->has_pch_encoder) {
5312 intel_cpu_transcoder_set_m_n(intel_crtc,
5313 &intel_crtc->config->fdi_m_n, NULL);
5316 ironlake_set_pipeconf(crtc);
5318 intel_crtc->active = true;
5320 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5322 if (intel_crtc->config->has_pch_encoder) {
5323 /* Note: FDI PLL enabling _must_ be done before we enable the
5324 * cpu pipes, hence this is separate from all the other fdi/pch
5325 * enabling. */
5326 ironlake_fdi_pll_enable(intel_crtc);
5327 } else {
5328 assert_fdi_tx_disabled(dev_priv, pipe);
5329 assert_fdi_rx_disabled(dev_priv, pipe);
5332 ironlake_pfit_enable(intel_crtc);
5335 * On ILK+ LUT must be loaded before the pipe is running but with
5336 * clocks enabled
5338 intel_color_load_luts(&pipe_config->base);
5340 if (dev_priv->display.initial_watermarks != NULL)
5341 dev_priv->display.initial_watermarks(old_intel_state, intel_crtc->config);
5342 intel_enable_pipe(intel_crtc);
5344 if (intel_crtc->config->has_pch_encoder)
5345 ironlake_pch_enable(crtc);
5347 assert_vblank_disabled(crtc);
5348 drm_crtc_vblank_on(crtc);
5350 intel_encoders_enable(crtc, pipe_config, old_state);
5352 if (HAS_PCH_CPT(dev_priv))
5353 cpt_verify_modeset(dev, intel_crtc->pipe);
5355 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5356 if (intel_crtc->config->has_pch_encoder)
5357 intel_wait_for_vblank(dev_priv, pipe);
5358 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5359 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5362 /* IPS only exists on ULT machines and is tied to pipe A. */
5363 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5365 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
5368 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5369 struct drm_atomic_state *old_state)
5371 struct drm_crtc *crtc = pipe_config->base.crtc;
5372 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5373 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5374 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5375 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5376 struct intel_atomic_state *old_intel_state =
5377 to_intel_atomic_state(old_state);
5379 if (WARN_ON(intel_crtc->active))
5380 return;
5382 if (intel_crtc->config->has_pch_encoder)
5383 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5384 false);
5386 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5388 if (intel_crtc->config->shared_dpll)
5389 intel_enable_shared_dpll(intel_crtc);
5391 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5392 intel_dp_set_m_n(intel_crtc, M1_N1);
5394 if (!transcoder_is_dsi(cpu_transcoder))
5395 intel_set_pipe_timings(intel_crtc);
5397 intel_set_pipe_src_size(intel_crtc);
5399 if (cpu_transcoder != TRANSCODER_EDP &&
5400 !transcoder_is_dsi(cpu_transcoder)) {
5401 I915_WRITE(PIPE_MULT(cpu_transcoder),
5402 intel_crtc->config->pixel_multiplier - 1);
5405 if (intel_crtc->config->has_pch_encoder) {
5406 intel_cpu_transcoder_set_m_n(intel_crtc,
5407 &intel_crtc->config->fdi_m_n, NULL);
5410 if (!transcoder_is_dsi(cpu_transcoder))
5411 haswell_set_pipeconf(crtc);
5413 haswell_set_pipemisc(crtc);
5415 intel_color_set_csc(&pipe_config->base);
5417 intel_crtc->active = true;
5419 if (intel_crtc->config->has_pch_encoder)
5420 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5421 else
5422 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5424 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5426 if (intel_crtc->config->has_pch_encoder)
5427 dev_priv->display.fdi_link_train(crtc);
5429 if (!transcoder_is_dsi(cpu_transcoder))
5430 intel_ddi_enable_pipe_clock(intel_crtc);
5432 if (INTEL_GEN(dev_priv) >= 9)
5433 skylake_pfit_enable(intel_crtc);
5434 else
5435 ironlake_pfit_enable(intel_crtc);
5438 * On ILK+ LUT must be loaded before the pipe is running but with
5439 * clocks enabled
5441 intel_color_load_luts(&pipe_config->base);
5443 intel_ddi_set_pipe_settings(crtc);
5444 if (!transcoder_is_dsi(cpu_transcoder))
5445 intel_ddi_enable_transcoder_func(crtc);
5447 if (dev_priv->display.initial_watermarks != NULL)
5448 dev_priv->display.initial_watermarks(old_intel_state, pipe_config);
5450 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5451 if (!transcoder_is_dsi(cpu_transcoder))
5452 intel_enable_pipe(intel_crtc);
5454 if (intel_crtc->config->has_pch_encoder)
5455 lpt_pch_enable(crtc);
5457 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5458 intel_ddi_set_vc_payload_alloc(crtc, true);
5460 assert_vblank_disabled(crtc);
5461 drm_crtc_vblank_on(crtc);
5463 intel_encoders_enable(crtc, pipe_config, old_state);
5465 if (intel_crtc->config->has_pch_encoder) {
5466 intel_wait_for_vblank(dev_priv, pipe);
5467 intel_wait_for_vblank(dev_priv, pipe);
5468 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5469 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5470 true);
5473 /* If we change the relative order between pipe/planes enabling, we need
5474 * to change the workaround. */
5475 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5476 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
5477 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5478 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5482 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5484 struct drm_device *dev = crtc->base.dev;
5485 struct drm_i915_private *dev_priv = to_i915(dev);
5486 int pipe = crtc->pipe;
5488 /* To avoid upsetting the power well on haswell only disable the pfit if
5489 * it's in use. The hw state code will make sure we get this right. */
5490 if (force || crtc->config->pch_pfit.enabled) {
5491 I915_WRITE(PF_CTL(pipe), 0);
5492 I915_WRITE(PF_WIN_POS(pipe), 0);
5493 I915_WRITE(PF_WIN_SZ(pipe), 0);
5497 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5498 struct drm_atomic_state *old_state)
5500 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5501 struct drm_device *dev = crtc->dev;
5502 struct drm_i915_private *dev_priv = to_i915(dev);
5503 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5504 int pipe = intel_crtc->pipe;
5507 * Sometimes spurious CPU pipe underruns happen when the
5508 * pipe is already disabled, but FDI RX/TX is still enabled.
5509 * Happens at least with VGA+HDMI cloning. Suppress them.
5511 if (intel_crtc->config->has_pch_encoder) {
5512 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5513 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5516 intel_encoders_disable(crtc, old_crtc_state, old_state);
5518 drm_crtc_vblank_off(crtc);
5519 assert_vblank_disabled(crtc);
5521 intel_disable_pipe(intel_crtc);
5523 ironlake_pfit_disable(intel_crtc, false);
5525 if (intel_crtc->config->has_pch_encoder)
5526 ironlake_fdi_disable(crtc);
5528 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5530 if (intel_crtc->config->has_pch_encoder) {
5531 ironlake_disable_pch_transcoder(dev_priv, pipe);
5533 if (HAS_PCH_CPT(dev_priv)) {
5534 i915_reg_t reg;
5535 u32 temp;
5537 /* disable TRANS_DP_CTL */
5538 reg = TRANS_DP_CTL(pipe);
5539 temp = I915_READ(reg);
5540 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5541 TRANS_DP_PORT_SEL_MASK);
5542 temp |= TRANS_DP_PORT_SEL_NONE;
5543 I915_WRITE(reg, temp);
5545 /* disable DPLL_SEL */
5546 temp = I915_READ(PCH_DPLL_SEL);
5547 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5548 I915_WRITE(PCH_DPLL_SEL, temp);
5551 ironlake_fdi_pll_disable(intel_crtc);
5554 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5555 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5558 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5559 struct drm_atomic_state *old_state)
5561 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5562 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5563 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5564 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5566 if (intel_crtc->config->has_pch_encoder)
5567 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5568 false);
5570 intel_encoders_disable(crtc, old_crtc_state, old_state);
5572 drm_crtc_vblank_off(crtc);
5573 assert_vblank_disabled(crtc);
5575 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5576 if (!transcoder_is_dsi(cpu_transcoder))
5577 intel_disable_pipe(intel_crtc);
5579 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5580 intel_ddi_set_vc_payload_alloc(crtc, false);
5582 if (!transcoder_is_dsi(cpu_transcoder))
5583 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5585 if (INTEL_GEN(dev_priv) >= 9)
5586 skylake_scaler_disable(intel_crtc);
5587 else
5588 ironlake_pfit_disable(intel_crtc, false);
5590 if (!transcoder_is_dsi(cpu_transcoder))
5591 intel_ddi_disable_pipe_clock(intel_crtc);
5593 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5595 if (old_crtc_state->has_pch_encoder)
5596 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5597 true);
5600 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5602 struct drm_device *dev = crtc->base.dev;
5603 struct drm_i915_private *dev_priv = to_i915(dev);
5604 struct intel_crtc_state *pipe_config = crtc->config;
5606 if (!pipe_config->gmch_pfit.control)
5607 return;
5610 * The panel fitter should only be adjusted whilst the pipe is disabled,
5611 * according to register description and PRM.
5613 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5614 assert_pipe_disabled(dev_priv, crtc->pipe);
5616 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5617 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5619 /* Border color in case we don't scale up to the full screen. Black by
5620 * default, change to something else for debugging. */
5621 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5624 static enum intel_display_power_domain port_to_power_domain(enum port port)
5626 switch (port) {
5627 case PORT_A:
5628 return POWER_DOMAIN_PORT_DDI_A_LANES;
5629 case PORT_B:
5630 return POWER_DOMAIN_PORT_DDI_B_LANES;
5631 case PORT_C:
5632 return POWER_DOMAIN_PORT_DDI_C_LANES;
5633 case PORT_D:
5634 return POWER_DOMAIN_PORT_DDI_D_LANES;
5635 case PORT_E:
5636 return POWER_DOMAIN_PORT_DDI_E_LANES;
5637 default:
5638 MISSING_CASE(port);
5639 return POWER_DOMAIN_PORT_OTHER;
5643 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5645 switch (port) {
5646 case PORT_A:
5647 return POWER_DOMAIN_AUX_A;
5648 case PORT_B:
5649 return POWER_DOMAIN_AUX_B;
5650 case PORT_C:
5651 return POWER_DOMAIN_AUX_C;
5652 case PORT_D:
5653 return POWER_DOMAIN_AUX_D;
5654 case PORT_E:
5655 /* FIXME: Check VBT for actual wiring of PORT E */
5656 return POWER_DOMAIN_AUX_D;
5657 default:
5658 MISSING_CASE(port);
5659 return POWER_DOMAIN_AUX_A;
5663 enum intel_display_power_domain
5664 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5666 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5667 struct intel_digital_port *intel_dig_port;
5669 switch (intel_encoder->type) {
5670 case INTEL_OUTPUT_UNKNOWN:
5671 /* Only DDI platforms should ever use this output type */
5672 WARN_ON_ONCE(!HAS_DDI(dev_priv));
5673 case INTEL_OUTPUT_DP:
5674 case INTEL_OUTPUT_HDMI:
5675 case INTEL_OUTPUT_EDP:
5676 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5677 return port_to_power_domain(intel_dig_port->port);
5678 case INTEL_OUTPUT_DP_MST:
5679 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5680 return port_to_power_domain(intel_dig_port->port);
5681 case INTEL_OUTPUT_ANALOG:
5682 return POWER_DOMAIN_PORT_CRT;
5683 case INTEL_OUTPUT_DSI:
5684 return POWER_DOMAIN_PORT_DSI;
5685 default:
5686 return POWER_DOMAIN_PORT_OTHER;
5690 enum intel_display_power_domain
5691 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5693 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5694 struct intel_digital_port *intel_dig_port;
5696 switch (intel_encoder->type) {
5697 case INTEL_OUTPUT_UNKNOWN:
5698 case INTEL_OUTPUT_HDMI:
5700 * Only DDI platforms should ever use these output types.
5701 * We can get here after the HDMI detect code has already set
5702 * the type of the shared encoder. Since we can't be sure
5703 * what's the status of the given connectors, play safe and
5704 * run the DP detection too.
5706 WARN_ON_ONCE(!HAS_DDI(dev_priv));
5707 case INTEL_OUTPUT_DP:
5708 case INTEL_OUTPUT_EDP:
5709 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5710 return port_to_aux_power_domain(intel_dig_port->port);
5711 case INTEL_OUTPUT_DP_MST:
5712 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5713 return port_to_aux_power_domain(intel_dig_port->port);
5714 default:
5715 MISSING_CASE(intel_encoder->type);
5716 return POWER_DOMAIN_AUX_A;
5720 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5721 struct intel_crtc_state *crtc_state)
5723 struct drm_device *dev = crtc->dev;
5724 struct drm_encoder *encoder;
5725 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5726 enum pipe pipe = intel_crtc->pipe;
5727 unsigned long mask;
5728 enum transcoder transcoder = crtc_state->cpu_transcoder;
5730 if (!crtc_state->base.active)
5731 return 0;
5733 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5734 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5735 if (crtc_state->pch_pfit.enabled ||
5736 crtc_state->pch_pfit.force_thru)
5737 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5739 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5740 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5742 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5745 if (crtc_state->shared_dpll)
5746 mask |= BIT(POWER_DOMAIN_PLLS);
5748 return mask;
5751 static unsigned long
5752 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5753 struct intel_crtc_state *crtc_state)
5755 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5756 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5757 enum intel_display_power_domain domain;
5758 unsigned long domains, new_domains, old_domains;
5760 old_domains = intel_crtc->enabled_power_domains;
5761 intel_crtc->enabled_power_domains = new_domains =
5762 get_crtc_power_domains(crtc, crtc_state);
5764 domains = new_domains & ~old_domains;
5766 for_each_power_domain(domain, domains)
5767 intel_display_power_get(dev_priv, domain);
5769 return old_domains & ~new_domains;
5772 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5773 unsigned long domains)
5775 enum intel_display_power_domain domain;
5777 for_each_power_domain(domain, domains)
5778 intel_display_power_put(dev_priv, domain);
5781 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5783 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5785 if (IS_GEMINILAKE(dev_priv))
5786 return 2 * max_cdclk_freq;
5787 else if (INTEL_INFO(dev_priv)->gen >= 9 ||
5788 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5789 return max_cdclk_freq;
5790 else if (IS_CHERRYVIEW(dev_priv))
5791 return max_cdclk_freq*95/100;
5792 else if (INTEL_INFO(dev_priv)->gen < 4)
5793 return 2*max_cdclk_freq*90/100;
5794 else
5795 return max_cdclk_freq*90/100;
5798 static int skl_calc_cdclk(int max_pixclk, int vco);
5800 static void intel_update_max_cdclk(struct drm_i915_private *dev_priv)
5802 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5803 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5804 int max_cdclk, vco;
5806 vco = dev_priv->skl_preferred_vco_freq;
5807 WARN_ON(vco != 8100000 && vco != 8640000);
5810 * Use the lower (vco 8640) cdclk values as a
5811 * first guess. skl_calc_cdclk() will correct it
5812 * if the preferred vco is 8100 instead.
5814 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5815 max_cdclk = 617143;
5816 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5817 max_cdclk = 540000;
5818 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5819 max_cdclk = 432000;
5820 else
5821 max_cdclk = 308571;
5823 dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
5824 } else if (IS_GEMINILAKE(dev_priv)) {
5825 dev_priv->max_cdclk_freq = 316800;
5826 } else if (IS_BROXTON(dev_priv)) {
5827 dev_priv->max_cdclk_freq = 624000;
5828 } else if (IS_BROADWELL(dev_priv)) {
5830 * FIXME with extra cooling we can allow
5831 * 540 MHz for ULX and 675 Mhz for ULT.
5832 * How can we know if extra cooling is
5833 * available? PCI ID, VTB, something else?
5835 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5836 dev_priv->max_cdclk_freq = 450000;
5837 else if (IS_BDW_ULX(dev_priv))
5838 dev_priv->max_cdclk_freq = 450000;
5839 else if (IS_BDW_ULT(dev_priv))
5840 dev_priv->max_cdclk_freq = 540000;
5841 else
5842 dev_priv->max_cdclk_freq = 675000;
5843 } else if (IS_CHERRYVIEW(dev_priv)) {
5844 dev_priv->max_cdclk_freq = 320000;
5845 } else if (IS_VALLEYVIEW(dev_priv)) {
5846 dev_priv->max_cdclk_freq = 400000;
5847 } else {
5848 /* otherwise assume cdclk is fixed */
5849 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5852 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5854 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5855 dev_priv->max_cdclk_freq);
5857 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5858 dev_priv->max_dotclk_freq);
5861 static void intel_update_cdclk(struct drm_i915_private *dev_priv)
5863 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev_priv);
5865 if (INTEL_GEN(dev_priv) >= 9)
5866 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5867 dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5868 dev_priv->cdclk_pll.ref);
5869 else
5870 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5871 dev_priv->cdclk_freq);
5874 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5875 * Programmng [sic] note: bit[9:2] should be programmed to the number
5876 * of cdclk that generates 4MHz reference clock freq which is used to
5877 * generate GMBus clock. This will vary with the cdclk freq.
5879 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5880 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5883 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5884 static int skl_cdclk_decimal(int cdclk)
5886 return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5889 static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5891 int ratio;
5893 if (cdclk == dev_priv->cdclk_pll.ref)
5894 return 0;
5896 switch (cdclk) {
5897 default:
5898 MISSING_CASE(cdclk);
5899 case 144000:
5900 case 288000:
5901 case 384000:
5902 case 576000:
5903 ratio = 60;
5904 break;
5905 case 624000:
5906 ratio = 65;
5907 break;
5910 return dev_priv->cdclk_pll.ref * ratio;
5913 static int glk_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5915 int ratio;
5917 if (cdclk == dev_priv->cdclk_pll.ref)
5918 return 0;
5920 switch (cdclk) {
5921 default:
5922 MISSING_CASE(cdclk);
5923 case 79200:
5924 case 158400:
5925 case 316800:
5926 ratio = 33;
5927 break;
5930 return dev_priv->cdclk_pll.ref * ratio;
5933 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5935 I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5937 /* Timeout 200us */
5938 if (intel_wait_for_register(dev_priv,
5939 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
5941 DRM_ERROR("timeout waiting for DE PLL unlock\n");
5943 dev_priv->cdclk_pll.vco = 0;
5946 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
5948 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
5949 u32 val;
5951 val = I915_READ(BXT_DE_PLL_CTL);
5952 val &= ~BXT_DE_PLL_RATIO_MASK;
5953 val |= BXT_DE_PLL_RATIO(ratio);
5954 I915_WRITE(BXT_DE_PLL_CTL, val);
5956 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5958 /* Timeout 200us */
5959 if (intel_wait_for_register(dev_priv,
5960 BXT_DE_PLL_ENABLE,
5961 BXT_DE_PLL_LOCK,
5962 BXT_DE_PLL_LOCK,
5964 DRM_ERROR("timeout waiting for DE PLL lock\n");
5966 dev_priv->cdclk_pll.vco = vco;
5969 static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5971 u32 val, divider;
5972 int vco, ret;
5974 if (IS_GEMINILAKE(dev_priv))
5975 vco = glk_de_pll_vco(dev_priv, cdclk);
5976 else
5977 vco = bxt_de_pll_vco(dev_priv, cdclk);
5979 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5981 /* cdclk = vco / 2 / div{1,1.5,2,4} */
5982 switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
5983 case 8:
5984 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5985 break;
5986 case 4:
5987 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5988 break;
5989 case 3:
5990 WARN(IS_GEMINILAKE(dev_priv), "Unsupported divider\n");
5991 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5992 break;
5993 case 2:
5994 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5995 break;
5996 default:
5997 WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
5998 WARN_ON(vco != 0);
6000 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
6001 break;
6004 /* Inform power controller of upcoming frequency change */
6005 mutex_lock(&dev_priv->rps.hw_lock);
6006 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6007 0x80000000);
6008 mutex_unlock(&dev_priv->rps.hw_lock);
6010 if (ret) {
6011 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
6012 ret, cdclk);
6013 return;
6016 if (dev_priv->cdclk_pll.vco != 0 &&
6017 dev_priv->cdclk_pll.vco != vco)
6018 bxt_de_pll_disable(dev_priv);
6020 if (dev_priv->cdclk_pll.vco != vco)
6021 bxt_de_pll_enable(dev_priv, vco);
6023 val = divider | skl_cdclk_decimal(cdclk);
6025 * FIXME if only the cd2x divider needs changing, it could be done
6026 * without shutting off the pipe (if only one pipe is active).
6028 val |= BXT_CDCLK_CD2X_PIPE_NONE;
6030 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6031 * enable otherwise.
6033 if (cdclk >= 500000)
6034 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6035 I915_WRITE(CDCLK_CTL, val);
6037 mutex_lock(&dev_priv->rps.hw_lock);
6038 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6039 DIV_ROUND_UP(cdclk, 25000));
6040 mutex_unlock(&dev_priv->rps.hw_lock);
6042 if (ret) {
6043 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
6044 ret, cdclk);
6045 return;
6048 intel_update_cdclk(dev_priv);
6051 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
6053 u32 cdctl, expected;
6055 intel_update_cdclk(dev_priv);
6057 if (dev_priv->cdclk_pll.vco == 0 ||
6058 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6059 goto sanitize;
6061 /* DPLL okay; verify the cdclock
6063 * Some BIOS versions leave an incorrect decimal frequency value and
6064 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
6065 * so sanitize this register.
6067 cdctl = I915_READ(CDCLK_CTL);
6069 * Let's ignore the pipe field, since BIOS could have configured the
6070 * dividers both synching to an active pipe, or asynchronously
6071 * (PIPE_NONE).
6073 cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
6075 expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
6076 skl_cdclk_decimal(dev_priv->cdclk_freq);
6078 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6079 * enable otherwise.
6081 if (dev_priv->cdclk_freq >= 500000)
6082 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6084 if (cdctl == expected)
6085 /* All well; nothing to sanitize */
6086 return;
6088 sanitize:
6089 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6091 /* force cdclk programming */
6092 dev_priv->cdclk_freq = 0;
6094 /* force full PLL disable + enable */
6095 dev_priv->cdclk_pll.vco = -1;
6098 void bxt_init_cdclk(struct drm_i915_private *dev_priv)
6100 int cdclk;
6102 bxt_sanitize_cdclk(dev_priv);
6104 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
6105 return;
6108 * FIXME:
6109 * - The initial CDCLK needs to be read from VBT.
6110 * Need to make this change after VBT has changes for BXT.
6112 if (IS_GEMINILAKE(dev_priv))
6113 cdclk = glk_calc_cdclk(0);
6114 else
6115 cdclk = bxt_calc_cdclk(0);
6117 bxt_set_cdclk(dev_priv, cdclk);
6120 void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
6122 bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
6125 static int skl_calc_cdclk(int max_pixclk, int vco)
6127 if (vco == 8640000) {
6128 if (max_pixclk > 540000)
6129 return 617143;
6130 else if (max_pixclk > 432000)
6131 return 540000;
6132 else if (max_pixclk > 308571)
6133 return 432000;
6134 else
6135 return 308571;
6136 } else {
6137 if (max_pixclk > 540000)
6138 return 675000;
6139 else if (max_pixclk > 450000)
6140 return 540000;
6141 else if (max_pixclk > 337500)
6142 return 450000;
6143 else
6144 return 337500;
6148 static void
6149 skl_dpll0_update(struct drm_i915_private *dev_priv)
6151 u32 val;
6153 dev_priv->cdclk_pll.ref = 24000;
6154 dev_priv->cdclk_pll.vco = 0;
6156 val = I915_READ(LCPLL1_CTL);
6157 if ((val & LCPLL_PLL_ENABLE) == 0)
6158 return;
6160 if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
6161 return;
6163 val = I915_READ(DPLL_CTRL1);
6165 if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
6166 DPLL_CTRL1_SSC(SKL_DPLL0) |
6167 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
6168 DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
6169 return;
6171 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
6172 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
6173 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
6174 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
6175 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
6176 dev_priv->cdclk_pll.vco = 8100000;
6177 break;
6178 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
6179 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
6180 dev_priv->cdclk_pll.vco = 8640000;
6181 break;
6182 default:
6183 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6184 break;
6188 void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
6190 bool changed = dev_priv->skl_preferred_vco_freq != vco;
6192 dev_priv->skl_preferred_vco_freq = vco;
6194 if (changed)
6195 intel_update_max_cdclk(dev_priv);
6198 static void
6199 skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
6201 int min_cdclk = skl_calc_cdclk(0, vco);
6202 u32 val;
6204 WARN_ON(vco != 8100000 && vco != 8640000);
6206 /* select the minimum CDCLK before enabling DPLL 0 */
6207 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
6208 I915_WRITE(CDCLK_CTL, val);
6209 POSTING_READ(CDCLK_CTL);
6212 * We always enable DPLL0 with the lowest link rate possible, but still
6213 * taking into account the VCO required to operate the eDP panel at the
6214 * desired frequency. The usual DP link rates operate with a VCO of
6215 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
6216 * The modeset code is responsible for the selection of the exact link
6217 * rate later on, with the constraint of choosing a frequency that
6218 * works with vco.
6220 val = I915_READ(DPLL_CTRL1);
6222 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
6223 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6224 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
6225 if (vco == 8640000)
6226 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
6227 SKL_DPLL0);
6228 else
6229 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
6230 SKL_DPLL0);
6232 I915_WRITE(DPLL_CTRL1, val);
6233 POSTING_READ(DPLL_CTRL1);
6235 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
6237 if (intel_wait_for_register(dev_priv,
6238 LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
6240 DRM_ERROR("DPLL0 not locked\n");
6242 dev_priv->cdclk_pll.vco = vco;
6244 /* We'll want to keep using the current vco from now on. */
6245 skl_set_preferred_cdclk_vco(dev_priv, vco);
6248 static void
6249 skl_dpll0_disable(struct drm_i915_private *dev_priv)
6251 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
6252 if (intel_wait_for_register(dev_priv,
6253 LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
6255 DRM_ERROR("Couldn't disable DPLL0\n");
6257 dev_priv->cdclk_pll.vco = 0;
6260 static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
6262 u32 freq_select, pcu_ack;
6263 int ret;
6265 WARN_ON((cdclk == 24000) != (vco == 0));
6267 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
6269 mutex_lock(&dev_priv->rps.hw_lock);
6270 ret = skl_pcode_request(dev_priv, SKL_PCODE_CDCLK_CONTROL,
6271 SKL_CDCLK_PREPARE_FOR_CHANGE,
6272 SKL_CDCLK_READY_FOR_CHANGE,
6273 SKL_CDCLK_READY_FOR_CHANGE, 3);
6274 mutex_unlock(&dev_priv->rps.hw_lock);
6275 if (ret) {
6276 DRM_ERROR("Failed to inform PCU about cdclk change (%d)\n",
6277 ret);
6278 return;
6281 /* set CDCLK_CTL */
6282 switch (cdclk) {
6283 case 450000:
6284 case 432000:
6285 freq_select = CDCLK_FREQ_450_432;
6286 pcu_ack = 1;
6287 break;
6288 case 540000:
6289 freq_select = CDCLK_FREQ_540;
6290 pcu_ack = 2;
6291 break;
6292 case 308571:
6293 case 337500:
6294 default:
6295 freq_select = CDCLK_FREQ_337_308;
6296 pcu_ack = 0;
6297 break;
6298 case 617143:
6299 case 675000:
6300 freq_select = CDCLK_FREQ_675_617;
6301 pcu_ack = 3;
6302 break;
6305 if (dev_priv->cdclk_pll.vco != 0 &&
6306 dev_priv->cdclk_pll.vco != vco)
6307 skl_dpll0_disable(dev_priv);
6309 if (dev_priv->cdclk_pll.vco != vco)
6310 skl_dpll0_enable(dev_priv, vco);
6312 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
6313 POSTING_READ(CDCLK_CTL);
6315 /* inform PCU of the change */
6316 mutex_lock(&dev_priv->rps.hw_lock);
6317 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
6318 mutex_unlock(&dev_priv->rps.hw_lock);
6320 intel_update_cdclk(dev_priv);
6323 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
6325 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
6327 skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
6330 void skl_init_cdclk(struct drm_i915_private *dev_priv)
6332 int cdclk, vco;
6334 skl_sanitize_cdclk(dev_priv);
6336 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
6338 * Use the current vco as our initial
6339 * guess as to what the preferred vco is.
6341 if (dev_priv->skl_preferred_vco_freq == 0)
6342 skl_set_preferred_cdclk_vco(dev_priv,
6343 dev_priv->cdclk_pll.vco);
6344 return;
6347 vco = dev_priv->skl_preferred_vco_freq;
6348 if (vco == 0)
6349 vco = 8100000;
6350 cdclk = skl_calc_cdclk(0, vco);
6352 skl_set_cdclk(dev_priv, cdclk, vco);
6355 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
6357 uint32_t cdctl, expected;
6360 * check if the pre-os intialized the display
6361 * There is SWF18 scratchpad register defined which is set by the
6362 * pre-os which can be used by the OS drivers to check the status
6364 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
6365 goto sanitize;
6367 intel_update_cdclk(dev_priv);
6368 /* Is PLL enabled and locked ? */
6369 if (dev_priv->cdclk_pll.vco == 0 ||
6370 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6371 goto sanitize;
6373 /* DPLL okay; verify the cdclock
6375 * Noticed in some instances that the freq selection is correct but
6376 * decimal part is programmed wrong from BIOS where pre-os does not
6377 * enable display. Verify the same as well.
6379 cdctl = I915_READ(CDCLK_CTL);
6380 expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
6381 skl_cdclk_decimal(dev_priv->cdclk_freq);
6382 if (cdctl == expected)
6383 /* All well; nothing to sanitize */
6384 return;
6386 sanitize:
6387 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6389 /* force cdclk programming */
6390 dev_priv->cdclk_freq = 0;
6391 /* force full PLL disable + enable */
6392 dev_priv->cdclk_pll.vco = -1;
6395 /* Adjust CDclk dividers to allow high res or save power if possible */
6396 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
6398 struct drm_i915_private *dev_priv = to_i915(dev);
6399 u32 val, cmd;
6401 WARN_ON(dev_priv->display.get_display_clock_speed(dev_priv)
6402 != dev_priv->cdclk_freq);
6404 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
6405 cmd = 2;
6406 else if (cdclk == 266667)
6407 cmd = 1;
6408 else
6409 cmd = 0;
6411 mutex_lock(&dev_priv->rps.hw_lock);
6412 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6413 val &= ~DSPFREQGUAR_MASK;
6414 val |= (cmd << DSPFREQGUAR_SHIFT);
6415 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6416 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6417 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
6418 50)) {
6419 DRM_ERROR("timed out waiting for CDclk change\n");
6421 mutex_unlock(&dev_priv->rps.hw_lock);
6423 mutex_lock(&dev_priv->sb_lock);
6425 if (cdclk == 400000) {
6426 u32 divider;
6428 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6430 /* adjust cdclk divider */
6431 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6432 val &= ~CCK_FREQUENCY_VALUES;
6433 val |= divider;
6434 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
6436 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
6437 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
6438 50))
6439 DRM_ERROR("timed out waiting for CDclk change\n");
6442 /* adjust self-refresh exit latency value */
6443 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
6444 val &= ~0x7f;
6447 * For high bandwidth configs, we set a higher latency in the bunit
6448 * so that the core display fetch happens in time to avoid underruns.
6450 if (cdclk == 400000)
6451 val |= 4500 / 250; /* 4.5 usec */
6452 else
6453 val |= 3000 / 250; /* 3.0 usec */
6454 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
6456 mutex_unlock(&dev_priv->sb_lock);
6458 intel_update_cdclk(dev_priv);
6461 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
6463 struct drm_i915_private *dev_priv = to_i915(dev);
6464 u32 val, cmd;
6466 WARN_ON(dev_priv->display.get_display_clock_speed(dev_priv)
6467 != dev_priv->cdclk_freq);
6469 switch (cdclk) {
6470 case 333333:
6471 case 320000:
6472 case 266667:
6473 case 200000:
6474 break;
6475 default:
6476 MISSING_CASE(cdclk);
6477 return;
6481 * Specs are full of misinformation, but testing on actual
6482 * hardware has shown that we just need to write the desired
6483 * CCK divider into the Punit register.
6485 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6487 mutex_lock(&dev_priv->rps.hw_lock);
6488 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6489 val &= ~DSPFREQGUAR_MASK_CHV;
6490 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
6491 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6492 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6493 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
6494 50)) {
6495 DRM_ERROR("timed out waiting for CDclk change\n");
6497 mutex_unlock(&dev_priv->rps.hw_lock);
6499 intel_update_cdclk(dev_priv);
6502 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
6503 int max_pixclk)
6505 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6506 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
6509 * Really only a few cases to deal with, as only 4 CDclks are supported:
6510 * 200MHz
6511 * 267MHz
6512 * 320/333MHz (depends on HPLL freq)
6513 * 400MHz (VLV only)
6514 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6515 * of the lower bin and adjust if needed.
6517 * We seem to get an unstable or solid color picture at 200MHz.
6518 * Not sure what's wrong. For now use 200MHz only when all pipes
6519 * are off.
6521 if (!IS_CHERRYVIEW(dev_priv) &&
6522 max_pixclk > freq_320*limit/100)
6523 return 400000;
6524 else if (max_pixclk > 266667*limit/100)
6525 return freq_320;
6526 else if (max_pixclk > 0)
6527 return 266667;
6528 else
6529 return 200000;
6532 static int glk_calc_cdclk(int max_pixclk)
6534 if (max_pixclk > 2 * 158400)
6535 return 316800;
6536 else if (max_pixclk > 2 * 79200)
6537 return 158400;
6538 else
6539 return 79200;
6542 static int bxt_calc_cdclk(int max_pixclk)
6544 if (max_pixclk > 576000)
6545 return 624000;
6546 else if (max_pixclk > 384000)
6547 return 576000;
6548 else if (max_pixclk > 288000)
6549 return 384000;
6550 else if (max_pixclk > 144000)
6551 return 288000;
6552 else
6553 return 144000;
6556 /* Compute the max pixel clock for new configuration. */
6557 static int intel_mode_max_pixclk(struct drm_device *dev,
6558 struct drm_atomic_state *state)
6560 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6561 struct drm_i915_private *dev_priv = to_i915(dev);
6562 struct drm_crtc *crtc;
6563 struct drm_crtc_state *crtc_state;
6564 unsigned max_pixclk = 0, i;
6565 enum pipe pipe;
6567 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6568 sizeof(intel_state->min_pixclk));
6570 for_each_crtc_in_state(state, crtc, crtc_state, i) {
6571 int pixclk = 0;
6573 if (crtc_state->enable)
6574 pixclk = crtc_state->adjusted_mode.crtc_clock;
6576 intel_state->min_pixclk[i] = pixclk;
6579 for_each_pipe(dev_priv, pipe)
6580 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6582 return max_pixclk;
6585 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6587 struct drm_device *dev = state->dev;
6588 struct drm_i915_private *dev_priv = to_i915(dev);
6589 int max_pixclk = intel_mode_max_pixclk(dev, state);
6590 struct intel_atomic_state *intel_state =
6591 to_intel_atomic_state(state);
6593 intel_state->cdclk = intel_state->dev_cdclk =
6594 valleyview_calc_cdclk(dev_priv, max_pixclk);
6596 if (!intel_state->active_crtcs)
6597 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6599 return 0;
6602 static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
6604 struct drm_i915_private *dev_priv = to_i915(state->dev);
6605 int max_pixclk = ilk_max_pixel_rate(state);
6606 struct intel_atomic_state *intel_state =
6607 to_intel_atomic_state(state);
6608 int cdclk;
6610 if (IS_GEMINILAKE(dev_priv))
6611 cdclk = glk_calc_cdclk(max_pixclk);
6612 else
6613 cdclk = bxt_calc_cdclk(max_pixclk);
6615 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
6617 if (!intel_state->active_crtcs) {
6618 if (IS_GEMINILAKE(dev_priv))
6619 cdclk = glk_calc_cdclk(0);
6620 else
6621 cdclk = bxt_calc_cdclk(0);
6623 intel_state->dev_cdclk = cdclk;
6626 return 0;
6629 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6631 unsigned int credits, default_credits;
6633 if (IS_CHERRYVIEW(dev_priv))
6634 default_credits = PFI_CREDIT(12);
6635 else
6636 default_credits = PFI_CREDIT(8);
6638 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6639 /* CHV suggested value is 31 or 63 */
6640 if (IS_CHERRYVIEW(dev_priv))
6641 credits = PFI_CREDIT_63;
6642 else
6643 credits = PFI_CREDIT(15);
6644 } else {
6645 credits = default_credits;
6649 * WA - write default credits before re-programming
6650 * FIXME: should we also set the resend bit here?
6652 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6653 default_credits);
6655 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6656 credits | PFI_CREDIT_RESEND);
6659 * FIXME is this guaranteed to clear
6660 * immediately or should we poll for it?
6662 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6665 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6667 struct drm_device *dev = old_state->dev;
6668 struct drm_i915_private *dev_priv = to_i915(dev);
6669 struct intel_atomic_state *old_intel_state =
6670 to_intel_atomic_state(old_state);
6671 unsigned req_cdclk = old_intel_state->dev_cdclk;
6674 * FIXME: We can end up here with all power domains off, yet
6675 * with a CDCLK frequency other than the minimum. To account
6676 * for this take the PIPE-A power domain, which covers the HW
6677 * blocks needed for the following programming. This can be
6678 * removed once it's guaranteed that we get here either with
6679 * the minimum CDCLK set, or the required power domains
6680 * enabled.
6682 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6684 if (IS_CHERRYVIEW(dev_priv))
6685 cherryview_set_cdclk(dev, req_cdclk);
6686 else
6687 valleyview_set_cdclk(dev, req_cdclk);
6689 vlv_program_pfi_credits(dev_priv);
6691 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6694 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
6695 struct drm_atomic_state *old_state)
6697 struct drm_crtc *crtc = pipe_config->base.crtc;
6698 struct drm_device *dev = crtc->dev;
6699 struct drm_i915_private *dev_priv = to_i915(dev);
6700 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6701 int pipe = intel_crtc->pipe;
6703 if (WARN_ON(intel_crtc->active))
6704 return;
6706 if (intel_crtc_has_dp_encoder(intel_crtc->config))
6707 intel_dp_set_m_n(intel_crtc, M1_N1);
6709 intel_set_pipe_timings(intel_crtc);
6710 intel_set_pipe_src_size(intel_crtc);
6712 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
6713 struct drm_i915_private *dev_priv = to_i915(dev);
6715 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6716 I915_WRITE(CHV_CANVAS(pipe), 0);
6719 i9xx_set_pipeconf(intel_crtc);
6721 intel_crtc->active = true;
6723 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6725 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
6727 if (IS_CHERRYVIEW(dev_priv)) {
6728 chv_prepare_pll(intel_crtc, intel_crtc->config);
6729 chv_enable_pll(intel_crtc, intel_crtc->config);
6730 } else {
6731 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6732 vlv_enable_pll(intel_crtc, intel_crtc->config);
6735 intel_encoders_pre_enable(crtc, pipe_config, old_state);
6737 i9xx_pfit_enable(intel_crtc);
6739 intel_color_load_luts(&pipe_config->base);
6741 intel_update_watermarks(intel_crtc);
6742 intel_enable_pipe(intel_crtc);
6744 assert_vblank_disabled(crtc);
6745 drm_crtc_vblank_on(crtc);
6747 intel_encoders_enable(crtc, pipe_config, old_state);
6750 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6752 struct drm_device *dev = crtc->base.dev;
6753 struct drm_i915_private *dev_priv = to_i915(dev);
6755 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6756 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6759 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
6760 struct drm_atomic_state *old_state)
6762 struct drm_crtc *crtc = pipe_config->base.crtc;
6763 struct drm_device *dev = crtc->dev;
6764 struct drm_i915_private *dev_priv = to_i915(dev);
6765 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6766 enum pipe pipe = intel_crtc->pipe;
6768 if (WARN_ON(intel_crtc->active))
6769 return;
6771 i9xx_set_pll_dividers(intel_crtc);
6773 if (intel_crtc_has_dp_encoder(intel_crtc->config))
6774 intel_dp_set_m_n(intel_crtc, M1_N1);
6776 intel_set_pipe_timings(intel_crtc);
6777 intel_set_pipe_src_size(intel_crtc);
6779 i9xx_set_pipeconf(intel_crtc);
6781 intel_crtc->active = true;
6783 if (!IS_GEN2(dev_priv))
6784 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6786 intel_encoders_pre_enable(crtc, pipe_config, old_state);
6788 i9xx_enable_pll(intel_crtc);
6790 i9xx_pfit_enable(intel_crtc);
6792 intel_color_load_luts(&pipe_config->base);
6794 intel_update_watermarks(intel_crtc);
6795 intel_enable_pipe(intel_crtc);
6797 assert_vblank_disabled(crtc);
6798 drm_crtc_vblank_on(crtc);
6800 intel_encoders_enable(crtc, pipe_config, old_state);
6803 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6805 struct drm_device *dev = crtc->base.dev;
6806 struct drm_i915_private *dev_priv = to_i915(dev);
6808 if (!crtc->config->gmch_pfit.control)
6809 return;
6811 assert_pipe_disabled(dev_priv, crtc->pipe);
6813 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6814 I915_READ(PFIT_CONTROL));
6815 I915_WRITE(PFIT_CONTROL, 0);
6818 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
6819 struct drm_atomic_state *old_state)
6821 struct drm_crtc *crtc = old_crtc_state->base.crtc;
6822 struct drm_device *dev = crtc->dev;
6823 struct drm_i915_private *dev_priv = to_i915(dev);
6824 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6825 int pipe = intel_crtc->pipe;
6828 * On gen2 planes are double buffered but the pipe isn't, so we must
6829 * wait for planes to fully turn off before disabling the pipe.
6831 if (IS_GEN2(dev_priv))
6832 intel_wait_for_vblank(dev_priv, pipe);
6834 intel_encoders_disable(crtc, old_crtc_state, old_state);
6836 drm_crtc_vblank_off(crtc);
6837 assert_vblank_disabled(crtc);
6839 intel_disable_pipe(intel_crtc);
6841 i9xx_pfit_disable(intel_crtc);
6843 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
6845 if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
6846 if (IS_CHERRYVIEW(dev_priv))
6847 chv_disable_pll(dev_priv, pipe);
6848 else if (IS_VALLEYVIEW(dev_priv))
6849 vlv_disable_pll(dev_priv, pipe);
6850 else
6851 i9xx_disable_pll(intel_crtc);
6854 intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
6856 if (!IS_GEN2(dev_priv))
6857 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6860 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6862 struct intel_encoder *encoder;
6863 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6864 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6865 enum intel_display_power_domain domain;
6866 unsigned long domains;
6867 struct drm_atomic_state *state;
6868 struct intel_crtc_state *crtc_state;
6869 int ret;
6871 if (!intel_crtc->active)
6872 return;
6874 if (crtc->primary->state->visible) {
6875 WARN_ON(intel_crtc->flip_work);
6877 intel_pre_disable_primary_noatomic(crtc);
6879 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6880 crtc->primary->state->visible = false;
6883 state = drm_atomic_state_alloc(crtc->dev);
6884 state->acquire_ctx = crtc->dev->mode_config.acquire_ctx;
6886 /* Everything's already locked, -EDEADLK can't happen. */
6887 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6888 ret = drm_atomic_add_affected_connectors(state, crtc);
6890 WARN_ON(IS_ERR(crtc_state) || ret);
6892 dev_priv->display.crtc_disable(crtc_state, state);
6894 drm_atomic_state_put(state);
6896 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6897 crtc->base.id, crtc->name);
6899 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6900 crtc->state->active = false;
6901 intel_crtc->active = false;
6902 crtc->enabled = false;
6903 crtc->state->connector_mask = 0;
6904 crtc->state->encoder_mask = 0;
6906 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6907 encoder->base.crtc = NULL;
6909 intel_fbc_disable(intel_crtc);
6910 intel_update_watermarks(intel_crtc);
6911 intel_disable_shared_dpll(intel_crtc);
6913 domains = intel_crtc->enabled_power_domains;
6914 for_each_power_domain(domain, domains)
6915 intel_display_power_put(dev_priv, domain);
6916 intel_crtc->enabled_power_domains = 0;
6918 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6919 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6923 * turn all crtc's off, but do not adjust state
6924 * This has to be paired with a call to intel_modeset_setup_hw_state.
6926 int intel_display_suspend(struct drm_device *dev)
6928 struct drm_i915_private *dev_priv = to_i915(dev);
6929 struct drm_atomic_state *state;
6930 int ret;
6932 state = drm_atomic_helper_suspend(dev);
6933 ret = PTR_ERR_OR_ZERO(state);
6934 if (ret)
6935 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6936 else
6937 dev_priv->modeset_restore_state = state;
6938 return ret;
6941 void intel_encoder_destroy(struct drm_encoder *encoder)
6943 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6945 drm_encoder_cleanup(encoder);
6946 kfree(intel_encoder);
6949 /* Cross check the actual hw state with our own modeset state tracking (and it's
6950 * internal consistency). */
6951 static void intel_connector_verify_state(struct intel_connector *connector)
6953 struct drm_crtc *crtc = connector->base.state->crtc;
6955 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6956 connector->base.base.id,
6957 connector->base.name);
6959 if (connector->get_hw_state(connector)) {
6960 struct intel_encoder *encoder = connector->encoder;
6961 struct drm_connector_state *conn_state = connector->base.state;
6963 I915_STATE_WARN(!crtc,
6964 "connector enabled without attached crtc\n");
6966 if (!crtc)
6967 return;
6969 I915_STATE_WARN(!crtc->state->active,
6970 "connector is active, but attached crtc isn't\n");
6972 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6973 return;
6975 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6976 "atomic encoder doesn't match attached encoder\n");
6978 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6979 "attached encoder crtc differs from connector crtc\n");
6980 } else {
6981 I915_STATE_WARN(crtc && crtc->state->active,
6982 "attached crtc is active, but connector isn't\n");
6983 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6984 "best encoder set without crtc!\n");
6988 int intel_connector_init(struct intel_connector *connector)
6990 drm_atomic_helper_connector_reset(&connector->base);
6992 if (!connector->base.state)
6993 return -ENOMEM;
6995 return 0;
6998 struct intel_connector *intel_connector_alloc(void)
7000 struct intel_connector *connector;
7002 connector = kzalloc(sizeof *connector, GFP_KERNEL);
7003 if (!connector)
7004 return NULL;
7006 if (intel_connector_init(connector) < 0) {
7007 kfree(connector);
7008 return NULL;
7011 return connector;
7014 /* Simple connector->get_hw_state implementation for encoders that support only
7015 * one connector and no cloning and hence the encoder state determines the state
7016 * of the connector. */
7017 bool intel_connector_get_hw_state(struct intel_connector *connector)
7019 enum pipe pipe = 0;
7020 struct intel_encoder *encoder = connector->encoder;
7022 return encoder->get_hw_state(encoder, &pipe);
7025 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
7027 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
7028 return crtc_state->fdi_lanes;
7030 return 0;
7033 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
7034 struct intel_crtc_state *pipe_config)
7036 struct drm_i915_private *dev_priv = to_i915(dev);
7037 struct drm_atomic_state *state = pipe_config->base.state;
7038 struct intel_crtc *other_crtc;
7039 struct intel_crtc_state *other_crtc_state;
7041 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
7042 pipe_name(pipe), pipe_config->fdi_lanes);
7043 if (pipe_config->fdi_lanes > 4) {
7044 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
7045 pipe_name(pipe), pipe_config->fdi_lanes);
7046 return -EINVAL;
7049 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
7050 if (pipe_config->fdi_lanes > 2) {
7051 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
7052 pipe_config->fdi_lanes);
7053 return -EINVAL;
7054 } else {
7055 return 0;
7059 if (INTEL_INFO(dev_priv)->num_pipes == 2)
7060 return 0;
7062 /* Ivybridge 3 pipe is really complicated */
7063 switch (pipe) {
7064 case PIPE_A:
7065 return 0;
7066 case PIPE_B:
7067 if (pipe_config->fdi_lanes <= 2)
7068 return 0;
7070 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
7071 other_crtc_state =
7072 intel_atomic_get_crtc_state(state, other_crtc);
7073 if (IS_ERR(other_crtc_state))
7074 return PTR_ERR(other_crtc_state);
7076 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7077 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
7078 pipe_name(pipe), pipe_config->fdi_lanes);
7079 return -EINVAL;
7081 return 0;
7082 case PIPE_C:
7083 if (pipe_config->fdi_lanes > 2) {
7084 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
7085 pipe_name(pipe), pipe_config->fdi_lanes);
7086 return -EINVAL;
7089 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
7090 other_crtc_state =
7091 intel_atomic_get_crtc_state(state, other_crtc);
7092 if (IS_ERR(other_crtc_state))
7093 return PTR_ERR(other_crtc_state);
7095 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7096 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
7097 return -EINVAL;
7099 return 0;
7100 default:
7101 BUG();
7105 #define RETRY 1
7106 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
7107 struct intel_crtc_state *pipe_config)
7109 struct drm_device *dev = intel_crtc->base.dev;
7110 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7111 int lane, link_bw, fdi_dotclock, ret;
7112 bool needs_recompute = false;
7114 retry:
7115 /* FDI is a binary signal running at ~2.7GHz, encoding
7116 * each output octet as 10 bits. The actual frequency
7117 * is stored as a divider into a 100MHz clock, and the
7118 * mode pixel clock is stored in units of 1KHz.
7119 * Hence the bw of each lane in terms of the mode signal
7120 * is:
7122 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
7124 fdi_dotclock = adjusted_mode->crtc_clock;
7126 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
7127 pipe_config->pipe_bpp);
7129 pipe_config->fdi_lanes = lane;
7131 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7132 link_bw, &pipe_config->fdi_m_n);
7134 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7135 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7136 pipe_config->pipe_bpp -= 2*3;
7137 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
7138 pipe_config->pipe_bpp);
7139 needs_recompute = true;
7140 pipe_config->bw_constrained = true;
7142 goto retry;
7145 if (needs_recompute)
7146 return RETRY;
7148 return ret;
7151 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
7152 struct intel_crtc_state *pipe_config)
7154 if (pipe_config->pipe_bpp > 24)
7155 return false;
7157 /* HSW can handle pixel rate up to cdclk? */
7158 if (IS_HASWELL(dev_priv))
7159 return true;
7162 * We compare against max which means we must take
7163 * the increased cdclk requirement into account when
7164 * calculating the new cdclk.
7166 * Should measure whether using a lower cdclk w/o IPS
7168 return ilk_pipe_pixel_rate(pipe_config) <=
7169 dev_priv->max_cdclk_freq * 95 / 100;
7172 static void hsw_compute_ips_config(struct intel_crtc *crtc,
7173 struct intel_crtc_state *pipe_config)
7175 struct drm_device *dev = crtc->base.dev;
7176 struct drm_i915_private *dev_priv = to_i915(dev);
7178 pipe_config->ips_enabled = i915.enable_ips &&
7179 hsw_crtc_supports_ips(crtc) &&
7180 pipe_config_supports_ips(dev_priv, pipe_config);
7183 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
7185 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7187 /* GDG double wide on either pipe, otherwise pipe A only */
7188 return INTEL_INFO(dev_priv)->gen < 4 &&
7189 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
7192 static int intel_crtc_compute_config(struct intel_crtc *crtc,
7193 struct intel_crtc_state *pipe_config)
7195 struct drm_device *dev = crtc->base.dev;
7196 struct drm_i915_private *dev_priv = to_i915(dev);
7197 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7198 int clock_limit = dev_priv->max_dotclk_freq;
7200 if (INTEL_GEN(dev_priv) < 4) {
7201 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
7204 * Enable double wide mode when the dot clock
7205 * is > 90% of the (display) core speed.
7207 if (intel_crtc_supports_double_wide(crtc) &&
7208 adjusted_mode->crtc_clock > clock_limit) {
7209 clock_limit = dev_priv->max_dotclk_freq;
7210 pipe_config->double_wide = true;
7214 if (adjusted_mode->crtc_clock > clock_limit) {
7215 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
7216 adjusted_mode->crtc_clock, clock_limit,
7217 yesno(pipe_config->double_wide));
7218 return -EINVAL;
7222 * Pipe horizontal size must be even in:
7223 * - DVO ganged mode
7224 * - LVDS dual channel mode
7225 * - Double wide pipe
7227 if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
7228 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
7229 pipe_config->pipe_src_w &= ~1;
7231 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
7232 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
7234 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
7235 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
7236 return -EINVAL;
7238 if (HAS_IPS(dev_priv))
7239 hsw_compute_ips_config(crtc, pipe_config);
7241 if (pipe_config->has_pch_encoder)
7242 return ironlake_fdi_compute_config(crtc, pipe_config);
7244 return 0;
7247 static int skylake_get_display_clock_speed(struct drm_i915_private *dev_priv)
7249 u32 cdctl;
7251 skl_dpll0_update(dev_priv);
7253 if (dev_priv->cdclk_pll.vco == 0)
7254 return dev_priv->cdclk_pll.ref;
7256 cdctl = I915_READ(CDCLK_CTL);
7258 if (dev_priv->cdclk_pll.vco == 8640000) {
7259 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7260 case CDCLK_FREQ_450_432:
7261 return 432000;
7262 case CDCLK_FREQ_337_308:
7263 return 308571;
7264 case CDCLK_FREQ_540:
7265 return 540000;
7266 case CDCLK_FREQ_675_617:
7267 return 617143;
7268 default:
7269 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7271 } else {
7272 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7273 case CDCLK_FREQ_450_432:
7274 return 450000;
7275 case CDCLK_FREQ_337_308:
7276 return 337500;
7277 case CDCLK_FREQ_540:
7278 return 540000;
7279 case CDCLK_FREQ_675_617:
7280 return 675000;
7281 default:
7282 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7286 return dev_priv->cdclk_pll.ref;
7289 static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
7291 u32 val;
7293 dev_priv->cdclk_pll.ref = 19200;
7294 dev_priv->cdclk_pll.vco = 0;
7296 val = I915_READ(BXT_DE_PLL_ENABLE);
7297 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
7298 return;
7300 if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
7301 return;
7303 val = I915_READ(BXT_DE_PLL_CTL);
7304 dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
7305 dev_priv->cdclk_pll.ref;
7308 static int broxton_get_display_clock_speed(struct drm_i915_private *dev_priv)
7310 u32 divider;
7311 int div, vco;
7313 bxt_de_pll_update(dev_priv);
7315 vco = dev_priv->cdclk_pll.vco;
7316 if (vco == 0)
7317 return dev_priv->cdclk_pll.ref;
7319 divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
7321 switch (divider) {
7322 case BXT_CDCLK_CD2X_DIV_SEL_1:
7323 div = 2;
7324 break;
7325 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
7326 WARN(IS_GEMINILAKE(dev_priv), "Unsupported divider\n");
7327 div = 3;
7328 break;
7329 case BXT_CDCLK_CD2X_DIV_SEL_2:
7330 div = 4;
7331 break;
7332 case BXT_CDCLK_CD2X_DIV_SEL_4:
7333 div = 8;
7334 break;
7335 default:
7336 MISSING_CASE(divider);
7337 return dev_priv->cdclk_pll.ref;
7340 return DIV_ROUND_CLOSEST(vco, div);
7343 static int broadwell_get_display_clock_speed(struct drm_i915_private *dev_priv)
7345 uint32_t lcpll = I915_READ(LCPLL_CTL);
7346 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7348 if (lcpll & LCPLL_CD_SOURCE_FCLK)
7349 return 800000;
7350 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7351 return 450000;
7352 else if (freq == LCPLL_CLK_FREQ_450)
7353 return 450000;
7354 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
7355 return 540000;
7356 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
7357 return 337500;
7358 else
7359 return 675000;
7362 static int haswell_get_display_clock_speed(struct drm_i915_private *dev_priv)
7364 uint32_t lcpll = I915_READ(LCPLL_CTL);
7365 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7367 if (lcpll & LCPLL_CD_SOURCE_FCLK)
7368 return 800000;
7369 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7370 return 450000;
7371 else if (freq == LCPLL_CLK_FREQ_450)
7372 return 450000;
7373 else if (IS_HSW_ULT(dev_priv))
7374 return 337500;
7375 else
7376 return 540000;
7379 static int valleyview_get_display_clock_speed(struct drm_i915_private *dev_priv)
7381 return vlv_get_cck_clock_hpll(dev_priv, "cdclk",
7382 CCK_DISPLAY_CLOCK_CONTROL);
7385 static int ilk_get_display_clock_speed(struct drm_i915_private *dev_priv)
7387 return 450000;
7390 static int i945_get_display_clock_speed(struct drm_i915_private *dev_priv)
7392 return 400000;
7395 static int i915_get_display_clock_speed(struct drm_i915_private *dev_priv)
7397 return 333333;
7400 static int i9xx_misc_get_display_clock_speed(struct drm_i915_private *dev_priv)
7402 return 200000;
7405 static int pnv_get_display_clock_speed(struct drm_i915_private *dev_priv)
7407 struct pci_dev *pdev = dev_priv->drm.pdev;
7408 u16 gcfgc = 0;
7410 pci_read_config_word(pdev, GCFGC, &gcfgc);
7412 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7413 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
7414 return 266667;
7415 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
7416 return 333333;
7417 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
7418 return 444444;
7419 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
7420 return 200000;
7421 default:
7422 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
7423 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
7424 return 133333;
7425 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
7426 return 166667;
7430 static int i915gm_get_display_clock_speed(struct drm_i915_private *dev_priv)
7432 struct pci_dev *pdev = dev_priv->drm.pdev;
7433 u16 gcfgc = 0;
7435 pci_read_config_word(pdev, GCFGC, &gcfgc);
7437 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
7438 return 133333;
7439 else {
7440 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7441 case GC_DISPLAY_CLOCK_333_MHZ:
7442 return 333333;
7443 default:
7444 case GC_DISPLAY_CLOCK_190_200_MHZ:
7445 return 190000;
7450 static int i865_get_display_clock_speed(struct drm_i915_private *dev_priv)
7452 return 266667;
7455 static int i85x_get_display_clock_speed(struct drm_i915_private *dev_priv)
7457 struct pci_dev *pdev = dev_priv->drm.pdev;
7458 u16 hpllcc = 0;
7461 * 852GM/852GMV only supports 133 MHz and the HPLLCC
7462 * encoding is different :(
7463 * FIXME is this the right way to detect 852GM/852GMV?
7465 if (pdev->revision == 0x1)
7466 return 133333;
7468 pci_bus_read_config_word(pdev->bus,
7469 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
7471 /* Assume that the hardware is in the high speed state. This
7472 * should be the default.
7474 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
7475 case GC_CLOCK_133_200:
7476 case GC_CLOCK_133_200_2:
7477 case GC_CLOCK_100_200:
7478 return 200000;
7479 case GC_CLOCK_166_250:
7480 return 250000;
7481 case GC_CLOCK_100_133:
7482 return 133333;
7483 case GC_CLOCK_133_266:
7484 case GC_CLOCK_133_266_2:
7485 case GC_CLOCK_166_266:
7486 return 266667;
7489 /* Shouldn't happen */
7490 return 0;
7493 static int i830_get_display_clock_speed(struct drm_i915_private *dev_priv)
7495 return 133333;
7498 static unsigned int intel_hpll_vco(struct drm_i915_private *dev_priv)
7500 static const unsigned int blb_vco[8] = {
7501 [0] = 3200000,
7502 [1] = 4000000,
7503 [2] = 5333333,
7504 [3] = 4800000,
7505 [4] = 6400000,
7507 static const unsigned int pnv_vco[8] = {
7508 [0] = 3200000,
7509 [1] = 4000000,
7510 [2] = 5333333,
7511 [3] = 4800000,
7512 [4] = 2666667,
7514 static const unsigned int cl_vco[8] = {
7515 [0] = 3200000,
7516 [1] = 4000000,
7517 [2] = 5333333,
7518 [3] = 6400000,
7519 [4] = 3333333,
7520 [5] = 3566667,
7521 [6] = 4266667,
7523 static const unsigned int elk_vco[8] = {
7524 [0] = 3200000,
7525 [1] = 4000000,
7526 [2] = 5333333,
7527 [3] = 4800000,
7529 static const unsigned int ctg_vco[8] = {
7530 [0] = 3200000,
7531 [1] = 4000000,
7532 [2] = 5333333,
7533 [3] = 6400000,
7534 [4] = 2666667,
7535 [5] = 4266667,
7537 const unsigned int *vco_table;
7538 unsigned int vco;
7539 uint8_t tmp = 0;
7541 /* FIXME other chipsets? */
7542 if (IS_GM45(dev_priv))
7543 vco_table = ctg_vco;
7544 else if (IS_G4X(dev_priv))
7545 vco_table = elk_vco;
7546 else if (IS_I965GM(dev_priv))
7547 vco_table = cl_vco;
7548 else if (IS_PINEVIEW(dev_priv))
7549 vco_table = pnv_vco;
7550 else if (IS_G33(dev_priv))
7551 vco_table = blb_vco;
7552 else
7553 return 0;
7555 tmp = I915_READ(IS_MOBILE(dev_priv) ? HPLLVCO_MOBILE : HPLLVCO);
7557 vco = vco_table[tmp & 0x7];
7558 if (vco == 0)
7559 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7560 else
7561 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7563 return vco;
7566 static int gm45_get_display_clock_speed(struct drm_i915_private *dev_priv)
7568 struct pci_dev *pdev = dev_priv->drm.pdev;
7569 unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7570 uint16_t tmp = 0;
7572 pci_read_config_word(pdev, GCFGC, &tmp);
7574 cdclk_sel = (tmp >> 12) & 0x1;
7576 switch (vco) {
7577 case 2666667:
7578 case 4000000:
7579 case 5333333:
7580 return cdclk_sel ? 333333 : 222222;
7581 case 3200000:
7582 return cdclk_sel ? 320000 : 228571;
7583 default:
7584 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7585 return 222222;
7589 static int i965gm_get_display_clock_speed(struct drm_i915_private *dev_priv)
7591 struct pci_dev *pdev = dev_priv->drm.pdev;
7592 static const uint8_t div_3200[] = { 16, 10, 8 };
7593 static const uint8_t div_4000[] = { 20, 12, 10 };
7594 static const uint8_t div_5333[] = { 24, 16, 14 };
7595 const uint8_t *div_table;
7596 unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7597 uint16_t tmp = 0;
7599 pci_read_config_word(pdev, GCFGC, &tmp);
7601 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7603 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7604 goto fail;
7606 switch (vco) {
7607 case 3200000:
7608 div_table = div_3200;
7609 break;
7610 case 4000000:
7611 div_table = div_4000;
7612 break;
7613 case 5333333:
7614 div_table = div_5333;
7615 break;
7616 default:
7617 goto fail;
7620 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7622 fail:
7623 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7624 return 200000;
7627 static int g33_get_display_clock_speed(struct drm_i915_private *dev_priv)
7629 struct pci_dev *pdev = dev_priv->drm.pdev;
7630 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7631 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7632 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7633 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7634 const uint8_t *div_table;
7635 unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7636 uint16_t tmp = 0;
7638 pci_read_config_word(pdev, GCFGC, &tmp);
7640 cdclk_sel = (tmp >> 4) & 0x7;
7642 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7643 goto fail;
7645 switch (vco) {
7646 case 3200000:
7647 div_table = div_3200;
7648 break;
7649 case 4000000:
7650 div_table = div_4000;
7651 break;
7652 case 4800000:
7653 div_table = div_4800;
7654 break;
7655 case 5333333:
7656 div_table = div_5333;
7657 break;
7658 default:
7659 goto fail;
7662 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7664 fail:
7665 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7666 return 190476;
7669 static void
7670 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7672 while (*num > DATA_LINK_M_N_MASK ||
7673 *den > DATA_LINK_M_N_MASK) {
7674 *num >>= 1;
7675 *den >>= 1;
7679 static void compute_m_n(unsigned int m, unsigned int n,
7680 uint32_t *ret_m, uint32_t *ret_n)
7682 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7683 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7684 intel_reduce_m_n_ratio(ret_m, ret_n);
7687 void
7688 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7689 int pixel_clock, int link_clock,
7690 struct intel_link_m_n *m_n)
7692 m_n->tu = 64;
7694 compute_m_n(bits_per_pixel * pixel_clock,
7695 link_clock * nlanes * 8,
7696 &m_n->gmch_m, &m_n->gmch_n);
7698 compute_m_n(pixel_clock, link_clock,
7699 &m_n->link_m, &m_n->link_n);
7702 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7704 if (i915.panel_use_ssc >= 0)
7705 return i915.panel_use_ssc != 0;
7706 return dev_priv->vbt.lvds_use_ssc
7707 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7710 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7712 return (1 << dpll->n) << 16 | dpll->m2;
7715 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7717 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7720 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7721 struct intel_crtc_state *crtc_state,
7722 struct dpll *reduced_clock)
7724 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7725 u32 fp, fp2 = 0;
7727 if (IS_PINEVIEW(dev_priv)) {
7728 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7729 if (reduced_clock)
7730 fp2 = pnv_dpll_compute_fp(reduced_clock);
7731 } else {
7732 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7733 if (reduced_clock)
7734 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7737 crtc_state->dpll_hw_state.fp0 = fp;
7739 crtc->lowfreq_avail = false;
7740 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7741 reduced_clock) {
7742 crtc_state->dpll_hw_state.fp1 = fp2;
7743 crtc->lowfreq_avail = true;
7744 } else {
7745 crtc_state->dpll_hw_state.fp1 = fp;
7749 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7750 pipe)
7752 u32 reg_val;
7755 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7756 * and set it to a reasonable value instead.
7758 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7759 reg_val &= 0xffffff00;
7760 reg_val |= 0x00000030;
7761 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7763 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7764 reg_val &= 0x8cffffff;
7765 reg_val = 0x8c000000;
7766 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7768 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7769 reg_val &= 0xffffff00;
7770 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7772 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7773 reg_val &= 0x00ffffff;
7774 reg_val |= 0xb0000000;
7775 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7778 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7779 struct intel_link_m_n *m_n)
7781 struct drm_device *dev = crtc->base.dev;
7782 struct drm_i915_private *dev_priv = to_i915(dev);
7783 int pipe = crtc->pipe;
7785 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7786 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7787 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7788 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7791 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7792 struct intel_link_m_n *m_n,
7793 struct intel_link_m_n *m2_n2)
7795 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7796 int pipe = crtc->pipe;
7797 enum transcoder transcoder = crtc->config->cpu_transcoder;
7799 if (INTEL_GEN(dev_priv) >= 5) {
7800 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7801 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7802 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7803 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7804 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7805 * for gen < 8) and if DRRS is supported (to make sure the
7806 * registers are not unnecessarily accessed).
7808 if (m2_n2 && (IS_CHERRYVIEW(dev_priv) ||
7809 INTEL_GEN(dev_priv) < 8) && crtc->config->has_drrs) {
7810 I915_WRITE(PIPE_DATA_M2(transcoder),
7811 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7812 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7813 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7814 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7816 } else {
7817 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7818 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7819 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7820 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7824 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7826 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7828 if (m_n == M1_N1) {
7829 dp_m_n = &crtc->config->dp_m_n;
7830 dp_m2_n2 = &crtc->config->dp_m2_n2;
7831 } else if (m_n == M2_N2) {
7834 * M2_N2 registers are not supported. Hence m2_n2 divider value
7835 * needs to be programmed into M1_N1.
7837 dp_m_n = &crtc->config->dp_m2_n2;
7838 } else {
7839 DRM_ERROR("Unsupported divider value\n");
7840 return;
7843 if (crtc->config->has_pch_encoder)
7844 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7845 else
7846 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7849 static void vlv_compute_dpll(struct intel_crtc *crtc,
7850 struct intel_crtc_state *pipe_config)
7852 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7853 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7854 if (crtc->pipe != PIPE_A)
7855 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7857 /* DPLL not used with DSI, but still need the rest set up */
7858 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7859 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7860 DPLL_EXT_BUFFER_ENABLE_VLV;
7862 pipe_config->dpll_hw_state.dpll_md =
7863 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7866 static void chv_compute_dpll(struct intel_crtc *crtc,
7867 struct intel_crtc_state *pipe_config)
7869 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7870 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7871 if (crtc->pipe != PIPE_A)
7872 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7874 /* DPLL not used with DSI, but still need the rest set up */
7875 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7876 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7878 pipe_config->dpll_hw_state.dpll_md =
7879 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7882 static void vlv_prepare_pll(struct intel_crtc *crtc,
7883 const struct intel_crtc_state *pipe_config)
7885 struct drm_device *dev = crtc->base.dev;
7886 struct drm_i915_private *dev_priv = to_i915(dev);
7887 enum pipe pipe = crtc->pipe;
7888 u32 mdiv;
7889 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7890 u32 coreclk, reg_val;
7892 /* Enable Refclk */
7893 I915_WRITE(DPLL(pipe),
7894 pipe_config->dpll_hw_state.dpll &
7895 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7897 /* No need to actually set up the DPLL with DSI */
7898 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7899 return;
7901 mutex_lock(&dev_priv->sb_lock);
7903 bestn = pipe_config->dpll.n;
7904 bestm1 = pipe_config->dpll.m1;
7905 bestm2 = pipe_config->dpll.m2;
7906 bestp1 = pipe_config->dpll.p1;
7907 bestp2 = pipe_config->dpll.p2;
7909 /* See eDP HDMI DPIO driver vbios notes doc */
7911 /* PLL B needs special handling */
7912 if (pipe == PIPE_B)
7913 vlv_pllb_recal_opamp(dev_priv, pipe);
7915 /* Set up Tx target for periodic Rcomp update */
7916 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7918 /* Disable target IRef on PLL */
7919 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7920 reg_val &= 0x00ffffff;
7921 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7923 /* Disable fast lock */
7924 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7926 /* Set idtafcrecal before PLL is enabled */
7927 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7928 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7929 mdiv |= ((bestn << DPIO_N_SHIFT));
7930 mdiv |= (1 << DPIO_K_SHIFT);
7933 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7934 * but we don't support that).
7935 * Note: don't use the DAC post divider as it seems unstable.
7937 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7938 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7940 mdiv |= DPIO_ENABLE_CALIBRATION;
7941 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7943 /* Set HBR and RBR LPF coefficients */
7944 if (pipe_config->port_clock == 162000 ||
7945 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
7946 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
7947 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7948 0x009f0003);
7949 else
7950 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7951 0x00d0000f);
7953 if (intel_crtc_has_dp_encoder(pipe_config)) {
7954 /* Use SSC source */
7955 if (pipe == PIPE_A)
7956 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7957 0x0df40000);
7958 else
7959 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7960 0x0df70000);
7961 } else { /* HDMI or VGA */
7962 /* Use bend source */
7963 if (pipe == PIPE_A)
7964 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7965 0x0df70000);
7966 else
7967 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7968 0x0df40000);
7971 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7972 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7973 if (intel_crtc_has_dp_encoder(crtc->config))
7974 coreclk |= 0x01000000;
7975 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7977 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7978 mutex_unlock(&dev_priv->sb_lock);
7981 static void chv_prepare_pll(struct intel_crtc *crtc,
7982 const struct intel_crtc_state *pipe_config)
7984 struct drm_device *dev = crtc->base.dev;
7985 struct drm_i915_private *dev_priv = to_i915(dev);
7986 enum pipe pipe = crtc->pipe;
7987 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7988 u32 loopfilter, tribuf_calcntr;
7989 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7990 u32 dpio_val;
7991 int vco;
7993 /* Enable Refclk and SSC */
7994 I915_WRITE(DPLL(pipe),
7995 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7997 /* No need to actually set up the DPLL with DSI */
7998 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7999 return;
8001 bestn = pipe_config->dpll.n;
8002 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
8003 bestm1 = pipe_config->dpll.m1;
8004 bestm2 = pipe_config->dpll.m2 >> 22;
8005 bestp1 = pipe_config->dpll.p1;
8006 bestp2 = pipe_config->dpll.p2;
8007 vco = pipe_config->dpll.vco;
8008 dpio_val = 0;
8009 loopfilter = 0;
8011 mutex_lock(&dev_priv->sb_lock);
8013 /* p1 and p2 divider */
8014 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
8015 5 << DPIO_CHV_S1_DIV_SHIFT |
8016 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
8017 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
8018 1 << DPIO_CHV_K_DIV_SHIFT);
8020 /* Feedback post-divider - m2 */
8021 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
8023 /* Feedback refclk divider - n and m1 */
8024 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
8025 DPIO_CHV_M1_DIV_BY_2 |
8026 1 << DPIO_CHV_N_DIV_SHIFT);
8028 /* M2 fraction division */
8029 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
8031 /* M2 fraction division enable */
8032 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8033 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8034 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8035 if (bestm2_frac)
8036 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8037 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
8039 /* Program digital lock detect threshold */
8040 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8041 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8042 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8043 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8044 if (!bestm2_frac)
8045 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8046 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8048 /* Loop filter */
8049 if (vco == 5400000) {
8050 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8051 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8052 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8053 tribuf_calcntr = 0x9;
8054 } else if (vco <= 6200000) {
8055 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8056 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8057 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8058 tribuf_calcntr = 0x9;
8059 } else if (vco <= 6480000) {
8060 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8061 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8062 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8063 tribuf_calcntr = 0x8;
8064 } else {
8065 /* Not supported. Apply the same limits as in the max case */
8066 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8067 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8068 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8069 tribuf_calcntr = 0;
8071 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8073 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8074 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8075 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8076 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8078 /* AFC Recal */
8079 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8080 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8081 DPIO_AFC_RECAL);
8083 mutex_unlock(&dev_priv->sb_lock);
8087 * vlv_force_pll_on - forcibly enable just the PLL
8088 * @dev_priv: i915 private structure
8089 * @pipe: pipe PLL to enable
8090 * @dpll: PLL configuration
8092 * Enable the PLL for @pipe using the supplied @dpll config. To be used
8093 * in cases where we need the PLL enabled even when @pipe is not going to
8094 * be enabled.
8096 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
8097 const struct dpll *dpll)
8099 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
8100 struct intel_crtc_state *pipe_config;
8102 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8103 if (!pipe_config)
8104 return -ENOMEM;
8106 pipe_config->base.crtc = &crtc->base;
8107 pipe_config->pixel_multiplier = 1;
8108 pipe_config->dpll = *dpll;
8110 if (IS_CHERRYVIEW(dev_priv)) {
8111 chv_compute_dpll(crtc, pipe_config);
8112 chv_prepare_pll(crtc, pipe_config);
8113 chv_enable_pll(crtc, pipe_config);
8114 } else {
8115 vlv_compute_dpll(crtc, pipe_config);
8116 vlv_prepare_pll(crtc, pipe_config);
8117 vlv_enable_pll(crtc, pipe_config);
8120 kfree(pipe_config);
8122 return 0;
8126 * vlv_force_pll_off - forcibly disable just the PLL
8127 * @dev_priv: i915 private structure
8128 * @pipe: pipe PLL to disable
8130 * Disable the PLL for @pipe. To be used in cases where we need
8131 * the PLL enabled even when @pipe is not going to be enabled.
8133 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
8135 if (IS_CHERRYVIEW(dev_priv))
8136 chv_disable_pll(dev_priv, pipe);
8137 else
8138 vlv_disable_pll(dev_priv, pipe);
8141 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8142 struct intel_crtc_state *crtc_state,
8143 struct dpll *reduced_clock)
8145 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8146 u32 dpll;
8147 struct dpll *clock = &crtc_state->dpll;
8149 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8151 dpll = DPLL_VGA_MODE_DIS;
8153 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8154 dpll |= DPLLB_MODE_LVDS;
8155 else
8156 dpll |= DPLLB_MODE_DAC_SERIAL;
8158 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8159 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
8160 dpll |= (crtc_state->pixel_multiplier - 1)
8161 << SDVO_MULTIPLIER_SHIFT_HIRES;
8164 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8165 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8166 dpll |= DPLL_SDVO_HIGH_SPEED;
8168 if (intel_crtc_has_dp_encoder(crtc_state))
8169 dpll |= DPLL_SDVO_HIGH_SPEED;
8171 /* compute bitmask from p1 value */
8172 if (IS_PINEVIEW(dev_priv))
8173 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8174 else {
8175 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8176 if (IS_G4X(dev_priv) && reduced_clock)
8177 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8179 switch (clock->p2) {
8180 case 5:
8181 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8182 break;
8183 case 7:
8184 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8185 break;
8186 case 10:
8187 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8188 break;
8189 case 14:
8190 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8191 break;
8193 if (INTEL_GEN(dev_priv) >= 4)
8194 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8196 if (crtc_state->sdvo_tv_clock)
8197 dpll |= PLL_REF_INPUT_TVCLKINBC;
8198 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8199 intel_panel_use_ssc(dev_priv))
8200 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8201 else
8202 dpll |= PLL_REF_INPUT_DREFCLK;
8204 dpll |= DPLL_VCO_ENABLE;
8205 crtc_state->dpll_hw_state.dpll = dpll;
8207 if (INTEL_GEN(dev_priv) >= 4) {
8208 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8209 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8210 crtc_state->dpll_hw_state.dpll_md = dpll_md;
8214 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8215 struct intel_crtc_state *crtc_state,
8216 struct dpll *reduced_clock)
8218 struct drm_device *dev = crtc->base.dev;
8219 struct drm_i915_private *dev_priv = to_i915(dev);
8220 u32 dpll;
8221 struct dpll *clock = &crtc_state->dpll;
8223 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8225 dpll = DPLL_VGA_MODE_DIS;
8227 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8228 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8229 } else {
8230 if (clock->p1 == 2)
8231 dpll |= PLL_P1_DIVIDE_BY_TWO;
8232 else
8233 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8234 if (clock->p2 == 4)
8235 dpll |= PLL_P2_DIVIDE_BY_4;
8238 if (!IS_I830(dev_priv) &&
8239 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8240 dpll |= DPLL_DVO_2X_MODE;
8242 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8243 intel_panel_use_ssc(dev_priv))
8244 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8245 else
8246 dpll |= PLL_REF_INPUT_DREFCLK;
8248 dpll |= DPLL_VCO_ENABLE;
8249 crtc_state->dpll_hw_state.dpll = dpll;
8252 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
8254 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
8255 enum pipe pipe = intel_crtc->pipe;
8256 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8257 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
8258 uint32_t crtc_vtotal, crtc_vblank_end;
8259 int vsyncshift = 0;
8261 /* We need to be careful not to changed the adjusted mode, for otherwise
8262 * the hw state checker will get angry at the mismatch. */
8263 crtc_vtotal = adjusted_mode->crtc_vtotal;
8264 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8266 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8267 /* the chip adds 2 halflines automatically */
8268 crtc_vtotal -= 1;
8269 crtc_vblank_end -= 1;
8271 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8272 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8273 else
8274 vsyncshift = adjusted_mode->crtc_hsync_start -
8275 adjusted_mode->crtc_htotal / 2;
8276 if (vsyncshift < 0)
8277 vsyncshift += adjusted_mode->crtc_htotal;
8280 if (INTEL_GEN(dev_priv) > 3)
8281 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
8283 I915_WRITE(HTOTAL(cpu_transcoder),
8284 (adjusted_mode->crtc_hdisplay - 1) |
8285 ((adjusted_mode->crtc_htotal - 1) << 16));
8286 I915_WRITE(HBLANK(cpu_transcoder),
8287 (adjusted_mode->crtc_hblank_start - 1) |
8288 ((adjusted_mode->crtc_hblank_end - 1) << 16));
8289 I915_WRITE(HSYNC(cpu_transcoder),
8290 (adjusted_mode->crtc_hsync_start - 1) |
8291 ((adjusted_mode->crtc_hsync_end - 1) << 16));
8293 I915_WRITE(VTOTAL(cpu_transcoder),
8294 (adjusted_mode->crtc_vdisplay - 1) |
8295 ((crtc_vtotal - 1) << 16));
8296 I915_WRITE(VBLANK(cpu_transcoder),
8297 (adjusted_mode->crtc_vblank_start - 1) |
8298 ((crtc_vblank_end - 1) << 16));
8299 I915_WRITE(VSYNC(cpu_transcoder),
8300 (adjusted_mode->crtc_vsync_start - 1) |
8301 ((adjusted_mode->crtc_vsync_end - 1) << 16));
8303 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8304 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8305 * documented on the DDI_FUNC_CTL register description, EDP Input Select
8306 * bits. */
8307 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
8308 (pipe == PIPE_B || pipe == PIPE_C))
8309 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
8313 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
8315 struct drm_device *dev = intel_crtc->base.dev;
8316 struct drm_i915_private *dev_priv = to_i915(dev);
8317 enum pipe pipe = intel_crtc->pipe;
8319 /* pipesrc controls the size that is scaled from, which should
8320 * always be the user's requested size.
8322 I915_WRITE(PIPESRC(pipe),
8323 ((intel_crtc->config->pipe_src_w - 1) << 16) |
8324 (intel_crtc->config->pipe_src_h - 1));
8327 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8328 struct intel_crtc_state *pipe_config)
8330 struct drm_device *dev = crtc->base.dev;
8331 struct drm_i915_private *dev_priv = to_i915(dev);
8332 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8333 uint32_t tmp;
8335 tmp = I915_READ(HTOTAL(cpu_transcoder));
8336 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8337 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8338 tmp = I915_READ(HBLANK(cpu_transcoder));
8339 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
8340 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
8341 tmp = I915_READ(HSYNC(cpu_transcoder));
8342 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8343 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8345 tmp = I915_READ(VTOTAL(cpu_transcoder));
8346 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8347 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8348 tmp = I915_READ(VBLANK(cpu_transcoder));
8349 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
8350 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
8351 tmp = I915_READ(VSYNC(cpu_transcoder));
8352 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8353 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8355 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
8356 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8357 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
8358 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
8362 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8363 struct intel_crtc_state *pipe_config)
8365 struct drm_device *dev = crtc->base.dev;
8366 struct drm_i915_private *dev_priv = to_i915(dev);
8367 u32 tmp;
8369 tmp = I915_READ(PIPESRC(crtc->pipe));
8370 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8371 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8373 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
8374 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
8377 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8378 struct intel_crtc_state *pipe_config)
8380 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
8381 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
8382 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
8383 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
8385 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
8386 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
8387 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
8388 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
8390 mode->flags = pipe_config->base.adjusted_mode.flags;
8391 mode->type = DRM_MODE_TYPE_DRIVER;
8393 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
8395 mode->hsync = drm_mode_hsync(mode);
8396 mode->vrefresh = drm_mode_vrefresh(mode);
8397 drm_mode_set_name(mode);
8400 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
8402 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
8403 uint32_t pipeconf;
8405 pipeconf = 0;
8407 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
8408 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8409 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
8411 if (intel_crtc->config->double_wide)
8412 pipeconf |= PIPECONF_DOUBLE_WIDE;
8414 /* only g4x and later have fancy bpc/dither controls */
8415 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8416 IS_CHERRYVIEW(dev_priv)) {
8417 /* Bspec claims that we can't use dithering for 30bpp pipes. */
8418 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
8419 pipeconf |= PIPECONF_DITHER_EN |
8420 PIPECONF_DITHER_TYPE_SP;
8422 switch (intel_crtc->config->pipe_bpp) {
8423 case 18:
8424 pipeconf |= PIPECONF_6BPC;
8425 break;
8426 case 24:
8427 pipeconf |= PIPECONF_8BPC;
8428 break;
8429 case 30:
8430 pipeconf |= PIPECONF_10BPC;
8431 break;
8432 default:
8433 /* Case prevented by intel_choose_pipe_bpp_dither. */
8434 BUG();
8438 if (HAS_PIPE_CXSR(dev_priv)) {
8439 if (intel_crtc->lowfreq_avail) {
8440 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
8441 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
8442 } else {
8443 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
8447 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
8448 if (INTEL_GEN(dev_priv) < 4 ||
8449 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8450 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
8451 else
8452 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
8453 } else
8454 pipeconf |= PIPECONF_PROGRESSIVE;
8456 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8457 intel_crtc->config->limited_color_range)
8458 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
8460 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
8461 POSTING_READ(PIPECONF(intel_crtc->pipe));
8464 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
8465 struct intel_crtc_state *crtc_state)
8467 struct drm_device *dev = crtc->base.dev;
8468 struct drm_i915_private *dev_priv = to_i915(dev);
8469 const struct intel_limit *limit;
8470 int refclk = 48000;
8472 memset(&crtc_state->dpll_hw_state, 0,
8473 sizeof(crtc_state->dpll_hw_state));
8475 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8476 if (intel_panel_use_ssc(dev_priv)) {
8477 refclk = dev_priv->vbt.lvds_ssc_freq;
8478 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8481 limit = &intel_limits_i8xx_lvds;
8482 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
8483 limit = &intel_limits_i8xx_dvo;
8484 } else {
8485 limit = &intel_limits_i8xx_dac;
8488 if (!crtc_state->clock_set &&
8489 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8490 refclk, NULL, &crtc_state->dpll)) {
8491 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8492 return -EINVAL;
8495 i8xx_compute_dpll(crtc, crtc_state, NULL);
8497 return 0;
8500 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
8501 struct intel_crtc_state *crtc_state)
8503 struct drm_device *dev = crtc->base.dev;
8504 struct drm_i915_private *dev_priv = to_i915(dev);
8505 const struct intel_limit *limit;
8506 int refclk = 96000;
8508 memset(&crtc_state->dpll_hw_state, 0,
8509 sizeof(crtc_state->dpll_hw_state));
8511 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8512 if (intel_panel_use_ssc(dev_priv)) {
8513 refclk = dev_priv->vbt.lvds_ssc_freq;
8514 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8517 if (intel_is_dual_link_lvds(dev))
8518 limit = &intel_limits_g4x_dual_channel_lvds;
8519 else
8520 limit = &intel_limits_g4x_single_channel_lvds;
8521 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8522 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
8523 limit = &intel_limits_g4x_hdmi;
8524 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
8525 limit = &intel_limits_g4x_sdvo;
8526 } else {
8527 /* The option is for other outputs */
8528 limit = &intel_limits_i9xx_sdvo;
8531 if (!crtc_state->clock_set &&
8532 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8533 refclk, NULL, &crtc_state->dpll)) {
8534 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8535 return -EINVAL;
8538 i9xx_compute_dpll(crtc, crtc_state, NULL);
8540 return 0;
8543 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8544 struct intel_crtc_state *crtc_state)
8546 struct drm_device *dev = crtc->base.dev;
8547 struct drm_i915_private *dev_priv = to_i915(dev);
8548 const struct intel_limit *limit;
8549 int refclk = 96000;
8551 memset(&crtc_state->dpll_hw_state, 0,
8552 sizeof(crtc_state->dpll_hw_state));
8554 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8555 if (intel_panel_use_ssc(dev_priv)) {
8556 refclk = dev_priv->vbt.lvds_ssc_freq;
8557 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8560 limit = &intel_limits_pineview_lvds;
8561 } else {
8562 limit = &intel_limits_pineview_sdvo;
8565 if (!crtc_state->clock_set &&
8566 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8567 refclk, NULL, &crtc_state->dpll)) {
8568 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8569 return -EINVAL;
8572 i9xx_compute_dpll(crtc, crtc_state, NULL);
8574 return 0;
8577 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8578 struct intel_crtc_state *crtc_state)
8580 struct drm_device *dev = crtc->base.dev;
8581 struct drm_i915_private *dev_priv = to_i915(dev);
8582 const struct intel_limit *limit;
8583 int refclk = 96000;
8585 memset(&crtc_state->dpll_hw_state, 0,
8586 sizeof(crtc_state->dpll_hw_state));
8588 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8589 if (intel_panel_use_ssc(dev_priv)) {
8590 refclk = dev_priv->vbt.lvds_ssc_freq;
8591 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8594 limit = &intel_limits_i9xx_lvds;
8595 } else {
8596 limit = &intel_limits_i9xx_sdvo;
8599 if (!crtc_state->clock_set &&
8600 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8601 refclk, NULL, &crtc_state->dpll)) {
8602 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8603 return -EINVAL;
8606 i9xx_compute_dpll(crtc, crtc_state, NULL);
8608 return 0;
8611 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8612 struct intel_crtc_state *crtc_state)
8614 int refclk = 100000;
8615 const struct intel_limit *limit = &intel_limits_chv;
8617 memset(&crtc_state->dpll_hw_state, 0,
8618 sizeof(crtc_state->dpll_hw_state));
8620 if (!crtc_state->clock_set &&
8621 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8622 refclk, NULL, &crtc_state->dpll)) {
8623 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8624 return -EINVAL;
8627 chv_compute_dpll(crtc, crtc_state);
8629 return 0;
8632 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8633 struct intel_crtc_state *crtc_state)
8635 int refclk = 100000;
8636 const struct intel_limit *limit = &intel_limits_vlv;
8638 memset(&crtc_state->dpll_hw_state, 0,
8639 sizeof(crtc_state->dpll_hw_state));
8641 if (!crtc_state->clock_set &&
8642 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8643 refclk, NULL, &crtc_state->dpll)) {
8644 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8645 return -EINVAL;
8648 vlv_compute_dpll(crtc, crtc_state);
8650 return 0;
8653 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8654 struct intel_crtc_state *pipe_config)
8656 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8657 uint32_t tmp;
8659 if (INTEL_GEN(dev_priv) <= 3 &&
8660 (IS_I830(dev_priv) || !IS_MOBILE(dev_priv)))
8661 return;
8663 tmp = I915_READ(PFIT_CONTROL);
8664 if (!(tmp & PFIT_ENABLE))
8665 return;
8667 /* Check whether the pfit is attached to our pipe. */
8668 if (INTEL_GEN(dev_priv) < 4) {
8669 if (crtc->pipe != PIPE_B)
8670 return;
8671 } else {
8672 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8673 return;
8676 pipe_config->gmch_pfit.control = tmp;
8677 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8680 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8681 struct intel_crtc_state *pipe_config)
8683 struct drm_device *dev = crtc->base.dev;
8684 struct drm_i915_private *dev_priv = to_i915(dev);
8685 int pipe = pipe_config->cpu_transcoder;
8686 struct dpll clock;
8687 u32 mdiv;
8688 int refclk = 100000;
8690 /* In case of DSI, DPLL will not be used */
8691 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8692 return;
8694 mutex_lock(&dev_priv->sb_lock);
8695 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8696 mutex_unlock(&dev_priv->sb_lock);
8698 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8699 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8700 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8701 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8702 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8704 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8707 static void
8708 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8709 struct intel_initial_plane_config *plane_config)
8711 struct drm_device *dev = crtc->base.dev;
8712 struct drm_i915_private *dev_priv = to_i915(dev);
8713 u32 val, base, offset;
8714 int pipe = crtc->pipe, plane = crtc->plane;
8715 int fourcc, pixel_format;
8716 unsigned int aligned_height;
8717 struct drm_framebuffer *fb;
8718 struct intel_framebuffer *intel_fb;
8720 val = I915_READ(DSPCNTR(plane));
8721 if (!(val & DISPLAY_PLANE_ENABLE))
8722 return;
8724 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8725 if (!intel_fb) {
8726 DRM_DEBUG_KMS("failed to alloc fb\n");
8727 return;
8730 fb = &intel_fb->base;
8732 fb->dev = dev;
8734 if (INTEL_GEN(dev_priv) >= 4) {
8735 if (val & DISPPLANE_TILED) {
8736 plane_config->tiling = I915_TILING_X;
8737 fb->modifier = I915_FORMAT_MOD_X_TILED;
8741 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8742 fourcc = i9xx_format_to_fourcc(pixel_format);
8743 fb->format = drm_format_info(fourcc);
8745 if (INTEL_GEN(dev_priv) >= 4) {
8746 if (plane_config->tiling)
8747 offset = I915_READ(DSPTILEOFF(plane));
8748 else
8749 offset = I915_READ(DSPLINOFF(plane));
8750 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8751 } else {
8752 base = I915_READ(DSPADDR(plane));
8754 plane_config->base = base;
8756 val = I915_READ(PIPESRC(pipe));
8757 fb->width = ((val >> 16) & 0xfff) + 1;
8758 fb->height = ((val >> 0) & 0xfff) + 1;
8760 val = I915_READ(DSPSTRIDE(pipe));
8761 fb->pitches[0] = val & 0xffffffc0;
8763 aligned_height = intel_fb_align_height(dev, fb->height,
8764 fb->format->format,
8765 fb->modifier);
8767 plane_config->size = fb->pitches[0] * aligned_height;
8769 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8770 pipe_name(pipe), plane, fb->width, fb->height,
8771 fb->format->cpp[0] * 8, base, fb->pitches[0],
8772 plane_config->size);
8774 plane_config->fb = intel_fb;
8777 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8778 struct intel_crtc_state *pipe_config)
8780 struct drm_device *dev = crtc->base.dev;
8781 struct drm_i915_private *dev_priv = to_i915(dev);
8782 int pipe = pipe_config->cpu_transcoder;
8783 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8784 struct dpll clock;
8785 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8786 int refclk = 100000;
8788 /* In case of DSI, DPLL will not be used */
8789 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8790 return;
8792 mutex_lock(&dev_priv->sb_lock);
8793 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8794 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8795 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8796 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8797 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8798 mutex_unlock(&dev_priv->sb_lock);
8800 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8801 clock.m2 = (pll_dw0 & 0xff) << 22;
8802 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8803 clock.m2 |= pll_dw2 & 0x3fffff;
8804 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8805 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8806 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8808 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8811 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8812 struct intel_crtc_state *pipe_config)
8814 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8815 enum intel_display_power_domain power_domain;
8816 uint32_t tmp;
8817 bool ret;
8819 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8820 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8821 return false;
8823 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8824 pipe_config->shared_dpll = NULL;
8826 ret = false;
8828 tmp = I915_READ(PIPECONF(crtc->pipe));
8829 if (!(tmp & PIPECONF_ENABLE))
8830 goto out;
8832 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8833 IS_CHERRYVIEW(dev_priv)) {
8834 switch (tmp & PIPECONF_BPC_MASK) {
8835 case PIPECONF_6BPC:
8836 pipe_config->pipe_bpp = 18;
8837 break;
8838 case PIPECONF_8BPC:
8839 pipe_config->pipe_bpp = 24;
8840 break;
8841 case PIPECONF_10BPC:
8842 pipe_config->pipe_bpp = 30;
8843 break;
8844 default:
8845 break;
8849 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8850 (tmp & PIPECONF_COLOR_RANGE_SELECT))
8851 pipe_config->limited_color_range = true;
8853 if (INTEL_GEN(dev_priv) < 4)
8854 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8856 intel_get_pipe_timings(crtc, pipe_config);
8857 intel_get_pipe_src_size(crtc, pipe_config);
8859 i9xx_get_pfit_config(crtc, pipe_config);
8861 if (INTEL_GEN(dev_priv) >= 4) {
8862 /* No way to read it out on pipes B and C */
8863 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
8864 tmp = dev_priv->chv_dpll_md[crtc->pipe];
8865 else
8866 tmp = I915_READ(DPLL_MD(crtc->pipe));
8867 pipe_config->pixel_multiplier =
8868 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8869 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8870 pipe_config->dpll_hw_state.dpll_md = tmp;
8871 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8872 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
8873 tmp = I915_READ(DPLL(crtc->pipe));
8874 pipe_config->pixel_multiplier =
8875 ((tmp & SDVO_MULTIPLIER_MASK)
8876 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8877 } else {
8878 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8879 * port and will be fixed up in the encoder->get_config
8880 * function. */
8881 pipe_config->pixel_multiplier = 1;
8883 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8884 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
8886 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8887 * on 830. Filter it out here so that we don't
8888 * report errors due to that.
8890 if (IS_I830(dev_priv))
8891 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8893 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8894 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8895 } else {
8896 /* Mask out read-only status bits. */
8897 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8898 DPLL_PORTC_READY_MASK |
8899 DPLL_PORTB_READY_MASK);
8902 if (IS_CHERRYVIEW(dev_priv))
8903 chv_crtc_clock_get(crtc, pipe_config);
8904 else if (IS_VALLEYVIEW(dev_priv))
8905 vlv_crtc_clock_get(crtc, pipe_config);
8906 else
8907 i9xx_crtc_clock_get(crtc, pipe_config);
8910 * Normally the dotclock is filled in by the encoder .get_config()
8911 * but in case the pipe is enabled w/o any ports we need a sane
8912 * default.
8914 pipe_config->base.adjusted_mode.crtc_clock =
8915 pipe_config->port_clock / pipe_config->pixel_multiplier;
8917 ret = true;
8919 out:
8920 intel_display_power_put(dev_priv, power_domain);
8922 return ret;
8925 static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv)
8927 struct intel_encoder *encoder;
8928 int i;
8929 u32 val, final;
8930 bool has_lvds = false;
8931 bool has_cpu_edp = false;
8932 bool has_panel = false;
8933 bool has_ck505 = false;
8934 bool can_ssc = false;
8935 bool using_ssc_source = false;
8937 /* We need to take the global config into account */
8938 for_each_intel_encoder(&dev_priv->drm, encoder) {
8939 switch (encoder->type) {
8940 case INTEL_OUTPUT_LVDS:
8941 has_panel = true;
8942 has_lvds = true;
8943 break;
8944 case INTEL_OUTPUT_EDP:
8945 has_panel = true;
8946 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8947 has_cpu_edp = true;
8948 break;
8949 default:
8950 break;
8954 if (HAS_PCH_IBX(dev_priv)) {
8955 has_ck505 = dev_priv->vbt.display_clock_mode;
8956 can_ssc = has_ck505;
8957 } else {
8958 has_ck505 = false;
8959 can_ssc = true;
8962 /* Check if any DPLLs are using the SSC source */
8963 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8964 u32 temp = I915_READ(PCH_DPLL(i));
8966 if (!(temp & DPLL_VCO_ENABLE))
8967 continue;
8969 if ((temp & PLL_REF_INPUT_MASK) ==
8970 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8971 using_ssc_source = true;
8972 break;
8976 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8977 has_panel, has_lvds, has_ck505, using_ssc_source);
8979 /* Ironlake: try to setup display ref clock before DPLL
8980 * enabling. This is only under driver's control after
8981 * PCH B stepping, previous chipset stepping should be
8982 * ignoring this setting.
8984 val = I915_READ(PCH_DREF_CONTROL);
8986 /* As we must carefully and slowly disable/enable each source in turn,
8987 * compute the final state we want first and check if we need to
8988 * make any changes at all.
8990 final = val;
8991 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8992 if (has_ck505)
8993 final |= DREF_NONSPREAD_CK505_ENABLE;
8994 else
8995 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8997 final &= ~DREF_SSC_SOURCE_MASK;
8998 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8999 final &= ~DREF_SSC1_ENABLE;
9001 if (has_panel) {
9002 final |= DREF_SSC_SOURCE_ENABLE;
9004 if (intel_panel_use_ssc(dev_priv) && can_ssc)
9005 final |= DREF_SSC1_ENABLE;
9007 if (has_cpu_edp) {
9008 if (intel_panel_use_ssc(dev_priv) && can_ssc)
9009 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9010 else
9011 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9012 } else
9013 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9014 } else if (using_ssc_source) {
9015 final |= DREF_SSC_SOURCE_ENABLE;
9016 final |= DREF_SSC1_ENABLE;
9019 if (final == val)
9020 return;
9022 /* Always enable nonspread source */
9023 val &= ~DREF_NONSPREAD_SOURCE_MASK;
9025 if (has_ck505)
9026 val |= DREF_NONSPREAD_CK505_ENABLE;
9027 else
9028 val |= DREF_NONSPREAD_SOURCE_ENABLE;
9030 if (has_panel) {
9031 val &= ~DREF_SSC_SOURCE_MASK;
9032 val |= DREF_SSC_SOURCE_ENABLE;
9034 /* SSC must be turned on before enabling the CPU output */
9035 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9036 DRM_DEBUG_KMS("Using SSC on panel\n");
9037 val |= DREF_SSC1_ENABLE;
9038 } else
9039 val &= ~DREF_SSC1_ENABLE;
9041 /* Get SSC going before enabling the outputs */
9042 I915_WRITE(PCH_DREF_CONTROL, val);
9043 POSTING_READ(PCH_DREF_CONTROL);
9044 udelay(200);
9046 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9048 /* Enable CPU source on CPU attached eDP */
9049 if (has_cpu_edp) {
9050 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9051 DRM_DEBUG_KMS("Using SSC on eDP\n");
9052 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9053 } else
9054 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9055 } else
9056 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9058 I915_WRITE(PCH_DREF_CONTROL, val);
9059 POSTING_READ(PCH_DREF_CONTROL);
9060 udelay(200);
9061 } else {
9062 DRM_DEBUG_KMS("Disabling CPU source output\n");
9064 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9066 /* Turn off CPU output */
9067 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9069 I915_WRITE(PCH_DREF_CONTROL, val);
9070 POSTING_READ(PCH_DREF_CONTROL);
9071 udelay(200);
9073 if (!using_ssc_source) {
9074 DRM_DEBUG_KMS("Disabling SSC source\n");
9076 /* Turn off the SSC source */
9077 val &= ~DREF_SSC_SOURCE_MASK;
9078 val |= DREF_SSC_SOURCE_DISABLE;
9080 /* Turn off SSC1 */
9081 val &= ~DREF_SSC1_ENABLE;
9083 I915_WRITE(PCH_DREF_CONTROL, val);
9084 POSTING_READ(PCH_DREF_CONTROL);
9085 udelay(200);
9089 BUG_ON(val != final);
9092 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9094 uint32_t tmp;
9096 tmp = I915_READ(SOUTH_CHICKEN2);
9097 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9098 I915_WRITE(SOUTH_CHICKEN2, tmp);
9100 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
9101 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9102 DRM_ERROR("FDI mPHY reset assert timeout\n");
9104 tmp = I915_READ(SOUTH_CHICKEN2);
9105 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9106 I915_WRITE(SOUTH_CHICKEN2, tmp);
9108 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
9109 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9110 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
9113 /* WaMPhyProgramming:hsw */
9114 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9116 uint32_t tmp;
9118 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9119 tmp &= ~(0xFF << 24);
9120 tmp |= (0x12 << 24);
9121 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9123 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9124 tmp |= (1 << 11);
9125 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9127 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9128 tmp |= (1 << 11);
9129 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9131 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9132 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9133 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9135 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9136 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9137 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9139 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9140 tmp &= ~(7 << 13);
9141 tmp |= (5 << 13);
9142 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9144 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9145 tmp &= ~(7 << 13);
9146 tmp |= (5 << 13);
9147 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9149 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9150 tmp &= ~0xFF;
9151 tmp |= 0x1C;
9152 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9154 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9155 tmp &= ~0xFF;
9156 tmp |= 0x1C;
9157 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9159 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9160 tmp &= ~(0xFF << 16);
9161 tmp |= (0x1C << 16);
9162 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9164 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9165 tmp &= ~(0xFF << 16);
9166 tmp |= (0x1C << 16);
9167 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9169 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9170 tmp |= (1 << 27);
9171 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9173 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9174 tmp |= (1 << 27);
9175 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9177 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9178 tmp &= ~(0xF << 28);
9179 tmp |= (4 << 28);
9180 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9182 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9183 tmp &= ~(0xF << 28);
9184 tmp |= (4 << 28);
9185 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9188 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9189 * Programming" based on the parameters passed:
9190 * - Sequence to enable CLKOUT_DP
9191 * - Sequence to enable CLKOUT_DP without spread
9192 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9194 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
9195 bool with_spread, bool with_fdi)
9197 uint32_t reg, tmp;
9199 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
9200 with_spread = true;
9201 if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
9202 with_fdi, "LP PCH doesn't have FDI\n"))
9203 with_fdi = false;
9205 mutex_lock(&dev_priv->sb_lock);
9207 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9208 tmp &= ~SBI_SSCCTL_DISABLE;
9209 tmp |= SBI_SSCCTL_PATHALT;
9210 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9212 udelay(24);
9214 if (with_spread) {
9215 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9216 tmp &= ~SBI_SSCCTL_PATHALT;
9217 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9219 if (with_fdi) {
9220 lpt_reset_fdi_mphy(dev_priv);
9221 lpt_program_fdi_mphy(dev_priv);
9225 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9226 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9227 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9228 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9230 mutex_unlock(&dev_priv->sb_lock);
9233 /* Sequence to disable CLKOUT_DP */
9234 static void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
9236 uint32_t reg, tmp;
9238 mutex_lock(&dev_priv->sb_lock);
9240 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9241 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9242 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9243 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9245 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9246 if (!(tmp & SBI_SSCCTL_DISABLE)) {
9247 if (!(tmp & SBI_SSCCTL_PATHALT)) {
9248 tmp |= SBI_SSCCTL_PATHALT;
9249 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9250 udelay(32);
9252 tmp |= SBI_SSCCTL_DISABLE;
9253 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9256 mutex_unlock(&dev_priv->sb_lock);
9259 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9261 static const uint16_t sscdivintphase[] = {
9262 [BEND_IDX( 50)] = 0x3B23,
9263 [BEND_IDX( 45)] = 0x3B23,
9264 [BEND_IDX( 40)] = 0x3C23,
9265 [BEND_IDX( 35)] = 0x3C23,
9266 [BEND_IDX( 30)] = 0x3D23,
9267 [BEND_IDX( 25)] = 0x3D23,
9268 [BEND_IDX( 20)] = 0x3E23,
9269 [BEND_IDX( 15)] = 0x3E23,
9270 [BEND_IDX( 10)] = 0x3F23,
9271 [BEND_IDX( 5)] = 0x3F23,
9272 [BEND_IDX( 0)] = 0x0025,
9273 [BEND_IDX( -5)] = 0x0025,
9274 [BEND_IDX(-10)] = 0x0125,
9275 [BEND_IDX(-15)] = 0x0125,
9276 [BEND_IDX(-20)] = 0x0225,
9277 [BEND_IDX(-25)] = 0x0225,
9278 [BEND_IDX(-30)] = 0x0325,
9279 [BEND_IDX(-35)] = 0x0325,
9280 [BEND_IDX(-40)] = 0x0425,
9281 [BEND_IDX(-45)] = 0x0425,
9282 [BEND_IDX(-50)] = 0x0525,
9286 * Bend CLKOUT_DP
9287 * steps -50 to 50 inclusive, in steps of 5
9288 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9289 * change in clock period = -(steps / 10) * 5.787 ps
9291 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9293 uint32_t tmp;
9294 int idx = BEND_IDX(steps);
9296 if (WARN_ON(steps % 5 != 0))
9297 return;
9299 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
9300 return;
9302 mutex_lock(&dev_priv->sb_lock);
9304 if (steps % 10 != 0)
9305 tmp = 0xAAAAAAAB;
9306 else
9307 tmp = 0x00000000;
9308 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9310 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9311 tmp &= 0xffff0000;
9312 tmp |= sscdivintphase[idx];
9313 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9315 mutex_unlock(&dev_priv->sb_lock);
9318 #undef BEND_IDX
9320 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
9322 struct intel_encoder *encoder;
9323 bool has_vga = false;
9325 for_each_intel_encoder(&dev_priv->drm, encoder) {
9326 switch (encoder->type) {
9327 case INTEL_OUTPUT_ANALOG:
9328 has_vga = true;
9329 break;
9330 default:
9331 break;
9335 if (has_vga) {
9336 lpt_bend_clkout_dp(dev_priv, 0);
9337 lpt_enable_clkout_dp(dev_priv, true, true);
9338 } else {
9339 lpt_disable_clkout_dp(dev_priv);
9344 * Initialize reference clocks when the driver loads
9346 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
9348 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
9349 ironlake_init_pch_refclk(dev_priv);
9350 else if (HAS_PCH_LPT(dev_priv))
9351 lpt_init_pch_refclk(dev_priv);
9354 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
9356 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9357 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9358 int pipe = intel_crtc->pipe;
9359 uint32_t val;
9361 val = 0;
9363 switch (intel_crtc->config->pipe_bpp) {
9364 case 18:
9365 val |= PIPECONF_6BPC;
9366 break;
9367 case 24:
9368 val |= PIPECONF_8BPC;
9369 break;
9370 case 30:
9371 val |= PIPECONF_10BPC;
9372 break;
9373 case 36:
9374 val |= PIPECONF_12BPC;
9375 break;
9376 default:
9377 /* Case prevented by intel_choose_pipe_bpp_dither. */
9378 BUG();
9381 if (intel_crtc->config->dither)
9382 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9384 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9385 val |= PIPECONF_INTERLACED_ILK;
9386 else
9387 val |= PIPECONF_PROGRESSIVE;
9389 if (intel_crtc->config->limited_color_range)
9390 val |= PIPECONF_COLOR_RANGE_SELECT;
9392 I915_WRITE(PIPECONF(pipe), val);
9393 POSTING_READ(PIPECONF(pipe));
9396 static void haswell_set_pipeconf(struct drm_crtc *crtc)
9398 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9399 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9400 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9401 u32 val = 0;
9403 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
9404 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9406 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9407 val |= PIPECONF_INTERLACED_ILK;
9408 else
9409 val |= PIPECONF_PROGRESSIVE;
9411 I915_WRITE(PIPECONF(cpu_transcoder), val);
9412 POSTING_READ(PIPECONF(cpu_transcoder));
9415 static void haswell_set_pipemisc(struct drm_crtc *crtc)
9417 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9418 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9420 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
9421 u32 val = 0;
9423 switch (intel_crtc->config->pipe_bpp) {
9424 case 18:
9425 val |= PIPEMISC_DITHER_6_BPC;
9426 break;
9427 case 24:
9428 val |= PIPEMISC_DITHER_8_BPC;
9429 break;
9430 case 30:
9431 val |= PIPEMISC_DITHER_10_BPC;
9432 break;
9433 case 36:
9434 val |= PIPEMISC_DITHER_12_BPC;
9435 break;
9436 default:
9437 /* Case prevented by pipe_config_set_bpp. */
9438 BUG();
9441 if (intel_crtc->config->dither)
9442 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
9444 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
9448 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
9451 * Account for spread spectrum to avoid
9452 * oversubscribing the link. Max center spread
9453 * is 2.5%; use 5% for safety's sake.
9455 u32 bps = target_clock * bpp * 21 / 20;
9456 return DIV_ROUND_UP(bps, link_bw * 8);
9459 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
9461 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
9464 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
9465 struct intel_crtc_state *crtc_state,
9466 struct dpll *reduced_clock)
9468 struct drm_crtc *crtc = &intel_crtc->base;
9469 struct drm_device *dev = crtc->dev;
9470 struct drm_i915_private *dev_priv = to_i915(dev);
9471 u32 dpll, fp, fp2;
9472 int factor;
9474 /* Enable autotuning of the PLL clock (if permissible) */
9475 factor = 21;
9476 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9477 if ((intel_panel_use_ssc(dev_priv) &&
9478 dev_priv->vbt.lvds_ssc_freq == 100000) ||
9479 (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
9480 factor = 25;
9481 } else if (crtc_state->sdvo_tv_clock)
9482 factor = 20;
9484 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9486 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
9487 fp |= FP_CB_TUNE;
9489 if (reduced_clock) {
9490 fp2 = i9xx_dpll_compute_fp(reduced_clock);
9492 if (reduced_clock->m < factor * reduced_clock->n)
9493 fp2 |= FP_CB_TUNE;
9494 } else {
9495 fp2 = fp;
9498 dpll = 0;
9500 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
9501 dpll |= DPLLB_MODE_LVDS;
9502 else
9503 dpll |= DPLLB_MODE_DAC_SERIAL;
9505 dpll |= (crtc_state->pixel_multiplier - 1)
9506 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
9508 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
9509 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
9510 dpll |= DPLL_SDVO_HIGH_SPEED;
9512 if (intel_crtc_has_dp_encoder(crtc_state))
9513 dpll |= DPLL_SDVO_HIGH_SPEED;
9516 * The high speed IO clock is only really required for
9517 * SDVO/HDMI/DP, but we also enable it for CRT to make it
9518 * possible to share the DPLL between CRT and HDMI. Enabling
9519 * the clock needlessly does no real harm, except use up a
9520 * bit of power potentially.
9522 * We'll limit this to IVB with 3 pipes, since it has only two
9523 * DPLLs and so DPLL sharing is the only way to get three pipes
9524 * driving PCH ports at the same time. On SNB we could do this,
9525 * and potentially avoid enabling the second DPLL, but it's not
9526 * clear if it''s a win or loss power wise. No point in doing
9527 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
9529 if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
9530 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
9531 dpll |= DPLL_SDVO_HIGH_SPEED;
9533 /* compute bitmask from p1 value */
9534 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
9535 /* also FPA1 */
9536 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9538 switch (crtc_state->dpll.p2) {
9539 case 5:
9540 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9541 break;
9542 case 7:
9543 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9544 break;
9545 case 10:
9546 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9547 break;
9548 case 14:
9549 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9550 break;
9553 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9554 intel_panel_use_ssc(dev_priv))
9555 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9556 else
9557 dpll |= PLL_REF_INPUT_DREFCLK;
9559 dpll |= DPLL_VCO_ENABLE;
9561 crtc_state->dpll_hw_state.dpll = dpll;
9562 crtc_state->dpll_hw_state.fp0 = fp;
9563 crtc_state->dpll_hw_state.fp1 = fp2;
9566 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9567 struct intel_crtc_state *crtc_state)
9569 struct drm_device *dev = crtc->base.dev;
9570 struct drm_i915_private *dev_priv = to_i915(dev);
9571 struct dpll reduced_clock;
9572 bool has_reduced_clock = false;
9573 struct intel_shared_dpll *pll;
9574 const struct intel_limit *limit;
9575 int refclk = 120000;
9577 memset(&crtc_state->dpll_hw_state, 0,
9578 sizeof(crtc_state->dpll_hw_state));
9580 crtc->lowfreq_avail = false;
9582 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9583 if (!crtc_state->has_pch_encoder)
9584 return 0;
9586 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9587 if (intel_panel_use_ssc(dev_priv)) {
9588 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9589 dev_priv->vbt.lvds_ssc_freq);
9590 refclk = dev_priv->vbt.lvds_ssc_freq;
9593 if (intel_is_dual_link_lvds(dev)) {
9594 if (refclk == 100000)
9595 limit = &intel_limits_ironlake_dual_lvds_100m;
9596 else
9597 limit = &intel_limits_ironlake_dual_lvds;
9598 } else {
9599 if (refclk == 100000)
9600 limit = &intel_limits_ironlake_single_lvds_100m;
9601 else
9602 limit = &intel_limits_ironlake_single_lvds;
9604 } else {
9605 limit = &intel_limits_ironlake_dac;
9608 if (!crtc_state->clock_set &&
9609 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9610 refclk, NULL, &crtc_state->dpll)) {
9611 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9612 return -EINVAL;
9615 ironlake_compute_dpll(crtc, crtc_state,
9616 has_reduced_clock ? &reduced_clock : NULL);
9618 pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9619 if (pll == NULL) {
9620 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9621 pipe_name(crtc->pipe));
9622 return -EINVAL;
9625 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9626 has_reduced_clock)
9627 crtc->lowfreq_avail = true;
9629 return 0;
9632 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9633 struct intel_link_m_n *m_n)
9635 struct drm_device *dev = crtc->base.dev;
9636 struct drm_i915_private *dev_priv = to_i915(dev);
9637 enum pipe pipe = crtc->pipe;
9639 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9640 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9641 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9642 & ~TU_SIZE_MASK;
9643 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9644 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9645 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9648 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9649 enum transcoder transcoder,
9650 struct intel_link_m_n *m_n,
9651 struct intel_link_m_n *m2_n2)
9653 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9654 enum pipe pipe = crtc->pipe;
9656 if (INTEL_GEN(dev_priv) >= 5) {
9657 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9658 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9659 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9660 & ~TU_SIZE_MASK;
9661 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9662 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9663 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9664 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9665 * gen < 8) and if DRRS is supported (to make sure the
9666 * registers are not unnecessarily read).
9668 if (m2_n2 && INTEL_GEN(dev_priv) < 8 &&
9669 crtc->config->has_drrs) {
9670 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9671 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9672 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9673 & ~TU_SIZE_MASK;
9674 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9675 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9676 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9678 } else {
9679 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9680 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9681 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9682 & ~TU_SIZE_MASK;
9683 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9684 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9685 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9689 void intel_dp_get_m_n(struct intel_crtc *crtc,
9690 struct intel_crtc_state *pipe_config)
9692 if (pipe_config->has_pch_encoder)
9693 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9694 else
9695 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9696 &pipe_config->dp_m_n,
9697 &pipe_config->dp_m2_n2);
9700 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9701 struct intel_crtc_state *pipe_config)
9703 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9704 &pipe_config->fdi_m_n, NULL);
9707 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9708 struct intel_crtc_state *pipe_config)
9710 struct drm_device *dev = crtc->base.dev;
9711 struct drm_i915_private *dev_priv = to_i915(dev);
9712 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9713 uint32_t ps_ctrl = 0;
9714 int id = -1;
9715 int i;
9717 /* find scaler attached to this pipe */
9718 for (i = 0; i < crtc->num_scalers; i++) {
9719 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9720 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9721 id = i;
9722 pipe_config->pch_pfit.enabled = true;
9723 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9724 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9725 break;
9729 scaler_state->scaler_id = id;
9730 if (id >= 0) {
9731 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9732 } else {
9733 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9737 static void
9738 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9739 struct intel_initial_plane_config *plane_config)
9741 struct drm_device *dev = crtc->base.dev;
9742 struct drm_i915_private *dev_priv = to_i915(dev);
9743 u32 val, base, offset, stride_mult, tiling;
9744 int pipe = crtc->pipe;
9745 int fourcc, pixel_format;
9746 unsigned int aligned_height;
9747 struct drm_framebuffer *fb;
9748 struct intel_framebuffer *intel_fb;
9750 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9751 if (!intel_fb) {
9752 DRM_DEBUG_KMS("failed to alloc fb\n");
9753 return;
9756 fb = &intel_fb->base;
9758 fb->dev = dev;
9760 val = I915_READ(PLANE_CTL(pipe, 0));
9761 if (!(val & PLANE_CTL_ENABLE))
9762 goto error;
9764 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9765 fourcc = skl_format_to_fourcc(pixel_format,
9766 val & PLANE_CTL_ORDER_RGBX,
9767 val & PLANE_CTL_ALPHA_MASK);
9768 fb->format = drm_format_info(fourcc);
9770 tiling = val & PLANE_CTL_TILED_MASK;
9771 switch (tiling) {
9772 case PLANE_CTL_TILED_LINEAR:
9773 fb->modifier = DRM_FORMAT_MOD_NONE;
9774 break;
9775 case PLANE_CTL_TILED_X:
9776 plane_config->tiling = I915_TILING_X;
9777 fb->modifier = I915_FORMAT_MOD_X_TILED;
9778 break;
9779 case PLANE_CTL_TILED_Y:
9780 fb->modifier = I915_FORMAT_MOD_Y_TILED;
9781 break;
9782 case PLANE_CTL_TILED_YF:
9783 fb->modifier = I915_FORMAT_MOD_Yf_TILED;
9784 break;
9785 default:
9786 MISSING_CASE(tiling);
9787 goto error;
9790 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9791 plane_config->base = base;
9793 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9795 val = I915_READ(PLANE_SIZE(pipe, 0));
9796 fb->height = ((val >> 16) & 0xfff) + 1;
9797 fb->width = ((val >> 0) & 0x1fff) + 1;
9799 val = I915_READ(PLANE_STRIDE(pipe, 0));
9800 stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier,
9801 fb->format->format);
9802 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9804 aligned_height = intel_fb_align_height(dev, fb->height,
9805 fb->format->format,
9806 fb->modifier);
9808 plane_config->size = fb->pitches[0] * aligned_height;
9810 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9811 pipe_name(pipe), fb->width, fb->height,
9812 fb->format->cpp[0] * 8, base, fb->pitches[0],
9813 plane_config->size);
9815 plane_config->fb = intel_fb;
9816 return;
9818 error:
9819 kfree(intel_fb);
9822 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9823 struct intel_crtc_state *pipe_config)
9825 struct drm_device *dev = crtc->base.dev;
9826 struct drm_i915_private *dev_priv = to_i915(dev);
9827 uint32_t tmp;
9829 tmp = I915_READ(PF_CTL(crtc->pipe));
9831 if (tmp & PF_ENABLE) {
9832 pipe_config->pch_pfit.enabled = true;
9833 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9834 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9836 /* We currently do not free assignements of panel fitters on
9837 * ivb/hsw (since we don't use the higher upscaling modes which
9838 * differentiates them) so just WARN about this case for now. */
9839 if (IS_GEN7(dev_priv)) {
9840 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9841 PF_PIPE_SEL_IVB(crtc->pipe));
9846 static void
9847 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9848 struct intel_initial_plane_config *plane_config)
9850 struct drm_device *dev = crtc->base.dev;
9851 struct drm_i915_private *dev_priv = to_i915(dev);
9852 u32 val, base, offset;
9853 int pipe = crtc->pipe;
9854 int fourcc, pixel_format;
9855 unsigned int aligned_height;
9856 struct drm_framebuffer *fb;
9857 struct intel_framebuffer *intel_fb;
9859 val = I915_READ(DSPCNTR(pipe));
9860 if (!(val & DISPLAY_PLANE_ENABLE))
9861 return;
9863 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9864 if (!intel_fb) {
9865 DRM_DEBUG_KMS("failed to alloc fb\n");
9866 return;
9869 fb = &intel_fb->base;
9871 fb->dev = dev;
9873 if (INTEL_GEN(dev_priv) >= 4) {
9874 if (val & DISPPLANE_TILED) {
9875 plane_config->tiling = I915_TILING_X;
9876 fb->modifier = I915_FORMAT_MOD_X_TILED;
9880 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9881 fourcc = i9xx_format_to_fourcc(pixel_format);
9882 fb->format = drm_format_info(fourcc);
9884 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9885 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
9886 offset = I915_READ(DSPOFFSET(pipe));
9887 } else {
9888 if (plane_config->tiling)
9889 offset = I915_READ(DSPTILEOFF(pipe));
9890 else
9891 offset = I915_READ(DSPLINOFF(pipe));
9893 plane_config->base = base;
9895 val = I915_READ(PIPESRC(pipe));
9896 fb->width = ((val >> 16) & 0xfff) + 1;
9897 fb->height = ((val >> 0) & 0xfff) + 1;
9899 val = I915_READ(DSPSTRIDE(pipe));
9900 fb->pitches[0] = val & 0xffffffc0;
9902 aligned_height = intel_fb_align_height(dev, fb->height,
9903 fb->format->format,
9904 fb->modifier);
9906 plane_config->size = fb->pitches[0] * aligned_height;
9908 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9909 pipe_name(pipe), fb->width, fb->height,
9910 fb->format->cpp[0] * 8, base, fb->pitches[0],
9911 plane_config->size);
9913 plane_config->fb = intel_fb;
9916 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9917 struct intel_crtc_state *pipe_config)
9919 struct drm_device *dev = crtc->base.dev;
9920 struct drm_i915_private *dev_priv = to_i915(dev);
9921 enum intel_display_power_domain power_domain;
9922 uint32_t tmp;
9923 bool ret;
9925 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9926 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9927 return false;
9929 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9930 pipe_config->shared_dpll = NULL;
9932 ret = false;
9933 tmp = I915_READ(PIPECONF(crtc->pipe));
9934 if (!(tmp & PIPECONF_ENABLE))
9935 goto out;
9937 switch (tmp & PIPECONF_BPC_MASK) {
9938 case PIPECONF_6BPC:
9939 pipe_config->pipe_bpp = 18;
9940 break;
9941 case PIPECONF_8BPC:
9942 pipe_config->pipe_bpp = 24;
9943 break;
9944 case PIPECONF_10BPC:
9945 pipe_config->pipe_bpp = 30;
9946 break;
9947 case PIPECONF_12BPC:
9948 pipe_config->pipe_bpp = 36;
9949 break;
9950 default:
9951 break;
9954 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9955 pipe_config->limited_color_range = true;
9957 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9958 struct intel_shared_dpll *pll;
9959 enum intel_dpll_id pll_id;
9961 pipe_config->has_pch_encoder = true;
9963 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9964 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9965 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9967 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9969 if (HAS_PCH_IBX(dev_priv)) {
9971 * The pipe->pch transcoder and pch transcoder->pll
9972 * mapping is fixed.
9974 pll_id = (enum intel_dpll_id) crtc->pipe;
9975 } else {
9976 tmp = I915_READ(PCH_DPLL_SEL);
9977 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9978 pll_id = DPLL_ID_PCH_PLL_B;
9979 else
9980 pll_id= DPLL_ID_PCH_PLL_A;
9983 pipe_config->shared_dpll =
9984 intel_get_shared_dpll_by_id(dev_priv, pll_id);
9985 pll = pipe_config->shared_dpll;
9987 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9988 &pipe_config->dpll_hw_state));
9990 tmp = pipe_config->dpll_hw_state.dpll;
9991 pipe_config->pixel_multiplier =
9992 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9993 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9995 ironlake_pch_clock_get(crtc, pipe_config);
9996 } else {
9997 pipe_config->pixel_multiplier = 1;
10000 intel_get_pipe_timings(crtc, pipe_config);
10001 intel_get_pipe_src_size(crtc, pipe_config);
10003 ironlake_get_pfit_config(crtc, pipe_config);
10005 ret = true;
10007 out:
10008 intel_display_power_put(dev_priv, power_domain);
10010 return ret;
10013 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
10015 struct drm_device *dev = &dev_priv->drm;
10016 struct intel_crtc *crtc;
10018 for_each_intel_crtc(dev, crtc)
10019 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
10020 pipe_name(crtc->pipe));
10022 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
10023 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
10024 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
10025 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
10026 I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
10027 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
10028 "CPU PWM1 enabled\n");
10029 if (IS_HASWELL(dev_priv))
10030 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
10031 "CPU PWM2 enabled\n");
10032 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
10033 "PCH PWM1 enabled\n");
10034 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
10035 "Utility pin enabled\n");
10036 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
10039 * In theory we can still leave IRQs enabled, as long as only the HPD
10040 * interrupts remain enabled. We used to check for that, but since it's
10041 * gen-specific and since we only disable LCPLL after we fully disable
10042 * the interrupts, the check below should be enough.
10044 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
10047 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
10049 if (IS_HASWELL(dev_priv))
10050 return I915_READ(D_COMP_HSW);
10051 else
10052 return I915_READ(D_COMP_BDW);
10055 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
10057 if (IS_HASWELL(dev_priv)) {
10058 mutex_lock(&dev_priv->rps.hw_lock);
10059 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
10060 val))
10061 DRM_DEBUG_KMS("Failed to write to D_COMP\n");
10062 mutex_unlock(&dev_priv->rps.hw_lock);
10063 } else {
10064 I915_WRITE(D_COMP_BDW, val);
10065 POSTING_READ(D_COMP_BDW);
10070 * This function implements pieces of two sequences from BSpec:
10071 * - Sequence for display software to disable LCPLL
10072 * - Sequence for display software to allow package C8+
10073 * The steps implemented here are just the steps that actually touch the LCPLL
10074 * register. Callers should take care of disabling all the display engine
10075 * functions, doing the mode unset, fixing interrupts, etc.
10077 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
10078 bool switch_to_fclk, bool allow_power_down)
10080 uint32_t val;
10082 assert_can_disable_lcpll(dev_priv);
10084 val = I915_READ(LCPLL_CTL);
10086 if (switch_to_fclk) {
10087 val |= LCPLL_CD_SOURCE_FCLK;
10088 I915_WRITE(LCPLL_CTL, val);
10090 if (wait_for_us(I915_READ(LCPLL_CTL) &
10091 LCPLL_CD_SOURCE_FCLK_DONE, 1))
10092 DRM_ERROR("Switching to FCLK failed\n");
10094 val = I915_READ(LCPLL_CTL);
10097 val |= LCPLL_PLL_DISABLE;
10098 I915_WRITE(LCPLL_CTL, val);
10099 POSTING_READ(LCPLL_CTL);
10101 if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
10102 DRM_ERROR("LCPLL still locked\n");
10104 val = hsw_read_dcomp(dev_priv);
10105 val |= D_COMP_COMP_DISABLE;
10106 hsw_write_dcomp(dev_priv, val);
10107 ndelay(100);
10109 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
10111 DRM_ERROR("D_COMP RCOMP still in progress\n");
10113 if (allow_power_down) {
10114 val = I915_READ(LCPLL_CTL);
10115 val |= LCPLL_POWER_DOWN_ALLOW;
10116 I915_WRITE(LCPLL_CTL, val);
10117 POSTING_READ(LCPLL_CTL);
10122 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
10123 * source.
10125 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
10127 uint32_t val;
10129 val = I915_READ(LCPLL_CTL);
10131 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
10132 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
10133 return;
10136 * Make sure we're not on PC8 state before disabling PC8, otherwise
10137 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
10139 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
10141 if (val & LCPLL_POWER_DOWN_ALLOW) {
10142 val &= ~LCPLL_POWER_DOWN_ALLOW;
10143 I915_WRITE(LCPLL_CTL, val);
10144 POSTING_READ(LCPLL_CTL);
10147 val = hsw_read_dcomp(dev_priv);
10148 val |= D_COMP_COMP_FORCE;
10149 val &= ~D_COMP_COMP_DISABLE;
10150 hsw_write_dcomp(dev_priv, val);
10152 val = I915_READ(LCPLL_CTL);
10153 val &= ~LCPLL_PLL_DISABLE;
10154 I915_WRITE(LCPLL_CTL, val);
10156 if (intel_wait_for_register(dev_priv,
10157 LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
10159 DRM_ERROR("LCPLL not locked yet\n");
10161 if (val & LCPLL_CD_SOURCE_FCLK) {
10162 val = I915_READ(LCPLL_CTL);
10163 val &= ~LCPLL_CD_SOURCE_FCLK;
10164 I915_WRITE(LCPLL_CTL, val);
10166 if (wait_for_us((I915_READ(LCPLL_CTL) &
10167 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10168 DRM_ERROR("Switching back to LCPLL failed\n");
10171 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
10172 intel_update_cdclk(dev_priv);
10176 * Package states C8 and deeper are really deep PC states that can only be
10177 * reached when all the devices on the system allow it, so even if the graphics
10178 * device allows PC8+, it doesn't mean the system will actually get to these
10179 * states. Our driver only allows PC8+ when going into runtime PM.
10181 * The requirements for PC8+ are that all the outputs are disabled, the power
10182 * well is disabled and most interrupts are disabled, and these are also
10183 * requirements for runtime PM. When these conditions are met, we manually do
10184 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
10185 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
10186 * hang the machine.
10188 * When we really reach PC8 or deeper states (not just when we allow it) we lose
10189 * the state of some registers, so when we come back from PC8+ we need to
10190 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
10191 * need to take care of the registers kept by RC6. Notice that this happens even
10192 * if we don't put the device in PCI D3 state (which is what currently happens
10193 * because of the runtime PM support).
10195 * For more, read "Display Sequences for Package C8" on the hardware
10196 * documentation.
10198 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
10200 uint32_t val;
10202 DRM_DEBUG_KMS("Enabling package C8+\n");
10204 if (HAS_PCH_LPT_LP(dev_priv)) {
10205 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10206 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
10207 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10210 lpt_disable_clkout_dp(dev_priv);
10211 hsw_disable_lcpll(dev_priv, true, true);
10214 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
10216 uint32_t val;
10218 DRM_DEBUG_KMS("Disabling package C8+\n");
10220 hsw_restore_lcpll(dev_priv);
10221 lpt_init_pch_refclk(dev_priv);
10223 if (HAS_PCH_LPT_LP(dev_priv)) {
10224 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10225 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
10226 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10230 static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10232 struct drm_device *dev = old_state->dev;
10233 struct intel_atomic_state *old_intel_state =
10234 to_intel_atomic_state(old_state);
10235 unsigned int req_cdclk = old_intel_state->dev_cdclk;
10237 bxt_set_cdclk(to_i915(dev), req_cdclk);
10240 static int bdw_adjust_min_pipe_pixel_rate(struct intel_crtc_state *crtc_state,
10241 int pixel_rate)
10243 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
10245 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
10246 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
10247 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
10249 /* BSpec says "Do not use DisplayPort with CDCLK less than
10250 * 432 MHz, audio enabled, port width x4, and link rate
10251 * HBR2 (5.4 GHz), or else there may be audio corruption or
10252 * screen corruption."
10254 if (intel_crtc_has_dp_encoder(crtc_state) &&
10255 crtc_state->has_audio &&
10256 crtc_state->port_clock >= 540000 &&
10257 crtc_state->lane_count == 4)
10258 pixel_rate = max(432000, pixel_rate);
10260 return pixel_rate;
10263 /* compute the max rate for new configuration */
10264 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
10266 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10267 struct drm_i915_private *dev_priv = to_i915(state->dev);
10268 struct drm_crtc *crtc;
10269 struct drm_crtc_state *cstate;
10270 struct intel_crtc_state *crtc_state;
10271 unsigned max_pixel_rate = 0, i;
10272 enum pipe pipe;
10274 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
10275 sizeof(intel_state->min_pixclk));
10277 for_each_crtc_in_state(state, crtc, cstate, i) {
10278 int pixel_rate;
10280 crtc_state = to_intel_crtc_state(cstate);
10281 if (!crtc_state->base.enable) {
10282 intel_state->min_pixclk[i] = 0;
10283 continue;
10286 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
10288 if (IS_BROADWELL(dev_priv) || IS_GEN9(dev_priv))
10289 pixel_rate = bdw_adjust_min_pipe_pixel_rate(crtc_state,
10290 pixel_rate);
10292 intel_state->min_pixclk[i] = pixel_rate;
10295 for_each_pipe(dev_priv, pipe)
10296 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
10298 return max_pixel_rate;
10301 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
10303 struct drm_i915_private *dev_priv = to_i915(dev);
10304 uint32_t val, data;
10305 int ret;
10307 if (WARN((I915_READ(LCPLL_CTL) &
10308 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
10309 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
10310 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
10311 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
10312 "trying to change cdclk frequency with cdclk not enabled\n"))
10313 return;
10315 mutex_lock(&dev_priv->rps.hw_lock);
10316 ret = sandybridge_pcode_write(dev_priv,
10317 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
10318 mutex_unlock(&dev_priv->rps.hw_lock);
10319 if (ret) {
10320 DRM_ERROR("failed to inform pcode about cdclk change\n");
10321 return;
10324 val = I915_READ(LCPLL_CTL);
10325 val |= LCPLL_CD_SOURCE_FCLK;
10326 I915_WRITE(LCPLL_CTL, val);
10328 if (wait_for_us(I915_READ(LCPLL_CTL) &
10329 LCPLL_CD_SOURCE_FCLK_DONE, 1))
10330 DRM_ERROR("Switching to FCLK failed\n");
10332 val = I915_READ(LCPLL_CTL);
10333 val &= ~LCPLL_CLK_FREQ_MASK;
10335 switch (cdclk) {
10336 case 450000:
10337 val |= LCPLL_CLK_FREQ_450;
10338 data = 0;
10339 break;
10340 case 540000:
10341 val |= LCPLL_CLK_FREQ_54O_BDW;
10342 data = 1;
10343 break;
10344 case 337500:
10345 val |= LCPLL_CLK_FREQ_337_5_BDW;
10346 data = 2;
10347 break;
10348 case 675000:
10349 val |= LCPLL_CLK_FREQ_675_BDW;
10350 data = 3;
10351 break;
10352 default:
10353 WARN(1, "invalid cdclk frequency\n");
10354 return;
10357 I915_WRITE(LCPLL_CTL, val);
10359 val = I915_READ(LCPLL_CTL);
10360 val &= ~LCPLL_CD_SOURCE_FCLK;
10361 I915_WRITE(LCPLL_CTL, val);
10363 if (wait_for_us((I915_READ(LCPLL_CTL) &
10364 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10365 DRM_ERROR("Switching back to LCPLL failed\n");
10367 mutex_lock(&dev_priv->rps.hw_lock);
10368 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
10369 mutex_unlock(&dev_priv->rps.hw_lock);
10371 I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
10373 intel_update_cdclk(dev_priv);
10375 WARN(cdclk != dev_priv->cdclk_freq,
10376 "cdclk requested %d kHz but got %d kHz\n",
10377 cdclk, dev_priv->cdclk_freq);
10380 static int broadwell_calc_cdclk(int max_pixclk)
10382 if (max_pixclk > 540000)
10383 return 675000;
10384 else if (max_pixclk > 450000)
10385 return 540000;
10386 else if (max_pixclk > 337500)
10387 return 450000;
10388 else
10389 return 337500;
10392 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
10394 struct drm_i915_private *dev_priv = to_i915(state->dev);
10395 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10396 int max_pixclk = ilk_max_pixel_rate(state);
10397 int cdclk;
10400 * FIXME should also account for plane ratio
10401 * once 64bpp pixel formats are supported.
10403 cdclk = broadwell_calc_cdclk(max_pixclk);
10405 if (cdclk > dev_priv->max_cdclk_freq) {
10406 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10407 cdclk, dev_priv->max_cdclk_freq);
10408 return -EINVAL;
10411 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10412 if (!intel_state->active_crtcs)
10413 intel_state->dev_cdclk = broadwell_calc_cdclk(0);
10415 return 0;
10418 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10420 struct drm_device *dev = old_state->dev;
10421 struct intel_atomic_state *old_intel_state =
10422 to_intel_atomic_state(old_state);
10423 unsigned req_cdclk = old_intel_state->dev_cdclk;
10425 broadwell_set_cdclk(dev, req_cdclk);
10428 static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
10430 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10431 struct drm_i915_private *dev_priv = to_i915(state->dev);
10432 const int max_pixclk = ilk_max_pixel_rate(state);
10433 int vco = intel_state->cdclk_pll_vco;
10434 int cdclk;
10437 * FIXME should also account for plane ratio
10438 * once 64bpp pixel formats are supported.
10440 cdclk = skl_calc_cdclk(max_pixclk, vco);
10443 * FIXME move the cdclk caclulation to
10444 * compute_config() so we can fail gracegully.
10446 if (cdclk > dev_priv->max_cdclk_freq) {
10447 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10448 cdclk, dev_priv->max_cdclk_freq);
10449 cdclk = dev_priv->max_cdclk_freq;
10452 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10453 if (!intel_state->active_crtcs)
10454 intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
10456 return 0;
10459 static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10461 struct drm_i915_private *dev_priv = to_i915(old_state->dev);
10462 struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
10463 unsigned int req_cdclk = intel_state->dev_cdclk;
10464 unsigned int req_vco = intel_state->cdclk_pll_vco;
10466 skl_set_cdclk(dev_priv, req_cdclk, req_vco);
10469 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
10470 struct intel_crtc_state *crtc_state)
10472 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
10473 if (!intel_ddi_pll_select(crtc, crtc_state))
10474 return -EINVAL;
10477 crtc->lowfreq_avail = false;
10479 return 0;
10482 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10483 enum port port,
10484 struct intel_crtc_state *pipe_config)
10486 enum intel_dpll_id id;
10488 switch (port) {
10489 case PORT_A:
10490 id = DPLL_ID_SKL_DPLL0;
10491 break;
10492 case PORT_B:
10493 id = DPLL_ID_SKL_DPLL1;
10494 break;
10495 case PORT_C:
10496 id = DPLL_ID_SKL_DPLL2;
10497 break;
10498 default:
10499 DRM_ERROR("Incorrect port type\n");
10500 return;
10503 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10506 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
10507 enum port port,
10508 struct intel_crtc_state *pipe_config)
10510 enum intel_dpll_id id;
10511 u32 temp;
10513 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10514 id = temp >> (port * 3 + 1);
10516 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
10517 return;
10519 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10522 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
10523 enum port port,
10524 struct intel_crtc_state *pipe_config)
10526 enum intel_dpll_id id;
10527 uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
10529 switch (ddi_pll_sel) {
10530 case PORT_CLK_SEL_WRPLL1:
10531 id = DPLL_ID_WRPLL1;
10532 break;
10533 case PORT_CLK_SEL_WRPLL2:
10534 id = DPLL_ID_WRPLL2;
10535 break;
10536 case PORT_CLK_SEL_SPLL:
10537 id = DPLL_ID_SPLL;
10538 break;
10539 case PORT_CLK_SEL_LCPLL_810:
10540 id = DPLL_ID_LCPLL_810;
10541 break;
10542 case PORT_CLK_SEL_LCPLL_1350:
10543 id = DPLL_ID_LCPLL_1350;
10544 break;
10545 case PORT_CLK_SEL_LCPLL_2700:
10546 id = DPLL_ID_LCPLL_2700;
10547 break;
10548 default:
10549 MISSING_CASE(ddi_pll_sel);
10550 /* fall through */
10551 case PORT_CLK_SEL_NONE:
10552 return;
10555 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10558 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10559 struct intel_crtc_state *pipe_config,
10560 unsigned long *power_domain_mask)
10562 struct drm_device *dev = crtc->base.dev;
10563 struct drm_i915_private *dev_priv = to_i915(dev);
10564 enum intel_display_power_domain power_domain;
10565 u32 tmp;
10568 * The pipe->transcoder mapping is fixed with the exception of the eDP
10569 * transcoder handled below.
10571 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10574 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10575 * consistency and less surprising code; it's in always on power).
10577 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
10578 if (tmp & TRANS_DDI_FUNC_ENABLE) {
10579 enum pipe trans_edp_pipe;
10580 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10581 default:
10582 WARN(1, "unknown pipe linked to edp transcoder\n");
10583 case TRANS_DDI_EDP_INPUT_A_ONOFF:
10584 case TRANS_DDI_EDP_INPUT_A_ON:
10585 trans_edp_pipe = PIPE_A;
10586 break;
10587 case TRANS_DDI_EDP_INPUT_B_ONOFF:
10588 trans_edp_pipe = PIPE_B;
10589 break;
10590 case TRANS_DDI_EDP_INPUT_C_ONOFF:
10591 trans_edp_pipe = PIPE_C;
10592 break;
10595 if (trans_edp_pipe == crtc->pipe)
10596 pipe_config->cpu_transcoder = TRANSCODER_EDP;
10599 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10600 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10601 return false;
10602 *power_domain_mask |= BIT(power_domain);
10604 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10606 return tmp & PIPECONF_ENABLE;
10609 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10610 struct intel_crtc_state *pipe_config,
10611 unsigned long *power_domain_mask)
10613 struct drm_device *dev = crtc->base.dev;
10614 struct drm_i915_private *dev_priv = to_i915(dev);
10615 enum intel_display_power_domain power_domain;
10616 enum port port;
10617 enum transcoder cpu_transcoder;
10618 u32 tmp;
10620 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10621 if (port == PORT_A)
10622 cpu_transcoder = TRANSCODER_DSI_A;
10623 else
10624 cpu_transcoder = TRANSCODER_DSI_C;
10626 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10627 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10628 continue;
10629 *power_domain_mask |= BIT(power_domain);
10632 * The PLL needs to be enabled with a valid divider
10633 * configuration, otherwise accessing DSI registers will hang
10634 * the machine. See BSpec North Display Engine
10635 * registers/MIPI[BXT]. We can break out here early, since we
10636 * need the same DSI PLL to be enabled for both DSI ports.
10638 if (!intel_dsi_pll_is_enabled(dev_priv))
10639 break;
10641 /* XXX: this works for video mode only */
10642 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10643 if (!(tmp & DPI_ENABLE))
10644 continue;
10646 tmp = I915_READ(MIPI_CTRL(port));
10647 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10648 continue;
10650 pipe_config->cpu_transcoder = cpu_transcoder;
10651 break;
10654 return transcoder_is_dsi(pipe_config->cpu_transcoder);
10657 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10658 struct intel_crtc_state *pipe_config)
10660 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10661 struct intel_shared_dpll *pll;
10662 enum port port;
10663 uint32_t tmp;
10665 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10667 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10669 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
10670 skylake_get_ddi_pll(dev_priv, port, pipe_config);
10671 else if (IS_GEN9_LP(dev_priv))
10672 bxt_get_ddi_pll(dev_priv, port, pipe_config);
10673 else
10674 haswell_get_ddi_pll(dev_priv, port, pipe_config);
10676 pll = pipe_config->shared_dpll;
10677 if (pll) {
10678 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10679 &pipe_config->dpll_hw_state));
10683 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10684 * DDI E. So just check whether this pipe is wired to DDI E and whether
10685 * the PCH transcoder is on.
10687 if (INTEL_GEN(dev_priv) < 9 &&
10688 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10689 pipe_config->has_pch_encoder = true;
10691 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10692 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10693 FDI_DP_PORT_WIDTH_SHIFT) + 1;
10695 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10699 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10700 struct intel_crtc_state *pipe_config)
10702 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10703 enum intel_display_power_domain power_domain;
10704 unsigned long power_domain_mask;
10705 bool active;
10707 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10708 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10709 return false;
10710 power_domain_mask = BIT(power_domain);
10712 pipe_config->shared_dpll = NULL;
10714 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10716 if (IS_GEN9_LP(dev_priv) &&
10717 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
10718 WARN_ON(active);
10719 active = true;
10722 if (!active)
10723 goto out;
10725 if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10726 haswell_get_ddi_port_state(crtc, pipe_config);
10727 intel_get_pipe_timings(crtc, pipe_config);
10730 intel_get_pipe_src_size(crtc, pipe_config);
10732 pipe_config->gamma_mode =
10733 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10735 if (INTEL_GEN(dev_priv) >= 9) {
10736 intel_crtc_init_scalers(crtc, pipe_config);
10738 pipe_config->scaler_state.scaler_id = -1;
10739 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10742 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10743 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10744 power_domain_mask |= BIT(power_domain);
10745 if (INTEL_GEN(dev_priv) >= 9)
10746 skylake_get_pfit_config(crtc, pipe_config);
10747 else
10748 ironlake_get_pfit_config(crtc, pipe_config);
10751 if (IS_HASWELL(dev_priv))
10752 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10753 (I915_READ(IPS_CTL) & IPS_ENABLE);
10755 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10756 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10757 pipe_config->pixel_multiplier =
10758 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10759 } else {
10760 pipe_config->pixel_multiplier = 1;
10763 out:
10764 for_each_power_domain(power_domain, power_domain_mask)
10765 intel_display_power_put(dev_priv, power_domain);
10767 return active;
10770 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10771 const struct intel_plane_state *plane_state)
10773 struct drm_device *dev = crtc->dev;
10774 struct drm_i915_private *dev_priv = to_i915(dev);
10775 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10776 uint32_t cntl = 0, size = 0;
10778 if (plane_state && plane_state->base.visible) {
10779 unsigned int width = plane_state->base.crtc_w;
10780 unsigned int height = plane_state->base.crtc_h;
10781 unsigned int stride = roundup_pow_of_two(width) * 4;
10783 switch (stride) {
10784 default:
10785 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10786 width, stride);
10787 stride = 256;
10788 /* fallthrough */
10789 case 256:
10790 case 512:
10791 case 1024:
10792 case 2048:
10793 break;
10796 cntl |= CURSOR_ENABLE |
10797 CURSOR_GAMMA_ENABLE |
10798 CURSOR_FORMAT_ARGB |
10799 CURSOR_STRIDE(stride);
10801 size = (height << 12) | width;
10804 if (intel_crtc->cursor_cntl != 0 &&
10805 (intel_crtc->cursor_base != base ||
10806 intel_crtc->cursor_size != size ||
10807 intel_crtc->cursor_cntl != cntl)) {
10808 /* On these chipsets we can only modify the base/size/stride
10809 * whilst the cursor is disabled.
10811 I915_WRITE(CURCNTR(PIPE_A), 0);
10812 POSTING_READ(CURCNTR(PIPE_A));
10813 intel_crtc->cursor_cntl = 0;
10816 if (intel_crtc->cursor_base != base) {
10817 I915_WRITE(CURBASE(PIPE_A), base);
10818 intel_crtc->cursor_base = base;
10821 if (intel_crtc->cursor_size != size) {
10822 I915_WRITE(CURSIZE, size);
10823 intel_crtc->cursor_size = size;
10826 if (intel_crtc->cursor_cntl != cntl) {
10827 I915_WRITE(CURCNTR(PIPE_A), cntl);
10828 POSTING_READ(CURCNTR(PIPE_A));
10829 intel_crtc->cursor_cntl = cntl;
10833 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10834 const struct intel_plane_state *plane_state)
10836 struct drm_device *dev = crtc->dev;
10837 struct drm_i915_private *dev_priv = to_i915(dev);
10838 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10839 int pipe = intel_crtc->pipe;
10840 uint32_t cntl = 0;
10842 if (plane_state && plane_state->base.visible) {
10843 cntl = MCURSOR_GAMMA_ENABLE;
10844 switch (plane_state->base.crtc_w) {
10845 case 64:
10846 cntl |= CURSOR_MODE_64_ARGB_AX;
10847 break;
10848 case 128:
10849 cntl |= CURSOR_MODE_128_ARGB_AX;
10850 break;
10851 case 256:
10852 cntl |= CURSOR_MODE_256_ARGB_AX;
10853 break;
10854 default:
10855 MISSING_CASE(plane_state->base.crtc_w);
10856 return;
10858 cntl |= pipe << 28; /* Connect to correct pipe */
10860 if (HAS_DDI(dev_priv))
10861 cntl |= CURSOR_PIPE_CSC_ENABLE;
10863 if (plane_state->base.rotation & DRM_ROTATE_180)
10864 cntl |= CURSOR_ROTATE_180;
10867 if (intel_crtc->cursor_cntl != cntl) {
10868 I915_WRITE(CURCNTR(pipe), cntl);
10869 POSTING_READ(CURCNTR(pipe));
10870 intel_crtc->cursor_cntl = cntl;
10873 /* and commit changes on next vblank */
10874 I915_WRITE(CURBASE(pipe), base);
10875 POSTING_READ(CURBASE(pipe));
10877 intel_crtc->cursor_base = base;
10880 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10881 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10882 const struct intel_plane_state *plane_state)
10884 struct drm_device *dev = crtc->dev;
10885 struct drm_i915_private *dev_priv = to_i915(dev);
10886 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10887 int pipe = intel_crtc->pipe;
10888 u32 base = intel_crtc->cursor_addr;
10889 u32 pos = 0;
10891 if (plane_state) {
10892 int x = plane_state->base.crtc_x;
10893 int y = plane_state->base.crtc_y;
10895 if (x < 0) {
10896 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10897 x = -x;
10899 pos |= x << CURSOR_X_SHIFT;
10901 if (y < 0) {
10902 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10903 y = -y;
10905 pos |= y << CURSOR_Y_SHIFT;
10907 /* ILK+ do this automagically */
10908 if (HAS_GMCH_DISPLAY(dev_priv) &&
10909 plane_state->base.rotation & DRM_ROTATE_180) {
10910 base += (plane_state->base.crtc_h *
10911 plane_state->base.crtc_w - 1) * 4;
10915 I915_WRITE(CURPOS(pipe), pos);
10917 if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
10918 i845_update_cursor(crtc, base, plane_state);
10919 else
10920 i9xx_update_cursor(crtc, base, plane_state);
10923 static bool cursor_size_ok(struct drm_i915_private *dev_priv,
10924 uint32_t width, uint32_t height)
10926 if (width == 0 || height == 0)
10927 return false;
10930 * 845g/865g are special in that they are only limited by
10931 * the width of their cursors, the height is arbitrary up to
10932 * the precision of the register. Everything else requires
10933 * square cursors, limited to a few power-of-two sizes.
10935 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
10936 if ((width & 63) != 0)
10937 return false;
10939 if (width > (IS_I845G(dev_priv) ? 64 : 512))
10940 return false;
10942 if (height > 1023)
10943 return false;
10944 } else {
10945 switch (width | height) {
10946 case 256:
10947 case 128:
10948 if (IS_GEN2(dev_priv))
10949 return false;
10950 case 64:
10951 break;
10952 default:
10953 return false;
10957 return true;
10960 /* VESA 640x480x72Hz mode to set on the pipe */
10961 static struct drm_display_mode load_detect_mode = {
10962 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10963 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10966 struct drm_framebuffer *
10967 __intel_framebuffer_create(struct drm_device *dev,
10968 struct drm_mode_fb_cmd2 *mode_cmd,
10969 struct drm_i915_gem_object *obj)
10971 struct intel_framebuffer *intel_fb;
10972 int ret;
10974 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10975 if (!intel_fb)
10976 return ERR_PTR(-ENOMEM);
10978 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10979 if (ret)
10980 goto err;
10982 return &intel_fb->base;
10984 err:
10985 kfree(intel_fb);
10986 return ERR_PTR(ret);
10989 static struct drm_framebuffer *
10990 intel_framebuffer_create(struct drm_device *dev,
10991 struct drm_mode_fb_cmd2 *mode_cmd,
10992 struct drm_i915_gem_object *obj)
10994 struct drm_framebuffer *fb;
10995 int ret;
10997 ret = i915_mutex_lock_interruptible(dev);
10998 if (ret)
10999 return ERR_PTR(ret);
11000 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
11001 mutex_unlock(&dev->struct_mutex);
11003 return fb;
11006 static u32
11007 intel_framebuffer_pitch_for_width(int width, int bpp)
11009 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
11010 return ALIGN(pitch, 64);
11013 static u32
11014 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
11016 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
11017 return PAGE_ALIGN(pitch * mode->vdisplay);
11020 static struct drm_framebuffer *
11021 intel_framebuffer_create_for_mode(struct drm_device *dev,
11022 struct drm_display_mode *mode,
11023 int depth, int bpp)
11025 struct drm_framebuffer *fb;
11026 struct drm_i915_gem_object *obj;
11027 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
11029 obj = i915_gem_object_create(to_i915(dev),
11030 intel_framebuffer_size_for_mode(mode, bpp));
11031 if (IS_ERR(obj))
11032 return ERR_CAST(obj);
11034 mode_cmd.width = mode->hdisplay;
11035 mode_cmd.height = mode->vdisplay;
11036 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
11037 bpp);
11038 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
11040 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
11041 if (IS_ERR(fb))
11042 i915_gem_object_put(obj);
11044 return fb;
11047 static struct drm_framebuffer *
11048 mode_fits_in_fbdev(struct drm_device *dev,
11049 struct drm_display_mode *mode)
11051 #ifdef CONFIG_DRM_FBDEV_EMULATION
11052 struct drm_i915_private *dev_priv = to_i915(dev);
11053 struct drm_i915_gem_object *obj;
11054 struct drm_framebuffer *fb;
11056 if (!dev_priv->fbdev)
11057 return NULL;
11059 if (!dev_priv->fbdev->fb)
11060 return NULL;
11062 obj = dev_priv->fbdev->fb->obj;
11063 BUG_ON(!obj);
11065 fb = &dev_priv->fbdev->fb->base;
11066 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
11067 fb->format->cpp[0] * 8))
11068 return NULL;
11070 if (obj->base.size < mode->vdisplay * fb->pitches[0])
11071 return NULL;
11073 drm_framebuffer_reference(fb);
11074 return fb;
11075 #else
11076 return NULL;
11077 #endif
11080 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
11081 struct drm_crtc *crtc,
11082 struct drm_display_mode *mode,
11083 struct drm_framebuffer *fb,
11084 int x, int y)
11086 struct drm_plane_state *plane_state;
11087 int hdisplay, vdisplay;
11088 int ret;
11090 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
11091 if (IS_ERR(plane_state))
11092 return PTR_ERR(plane_state);
11094 if (mode)
11095 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11096 else
11097 hdisplay = vdisplay = 0;
11099 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
11100 if (ret)
11101 return ret;
11102 drm_atomic_set_fb_for_plane(plane_state, fb);
11103 plane_state->crtc_x = 0;
11104 plane_state->crtc_y = 0;
11105 plane_state->crtc_w = hdisplay;
11106 plane_state->crtc_h = vdisplay;
11107 plane_state->src_x = x << 16;
11108 plane_state->src_y = y << 16;
11109 plane_state->src_w = hdisplay << 16;
11110 plane_state->src_h = vdisplay << 16;
11112 return 0;
11115 bool intel_get_load_detect_pipe(struct drm_connector *connector,
11116 struct drm_display_mode *mode,
11117 struct intel_load_detect_pipe *old,
11118 struct drm_modeset_acquire_ctx *ctx)
11120 struct intel_crtc *intel_crtc;
11121 struct intel_encoder *intel_encoder =
11122 intel_attached_encoder(connector);
11123 struct drm_crtc *possible_crtc;
11124 struct drm_encoder *encoder = &intel_encoder->base;
11125 struct drm_crtc *crtc = NULL;
11126 struct drm_device *dev = encoder->dev;
11127 struct drm_i915_private *dev_priv = to_i915(dev);
11128 struct drm_framebuffer *fb;
11129 struct drm_mode_config *config = &dev->mode_config;
11130 struct drm_atomic_state *state = NULL, *restore_state = NULL;
11131 struct drm_connector_state *connector_state;
11132 struct intel_crtc_state *crtc_state;
11133 int ret, i = -1;
11135 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11136 connector->base.id, connector->name,
11137 encoder->base.id, encoder->name);
11139 old->restore_state = NULL;
11141 retry:
11142 ret = drm_modeset_lock(&config->connection_mutex, ctx);
11143 if (ret)
11144 goto fail;
11147 * Algorithm gets a little messy:
11149 * - if the connector already has an assigned crtc, use it (but make
11150 * sure it's on first)
11152 * - try to find the first unused crtc that can drive this connector,
11153 * and use that if we find one
11156 /* See if we already have a CRTC for this connector */
11157 if (connector->state->crtc) {
11158 crtc = connector->state->crtc;
11160 ret = drm_modeset_lock(&crtc->mutex, ctx);
11161 if (ret)
11162 goto fail;
11164 /* Make sure the crtc and connector are running */
11165 goto found;
11168 /* Find an unused one (if possible) */
11169 for_each_crtc(dev, possible_crtc) {
11170 i++;
11171 if (!(encoder->possible_crtcs & (1 << i)))
11172 continue;
11174 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11175 if (ret)
11176 goto fail;
11178 if (possible_crtc->state->enable) {
11179 drm_modeset_unlock(&possible_crtc->mutex);
11180 continue;
11183 crtc = possible_crtc;
11184 break;
11188 * If we didn't find an unused CRTC, don't use any.
11190 if (!crtc) {
11191 DRM_DEBUG_KMS("no pipe available for load-detect\n");
11192 goto fail;
11195 found:
11196 intel_crtc = to_intel_crtc(crtc);
11198 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
11199 if (ret)
11200 goto fail;
11202 state = drm_atomic_state_alloc(dev);
11203 restore_state = drm_atomic_state_alloc(dev);
11204 if (!state || !restore_state) {
11205 ret = -ENOMEM;
11206 goto fail;
11209 state->acquire_ctx = ctx;
11210 restore_state->acquire_ctx = ctx;
11212 connector_state = drm_atomic_get_connector_state(state, connector);
11213 if (IS_ERR(connector_state)) {
11214 ret = PTR_ERR(connector_state);
11215 goto fail;
11218 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
11219 if (ret)
11220 goto fail;
11222 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
11223 if (IS_ERR(crtc_state)) {
11224 ret = PTR_ERR(crtc_state);
11225 goto fail;
11228 crtc_state->base.active = crtc_state->base.enable = true;
11230 if (!mode)
11231 mode = &load_detect_mode;
11233 /* We need a framebuffer large enough to accommodate all accesses
11234 * that the plane may generate whilst we perform load detection.
11235 * We can not rely on the fbcon either being present (we get called
11236 * during its initialisation to detect all boot displays, or it may
11237 * not even exist) or that it is large enough to satisfy the
11238 * requested mode.
11240 fb = mode_fits_in_fbdev(dev, mode);
11241 if (fb == NULL) {
11242 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
11243 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
11244 } else
11245 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
11246 if (IS_ERR(fb)) {
11247 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
11248 goto fail;
11251 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
11252 if (ret)
11253 goto fail;
11255 drm_framebuffer_unreference(fb);
11257 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
11258 if (ret)
11259 goto fail;
11261 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
11262 if (!ret)
11263 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
11264 if (!ret)
11265 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
11266 if (ret) {
11267 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
11268 goto fail;
11271 ret = drm_atomic_commit(state);
11272 if (ret) {
11273 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
11274 goto fail;
11277 old->restore_state = restore_state;
11278 drm_atomic_state_put(state);
11280 /* let the connector get through one full cycle before testing */
11281 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
11282 return true;
11284 fail:
11285 if (state) {
11286 drm_atomic_state_put(state);
11287 state = NULL;
11289 if (restore_state) {
11290 drm_atomic_state_put(restore_state);
11291 restore_state = NULL;
11294 if (ret == -EDEADLK) {
11295 drm_modeset_backoff(ctx);
11296 goto retry;
11299 return false;
11302 void intel_release_load_detect_pipe(struct drm_connector *connector,
11303 struct intel_load_detect_pipe *old,
11304 struct drm_modeset_acquire_ctx *ctx)
11306 struct intel_encoder *intel_encoder =
11307 intel_attached_encoder(connector);
11308 struct drm_encoder *encoder = &intel_encoder->base;
11309 struct drm_atomic_state *state = old->restore_state;
11310 int ret;
11312 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11313 connector->base.id, connector->name,
11314 encoder->base.id, encoder->name);
11316 if (!state)
11317 return;
11319 ret = drm_atomic_commit(state);
11320 if (ret)
11321 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
11322 drm_atomic_state_put(state);
11325 static int i9xx_pll_refclk(struct drm_device *dev,
11326 const struct intel_crtc_state *pipe_config)
11328 struct drm_i915_private *dev_priv = to_i915(dev);
11329 u32 dpll = pipe_config->dpll_hw_state.dpll;
11331 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
11332 return dev_priv->vbt.lvds_ssc_freq;
11333 else if (HAS_PCH_SPLIT(dev_priv))
11334 return 120000;
11335 else if (!IS_GEN2(dev_priv))
11336 return 96000;
11337 else
11338 return 48000;
11341 /* Returns the clock of the currently programmed mode of the given pipe. */
11342 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
11343 struct intel_crtc_state *pipe_config)
11345 struct drm_device *dev = crtc->base.dev;
11346 struct drm_i915_private *dev_priv = to_i915(dev);
11347 int pipe = pipe_config->cpu_transcoder;
11348 u32 dpll = pipe_config->dpll_hw_state.dpll;
11349 u32 fp;
11350 struct dpll clock;
11351 int port_clock;
11352 int refclk = i9xx_pll_refclk(dev, pipe_config);
11354 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
11355 fp = pipe_config->dpll_hw_state.fp0;
11356 else
11357 fp = pipe_config->dpll_hw_state.fp1;
11359 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
11360 if (IS_PINEVIEW(dev_priv)) {
11361 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
11362 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
11363 } else {
11364 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
11365 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
11368 if (!IS_GEN2(dev_priv)) {
11369 if (IS_PINEVIEW(dev_priv))
11370 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
11371 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
11372 else
11373 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
11374 DPLL_FPA01_P1_POST_DIV_SHIFT);
11376 switch (dpll & DPLL_MODE_MASK) {
11377 case DPLLB_MODE_DAC_SERIAL:
11378 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
11379 5 : 10;
11380 break;
11381 case DPLLB_MODE_LVDS:
11382 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
11383 7 : 14;
11384 break;
11385 default:
11386 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
11387 "mode\n", (int)(dpll & DPLL_MODE_MASK));
11388 return;
11391 if (IS_PINEVIEW(dev_priv))
11392 port_clock = pnv_calc_dpll_params(refclk, &clock);
11393 else
11394 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11395 } else {
11396 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
11397 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
11399 if (is_lvds) {
11400 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
11401 DPLL_FPA01_P1_POST_DIV_SHIFT);
11403 if (lvds & LVDS_CLKB_POWER_UP)
11404 clock.p2 = 7;
11405 else
11406 clock.p2 = 14;
11407 } else {
11408 if (dpll & PLL_P1_DIVIDE_BY_TWO)
11409 clock.p1 = 2;
11410 else {
11411 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
11412 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
11414 if (dpll & PLL_P2_DIVIDE_BY_4)
11415 clock.p2 = 4;
11416 else
11417 clock.p2 = 2;
11420 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11424 * This value includes pixel_multiplier. We will use
11425 * port_clock to compute adjusted_mode.crtc_clock in the
11426 * encoder's get_config() function.
11428 pipe_config->port_clock = port_clock;
11431 int intel_dotclock_calculate(int link_freq,
11432 const struct intel_link_m_n *m_n)
11435 * The calculation for the data clock is:
11436 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
11437 * But we want to avoid losing precison if possible, so:
11438 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
11440 * and the link clock is simpler:
11441 * link_clock = (m * link_clock) / n
11444 if (!m_n->link_n)
11445 return 0;
11447 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
11450 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
11451 struct intel_crtc_state *pipe_config)
11453 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11455 /* read out port_clock from the DPLL */
11456 i9xx_crtc_clock_get(crtc, pipe_config);
11459 * In case there is an active pipe without active ports,
11460 * we may need some idea for the dotclock anyway.
11461 * Calculate one based on the FDI configuration.
11463 pipe_config->base.adjusted_mode.crtc_clock =
11464 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11465 &pipe_config->fdi_m_n);
11468 /** Returns the currently programmed mode of the given pipe. */
11469 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
11470 struct drm_crtc *crtc)
11472 struct drm_i915_private *dev_priv = to_i915(dev);
11473 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11474 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
11475 struct drm_display_mode *mode;
11476 struct intel_crtc_state *pipe_config;
11477 int htot = I915_READ(HTOTAL(cpu_transcoder));
11478 int hsync = I915_READ(HSYNC(cpu_transcoder));
11479 int vtot = I915_READ(VTOTAL(cpu_transcoder));
11480 int vsync = I915_READ(VSYNC(cpu_transcoder));
11481 enum pipe pipe = intel_crtc->pipe;
11483 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
11484 if (!mode)
11485 return NULL;
11487 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
11488 if (!pipe_config) {
11489 kfree(mode);
11490 return NULL;
11494 * Construct a pipe_config sufficient for getting the clock info
11495 * back out of crtc_clock_get.
11497 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
11498 * to use a real value here instead.
11500 pipe_config->cpu_transcoder = (enum transcoder) pipe;
11501 pipe_config->pixel_multiplier = 1;
11502 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
11503 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
11504 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
11505 i9xx_crtc_clock_get(intel_crtc, pipe_config);
11507 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
11508 mode->hdisplay = (htot & 0xffff) + 1;
11509 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
11510 mode->hsync_start = (hsync & 0xffff) + 1;
11511 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
11512 mode->vdisplay = (vtot & 0xffff) + 1;
11513 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
11514 mode->vsync_start = (vsync & 0xffff) + 1;
11515 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
11517 drm_mode_set_name(mode);
11519 kfree(pipe_config);
11521 return mode;
11524 static void intel_crtc_destroy(struct drm_crtc *crtc)
11526 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11527 struct drm_device *dev = crtc->dev;
11528 struct intel_flip_work *work;
11530 spin_lock_irq(&dev->event_lock);
11531 work = intel_crtc->flip_work;
11532 intel_crtc->flip_work = NULL;
11533 spin_unlock_irq(&dev->event_lock);
11535 if (work) {
11536 cancel_work_sync(&work->mmio_work);
11537 cancel_work_sync(&work->unpin_work);
11538 kfree(work);
11541 drm_crtc_cleanup(crtc);
11543 kfree(intel_crtc);
11546 static void intel_unpin_work_fn(struct work_struct *__work)
11548 struct intel_flip_work *work =
11549 container_of(__work, struct intel_flip_work, unpin_work);
11550 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11551 struct drm_device *dev = crtc->base.dev;
11552 struct drm_plane *primary = crtc->base.primary;
11554 if (is_mmio_work(work))
11555 flush_work(&work->mmio_work);
11557 mutex_lock(&dev->struct_mutex);
11558 intel_unpin_fb_vma(work->old_vma);
11559 i915_gem_object_put(work->pending_flip_obj);
11560 mutex_unlock(&dev->struct_mutex);
11562 i915_gem_request_put(work->flip_queued_req);
11564 intel_frontbuffer_flip_complete(to_i915(dev),
11565 to_intel_plane(primary)->frontbuffer_bit);
11566 intel_fbc_post_update(crtc);
11567 drm_framebuffer_unreference(work->old_fb);
11569 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
11570 atomic_dec(&crtc->unpin_work_count);
11572 kfree(work);
11575 /* Is 'a' after or equal to 'b'? */
11576 static bool g4x_flip_count_after_eq(u32 a, u32 b)
11578 return !((a - b) & 0x80000000);
11581 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
11582 struct intel_flip_work *work)
11584 struct drm_device *dev = crtc->base.dev;
11585 struct drm_i915_private *dev_priv = to_i915(dev);
11587 if (abort_flip_on_reset(crtc))
11588 return true;
11591 * The relevant registers doen't exist on pre-ctg.
11592 * As the flip done interrupt doesn't trigger for mmio
11593 * flips on gmch platforms, a flip count check isn't
11594 * really needed there. But since ctg has the registers,
11595 * include it in the check anyway.
11597 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11598 return true;
11601 * BDW signals flip done immediately if the plane
11602 * is disabled, even if the plane enable is already
11603 * armed to occur at the next vblank :(
11607 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11608 * used the same base address. In that case the mmio flip might
11609 * have completed, but the CS hasn't even executed the flip yet.
11611 * A flip count check isn't enough as the CS might have updated
11612 * the base address just after start of vblank, but before we
11613 * managed to process the interrupt. This means we'd complete the
11614 * CS flip too soon.
11616 * Combining both checks should get us a good enough result. It may
11617 * still happen that the CS flip has been executed, but has not
11618 * yet actually completed. But in case the base address is the same
11619 * anyway, we don't really care.
11621 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11622 crtc->flip_work->gtt_offset &&
11623 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11624 crtc->flip_work->flip_count);
11627 static bool
11628 __pageflip_finished_mmio(struct intel_crtc *crtc,
11629 struct intel_flip_work *work)
11632 * MMIO work completes when vblank is different from
11633 * flip_queued_vblank.
11635 * Reset counter value doesn't matter, this is handled by
11636 * i915_wait_request finishing early, so no need to handle
11637 * reset here.
11639 return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
11643 static bool pageflip_finished(struct intel_crtc *crtc,
11644 struct intel_flip_work *work)
11646 if (!atomic_read(&work->pending))
11647 return false;
11649 smp_rmb();
11651 if (is_mmio_work(work))
11652 return __pageflip_finished_mmio(crtc, work);
11653 else
11654 return __pageflip_finished_cs(crtc, work);
11657 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11659 struct drm_device *dev = &dev_priv->drm;
11660 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
11661 struct intel_flip_work *work;
11662 unsigned long flags;
11664 /* Ignore early vblank irqs */
11665 if (!crtc)
11666 return;
11669 * This is called both by irq handlers and the reset code (to complete
11670 * lost pageflips) so needs the full irqsave spinlocks.
11672 spin_lock_irqsave(&dev->event_lock, flags);
11673 work = crtc->flip_work;
11675 if (work != NULL &&
11676 !is_mmio_work(work) &&
11677 pageflip_finished(crtc, work))
11678 page_flip_completed(crtc);
11680 spin_unlock_irqrestore(&dev->event_lock, flags);
11683 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
11685 struct drm_device *dev = &dev_priv->drm;
11686 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
11687 struct intel_flip_work *work;
11688 unsigned long flags;
11690 /* Ignore early vblank irqs */
11691 if (!crtc)
11692 return;
11695 * This is called both by irq handlers and the reset code (to complete
11696 * lost pageflips) so needs the full irqsave spinlocks.
11698 spin_lock_irqsave(&dev->event_lock, flags);
11699 work = crtc->flip_work;
11701 if (work != NULL &&
11702 is_mmio_work(work) &&
11703 pageflip_finished(crtc, work))
11704 page_flip_completed(crtc);
11706 spin_unlock_irqrestore(&dev->event_lock, flags);
11709 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11710 struct intel_flip_work *work)
11712 work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
11714 /* Ensure that the work item is consistent when activating it ... */
11715 smp_mb__before_atomic();
11716 atomic_set(&work->pending, 1);
11719 static int intel_gen2_queue_flip(struct drm_device *dev,
11720 struct drm_crtc *crtc,
11721 struct drm_framebuffer *fb,
11722 struct drm_i915_gem_object *obj,
11723 struct drm_i915_gem_request *req,
11724 uint32_t flags)
11726 struct intel_ring *ring = req->ring;
11727 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11728 u32 flip_mask;
11729 int ret;
11731 ret = intel_ring_begin(req, 6);
11732 if (ret)
11733 return ret;
11735 /* Can't queue multiple flips, so wait for the previous
11736 * one to finish before executing the next.
11738 if (intel_crtc->plane)
11739 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11740 else
11741 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11742 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11743 intel_ring_emit(ring, MI_NOOP);
11744 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11745 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11746 intel_ring_emit(ring, fb->pitches[0]);
11747 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11748 intel_ring_emit(ring, 0); /* aux display base address, unused */
11750 return 0;
11753 static int intel_gen3_queue_flip(struct drm_device *dev,
11754 struct drm_crtc *crtc,
11755 struct drm_framebuffer *fb,
11756 struct drm_i915_gem_object *obj,
11757 struct drm_i915_gem_request *req,
11758 uint32_t flags)
11760 struct intel_ring *ring = req->ring;
11761 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11762 u32 flip_mask;
11763 int ret;
11765 ret = intel_ring_begin(req, 6);
11766 if (ret)
11767 return ret;
11769 if (intel_crtc->plane)
11770 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11771 else
11772 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11773 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11774 intel_ring_emit(ring, MI_NOOP);
11775 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11776 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11777 intel_ring_emit(ring, fb->pitches[0]);
11778 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11779 intel_ring_emit(ring, MI_NOOP);
11781 return 0;
11784 static int intel_gen4_queue_flip(struct drm_device *dev,
11785 struct drm_crtc *crtc,
11786 struct drm_framebuffer *fb,
11787 struct drm_i915_gem_object *obj,
11788 struct drm_i915_gem_request *req,
11789 uint32_t flags)
11791 struct intel_ring *ring = req->ring;
11792 struct drm_i915_private *dev_priv = to_i915(dev);
11793 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11794 uint32_t pf, pipesrc;
11795 int ret;
11797 ret = intel_ring_begin(req, 4);
11798 if (ret)
11799 return ret;
11801 /* i965+ uses the linear or tiled offsets from the
11802 * Display Registers (which do not change across a page-flip)
11803 * so we need only reprogram the base address.
11805 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11806 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11807 intel_ring_emit(ring, fb->pitches[0]);
11808 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset |
11809 intel_fb_modifier_to_tiling(fb->modifier));
11811 /* XXX Enabling the panel-fitter across page-flip is so far
11812 * untested on non-native modes, so ignore it for now.
11813 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11815 pf = 0;
11816 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11817 intel_ring_emit(ring, pf | pipesrc);
11819 return 0;
11822 static int intel_gen6_queue_flip(struct drm_device *dev,
11823 struct drm_crtc *crtc,
11824 struct drm_framebuffer *fb,
11825 struct drm_i915_gem_object *obj,
11826 struct drm_i915_gem_request *req,
11827 uint32_t flags)
11829 struct intel_ring *ring = req->ring;
11830 struct drm_i915_private *dev_priv = to_i915(dev);
11831 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11832 uint32_t pf, pipesrc;
11833 int ret;
11835 ret = intel_ring_begin(req, 4);
11836 if (ret)
11837 return ret;
11839 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11840 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11841 intel_ring_emit(ring, fb->pitches[0] |
11842 intel_fb_modifier_to_tiling(fb->modifier));
11843 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11845 /* Contrary to the suggestions in the documentation,
11846 * "Enable Panel Fitter" does not seem to be required when page
11847 * flipping with a non-native mode, and worse causes a normal
11848 * modeset to fail.
11849 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11851 pf = 0;
11852 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11853 intel_ring_emit(ring, pf | pipesrc);
11855 return 0;
11858 static int intel_gen7_queue_flip(struct drm_device *dev,
11859 struct drm_crtc *crtc,
11860 struct drm_framebuffer *fb,
11861 struct drm_i915_gem_object *obj,
11862 struct drm_i915_gem_request *req,
11863 uint32_t flags)
11865 struct drm_i915_private *dev_priv = to_i915(dev);
11866 struct intel_ring *ring = req->ring;
11867 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11868 uint32_t plane_bit = 0;
11869 int len, ret;
11871 switch (intel_crtc->plane) {
11872 case PLANE_A:
11873 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11874 break;
11875 case PLANE_B:
11876 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11877 break;
11878 case PLANE_C:
11879 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11880 break;
11881 default:
11882 WARN_ONCE(1, "unknown plane in flip command\n");
11883 return -ENODEV;
11886 len = 4;
11887 if (req->engine->id == RCS) {
11888 len += 6;
11890 * On Gen 8, SRM is now taking an extra dword to accommodate
11891 * 48bits addresses, and we need a NOOP for the batch size to
11892 * stay even.
11894 if (IS_GEN8(dev_priv))
11895 len += 2;
11899 * BSpec MI_DISPLAY_FLIP for IVB:
11900 * "The full packet must be contained within the same cache line."
11902 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11903 * cacheline, if we ever start emitting more commands before
11904 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11905 * then do the cacheline alignment, and finally emit the
11906 * MI_DISPLAY_FLIP.
11908 ret = intel_ring_cacheline_align(req);
11909 if (ret)
11910 return ret;
11912 ret = intel_ring_begin(req, len);
11913 if (ret)
11914 return ret;
11916 /* Unmask the flip-done completion message. Note that the bspec says that
11917 * we should do this for both the BCS and RCS, and that we must not unmask
11918 * more than one flip event at any time (or ensure that one flip message
11919 * can be sent by waiting for flip-done prior to queueing new flips).
11920 * Experimentation says that BCS works despite DERRMR masking all
11921 * flip-done completion events and that unmasking all planes at once
11922 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11923 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11925 if (req->engine->id == RCS) {
11926 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11927 intel_ring_emit_reg(ring, DERRMR);
11928 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11929 DERRMR_PIPEB_PRI_FLIP_DONE |
11930 DERRMR_PIPEC_PRI_FLIP_DONE));
11931 if (IS_GEN8(dev_priv))
11932 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11933 MI_SRM_LRM_GLOBAL_GTT);
11934 else
11935 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11936 MI_SRM_LRM_GLOBAL_GTT);
11937 intel_ring_emit_reg(ring, DERRMR);
11938 intel_ring_emit(ring,
11939 i915_ggtt_offset(req->engine->scratch) + 256);
11940 if (IS_GEN8(dev_priv)) {
11941 intel_ring_emit(ring, 0);
11942 intel_ring_emit(ring, MI_NOOP);
11946 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11947 intel_ring_emit(ring, fb->pitches[0] |
11948 intel_fb_modifier_to_tiling(fb->modifier));
11949 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11950 intel_ring_emit(ring, (MI_NOOP));
11952 return 0;
11955 static bool use_mmio_flip(struct intel_engine_cs *engine,
11956 struct drm_i915_gem_object *obj)
11959 * This is not being used for older platforms, because
11960 * non-availability of flip done interrupt forces us to use
11961 * CS flips. Older platforms derive flip done using some clever
11962 * tricks involving the flip_pending status bits and vblank irqs.
11963 * So using MMIO flips there would disrupt this mechanism.
11966 if (engine == NULL)
11967 return true;
11969 if (INTEL_GEN(engine->i915) < 5)
11970 return false;
11972 if (i915.use_mmio_flip < 0)
11973 return false;
11974 else if (i915.use_mmio_flip > 0)
11975 return true;
11976 else if (i915.enable_execlists)
11977 return true;
11979 return engine != i915_gem_object_last_write_engine(obj);
11982 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11983 unsigned int rotation,
11984 struct intel_flip_work *work)
11986 struct drm_device *dev = intel_crtc->base.dev;
11987 struct drm_i915_private *dev_priv = to_i915(dev);
11988 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11989 const enum pipe pipe = intel_crtc->pipe;
11990 u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
11992 ctl = I915_READ(PLANE_CTL(pipe, 0));
11993 ctl &= ~PLANE_CTL_TILED_MASK;
11994 switch (fb->modifier) {
11995 case DRM_FORMAT_MOD_NONE:
11996 break;
11997 case I915_FORMAT_MOD_X_TILED:
11998 ctl |= PLANE_CTL_TILED_X;
11999 break;
12000 case I915_FORMAT_MOD_Y_TILED:
12001 ctl |= PLANE_CTL_TILED_Y;
12002 break;
12003 case I915_FORMAT_MOD_Yf_TILED:
12004 ctl |= PLANE_CTL_TILED_YF;
12005 break;
12006 default:
12007 MISSING_CASE(fb->modifier);
12011 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
12012 * PLANE_SURF updates, the update is then guaranteed to be atomic.
12014 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
12015 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
12017 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
12018 POSTING_READ(PLANE_SURF(pipe, 0));
12021 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
12022 struct intel_flip_work *work)
12024 struct drm_device *dev = intel_crtc->base.dev;
12025 struct drm_i915_private *dev_priv = to_i915(dev);
12026 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
12027 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
12028 u32 dspcntr;
12030 dspcntr = I915_READ(reg);
12032 if (fb->modifier == I915_FORMAT_MOD_X_TILED)
12033 dspcntr |= DISPPLANE_TILED;
12034 else
12035 dspcntr &= ~DISPPLANE_TILED;
12037 I915_WRITE(reg, dspcntr);
12039 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
12040 POSTING_READ(DSPSURF(intel_crtc->plane));
12043 static void intel_mmio_flip_work_func(struct work_struct *w)
12045 struct intel_flip_work *work =
12046 container_of(w, struct intel_flip_work, mmio_work);
12047 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
12048 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12049 struct intel_framebuffer *intel_fb =
12050 to_intel_framebuffer(crtc->base.primary->fb);
12051 struct drm_i915_gem_object *obj = intel_fb->obj;
12053 WARN_ON(i915_gem_object_wait(obj, 0, MAX_SCHEDULE_TIMEOUT, NULL) < 0);
12055 intel_pipe_update_start(crtc);
12057 if (INTEL_GEN(dev_priv) >= 9)
12058 skl_do_mmio_flip(crtc, work->rotation, work);
12059 else
12060 /* use_mmio_flip() retricts MMIO flips to ilk+ */
12061 ilk_do_mmio_flip(crtc, work);
12063 intel_pipe_update_end(crtc, work);
12066 static int intel_default_queue_flip(struct drm_device *dev,
12067 struct drm_crtc *crtc,
12068 struct drm_framebuffer *fb,
12069 struct drm_i915_gem_object *obj,
12070 struct drm_i915_gem_request *req,
12071 uint32_t flags)
12073 return -ENODEV;
12076 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
12077 struct intel_crtc *intel_crtc,
12078 struct intel_flip_work *work)
12080 u32 addr, vblank;
12082 if (!atomic_read(&work->pending))
12083 return false;
12085 smp_rmb();
12087 vblank = intel_crtc_get_vblank_counter(intel_crtc);
12088 if (work->flip_ready_vblank == 0) {
12089 if (work->flip_queued_req &&
12090 !i915_gem_request_completed(work->flip_queued_req))
12091 return false;
12093 work->flip_ready_vblank = vblank;
12096 if (vblank - work->flip_ready_vblank < 3)
12097 return false;
12099 /* Potential stall - if we see that the flip has happened,
12100 * assume a missed interrupt. */
12101 if (INTEL_GEN(dev_priv) >= 4)
12102 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
12103 else
12104 addr = I915_READ(DSPADDR(intel_crtc->plane));
12106 /* There is a potential issue here with a false positive after a flip
12107 * to the same address. We could address this by checking for a
12108 * non-incrementing frame counter.
12110 return addr == work->gtt_offset;
12113 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
12115 struct drm_device *dev = &dev_priv->drm;
12116 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
12117 struct intel_flip_work *work;
12119 WARN_ON(!in_interrupt());
12121 if (crtc == NULL)
12122 return;
12124 spin_lock(&dev->event_lock);
12125 work = crtc->flip_work;
12127 if (work != NULL && !is_mmio_work(work) &&
12128 __pageflip_stall_check_cs(dev_priv, crtc, work)) {
12129 WARN_ONCE(1,
12130 "Kicking stuck page flip: queued at %d, now %d\n",
12131 work->flip_queued_vblank, intel_crtc_get_vblank_counter(crtc));
12132 page_flip_completed(crtc);
12133 work = NULL;
12136 if (work != NULL && !is_mmio_work(work) &&
12137 intel_crtc_get_vblank_counter(crtc) - work->flip_queued_vblank > 1)
12138 intel_queue_rps_boost_for_request(work->flip_queued_req);
12139 spin_unlock(&dev->event_lock);
12142 static int intel_crtc_page_flip(struct drm_crtc *crtc,
12143 struct drm_framebuffer *fb,
12144 struct drm_pending_vblank_event *event,
12145 uint32_t page_flip_flags)
12147 struct drm_device *dev = crtc->dev;
12148 struct drm_i915_private *dev_priv = to_i915(dev);
12149 struct drm_framebuffer *old_fb = crtc->primary->fb;
12150 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12151 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12152 struct drm_plane *primary = crtc->primary;
12153 enum pipe pipe = intel_crtc->pipe;
12154 struct intel_flip_work *work;
12155 struct intel_engine_cs *engine;
12156 bool mmio_flip;
12157 struct drm_i915_gem_request *request;
12158 struct i915_vma *vma;
12159 int ret;
12162 * drm_mode_page_flip_ioctl() should already catch this, but double
12163 * check to be safe. In the future we may enable pageflipping from
12164 * a disabled primary plane.
12166 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
12167 return -EBUSY;
12169 /* Can't change pixel format via MI display flips. */
12170 if (fb->format != crtc->primary->fb->format)
12171 return -EINVAL;
12174 * TILEOFF/LINOFF registers can't be changed via MI display flips.
12175 * Note that pitch changes could also affect these register.
12177 if (INTEL_GEN(dev_priv) > 3 &&
12178 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
12179 fb->pitches[0] != crtc->primary->fb->pitches[0]))
12180 return -EINVAL;
12182 if (i915_terminally_wedged(&dev_priv->gpu_error))
12183 goto out_hang;
12185 work = kzalloc(sizeof(*work), GFP_KERNEL);
12186 if (work == NULL)
12187 return -ENOMEM;
12189 work->event = event;
12190 work->crtc = crtc;
12191 work->old_fb = old_fb;
12192 INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
12194 ret = drm_crtc_vblank_get(crtc);
12195 if (ret)
12196 goto free_work;
12198 /* We borrow the event spin lock for protecting flip_work */
12199 spin_lock_irq(&dev->event_lock);
12200 if (intel_crtc->flip_work) {
12201 /* Before declaring the flip queue wedged, check if
12202 * the hardware completed the operation behind our backs.
12204 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
12205 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
12206 page_flip_completed(intel_crtc);
12207 } else {
12208 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
12209 spin_unlock_irq(&dev->event_lock);
12211 drm_crtc_vblank_put(crtc);
12212 kfree(work);
12213 return -EBUSY;
12216 intel_crtc->flip_work = work;
12217 spin_unlock_irq(&dev->event_lock);
12219 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
12220 flush_workqueue(dev_priv->wq);
12222 /* Reference the objects for the scheduled work. */
12223 drm_framebuffer_reference(work->old_fb);
12225 crtc->primary->fb = fb;
12226 update_state_fb(crtc->primary);
12228 work->pending_flip_obj = i915_gem_object_get(obj);
12230 ret = i915_mutex_lock_interruptible(dev);
12231 if (ret)
12232 goto cleanup;
12234 intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
12235 if (i915_reset_in_progress_or_wedged(&dev_priv->gpu_error)) {
12236 ret = -EIO;
12237 goto unlock;
12240 atomic_inc(&intel_crtc->unpin_work_count);
12242 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
12243 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
12245 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
12246 engine = dev_priv->engine[BCS];
12247 if (fb->modifier != old_fb->modifier)
12248 /* vlv: DISPLAY_FLIP fails to change tiling */
12249 engine = NULL;
12250 } else if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
12251 engine = dev_priv->engine[BCS];
12252 } else if (INTEL_GEN(dev_priv) >= 7) {
12253 engine = i915_gem_object_last_write_engine(obj);
12254 if (engine == NULL || engine->id != RCS)
12255 engine = dev_priv->engine[BCS];
12256 } else {
12257 engine = dev_priv->engine[RCS];
12260 mmio_flip = use_mmio_flip(engine, obj);
12262 vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
12263 if (IS_ERR(vma)) {
12264 ret = PTR_ERR(vma);
12265 goto cleanup_pending;
12268 work->old_vma = to_intel_plane_state(primary->state)->vma;
12269 to_intel_plane_state(primary->state)->vma = vma;
12271 work->gtt_offset = i915_ggtt_offset(vma) + intel_crtc->dspaddr_offset;
12272 work->rotation = crtc->primary->state->rotation;
12275 * There's the potential that the next frame will not be compatible with
12276 * FBC, so we want to call pre_update() before the actual page flip.
12277 * The problem is that pre_update() caches some information about the fb
12278 * object, so we want to do this only after the object is pinned. Let's
12279 * be on the safe side and do this immediately before scheduling the
12280 * flip.
12282 intel_fbc_pre_update(intel_crtc, intel_crtc->config,
12283 to_intel_plane_state(primary->state));
12285 if (mmio_flip) {
12286 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
12287 queue_work(system_unbound_wq, &work->mmio_work);
12288 } else {
12289 request = i915_gem_request_alloc(engine,
12290 dev_priv->kernel_context);
12291 if (IS_ERR(request)) {
12292 ret = PTR_ERR(request);
12293 goto cleanup_unpin;
12296 ret = i915_gem_request_await_object(request, obj, false);
12297 if (ret)
12298 goto cleanup_request;
12300 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
12301 page_flip_flags);
12302 if (ret)
12303 goto cleanup_request;
12305 intel_mark_page_flip_active(intel_crtc, work);
12307 work->flip_queued_req = i915_gem_request_get(request);
12308 i915_add_request_no_flush(request);
12311 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
12312 i915_gem_track_fb(intel_fb_obj(old_fb), obj,
12313 to_intel_plane(primary)->frontbuffer_bit);
12314 mutex_unlock(&dev->struct_mutex);
12316 intel_frontbuffer_flip_prepare(to_i915(dev),
12317 to_intel_plane(primary)->frontbuffer_bit);
12319 trace_i915_flip_request(intel_crtc->plane, obj);
12321 return 0;
12323 cleanup_request:
12324 i915_add_request_no_flush(request);
12325 cleanup_unpin:
12326 to_intel_plane_state(primary->state)->vma = work->old_vma;
12327 intel_unpin_fb_vma(vma);
12328 cleanup_pending:
12329 atomic_dec(&intel_crtc->unpin_work_count);
12330 unlock:
12331 mutex_unlock(&dev->struct_mutex);
12332 cleanup:
12333 crtc->primary->fb = old_fb;
12334 update_state_fb(crtc->primary);
12336 i915_gem_object_put(obj);
12337 drm_framebuffer_unreference(work->old_fb);
12339 spin_lock_irq(&dev->event_lock);
12340 intel_crtc->flip_work = NULL;
12341 spin_unlock_irq(&dev->event_lock);
12343 drm_crtc_vblank_put(crtc);
12344 free_work:
12345 kfree(work);
12347 if (ret == -EIO) {
12348 struct drm_atomic_state *state;
12349 struct drm_plane_state *plane_state;
12351 out_hang:
12352 state = drm_atomic_state_alloc(dev);
12353 if (!state)
12354 return -ENOMEM;
12355 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
12357 retry:
12358 plane_state = drm_atomic_get_plane_state(state, primary);
12359 ret = PTR_ERR_OR_ZERO(plane_state);
12360 if (!ret) {
12361 drm_atomic_set_fb_for_plane(plane_state, fb);
12363 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
12364 if (!ret)
12365 ret = drm_atomic_commit(state);
12368 if (ret == -EDEADLK) {
12369 drm_modeset_backoff(state->acquire_ctx);
12370 drm_atomic_state_clear(state);
12371 goto retry;
12374 drm_atomic_state_put(state);
12376 if (ret == 0 && event) {
12377 spin_lock_irq(&dev->event_lock);
12378 drm_crtc_send_vblank_event(crtc, event);
12379 spin_unlock_irq(&dev->event_lock);
12382 return ret;
12387 * intel_wm_need_update - Check whether watermarks need updating
12388 * @plane: drm plane
12389 * @state: new plane state
12391 * Check current plane state versus the new one to determine whether
12392 * watermarks need to be recalculated.
12394 * Returns true or false.
12396 static bool intel_wm_need_update(struct drm_plane *plane,
12397 struct drm_plane_state *state)
12399 struct intel_plane_state *new = to_intel_plane_state(state);
12400 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
12402 /* Update watermarks on tiling or size changes. */
12403 if (new->base.visible != cur->base.visible)
12404 return true;
12406 if (!cur->base.fb || !new->base.fb)
12407 return false;
12409 if (cur->base.fb->modifier != new->base.fb->modifier ||
12410 cur->base.rotation != new->base.rotation ||
12411 drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
12412 drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
12413 drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
12414 drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
12415 return true;
12417 return false;
12420 static bool needs_scaling(struct intel_plane_state *state)
12422 int src_w = drm_rect_width(&state->base.src) >> 16;
12423 int src_h = drm_rect_height(&state->base.src) >> 16;
12424 int dst_w = drm_rect_width(&state->base.dst);
12425 int dst_h = drm_rect_height(&state->base.dst);
12427 return (src_w != dst_w || src_h != dst_h);
12430 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
12431 struct drm_plane_state *plane_state)
12433 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
12434 struct drm_crtc *crtc = crtc_state->crtc;
12435 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12436 struct drm_plane *plane = plane_state->plane;
12437 struct drm_device *dev = crtc->dev;
12438 struct drm_i915_private *dev_priv = to_i915(dev);
12439 struct intel_plane_state *old_plane_state =
12440 to_intel_plane_state(plane->state);
12441 bool mode_changed = needs_modeset(crtc_state);
12442 bool was_crtc_enabled = crtc->state->active;
12443 bool is_crtc_enabled = crtc_state->active;
12444 bool turn_off, turn_on, visible, was_visible;
12445 struct drm_framebuffer *fb = plane_state->fb;
12446 int ret;
12448 if (INTEL_GEN(dev_priv) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) {
12449 ret = skl_update_scaler_plane(
12450 to_intel_crtc_state(crtc_state),
12451 to_intel_plane_state(plane_state));
12452 if (ret)
12453 return ret;
12456 was_visible = old_plane_state->base.visible;
12457 visible = plane_state->visible;
12459 if (!was_crtc_enabled && WARN_ON(was_visible))
12460 was_visible = false;
12463 * Visibility is calculated as if the crtc was on, but
12464 * after scaler setup everything depends on it being off
12465 * when the crtc isn't active.
12467 * FIXME this is wrong for watermarks. Watermarks should also
12468 * be computed as if the pipe would be active. Perhaps move
12469 * per-plane wm computation to the .check_plane() hook, and
12470 * only combine the results from all planes in the current place?
12472 if (!is_crtc_enabled)
12473 plane_state->visible = visible = false;
12475 if (!was_visible && !visible)
12476 return 0;
12478 if (fb != old_plane_state->base.fb)
12479 pipe_config->fb_changed = true;
12481 turn_off = was_visible && (!visible || mode_changed);
12482 turn_on = visible && (!was_visible || mode_changed);
12484 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
12485 intel_crtc->base.base.id,
12486 intel_crtc->base.name,
12487 plane->base.id, plane->name,
12488 fb ? fb->base.id : -1);
12490 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12491 plane->base.id, plane->name,
12492 was_visible, visible,
12493 turn_off, turn_on, mode_changed);
12495 if (turn_on) {
12496 pipe_config->update_wm_pre = true;
12498 /* must disable cxsr around plane enable/disable */
12499 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12500 pipe_config->disable_cxsr = true;
12501 } else if (turn_off) {
12502 pipe_config->update_wm_post = true;
12504 /* must disable cxsr around plane enable/disable */
12505 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12506 pipe_config->disable_cxsr = true;
12507 } else if (intel_wm_need_update(plane, plane_state)) {
12508 /* FIXME bollocks */
12509 pipe_config->update_wm_pre = true;
12510 pipe_config->update_wm_post = true;
12513 /* Pre-gen9 platforms need two-step watermark updates */
12514 if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
12515 INTEL_GEN(dev_priv) < 9 && dev_priv->display.optimize_watermarks)
12516 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
12518 if (visible || was_visible)
12519 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
12522 * WaCxSRDisabledForSpriteScaling:ivb
12524 * cstate->update_wm was already set above, so this flag will
12525 * take effect when we commit and program watermarks.
12527 if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev_priv) &&
12528 needs_scaling(to_intel_plane_state(plane_state)) &&
12529 !needs_scaling(old_plane_state))
12530 pipe_config->disable_lp_wm = true;
12532 return 0;
12535 static bool encoders_cloneable(const struct intel_encoder *a,
12536 const struct intel_encoder *b)
12538 /* masks could be asymmetric, so check both ways */
12539 return a == b || (a->cloneable & (1 << b->type) &&
12540 b->cloneable & (1 << a->type));
12543 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12544 struct intel_crtc *crtc,
12545 struct intel_encoder *encoder)
12547 struct intel_encoder *source_encoder;
12548 struct drm_connector *connector;
12549 struct drm_connector_state *connector_state;
12550 int i;
12552 for_each_connector_in_state(state, connector, connector_state, i) {
12553 if (connector_state->crtc != &crtc->base)
12554 continue;
12556 source_encoder =
12557 to_intel_encoder(connector_state->best_encoder);
12558 if (!encoders_cloneable(encoder, source_encoder))
12559 return false;
12562 return true;
12565 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
12566 struct drm_crtc_state *crtc_state)
12568 struct drm_device *dev = crtc->dev;
12569 struct drm_i915_private *dev_priv = to_i915(dev);
12570 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12571 struct intel_crtc_state *pipe_config =
12572 to_intel_crtc_state(crtc_state);
12573 struct drm_atomic_state *state = crtc_state->state;
12574 int ret;
12575 bool mode_changed = needs_modeset(crtc_state);
12577 if (mode_changed && !crtc_state->active)
12578 pipe_config->update_wm_post = true;
12580 if (mode_changed && crtc_state->enable &&
12581 dev_priv->display.crtc_compute_clock &&
12582 !WARN_ON(pipe_config->shared_dpll)) {
12583 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12584 pipe_config);
12585 if (ret)
12586 return ret;
12589 if (crtc_state->color_mgmt_changed) {
12590 ret = intel_color_check(crtc, crtc_state);
12591 if (ret)
12592 return ret;
12595 * Changing color management on Intel hardware is
12596 * handled as part of planes update.
12598 crtc_state->planes_changed = true;
12601 ret = 0;
12602 if (dev_priv->display.compute_pipe_wm) {
12603 ret = dev_priv->display.compute_pipe_wm(pipe_config);
12604 if (ret) {
12605 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12606 return ret;
12610 if (dev_priv->display.compute_intermediate_wm &&
12611 !to_intel_atomic_state(state)->skip_intermediate_wm) {
12612 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12613 return 0;
12616 * Calculate 'intermediate' watermarks that satisfy both the
12617 * old state and the new state. We can program these
12618 * immediately.
12620 ret = dev_priv->display.compute_intermediate_wm(dev,
12621 intel_crtc,
12622 pipe_config);
12623 if (ret) {
12624 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12625 return ret;
12627 } else if (dev_priv->display.compute_intermediate_wm) {
12628 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12629 pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
12632 if (INTEL_GEN(dev_priv) >= 9) {
12633 if (mode_changed)
12634 ret = skl_update_scaler_crtc(pipe_config);
12636 if (!ret)
12637 ret = intel_atomic_setup_scalers(dev, intel_crtc,
12638 pipe_config);
12641 return ret;
12644 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12645 .mode_set_base_atomic = intel_pipe_set_base_atomic,
12646 .atomic_begin = intel_begin_crtc_commit,
12647 .atomic_flush = intel_finish_crtc_commit,
12648 .atomic_check = intel_crtc_atomic_check,
12651 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12653 struct intel_connector *connector;
12655 for_each_intel_connector(dev, connector) {
12656 if (connector->base.state->crtc)
12657 drm_connector_unreference(&connector->base);
12659 if (connector->base.encoder) {
12660 connector->base.state->best_encoder =
12661 connector->base.encoder;
12662 connector->base.state->crtc =
12663 connector->base.encoder->crtc;
12665 drm_connector_reference(&connector->base);
12666 } else {
12667 connector->base.state->best_encoder = NULL;
12668 connector->base.state->crtc = NULL;
12673 static void
12674 connected_sink_compute_bpp(struct intel_connector *connector,
12675 struct intel_crtc_state *pipe_config)
12677 const struct drm_display_info *info = &connector->base.display_info;
12678 int bpp = pipe_config->pipe_bpp;
12680 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12681 connector->base.base.id,
12682 connector->base.name);
12684 /* Don't use an invalid EDID bpc value */
12685 if (info->bpc != 0 && info->bpc * 3 < bpp) {
12686 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12687 bpp, info->bpc * 3);
12688 pipe_config->pipe_bpp = info->bpc * 3;
12691 /* Clamp bpp to 8 on screens without EDID 1.4 */
12692 if (info->bpc == 0 && bpp > 24) {
12693 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
12694 bpp);
12695 pipe_config->pipe_bpp = 24;
12699 static int
12700 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12701 struct intel_crtc_state *pipe_config)
12703 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12704 struct drm_atomic_state *state;
12705 struct drm_connector *connector;
12706 struct drm_connector_state *connector_state;
12707 int bpp, i;
12709 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
12710 IS_CHERRYVIEW(dev_priv)))
12711 bpp = 10*3;
12712 else if (INTEL_GEN(dev_priv) >= 5)
12713 bpp = 12*3;
12714 else
12715 bpp = 8*3;
12718 pipe_config->pipe_bpp = bpp;
12720 state = pipe_config->base.state;
12722 /* Clamp display bpp to EDID value */
12723 for_each_connector_in_state(state, connector, connector_state, i) {
12724 if (connector_state->crtc != &crtc->base)
12725 continue;
12727 connected_sink_compute_bpp(to_intel_connector(connector),
12728 pipe_config);
12731 return bpp;
12734 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12736 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12737 "type: 0x%x flags: 0x%x\n",
12738 mode->crtc_clock,
12739 mode->crtc_hdisplay, mode->crtc_hsync_start,
12740 mode->crtc_hsync_end, mode->crtc_htotal,
12741 mode->crtc_vdisplay, mode->crtc_vsync_start,
12742 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12745 static inline void
12746 intel_dump_m_n_config(struct intel_crtc_state *pipe_config, char *id,
12747 unsigned int lane_count, struct intel_link_m_n *m_n)
12749 DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12750 id, lane_count,
12751 m_n->gmch_m, m_n->gmch_n,
12752 m_n->link_m, m_n->link_n, m_n->tu);
12755 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12756 struct intel_crtc_state *pipe_config,
12757 const char *context)
12759 struct drm_device *dev = crtc->base.dev;
12760 struct drm_i915_private *dev_priv = to_i915(dev);
12761 struct drm_plane *plane;
12762 struct intel_plane *intel_plane;
12763 struct intel_plane_state *state;
12764 struct drm_framebuffer *fb;
12766 DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
12767 crtc->base.base.id, crtc->base.name, context);
12769 DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
12770 transcoder_name(pipe_config->cpu_transcoder),
12771 pipe_config->pipe_bpp, pipe_config->dither);
12773 if (pipe_config->has_pch_encoder)
12774 intel_dump_m_n_config(pipe_config, "fdi",
12775 pipe_config->fdi_lanes,
12776 &pipe_config->fdi_m_n);
12778 if (intel_crtc_has_dp_encoder(pipe_config)) {
12779 intel_dump_m_n_config(pipe_config, "dp m_n",
12780 pipe_config->lane_count, &pipe_config->dp_m_n);
12781 if (pipe_config->has_drrs)
12782 intel_dump_m_n_config(pipe_config, "dp m2_n2",
12783 pipe_config->lane_count,
12784 &pipe_config->dp_m2_n2);
12787 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12788 pipe_config->has_audio, pipe_config->has_infoframe);
12790 DRM_DEBUG_KMS("requested mode:\n");
12791 drm_mode_debug_printmodeline(&pipe_config->base.mode);
12792 DRM_DEBUG_KMS("adjusted mode:\n");
12793 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12794 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12795 DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d\n",
12796 pipe_config->port_clock,
12797 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12799 if (INTEL_GEN(dev_priv) >= 9)
12800 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12801 crtc->num_scalers,
12802 pipe_config->scaler_state.scaler_users,
12803 pipe_config->scaler_state.scaler_id);
12805 if (HAS_GMCH_DISPLAY(dev_priv))
12806 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12807 pipe_config->gmch_pfit.control,
12808 pipe_config->gmch_pfit.pgm_ratios,
12809 pipe_config->gmch_pfit.lvds_border_bits);
12810 else
12811 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12812 pipe_config->pch_pfit.pos,
12813 pipe_config->pch_pfit.size,
12814 enableddisabled(pipe_config->pch_pfit.enabled));
12816 DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
12817 pipe_config->ips_enabled, pipe_config->double_wide);
12819 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
12821 DRM_DEBUG_KMS("planes on this crtc\n");
12822 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12823 struct drm_format_name_buf format_name;
12824 intel_plane = to_intel_plane(plane);
12825 if (intel_plane->pipe != crtc->pipe)
12826 continue;
12828 state = to_intel_plane_state(plane->state);
12829 fb = state->base.fb;
12830 if (!fb) {
12831 DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12832 plane->base.id, plane->name, state->scaler_id);
12833 continue;
12836 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
12837 plane->base.id, plane->name,
12838 fb->base.id, fb->width, fb->height,
12839 drm_get_format_name(fb->format->format, &format_name));
12840 if (INTEL_GEN(dev_priv) >= 9)
12841 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12842 state->scaler_id,
12843 state->base.src.x1 >> 16,
12844 state->base.src.y1 >> 16,
12845 drm_rect_width(&state->base.src) >> 16,
12846 drm_rect_height(&state->base.src) >> 16,
12847 state->base.dst.x1, state->base.dst.y1,
12848 drm_rect_width(&state->base.dst),
12849 drm_rect_height(&state->base.dst));
12853 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12855 struct drm_device *dev = state->dev;
12856 struct drm_connector *connector;
12857 unsigned int used_ports = 0;
12858 unsigned int used_mst_ports = 0;
12861 * Walk the connector list instead of the encoder
12862 * list to detect the problem on ddi platforms
12863 * where there's just one encoder per digital port.
12865 drm_for_each_connector(connector, dev) {
12866 struct drm_connector_state *connector_state;
12867 struct intel_encoder *encoder;
12869 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12870 if (!connector_state)
12871 connector_state = connector->state;
12873 if (!connector_state->best_encoder)
12874 continue;
12876 encoder = to_intel_encoder(connector_state->best_encoder);
12878 WARN_ON(!connector_state->crtc);
12880 switch (encoder->type) {
12881 unsigned int port_mask;
12882 case INTEL_OUTPUT_UNKNOWN:
12883 if (WARN_ON(!HAS_DDI(to_i915(dev))))
12884 break;
12885 case INTEL_OUTPUT_DP:
12886 case INTEL_OUTPUT_HDMI:
12887 case INTEL_OUTPUT_EDP:
12888 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12890 /* the same port mustn't appear more than once */
12891 if (used_ports & port_mask)
12892 return false;
12894 used_ports |= port_mask;
12895 break;
12896 case INTEL_OUTPUT_DP_MST:
12897 used_mst_ports |=
12898 1 << enc_to_mst(&encoder->base)->primary->port;
12899 break;
12900 default:
12901 break;
12905 /* can't mix MST and SST/HDMI on the same port */
12906 if (used_ports & used_mst_ports)
12907 return false;
12909 return true;
12912 static void
12913 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12915 struct drm_crtc_state tmp_state;
12916 struct intel_crtc_scaler_state scaler_state;
12917 struct intel_dpll_hw_state dpll_hw_state;
12918 struct intel_shared_dpll *shared_dpll;
12919 bool force_thru;
12921 /* FIXME: before the switch to atomic started, a new pipe_config was
12922 * kzalloc'd. Code that depends on any field being zero should be
12923 * fixed, so that the crtc_state can be safely duplicated. For now,
12924 * only fields that are know to not cause problems are preserved. */
12926 tmp_state = crtc_state->base;
12927 scaler_state = crtc_state->scaler_state;
12928 shared_dpll = crtc_state->shared_dpll;
12929 dpll_hw_state = crtc_state->dpll_hw_state;
12930 force_thru = crtc_state->pch_pfit.force_thru;
12932 memset(crtc_state, 0, sizeof *crtc_state);
12934 crtc_state->base = tmp_state;
12935 crtc_state->scaler_state = scaler_state;
12936 crtc_state->shared_dpll = shared_dpll;
12937 crtc_state->dpll_hw_state = dpll_hw_state;
12938 crtc_state->pch_pfit.force_thru = force_thru;
12941 static int
12942 intel_modeset_pipe_config(struct drm_crtc *crtc,
12943 struct intel_crtc_state *pipe_config)
12945 struct drm_atomic_state *state = pipe_config->base.state;
12946 struct intel_encoder *encoder;
12947 struct drm_connector *connector;
12948 struct drm_connector_state *connector_state;
12949 int base_bpp, ret = -EINVAL;
12950 int i;
12951 bool retry = true;
12953 clear_intel_crtc_state(pipe_config);
12955 pipe_config->cpu_transcoder =
12956 (enum transcoder) to_intel_crtc(crtc)->pipe;
12959 * Sanitize sync polarity flags based on requested ones. If neither
12960 * positive or negative polarity is requested, treat this as meaning
12961 * negative polarity.
12963 if (!(pipe_config->base.adjusted_mode.flags &
12964 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12965 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12967 if (!(pipe_config->base.adjusted_mode.flags &
12968 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12969 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12971 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12972 pipe_config);
12973 if (base_bpp < 0)
12974 goto fail;
12977 * Determine the real pipe dimensions. Note that stereo modes can
12978 * increase the actual pipe size due to the frame doubling and
12979 * insertion of additional space for blanks between the frame. This
12980 * is stored in the crtc timings. We use the requested mode to do this
12981 * computation to clearly distinguish it from the adjusted mode, which
12982 * can be changed by the connectors in the below retry loop.
12984 drm_crtc_get_hv_timing(&pipe_config->base.mode,
12985 &pipe_config->pipe_src_w,
12986 &pipe_config->pipe_src_h);
12988 for_each_connector_in_state(state, connector, connector_state, i) {
12989 if (connector_state->crtc != crtc)
12990 continue;
12992 encoder = to_intel_encoder(connector_state->best_encoder);
12994 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
12995 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12996 goto fail;
13000 * Determine output_types before calling the .compute_config()
13001 * hooks so that the hooks can use this information safely.
13003 pipe_config->output_types |= 1 << encoder->type;
13006 encoder_retry:
13007 /* Ensure the port clock defaults are reset when retrying. */
13008 pipe_config->port_clock = 0;
13009 pipe_config->pixel_multiplier = 1;
13011 /* Fill in default crtc timings, allow encoders to overwrite them. */
13012 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
13013 CRTC_STEREO_DOUBLE);
13015 /* Pass our mode to the connectors and the CRTC to give them a chance to
13016 * adjust it according to limitations or connector properties, and also
13017 * a chance to reject the mode entirely.
13019 for_each_connector_in_state(state, connector, connector_state, i) {
13020 if (connector_state->crtc != crtc)
13021 continue;
13023 encoder = to_intel_encoder(connector_state->best_encoder);
13025 if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
13026 DRM_DEBUG_KMS("Encoder config failure\n");
13027 goto fail;
13031 /* Set default port clock if not overwritten by the encoder. Needs to be
13032 * done afterwards in case the encoder adjusts the mode. */
13033 if (!pipe_config->port_clock)
13034 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
13035 * pipe_config->pixel_multiplier;
13037 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13038 if (ret < 0) {
13039 DRM_DEBUG_KMS("CRTC fixup failed\n");
13040 goto fail;
13043 if (ret == RETRY) {
13044 if (WARN(!retry, "loop in pipe configuration computation\n")) {
13045 ret = -EINVAL;
13046 goto fail;
13049 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
13050 retry = false;
13051 goto encoder_retry;
13054 /* Dithering seems to not pass-through bits correctly when it should, so
13055 * only enable it on 6bpc panels. */
13056 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
13057 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13058 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13060 fail:
13061 return ret;
13064 static void
13065 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
13067 struct drm_crtc *crtc;
13068 struct drm_crtc_state *crtc_state;
13069 int i;
13071 /* Double check state. */
13072 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13073 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
13075 /* Update hwmode for vblank functions */
13076 if (crtc->state->active)
13077 crtc->hwmode = crtc->state->adjusted_mode;
13078 else
13079 crtc->hwmode.crtc_clock = 0;
13082 * Update legacy state to satisfy fbc code. This can
13083 * be removed when fbc uses the atomic state.
13085 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
13086 struct drm_plane_state *plane_state = crtc->primary->state;
13088 crtc->primary->fb = plane_state->fb;
13089 crtc->x = plane_state->src_x >> 16;
13090 crtc->y = plane_state->src_y >> 16;
13095 static bool intel_fuzzy_clock_check(int clock1, int clock2)
13097 int diff;
13099 if (clock1 == clock2)
13100 return true;
13102 if (!clock1 || !clock2)
13103 return false;
13105 diff = abs(clock1 - clock2);
13107 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13108 return true;
13110 return false;
13113 static bool
13114 intel_compare_m_n(unsigned int m, unsigned int n,
13115 unsigned int m2, unsigned int n2,
13116 bool exact)
13118 if (m == m2 && n == n2)
13119 return true;
13121 if (exact || !m || !n || !m2 || !n2)
13122 return false;
13124 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13126 if (n > n2) {
13127 while (n > n2) {
13128 m2 <<= 1;
13129 n2 <<= 1;
13131 } else if (n < n2) {
13132 while (n < n2) {
13133 m <<= 1;
13134 n <<= 1;
13138 if (n != n2)
13139 return false;
13141 return intel_fuzzy_clock_check(m, m2);
13144 static bool
13145 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13146 struct intel_link_m_n *m2_n2,
13147 bool adjust)
13149 if (m_n->tu == m2_n2->tu &&
13150 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13151 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
13152 intel_compare_m_n(m_n->link_m, m_n->link_n,
13153 m2_n2->link_m, m2_n2->link_n, !adjust)) {
13154 if (adjust)
13155 *m2_n2 = *m_n;
13157 return true;
13160 return false;
13163 static void __printf(3, 4)
13164 pipe_config_err(bool adjust, const char *name, const char *format, ...)
13166 char *level;
13167 unsigned int category;
13168 struct va_format vaf;
13169 va_list args;
13171 if (adjust) {
13172 level = KERN_DEBUG;
13173 category = DRM_UT_KMS;
13174 } else {
13175 level = KERN_ERR;
13176 category = DRM_UT_NONE;
13179 va_start(args, format);
13180 vaf.fmt = format;
13181 vaf.va = &args;
13183 drm_printk(level, category, "mismatch in %s %pV", name, &vaf);
13185 va_end(args);
13188 static bool
13189 intel_pipe_config_compare(struct drm_i915_private *dev_priv,
13190 struct intel_crtc_state *current_config,
13191 struct intel_crtc_state *pipe_config,
13192 bool adjust)
13194 bool ret = true;
13196 #define PIPE_CONF_CHECK_X(name) \
13197 if (current_config->name != pipe_config->name) { \
13198 pipe_config_err(adjust, __stringify(name), \
13199 "(expected 0x%08x, found 0x%08x)\n", \
13200 current_config->name, \
13201 pipe_config->name); \
13202 ret = false; \
13205 #define PIPE_CONF_CHECK_I(name) \
13206 if (current_config->name != pipe_config->name) { \
13207 pipe_config_err(adjust, __stringify(name), \
13208 "(expected %i, found %i)\n", \
13209 current_config->name, \
13210 pipe_config->name); \
13211 ret = false; \
13214 #define PIPE_CONF_CHECK_P(name) \
13215 if (current_config->name != pipe_config->name) { \
13216 pipe_config_err(adjust, __stringify(name), \
13217 "(expected %p, found %p)\n", \
13218 current_config->name, \
13219 pipe_config->name); \
13220 ret = false; \
13223 #define PIPE_CONF_CHECK_M_N(name) \
13224 if (!intel_compare_link_m_n(&current_config->name, \
13225 &pipe_config->name,\
13226 adjust)) { \
13227 pipe_config_err(adjust, __stringify(name), \
13228 "(expected tu %i gmch %i/%i link %i/%i, " \
13229 "found tu %i, gmch %i/%i link %i/%i)\n", \
13230 current_config->name.tu, \
13231 current_config->name.gmch_m, \
13232 current_config->name.gmch_n, \
13233 current_config->name.link_m, \
13234 current_config->name.link_n, \
13235 pipe_config->name.tu, \
13236 pipe_config->name.gmch_m, \
13237 pipe_config->name.gmch_n, \
13238 pipe_config->name.link_m, \
13239 pipe_config->name.link_n); \
13240 ret = false; \
13243 /* This is required for BDW+ where there is only one set of registers for
13244 * switching between high and low RR.
13245 * This macro can be used whenever a comparison has to be made between one
13246 * hw state and multiple sw state variables.
13248 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
13249 if (!intel_compare_link_m_n(&current_config->name, \
13250 &pipe_config->name, adjust) && \
13251 !intel_compare_link_m_n(&current_config->alt_name, \
13252 &pipe_config->name, adjust)) { \
13253 pipe_config_err(adjust, __stringify(name), \
13254 "(expected tu %i gmch %i/%i link %i/%i, " \
13255 "or tu %i gmch %i/%i link %i/%i, " \
13256 "found tu %i, gmch %i/%i link %i/%i)\n", \
13257 current_config->name.tu, \
13258 current_config->name.gmch_m, \
13259 current_config->name.gmch_n, \
13260 current_config->name.link_m, \
13261 current_config->name.link_n, \
13262 current_config->alt_name.tu, \
13263 current_config->alt_name.gmch_m, \
13264 current_config->alt_name.gmch_n, \
13265 current_config->alt_name.link_m, \
13266 current_config->alt_name.link_n, \
13267 pipe_config->name.tu, \
13268 pipe_config->name.gmch_m, \
13269 pipe_config->name.gmch_n, \
13270 pipe_config->name.link_m, \
13271 pipe_config->name.link_n); \
13272 ret = false; \
13275 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
13276 if ((current_config->name ^ pipe_config->name) & (mask)) { \
13277 pipe_config_err(adjust, __stringify(name), \
13278 "(%x) (expected %i, found %i)\n", \
13279 (mask), \
13280 current_config->name & (mask), \
13281 pipe_config->name & (mask)); \
13282 ret = false; \
13285 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
13286 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13287 pipe_config_err(adjust, __stringify(name), \
13288 "(expected %i, found %i)\n", \
13289 current_config->name, \
13290 pipe_config->name); \
13291 ret = false; \
13294 #define PIPE_CONF_QUIRK(quirk) \
13295 ((current_config->quirks | pipe_config->quirks) & (quirk))
13297 PIPE_CONF_CHECK_I(cpu_transcoder);
13299 PIPE_CONF_CHECK_I(has_pch_encoder);
13300 PIPE_CONF_CHECK_I(fdi_lanes);
13301 PIPE_CONF_CHECK_M_N(fdi_m_n);
13303 PIPE_CONF_CHECK_I(lane_count);
13304 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13306 if (INTEL_GEN(dev_priv) < 8) {
13307 PIPE_CONF_CHECK_M_N(dp_m_n);
13309 if (current_config->has_drrs)
13310 PIPE_CONF_CHECK_M_N(dp_m2_n2);
13311 } else
13312 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13314 PIPE_CONF_CHECK_X(output_types);
13316 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
13317 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
13318 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
13319 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
13320 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
13321 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
13323 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
13324 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
13325 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
13326 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
13327 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
13328 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
13330 PIPE_CONF_CHECK_I(pixel_multiplier);
13331 PIPE_CONF_CHECK_I(has_hdmi_sink);
13332 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
13333 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13334 PIPE_CONF_CHECK_I(limited_color_range);
13335 PIPE_CONF_CHECK_I(has_infoframe);
13337 PIPE_CONF_CHECK_I(has_audio);
13339 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13340 DRM_MODE_FLAG_INTERLACE);
13342 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13343 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13344 DRM_MODE_FLAG_PHSYNC);
13345 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13346 DRM_MODE_FLAG_NHSYNC);
13347 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13348 DRM_MODE_FLAG_PVSYNC);
13349 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13350 DRM_MODE_FLAG_NVSYNC);
13353 PIPE_CONF_CHECK_X(gmch_pfit.control);
13354 /* pfit ratios are autocomputed by the hw on gen4+ */
13355 if (INTEL_GEN(dev_priv) < 4)
13356 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13357 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13359 if (!adjust) {
13360 PIPE_CONF_CHECK_I(pipe_src_w);
13361 PIPE_CONF_CHECK_I(pipe_src_h);
13363 PIPE_CONF_CHECK_I(pch_pfit.enabled);
13364 if (current_config->pch_pfit.enabled) {
13365 PIPE_CONF_CHECK_X(pch_pfit.pos);
13366 PIPE_CONF_CHECK_X(pch_pfit.size);
13369 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13372 /* BDW+ don't expose a synchronous way to read the state */
13373 if (IS_HASWELL(dev_priv))
13374 PIPE_CONF_CHECK_I(ips_enabled);
13376 PIPE_CONF_CHECK_I(double_wide);
13378 PIPE_CONF_CHECK_P(shared_dpll);
13379 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13380 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13381 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13382 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13383 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13384 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13385 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13386 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13387 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13389 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
13390 PIPE_CONF_CHECK_X(dsi_pll.div);
13392 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
13393 PIPE_CONF_CHECK_I(pipe_bpp);
13395 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
13396 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
13398 #undef PIPE_CONF_CHECK_X
13399 #undef PIPE_CONF_CHECK_I
13400 #undef PIPE_CONF_CHECK_P
13401 #undef PIPE_CONF_CHECK_FLAGS
13402 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
13403 #undef PIPE_CONF_QUIRK
13405 return ret;
13408 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
13409 const struct intel_crtc_state *pipe_config)
13411 if (pipe_config->has_pch_encoder) {
13412 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
13413 &pipe_config->fdi_m_n);
13414 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
13417 * FDI already provided one idea for the dotclock.
13418 * Yell if the encoder disagrees.
13420 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
13421 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13422 fdi_dotclock, dotclock);
13426 static void verify_wm_state(struct drm_crtc *crtc,
13427 struct drm_crtc_state *new_state)
13429 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
13430 struct skl_ddb_allocation hw_ddb, *sw_ddb;
13431 struct skl_pipe_wm hw_wm, *sw_wm;
13432 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
13433 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
13434 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13435 const enum pipe pipe = intel_crtc->pipe;
13436 int plane, level, max_level = ilk_wm_max_level(dev_priv);
13438 if (INTEL_GEN(dev_priv) < 9 || !new_state->active)
13439 return;
13441 skl_pipe_wm_get_hw_state(crtc, &hw_wm);
13442 sw_wm = &to_intel_crtc_state(new_state)->wm.skl.optimal;
13444 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
13445 sw_ddb = &dev_priv->wm.skl_hw.ddb;
13447 /* planes */
13448 for_each_universal_plane(dev_priv, pipe, plane) {
13449 hw_plane_wm = &hw_wm.planes[plane];
13450 sw_plane_wm = &sw_wm->planes[plane];
13452 /* Watermarks */
13453 for (level = 0; level <= max_level; level++) {
13454 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13455 &sw_plane_wm->wm[level]))
13456 continue;
13458 DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13459 pipe_name(pipe), plane + 1, level,
13460 sw_plane_wm->wm[level].plane_en,
13461 sw_plane_wm->wm[level].plane_res_b,
13462 sw_plane_wm->wm[level].plane_res_l,
13463 hw_plane_wm->wm[level].plane_en,
13464 hw_plane_wm->wm[level].plane_res_b,
13465 hw_plane_wm->wm[level].plane_res_l);
13468 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13469 &sw_plane_wm->trans_wm)) {
13470 DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13471 pipe_name(pipe), plane + 1,
13472 sw_plane_wm->trans_wm.plane_en,
13473 sw_plane_wm->trans_wm.plane_res_b,
13474 sw_plane_wm->trans_wm.plane_res_l,
13475 hw_plane_wm->trans_wm.plane_en,
13476 hw_plane_wm->trans_wm.plane_res_b,
13477 hw_plane_wm->trans_wm.plane_res_l);
13480 /* DDB */
13481 hw_ddb_entry = &hw_ddb.plane[pipe][plane];
13482 sw_ddb_entry = &sw_ddb->plane[pipe][plane];
13484 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13485 DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
13486 pipe_name(pipe), plane + 1,
13487 sw_ddb_entry->start, sw_ddb_entry->end,
13488 hw_ddb_entry->start, hw_ddb_entry->end);
13493 * cursor
13494 * If the cursor plane isn't active, we may not have updated it's ddb
13495 * allocation. In that case since the ddb allocation will be updated
13496 * once the plane becomes visible, we can skip this check
13498 if (intel_crtc->cursor_addr) {
13499 hw_plane_wm = &hw_wm.planes[PLANE_CURSOR];
13500 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
13502 /* Watermarks */
13503 for (level = 0; level <= max_level; level++) {
13504 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13505 &sw_plane_wm->wm[level]))
13506 continue;
13508 DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13509 pipe_name(pipe), level,
13510 sw_plane_wm->wm[level].plane_en,
13511 sw_plane_wm->wm[level].plane_res_b,
13512 sw_plane_wm->wm[level].plane_res_l,
13513 hw_plane_wm->wm[level].plane_en,
13514 hw_plane_wm->wm[level].plane_res_b,
13515 hw_plane_wm->wm[level].plane_res_l);
13518 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13519 &sw_plane_wm->trans_wm)) {
13520 DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13521 pipe_name(pipe),
13522 sw_plane_wm->trans_wm.plane_en,
13523 sw_plane_wm->trans_wm.plane_res_b,
13524 sw_plane_wm->trans_wm.plane_res_l,
13525 hw_plane_wm->trans_wm.plane_en,
13526 hw_plane_wm->trans_wm.plane_res_b,
13527 hw_plane_wm->trans_wm.plane_res_l);
13530 /* DDB */
13531 hw_ddb_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
13532 sw_ddb_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
13534 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13535 DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
13536 pipe_name(pipe),
13537 sw_ddb_entry->start, sw_ddb_entry->end,
13538 hw_ddb_entry->start, hw_ddb_entry->end);
13543 static void
13544 verify_connector_state(struct drm_device *dev,
13545 struct drm_atomic_state *state,
13546 struct drm_crtc *crtc)
13548 struct drm_connector *connector;
13549 struct drm_connector_state *old_conn_state;
13550 int i;
13552 for_each_connector_in_state(state, connector, old_conn_state, i) {
13553 struct drm_encoder *encoder = connector->encoder;
13554 struct drm_connector_state *state = connector->state;
13556 if (state->crtc != crtc)
13557 continue;
13559 intel_connector_verify_state(to_intel_connector(connector));
13561 I915_STATE_WARN(state->best_encoder != encoder,
13562 "connector's atomic encoder doesn't match legacy encoder\n");
13566 static void
13567 verify_encoder_state(struct drm_device *dev)
13569 struct intel_encoder *encoder;
13570 struct intel_connector *connector;
13572 for_each_intel_encoder(dev, encoder) {
13573 bool enabled = false;
13574 enum pipe pipe;
13576 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13577 encoder->base.base.id,
13578 encoder->base.name);
13580 for_each_intel_connector(dev, connector) {
13581 if (connector->base.state->best_encoder != &encoder->base)
13582 continue;
13583 enabled = true;
13585 I915_STATE_WARN(connector->base.state->crtc !=
13586 encoder->base.crtc,
13587 "connector's crtc doesn't match encoder crtc\n");
13590 I915_STATE_WARN(!!encoder->base.crtc != enabled,
13591 "encoder's enabled state mismatch "
13592 "(expected %i, found %i)\n",
13593 !!encoder->base.crtc, enabled);
13595 if (!encoder->base.crtc) {
13596 bool active;
13598 active = encoder->get_hw_state(encoder, &pipe);
13599 I915_STATE_WARN(active,
13600 "encoder detached but still enabled on pipe %c.\n",
13601 pipe_name(pipe));
13606 static void
13607 verify_crtc_state(struct drm_crtc *crtc,
13608 struct drm_crtc_state *old_crtc_state,
13609 struct drm_crtc_state *new_crtc_state)
13611 struct drm_device *dev = crtc->dev;
13612 struct drm_i915_private *dev_priv = to_i915(dev);
13613 struct intel_encoder *encoder;
13614 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13615 struct intel_crtc_state *pipe_config, *sw_config;
13616 struct drm_atomic_state *old_state;
13617 bool active;
13619 old_state = old_crtc_state->state;
13620 __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
13621 pipe_config = to_intel_crtc_state(old_crtc_state);
13622 memset(pipe_config, 0, sizeof(*pipe_config));
13623 pipe_config->base.crtc = crtc;
13624 pipe_config->base.state = old_state;
13626 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
13628 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
13630 /* hw state is inconsistent with the pipe quirk */
13631 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
13632 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
13633 active = new_crtc_state->active;
13635 I915_STATE_WARN(new_crtc_state->active != active,
13636 "crtc active state doesn't match with hw state "
13637 "(expected %i, found %i)\n", new_crtc_state->active, active);
13639 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13640 "transitional active state does not match atomic hw state "
13641 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
13643 for_each_encoder_on_crtc(dev, crtc, encoder) {
13644 enum pipe pipe;
13646 active = encoder->get_hw_state(encoder, &pipe);
13647 I915_STATE_WARN(active != new_crtc_state->active,
13648 "[ENCODER:%i] active %i with crtc active %i\n",
13649 encoder->base.base.id, active, new_crtc_state->active);
13651 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13652 "Encoder connected to wrong pipe %c\n",
13653 pipe_name(pipe));
13655 if (active) {
13656 pipe_config->output_types |= 1 << encoder->type;
13657 encoder->get_config(encoder, pipe_config);
13661 if (!new_crtc_state->active)
13662 return;
13664 intel_pipe_config_sanity_check(dev_priv, pipe_config);
13666 sw_config = to_intel_crtc_state(crtc->state);
13667 if (!intel_pipe_config_compare(dev_priv, sw_config,
13668 pipe_config, false)) {
13669 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13670 intel_dump_pipe_config(intel_crtc, pipe_config,
13671 "[hw state]");
13672 intel_dump_pipe_config(intel_crtc, sw_config,
13673 "[sw state]");
13677 static void
13678 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13679 struct intel_shared_dpll *pll,
13680 struct drm_crtc *crtc,
13681 struct drm_crtc_state *new_state)
13683 struct intel_dpll_hw_state dpll_hw_state;
13684 unsigned crtc_mask;
13685 bool active;
13687 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13689 DRM_DEBUG_KMS("%s\n", pll->name);
13691 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13693 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13694 I915_STATE_WARN(!pll->on && pll->active_mask,
13695 "pll in active use but not on in sw tracking\n");
13696 I915_STATE_WARN(pll->on && !pll->active_mask,
13697 "pll is on but not used by any active crtc\n");
13698 I915_STATE_WARN(pll->on != active,
13699 "pll on state mismatch (expected %i, found %i)\n",
13700 pll->on, active);
13703 if (!crtc) {
13704 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
13705 "more active pll users than references: %x vs %x\n",
13706 pll->active_mask, pll->state.crtc_mask);
13708 return;
13711 crtc_mask = 1 << drm_crtc_index(crtc);
13713 if (new_state->active)
13714 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13715 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13716 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13717 else
13718 I915_STATE_WARN(pll->active_mask & crtc_mask,
13719 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13720 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13722 I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
13723 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13724 crtc_mask, pll->state.crtc_mask);
13726 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
13727 &dpll_hw_state,
13728 sizeof(dpll_hw_state)),
13729 "pll hw state mismatch\n");
13732 static void
13733 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13734 struct drm_crtc_state *old_crtc_state,
13735 struct drm_crtc_state *new_crtc_state)
13737 struct drm_i915_private *dev_priv = to_i915(dev);
13738 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13739 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13741 if (new_state->shared_dpll)
13742 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13744 if (old_state->shared_dpll &&
13745 old_state->shared_dpll != new_state->shared_dpll) {
13746 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13747 struct intel_shared_dpll *pll = old_state->shared_dpll;
13749 I915_STATE_WARN(pll->active_mask & crtc_mask,
13750 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13751 pipe_name(drm_crtc_index(crtc)));
13752 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
13753 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13754 pipe_name(drm_crtc_index(crtc)));
13758 static void
13759 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13760 struct drm_atomic_state *state,
13761 struct drm_crtc_state *old_state,
13762 struct drm_crtc_state *new_state)
13764 if (!needs_modeset(new_state) &&
13765 !to_intel_crtc_state(new_state)->update_pipe)
13766 return;
13768 verify_wm_state(crtc, new_state);
13769 verify_connector_state(crtc->dev, state, crtc);
13770 verify_crtc_state(crtc, old_state, new_state);
13771 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13774 static void
13775 verify_disabled_dpll_state(struct drm_device *dev)
13777 struct drm_i915_private *dev_priv = to_i915(dev);
13778 int i;
13780 for (i = 0; i < dev_priv->num_shared_dpll; i++)
13781 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13784 static void
13785 intel_modeset_verify_disabled(struct drm_device *dev,
13786 struct drm_atomic_state *state)
13788 verify_encoder_state(dev);
13789 verify_connector_state(dev, state, NULL);
13790 verify_disabled_dpll_state(dev);
13793 static void update_scanline_offset(struct intel_crtc *crtc)
13795 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13798 * The scanline counter increments at the leading edge of hsync.
13800 * On most platforms it starts counting from vtotal-1 on the
13801 * first active line. That means the scanline counter value is
13802 * always one less than what we would expect. Ie. just after
13803 * start of vblank, which also occurs at start of hsync (on the
13804 * last active line), the scanline counter will read vblank_start-1.
13806 * On gen2 the scanline counter starts counting from 1 instead
13807 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13808 * to keep the value positive), instead of adding one.
13810 * On HSW+ the behaviour of the scanline counter depends on the output
13811 * type. For DP ports it behaves like most other platforms, but on HDMI
13812 * there's an extra 1 line difference. So we need to add two instead of
13813 * one to the value.
13815 if (IS_GEN2(dev_priv)) {
13816 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13817 int vtotal;
13819 vtotal = adjusted_mode->crtc_vtotal;
13820 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13821 vtotal /= 2;
13823 crtc->scanline_offset = vtotal - 1;
13824 } else if (HAS_DDI(dev_priv) &&
13825 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
13826 crtc->scanline_offset = 2;
13827 } else
13828 crtc->scanline_offset = 1;
13831 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13833 struct drm_device *dev = state->dev;
13834 struct drm_i915_private *dev_priv = to_i915(dev);
13835 struct drm_crtc *crtc;
13836 struct drm_crtc_state *crtc_state;
13837 int i;
13839 if (!dev_priv->display.crtc_compute_clock)
13840 return;
13842 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13843 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13844 struct intel_shared_dpll *old_dpll =
13845 to_intel_crtc_state(crtc->state)->shared_dpll;
13847 if (!needs_modeset(crtc_state))
13848 continue;
13850 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13852 if (!old_dpll)
13853 continue;
13855 intel_release_shared_dpll(old_dpll, intel_crtc, state);
13860 * This implements the workaround described in the "notes" section of the mode
13861 * set sequence documentation. When going from no pipes or single pipe to
13862 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13863 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13865 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13867 struct drm_crtc_state *crtc_state;
13868 struct intel_crtc *intel_crtc;
13869 struct drm_crtc *crtc;
13870 struct intel_crtc_state *first_crtc_state = NULL;
13871 struct intel_crtc_state *other_crtc_state = NULL;
13872 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13873 int i;
13875 /* look at all crtc's that are going to be enabled in during modeset */
13876 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13877 intel_crtc = to_intel_crtc(crtc);
13879 if (!crtc_state->active || !needs_modeset(crtc_state))
13880 continue;
13882 if (first_crtc_state) {
13883 other_crtc_state = to_intel_crtc_state(crtc_state);
13884 break;
13885 } else {
13886 first_crtc_state = to_intel_crtc_state(crtc_state);
13887 first_pipe = intel_crtc->pipe;
13891 /* No workaround needed? */
13892 if (!first_crtc_state)
13893 return 0;
13895 /* w/a possibly needed, check how many crtc's are already enabled. */
13896 for_each_intel_crtc(state->dev, intel_crtc) {
13897 struct intel_crtc_state *pipe_config;
13899 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13900 if (IS_ERR(pipe_config))
13901 return PTR_ERR(pipe_config);
13903 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13905 if (!pipe_config->base.active ||
13906 needs_modeset(&pipe_config->base))
13907 continue;
13909 /* 2 or more enabled crtcs means no need for w/a */
13910 if (enabled_pipe != INVALID_PIPE)
13911 return 0;
13913 enabled_pipe = intel_crtc->pipe;
13916 if (enabled_pipe != INVALID_PIPE)
13917 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13918 else if (other_crtc_state)
13919 other_crtc_state->hsw_workaround_pipe = first_pipe;
13921 return 0;
13924 static int intel_lock_all_pipes(struct drm_atomic_state *state)
13926 struct drm_crtc *crtc;
13928 /* Add all pipes to the state */
13929 for_each_crtc(state->dev, crtc) {
13930 struct drm_crtc_state *crtc_state;
13932 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13933 if (IS_ERR(crtc_state))
13934 return PTR_ERR(crtc_state);
13937 return 0;
13940 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13942 struct drm_crtc *crtc;
13945 * Add all pipes to the state, and force
13946 * a modeset on all the active ones.
13948 for_each_crtc(state->dev, crtc) {
13949 struct drm_crtc_state *crtc_state;
13950 int ret;
13952 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13953 if (IS_ERR(crtc_state))
13954 return PTR_ERR(crtc_state);
13956 if (!crtc_state->active || needs_modeset(crtc_state))
13957 continue;
13959 crtc_state->mode_changed = true;
13961 ret = drm_atomic_add_affected_connectors(state, crtc);
13962 if (ret)
13963 return ret;
13965 ret = drm_atomic_add_affected_planes(state, crtc);
13966 if (ret)
13967 return ret;
13970 return 0;
13973 static int intel_modeset_checks(struct drm_atomic_state *state)
13975 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13976 struct drm_i915_private *dev_priv = to_i915(state->dev);
13977 struct drm_crtc *crtc;
13978 struct drm_crtc_state *crtc_state;
13979 int ret = 0, i;
13981 if (!check_digital_port_conflicts(state)) {
13982 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13983 return -EINVAL;
13986 intel_state->modeset = true;
13987 intel_state->active_crtcs = dev_priv->active_crtcs;
13989 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13990 if (crtc_state->active)
13991 intel_state->active_crtcs |= 1 << i;
13992 else
13993 intel_state->active_crtcs &= ~(1 << i);
13995 if (crtc_state->active != crtc->state->active)
13996 intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
14000 * See if the config requires any additional preparation, e.g.
14001 * to adjust global state with pipes off. We need to do this
14002 * here so we can get the modeset_pipe updated config for the new
14003 * mode set on this crtc. For other crtcs we need to use the
14004 * adjusted_mode bits in the crtc directly.
14006 if (dev_priv->display.modeset_calc_cdclk) {
14007 if (!intel_state->cdclk_pll_vco)
14008 intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
14009 if (!intel_state->cdclk_pll_vco)
14010 intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
14012 ret = dev_priv->display.modeset_calc_cdclk(state);
14013 if (ret < 0)
14014 return ret;
14017 * Writes to dev_priv->atomic_cdclk_freq must protected by
14018 * holding all the crtc locks, even if we don't end up
14019 * touching the hardware
14021 if (intel_state->cdclk != dev_priv->atomic_cdclk_freq) {
14022 ret = intel_lock_all_pipes(state);
14023 if (ret < 0)
14024 return ret;
14027 /* All pipes must be switched off while we change the cdclk. */
14028 if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
14029 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco) {
14030 ret = intel_modeset_all_pipes(state);
14031 if (ret < 0)
14032 return ret;
14035 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
14036 intel_state->cdclk, intel_state->dev_cdclk);
14037 } else {
14038 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
14041 intel_modeset_clear_plls(state);
14043 if (IS_HASWELL(dev_priv))
14044 return haswell_mode_set_planes_workaround(state);
14046 return 0;
14050 * Handle calculation of various watermark data at the end of the atomic check
14051 * phase. The code here should be run after the per-crtc and per-plane 'check'
14052 * handlers to ensure that all derived state has been updated.
14054 static int calc_watermark_data(struct drm_atomic_state *state)
14056 struct drm_device *dev = state->dev;
14057 struct drm_i915_private *dev_priv = to_i915(dev);
14059 /* Is there platform-specific watermark information to calculate? */
14060 if (dev_priv->display.compute_global_watermarks)
14061 return dev_priv->display.compute_global_watermarks(state);
14063 return 0;
14067 * intel_atomic_check - validate state object
14068 * @dev: drm device
14069 * @state: state to validate
14071 static int intel_atomic_check(struct drm_device *dev,
14072 struct drm_atomic_state *state)
14074 struct drm_i915_private *dev_priv = to_i915(dev);
14075 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14076 struct drm_crtc *crtc;
14077 struct drm_crtc_state *crtc_state;
14078 int ret, i;
14079 bool any_ms = false;
14081 ret = drm_atomic_helper_check_modeset(dev, state);
14082 if (ret)
14083 return ret;
14085 for_each_crtc_in_state(state, crtc, crtc_state, i) {
14086 struct intel_crtc_state *pipe_config =
14087 to_intel_crtc_state(crtc_state);
14089 /* Catch I915_MODE_FLAG_INHERITED */
14090 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
14091 crtc_state->mode_changed = true;
14093 if (!needs_modeset(crtc_state))
14094 continue;
14096 if (!crtc_state->enable) {
14097 any_ms = true;
14098 continue;
14101 /* FIXME: For only active_changed we shouldn't need to do any
14102 * state recomputation at all. */
14104 ret = drm_atomic_add_affected_connectors(state, crtc);
14105 if (ret)
14106 return ret;
14108 ret = intel_modeset_pipe_config(crtc, pipe_config);
14109 if (ret) {
14110 intel_dump_pipe_config(to_intel_crtc(crtc),
14111 pipe_config, "[failed]");
14112 return ret;
14115 if (i915.fastboot &&
14116 intel_pipe_config_compare(dev_priv,
14117 to_intel_crtc_state(crtc->state),
14118 pipe_config, true)) {
14119 crtc_state->mode_changed = false;
14120 to_intel_crtc_state(crtc_state)->update_pipe = true;
14123 if (needs_modeset(crtc_state))
14124 any_ms = true;
14126 ret = drm_atomic_add_affected_planes(state, crtc);
14127 if (ret)
14128 return ret;
14130 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
14131 needs_modeset(crtc_state) ?
14132 "[modeset]" : "[fastset]");
14135 if (any_ms) {
14136 ret = intel_modeset_checks(state);
14138 if (ret)
14139 return ret;
14140 } else {
14141 intel_state->cdclk = dev_priv->atomic_cdclk_freq;
14144 ret = drm_atomic_helper_check_planes(dev, state);
14145 if (ret)
14146 return ret;
14148 intel_fbc_choose_crtc(dev_priv, state);
14149 return calc_watermark_data(state);
14152 static int intel_atomic_prepare_commit(struct drm_device *dev,
14153 struct drm_atomic_state *state)
14155 struct drm_i915_private *dev_priv = to_i915(dev);
14156 struct drm_crtc_state *crtc_state;
14157 struct drm_crtc *crtc;
14158 int i, ret;
14160 for_each_crtc_in_state(state, crtc, crtc_state, i) {
14161 if (state->legacy_cursor_update)
14162 continue;
14164 ret = intel_crtc_wait_for_pending_flips(crtc);
14165 if (ret)
14166 return ret;
14168 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
14169 flush_workqueue(dev_priv->wq);
14172 ret = mutex_lock_interruptible(&dev->struct_mutex);
14173 if (ret)
14174 return ret;
14176 ret = drm_atomic_helper_prepare_planes(dev, state);
14177 mutex_unlock(&dev->struct_mutex);
14179 return ret;
14182 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
14184 struct drm_device *dev = crtc->base.dev;
14186 if (!dev->max_vblank_count)
14187 return drm_accurate_vblank_count(&crtc->base);
14189 return dev->driver->get_vblank_counter(dev, crtc->pipe);
14192 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
14193 struct drm_i915_private *dev_priv,
14194 unsigned crtc_mask)
14196 unsigned last_vblank_count[I915_MAX_PIPES];
14197 enum pipe pipe;
14198 int ret;
14200 if (!crtc_mask)
14201 return;
14203 for_each_pipe(dev_priv, pipe) {
14204 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
14205 pipe);
14207 if (!((1 << pipe) & crtc_mask))
14208 continue;
14210 ret = drm_crtc_vblank_get(&crtc->base);
14211 if (WARN_ON(ret != 0)) {
14212 crtc_mask &= ~(1 << pipe);
14213 continue;
14216 last_vblank_count[pipe] = drm_crtc_vblank_count(&crtc->base);
14219 for_each_pipe(dev_priv, pipe) {
14220 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
14221 pipe);
14222 long lret;
14224 if (!((1 << pipe) & crtc_mask))
14225 continue;
14227 lret = wait_event_timeout(dev->vblank[pipe].queue,
14228 last_vblank_count[pipe] !=
14229 drm_crtc_vblank_count(&crtc->base),
14230 msecs_to_jiffies(50));
14232 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
14234 drm_crtc_vblank_put(&crtc->base);
14238 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
14240 /* fb updated, need to unpin old fb */
14241 if (crtc_state->fb_changed)
14242 return true;
14244 /* wm changes, need vblank before final wm's */
14245 if (crtc_state->update_wm_post)
14246 return true;
14249 * cxsr is re-enabled after vblank.
14250 * This is already handled by crtc_state->update_wm_post,
14251 * but added for clarity.
14253 if (crtc_state->disable_cxsr)
14254 return true;
14256 return false;
14259 static void intel_update_crtc(struct drm_crtc *crtc,
14260 struct drm_atomic_state *state,
14261 struct drm_crtc_state *old_crtc_state,
14262 unsigned int *crtc_vblank_mask)
14264 struct drm_device *dev = crtc->dev;
14265 struct drm_i915_private *dev_priv = to_i915(dev);
14266 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14267 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->state);
14268 bool modeset = needs_modeset(crtc->state);
14270 if (modeset) {
14271 update_scanline_offset(intel_crtc);
14272 dev_priv->display.crtc_enable(pipe_config, state);
14273 } else {
14274 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14277 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
14278 intel_fbc_enable(
14279 intel_crtc, pipe_config,
14280 to_intel_plane_state(crtc->primary->state));
14283 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
14285 if (needs_vblank_wait(pipe_config))
14286 *crtc_vblank_mask |= drm_crtc_mask(crtc);
14289 static void intel_update_crtcs(struct drm_atomic_state *state,
14290 unsigned int *crtc_vblank_mask)
14292 struct drm_crtc *crtc;
14293 struct drm_crtc_state *old_crtc_state;
14294 int i;
14296 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14297 if (!crtc->state->active)
14298 continue;
14300 intel_update_crtc(crtc, state, old_crtc_state,
14301 crtc_vblank_mask);
14305 static void skl_update_crtcs(struct drm_atomic_state *state,
14306 unsigned int *crtc_vblank_mask)
14308 struct drm_i915_private *dev_priv = to_i915(state->dev);
14309 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14310 struct drm_crtc *crtc;
14311 struct intel_crtc *intel_crtc;
14312 struct drm_crtc_state *old_crtc_state;
14313 struct intel_crtc_state *cstate;
14314 unsigned int updated = 0;
14315 bool progress;
14316 enum pipe pipe;
14317 int i;
14319 const struct skl_ddb_entry *entries[I915_MAX_PIPES] = {};
14321 for_each_crtc_in_state(state, crtc, old_crtc_state, i)
14322 /* ignore allocations for crtc's that have been turned off. */
14323 if (crtc->state->active)
14324 entries[i] = &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb;
14327 * Whenever the number of active pipes changes, we need to make sure we
14328 * update the pipes in the right order so that their ddb allocations
14329 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
14330 * cause pipe underruns and other bad stuff.
14332 do {
14333 progress = false;
14335 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14336 bool vbl_wait = false;
14337 unsigned int cmask = drm_crtc_mask(crtc);
14339 intel_crtc = to_intel_crtc(crtc);
14340 cstate = to_intel_crtc_state(crtc->state);
14341 pipe = intel_crtc->pipe;
14343 if (updated & cmask || !cstate->base.active)
14344 continue;
14346 if (skl_ddb_allocation_overlaps(entries, &cstate->wm.skl.ddb, i))
14347 continue;
14349 updated |= cmask;
14350 entries[i] = &cstate->wm.skl.ddb;
14353 * If this is an already active pipe, it's DDB changed,
14354 * and this isn't the last pipe that needs updating
14355 * then we need to wait for a vblank to pass for the
14356 * new ddb allocation to take effect.
14358 if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
14359 &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb) &&
14360 !crtc->state->active_changed &&
14361 intel_state->wm_results.dirty_pipes != updated)
14362 vbl_wait = true;
14364 intel_update_crtc(crtc, state, old_crtc_state,
14365 crtc_vblank_mask);
14367 if (vbl_wait)
14368 intel_wait_for_vblank(dev_priv, pipe);
14370 progress = true;
14372 } while (progress);
14375 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
14377 struct drm_device *dev = state->dev;
14378 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14379 struct drm_i915_private *dev_priv = to_i915(dev);
14380 struct drm_crtc_state *old_crtc_state;
14381 struct drm_crtc *crtc;
14382 struct intel_crtc_state *intel_cstate;
14383 bool hw_check = intel_state->modeset;
14384 unsigned long put_domains[I915_MAX_PIPES] = {};
14385 unsigned crtc_vblank_mask = 0;
14386 int i;
14388 drm_atomic_helper_wait_for_dependencies(state);
14390 if (intel_state->modeset)
14391 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
14393 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14394 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14396 if (needs_modeset(crtc->state) ||
14397 to_intel_crtc_state(crtc->state)->update_pipe) {
14398 hw_check = true;
14400 put_domains[to_intel_crtc(crtc)->pipe] =
14401 modeset_get_crtc_power_domains(crtc,
14402 to_intel_crtc_state(crtc->state));
14405 if (!needs_modeset(crtc->state))
14406 continue;
14408 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14410 if (old_crtc_state->active) {
14411 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
14412 dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
14413 intel_crtc->active = false;
14414 intel_fbc_disable(intel_crtc);
14415 intel_disable_shared_dpll(intel_crtc);
14418 * Underruns don't always raise
14419 * interrupts, so check manually.
14421 intel_check_cpu_fifo_underruns(dev_priv);
14422 intel_check_pch_fifo_underruns(dev_priv);
14424 if (!crtc->state->active) {
14426 * Make sure we don't call initial_watermarks
14427 * for ILK-style watermark updates.
14429 if (dev_priv->display.atomic_update_watermarks)
14430 dev_priv->display.initial_watermarks(intel_state,
14431 to_intel_crtc_state(crtc->state));
14432 else
14433 intel_update_watermarks(intel_crtc);
14438 /* Only after disabling all output pipelines that will be changed can we
14439 * update the the output configuration. */
14440 intel_modeset_update_crtc_state(state);
14442 if (intel_state->modeset) {
14443 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
14445 if (dev_priv->display.modeset_commit_cdclk &&
14446 (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
14447 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
14448 dev_priv->display.modeset_commit_cdclk(state);
14451 * SKL workaround: bspec recommends we disable the SAGV when we
14452 * have more then one pipe enabled
14454 if (!intel_can_enable_sagv(state))
14455 intel_disable_sagv(dev_priv);
14457 intel_modeset_verify_disabled(dev, state);
14460 /* Complete the events for pipes that have now been disabled */
14461 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14462 bool modeset = needs_modeset(crtc->state);
14464 /* Complete events for now disable pipes here. */
14465 if (modeset && !crtc->state->active && crtc->state->event) {
14466 spin_lock_irq(&dev->event_lock);
14467 drm_crtc_send_vblank_event(crtc, crtc->state->event);
14468 spin_unlock_irq(&dev->event_lock);
14470 crtc->state->event = NULL;
14474 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
14475 dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
14477 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
14478 * already, but still need the state for the delayed optimization. To
14479 * fix this:
14480 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
14481 * - schedule that vblank worker _before_ calling hw_done
14482 * - at the start of commit_tail, cancel it _synchrously
14483 * - switch over to the vblank wait helper in the core after that since
14484 * we don't need out special handling any more.
14486 if (!state->legacy_cursor_update)
14487 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
14490 * Now that the vblank has passed, we can go ahead and program the
14491 * optimal watermarks on platforms that need two-step watermark
14492 * programming.
14494 * TODO: Move this (and other cleanup) to an async worker eventually.
14496 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14497 intel_cstate = to_intel_crtc_state(crtc->state);
14499 if (dev_priv->display.optimize_watermarks)
14500 dev_priv->display.optimize_watermarks(intel_state,
14501 intel_cstate);
14504 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14505 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
14507 if (put_domains[i])
14508 modeset_put_power_domains(dev_priv, put_domains[i]);
14510 intel_modeset_verify_crtc(crtc, state, old_crtc_state, crtc->state);
14513 if (intel_state->modeset && intel_can_enable_sagv(state))
14514 intel_enable_sagv(dev_priv);
14516 drm_atomic_helper_commit_hw_done(state);
14518 if (intel_state->modeset)
14519 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
14521 mutex_lock(&dev->struct_mutex);
14522 drm_atomic_helper_cleanup_planes(dev, state);
14523 mutex_unlock(&dev->struct_mutex);
14525 drm_atomic_helper_commit_cleanup_done(state);
14527 drm_atomic_state_put(state);
14529 /* As one of the primary mmio accessors, KMS has a high likelihood
14530 * of triggering bugs in unclaimed access. After we finish
14531 * modesetting, see if an error has been flagged, and if so
14532 * enable debugging for the next modeset - and hope we catch
14533 * the culprit.
14535 * XXX note that we assume display power is on at this point.
14536 * This might hold true now but we need to add pm helper to check
14537 * unclaimed only when the hardware is on, as atomic commits
14538 * can happen also when the device is completely off.
14540 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
14543 static void intel_atomic_commit_work(struct work_struct *work)
14545 struct drm_atomic_state *state =
14546 container_of(work, struct drm_atomic_state, commit_work);
14548 intel_atomic_commit_tail(state);
14551 static int __i915_sw_fence_call
14552 intel_atomic_commit_ready(struct i915_sw_fence *fence,
14553 enum i915_sw_fence_notify notify)
14555 struct intel_atomic_state *state =
14556 container_of(fence, struct intel_atomic_state, commit_ready);
14558 switch (notify) {
14559 case FENCE_COMPLETE:
14560 if (state->base.commit_work.func)
14561 queue_work(system_unbound_wq, &state->base.commit_work);
14562 break;
14564 case FENCE_FREE:
14565 drm_atomic_state_put(&state->base);
14566 break;
14569 return NOTIFY_DONE;
14572 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
14574 struct drm_plane_state *old_plane_state;
14575 struct drm_plane *plane;
14576 int i;
14578 for_each_plane_in_state(state, plane, old_plane_state, i)
14579 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
14580 intel_fb_obj(plane->state->fb),
14581 to_intel_plane(plane)->frontbuffer_bit);
14585 * intel_atomic_commit - commit validated state object
14586 * @dev: DRM device
14587 * @state: the top-level driver state object
14588 * @nonblock: nonblocking commit
14590 * This function commits a top-level state object that has been validated
14591 * with drm_atomic_helper_check().
14593 * RETURNS
14594 * Zero for success or -errno.
14596 static int intel_atomic_commit(struct drm_device *dev,
14597 struct drm_atomic_state *state,
14598 bool nonblock)
14600 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14601 struct drm_i915_private *dev_priv = to_i915(dev);
14602 int ret = 0;
14604 ret = drm_atomic_helper_setup_commit(state, nonblock);
14605 if (ret)
14606 return ret;
14608 drm_atomic_state_get(state);
14609 i915_sw_fence_init(&intel_state->commit_ready,
14610 intel_atomic_commit_ready);
14612 ret = intel_atomic_prepare_commit(dev, state);
14613 if (ret) {
14614 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
14615 i915_sw_fence_commit(&intel_state->commit_ready);
14616 return ret;
14619 drm_atomic_helper_swap_state(state, true);
14620 dev_priv->wm.distrust_bios_wm = false;
14621 intel_shared_dpll_swap_state(state);
14622 intel_atomic_track_fbs(state);
14624 if (intel_state->modeset) {
14625 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
14626 sizeof(intel_state->min_pixclk));
14627 dev_priv->active_crtcs = intel_state->active_crtcs;
14628 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
14631 drm_atomic_state_get(state);
14632 INIT_WORK(&state->commit_work,
14633 nonblock ? intel_atomic_commit_work : NULL);
14635 i915_sw_fence_commit(&intel_state->commit_ready);
14636 if (!nonblock) {
14637 i915_sw_fence_wait(&intel_state->commit_ready);
14638 intel_atomic_commit_tail(state);
14641 return 0;
14644 void intel_crtc_restore_mode(struct drm_crtc *crtc)
14646 struct drm_device *dev = crtc->dev;
14647 struct drm_atomic_state *state;
14648 struct drm_crtc_state *crtc_state;
14649 int ret;
14651 state = drm_atomic_state_alloc(dev);
14652 if (!state) {
14653 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
14654 crtc->base.id, crtc->name);
14655 return;
14658 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
14660 retry:
14661 crtc_state = drm_atomic_get_crtc_state(state, crtc);
14662 ret = PTR_ERR_OR_ZERO(crtc_state);
14663 if (!ret) {
14664 if (!crtc_state->active)
14665 goto out;
14667 crtc_state->mode_changed = true;
14668 ret = drm_atomic_commit(state);
14671 if (ret == -EDEADLK) {
14672 drm_atomic_state_clear(state);
14673 drm_modeset_backoff(state->acquire_ctx);
14674 goto retry;
14677 out:
14678 drm_atomic_state_put(state);
14682 * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
14683 * drm_atomic_helper_legacy_gamma_set() directly.
14685 static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
14686 u16 *red, u16 *green, u16 *blue,
14687 uint32_t size)
14689 struct drm_device *dev = crtc->dev;
14690 struct drm_mode_config *config = &dev->mode_config;
14691 struct drm_crtc_state *state;
14692 int ret;
14694 ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
14695 if (ret)
14696 return ret;
14699 * Make sure we update the legacy properties so this works when
14700 * atomic is not enabled.
14703 state = crtc->state;
14705 drm_object_property_set_value(&crtc->base,
14706 config->degamma_lut_property,
14707 (state->degamma_lut) ?
14708 state->degamma_lut->base.id : 0);
14710 drm_object_property_set_value(&crtc->base,
14711 config->ctm_property,
14712 (state->ctm) ?
14713 state->ctm->base.id : 0);
14715 drm_object_property_set_value(&crtc->base,
14716 config->gamma_lut_property,
14717 (state->gamma_lut) ?
14718 state->gamma_lut->base.id : 0);
14720 return 0;
14723 static const struct drm_crtc_funcs intel_crtc_funcs = {
14724 .gamma_set = intel_atomic_legacy_gamma_set,
14725 .set_config = drm_atomic_helper_set_config,
14726 .set_property = drm_atomic_helper_crtc_set_property,
14727 .destroy = intel_crtc_destroy,
14728 .page_flip = intel_crtc_page_flip,
14729 .atomic_duplicate_state = intel_crtc_duplicate_state,
14730 .atomic_destroy_state = intel_crtc_destroy_state,
14731 .set_crc_source = intel_crtc_set_crc_source,
14735 * intel_prepare_plane_fb - Prepare fb for usage on plane
14736 * @plane: drm plane to prepare for
14737 * @fb: framebuffer to prepare for presentation
14739 * Prepares a framebuffer for usage on a display plane. Generally this
14740 * involves pinning the underlying object and updating the frontbuffer tracking
14741 * bits. Some older platforms need special physical address handling for
14742 * cursor planes.
14744 * Must be called with struct_mutex held.
14746 * Returns 0 on success, negative error code on failure.
14749 intel_prepare_plane_fb(struct drm_plane *plane,
14750 struct drm_plane_state *new_state)
14752 struct intel_atomic_state *intel_state =
14753 to_intel_atomic_state(new_state->state);
14754 struct drm_i915_private *dev_priv = to_i915(plane->dev);
14755 struct drm_framebuffer *fb = new_state->fb;
14756 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14757 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
14758 int ret;
14760 if (!obj && !old_obj)
14761 return 0;
14763 if (old_obj) {
14764 struct drm_crtc_state *crtc_state =
14765 drm_atomic_get_existing_crtc_state(new_state->state,
14766 plane->state->crtc);
14768 /* Big Hammer, we also need to ensure that any pending
14769 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14770 * current scanout is retired before unpinning the old
14771 * framebuffer. Note that we rely on userspace rendering
14772 * into the buffer attached to the pipe they are waiting
14773 * on. If not, userspace generates a GPU hang with IPEHR
14774 * point to the MI_WAIT_FOR_EVENT.
14776 * This should only fail upon a hung GPU, in which case we
14777 * can safely continue.
14779 if (needs_modeset(crtc_state)) {
14780 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
14781 old_obj->resv, NULL,
14782 false, 0,
14783 GFP_KERNEL);
14784 if (ret < 0)
14785 return ret;
14789 if (new_state->fence) { /* explicit fencing */
14790 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
14791 new_state->fence,
14792 I915_FENCE_TIMEOUT,
14793 GFP_KERNEL);
14794 if (ret < 0)
14795 return ret;
14798 if (!obj)
14799 return 0;
14801 if (!new_state->fence) { /* implicit fencing */
14802 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
14803 obj->resv, NULL,
14804 false, I915_FENCE_TIMEOUT,
14805 GFP_KERNEL);
14806 if (ret < 0)
14807 return ret;
14809 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
14812 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
14813 INTEL_INFO(dev_priv)->cursor_needs_physical) {
14814 int align = IS_I830(dev_priv) ? 16 * 1024 : 256;
14815 ret = i915_gem_object_attach_phys(obj, align);
14816 if (ret) {
14817 DRM_DEBUG_KMS("failed to attach phys object\n");
14818 return ret;
14820 } else {
14821 struct i915_vma *vma;
14823 vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14824 if (IS_ERR(vma)) {
14825 DRM_DEBUG_KMS("failed to pin object\n");
14826 return PTR_ERR(vma);
14829 to_intel_plane_state(new_state)->vma = vma;
14832 return 0;
14836 * intel_cleanup_plane_fb - Cleans up an fb after plane use
14837 * @plane: drm plane to clean up for
14838 * @fb: old framebuffer that was on plane
14840 * Cleans up a framebuffer that has just been removed from a plane.
14842 * Must be called with struct_mutex held.
14844 void
14845 intel_cleanup_plane_fb(struct drm_plane *plane,
14846 struct drm_plane_state *old_state)
14848 struct i915_vma *vma;
14850 /* Should only be called after a successful intel_prepare_plane_fb()! */
14851 vma = fetch_and_zero(&to_intel_plane_state(old_state)->vma);
14852 if (vma)
14853 intel_unpin_fb_vma(vma);
14857 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14859 int max_scale;
14860 int crtc_clock, cdclk;
14862 if (!intel_crtc || !crtc_state->base.enable)
14863 return DRM_PLANE_HELPER_NO_SCALING;
14865 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14866 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
14868 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
14869 return DRM_PLANE_HELPER_NO_SCALING;
14872 * skl max scale is lower of:
14873 * close to 3 but not 3, -1 is for that purpose
14874 * or
14875 * cdclk/crtc_clock
14877 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14879 return max_scale;
14882 static int
14883 intel_check_primary_plane(struct drm_plane *plane,
14884 struct intel_crtc_state *crtc_state,
14885 struct intel_plane_state *state)
14887 struct drm_i915_private *dev_priv = to_i915(plane->dev);
14888 struct drm_crtc *crtc = state->base.crtc;
14889 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
14890 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14891 bool can_position = false;
14892 int ret;
14894 if (INTEL_GEN(dev_priv) >= 9) {
14895 /* use scaler when colorkey is not required */
14896 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14897 min_scale = 1;
14898 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14900 can_position = true;
14903 ret = drm_plane_helper_check_state(&state->base,
14904 &state->clip,
14905 min_scale, max_scale,
14906 can_position, true);
14907 if (ret)
14908 return ret;
14910 if (!state->base.fb)
14911 return 0;
14913 if (INTEL_GEN(dev_priv) >= 9) {
14914 ret = skl_check_plane_surface(state);
14915 if (ret)
14916 return ret;
14919 return 0;
14922 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14923 struct drm_crtc_state *old_crtc_state)
14925 struct drm_device *dev = crtc->dev;
14926 struct drm_i915_private *dev_priv = to_i915(dev);
14927 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14928 struct intel_crtc_state *intel_cstate =
14929 to_intel_crtc_state(crtc->state);
14930 struct intel_crtc_state *old_intel_cstate =
14931 to_intel_crtc_state(old_crtc_state);
14932 struct intel_atomic_state *old_intel_state =
14933 to_intel_atomic_state(old_crtc_state->state);
14934 bool modeset = needs_modeset(crtc->state);
14936 /* Perform vblank evasion around commit operation */
14937 intel_pipe_update_start(intel_crtc);
14939 if (modeset)
14940 goto out;
14942 if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14943 intel_color_set_csc(crtc->state);
14944 intel_color_load_luts(crtc->state);
14947 if (intel_cstate->update_pipe)
14948 intel_update_pipe_config(intel_crtc, old_intel_cstate);
14949 else if (INTEL_GEN(dev_priv) >= 9)
14950 skl_detach_scalers(intel_crtc);
14952 out:
14953 if (dev_priv->display.atomic_update_watermarks)
14954 dev_priv->display.atomic_update_watermarks(old_intel_state,
14955 intel_cstate);
14958 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14959 struct drm_crtc_state *old_crtc_state)
14961 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14963 intel_pipe_update_end(intel_crtc, NULL);
14967 * intel_plane_destroy - destroy a plane
14968 * @plane: plane to destroy
14970 * Common destruction function for all types of planes (primary, cursor,
14971 * sprite).
14973 void intel_plane_destroy(struct drm_plane *plane)
14975 drm_plane_cleanup(plane);
14976 kfree(to_intel_plane(plane));
14979 const struct drm_plane_funcs intel_plane_funcs = {
14980 .update_plane = drm_atomic_helper_update_plane,
14981 .disable_plane = drm_atomic_helper_disable_plane,
14982 .destroy = intel_plane_destroy,
14983 .set_property = drm_atomic_helper_plane_set_property,
14984 .atomic_get_property = intel_plane_atomic_get_property,
14985 .atomic_set_property = intel_plane_atomic_set_property,
14986 .atomic_duplicate_state = intel_plane_duplicate_state,
14987 .atomic_destroy_state = intel_plane_destroy_state,
14990 static int
14991 intel_legacy_cursor_update(struct drm_plane *plane,
14992 struct drm_crtc *crtc,
14993 struct drm_framebuffer *fb,
14994 int crtc_x, int crtc_y,
14995 unsigned int crtc_w, unsigned int crtc_h,
14996 uint32_t src_x, uint32_t src_y,
14997 uint32_t src_w, uint32_t src_h)
14999 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
15000 int ret;
15001 struct drm_plane_state *old_plane_state, *new_plane_state;
15002 struct intel_plane *intel_plane = to_intel_plane(plane);
15003 struct drm_framebuffer *old_fb;
15004 struct drm_crtc_state *crtc_state = crtc->state;
15005 struct i915_vma *old_vma;
15008 * When crtc is inactive or there is a modeset pending,
15009 * wait for it to complete in the slowpath
15011 if (!crtc_state->active || needs_modeset(crtc_state) ||
15012 to_intel_crtc_state(crtc_state)->update_pipe)
15013 goto slow;
15015 old_plane_state = plane->state;
15018 * If any parameters change that may affect watermarks,
15019 * take the slowpath. Only changing fb or position should be
15020 * in the fastpath.
15022 if (old_plane_state->crtc != crtc ||
15023 old_plane_state->src_w != src_w ||
15024 old_plane_state->src_h != src_h ||
15025 old_plane_state->crtc_w != crtc_w ||
15026 old_plane_state->crtc_h != crtc_h ||
15027 !old_plane_state->visible ||
15028 old_plane_state->fb->modifier != fb->modifier)
15029 goto slow;
15031 new_plane_state = intel_plane_duplicate_state(plane);
15032 if (!new_plane_state)
15033 return -ENOMEM;
15035 drm_atomic_set_fb_for_plane(new_plane_state, fb);
15037 new_plane_state->src_x = src_x;
15038 new_plane_state->src_y = src_y;
15039 new_plane_state->src_w = src_w;
15040 new_plane_state->src_h = src_h;
15041 new_plane_state->crtc_x = crtc_x;
15042 new_plane_state->crtc_y = crtc_y;
15043 new_plane_state->crtc_w = crtc_w;
15044 new_plane_state->crtc_h = crtc_h;
15046 ret = intel_plane_atomic_check_with_state(to_intel_crtc_state(crtc->state),
15047 to_intel_plane_state(new_plane_state));
15048 if (ret)
15049 goto out_free;
15051 /* Visibility changed, must take slowpath. */
15052 if (!new_plane_state->visible)
15053 goto slow_free;
15055 ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
15056 if (ret)
15057 goto out_free;
15059 if (INTEL_INFO(dev_priv)->cursor_needs_physical) {
15060 int align = IS_I830(dev_priv) ? 16 * 1024 : 256;
15062 ret = i915_gem_object_attach_phys(intel_fb_obj(fb), align);
15063 if (ret) {
15064 DRM_DEBUG_KMS("failed to attach phys object\n");
15065 goto out_unlock;
15067 } else {
15068 struct i915_vma *vma;
15070 vma = intel_pin_and_fence_fb_obj(fb, new_plane_state->rotation);
15071 if (IS_ERR(vma)) {
15072 DRM_DEBUG_KMS("failed to pin object\n");
15074 ret = PTR_ERR(vma);
15075 goto out_unlock;
15078 to_intel_plane_state(new_plane_state)->vma = vma;
15081 old_fb = old_plane_state->fb;
15082 old_vma = to_intel_plane_state(old_plane_state)->vma;
15084 i915_gem_track_fb(intel_fb_obj(old_fb), intel_fb_obj(fb),
15085 intel_plane->frontbuffer_bit);
15087 /* Swap plane state */
15088 new_plane_state->fence = old_plane_state->fence;
15089 *to_intel_plane_state(old_plane_state) = *to_intel_plane_state(new_plane_state);
15090 new_plane_state->fence = NULL;
15091 new_plane_state->fb = old_fb;
15092 to_intel_plane_state(new_plane_state)->vma = old_vma;
15094 intel_plane->update_plane(plane,
15095 to_intel_crtc_state(crtc->state),
15096 to_intel_plane_state(plane->state));
15098 intel_cleanup_plane_fb(plane, new_plane_state);
15100 out_unlock:
15101 mutex_unlock(&dev_priv->drm.struct_mutex);
15102 out_free:
15103 intel_plane_destroy_state(plane, new_plane_state);
15104 return ret;
15106 slow_free:
15107 intel_plane_destroy_state(plane, new_plane_state);
15108 slow:
15109 return drm_atomic_helper_update_plane(plane, crtc, fb,
15110 crtc_x, crtc_y, crtc_w, crtc_h,
15111 src_x, src_y, src_w, src_h);
15114 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
15115 .update_plane = intel_legacy_cursor_update,
15116 .disable_plane = drm_atomic_helper_disable_plane,
15117 .destroy = intel_plane_destroy,
15118 .set_property = drm_atomic_helper_plane_set_property,
15119 .atomic_get_property = intel_plane_atomic_get_property,
15120 .atomic_set_property = intel_plane_atomic_set_property,
15121 .atomic_duplicate_state = intel_plane_duplicate_state,
15122 .atomic_destroy_state = intel_plane_destroy_state,
15125 static struct intel_plane *
15126 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
15128 struct intel_plane *primary = NULL;
15129 struct intel_plane_state *state = NULL;
15130 const uint32_t *intel_primary_formats;
15131 unsigned int supported_rotations;
15132 unsigned int num_formats;
15133 int ret;
15135 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
15136 if (!primary) {
15137 ret = -ENOMEM;
15138 goto fail;
15141 state = intel_create_plane_state(&primary->base);
15142 if (!state) {
15143 ret = -ENOMEM;
15144 goto fail;
15147 primary->base.state = &state->base;
15149 primary->can_scale = false;
15150 primary->max_downscale = 1;
15151 if (INTEL_GEN(dev_priv) >= 9) {
15152 primary->can_scale = true;
15153 state->scaler_id = -1;
15155 primary->pipe = pipe;
15157 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
15158 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
15160 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
15161 primary->plane = (enum plane) !pipe;
15162 else
15163 primary->plane = (enum plane) pipe;
15164 primary->id = PLANE_PRIMARY;
15165 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
15166 primary->check_plane = intel_check_primary_plane;
15168 if (INTEL_GEN(dev_priv) >= 9) {
15169 intel_primary_formats = skl_primary_formats;
15170 num_formats = ARRAY_SIZE(skl_primary_formats);
15172 primary->update_plane = skylake_update_primary_plane;
15173 primary->disable_plane = skylake_disable_primary_plane;
15174 } else if (HAS_PCH_SPLIT(dev_priv)) {
15175 intel_primary_formats = i965_primary_formats;
15176 num_formats = ARRAY_SIZE(i965_primary_formats);
15178 primary->update_plane = ironlake_update_primary_plane;
15179 primary->disable_plane = i9xx_disable_primary_plane;
15180 } else if (INTEL_GEN(dev_priv) >= 4) {
15181 intel_primary_formats = i965_primary_formats;
15182 num_formats = ARRAY_SIZE(i965_primary_formats);
15184 primary->update_plane = i9xx_update_primary_plane;
15185 primary->disable_plane = i9xx_disable_primary_plane;
15186 } else {
15187 intel_primary_formats = i8xx_primary_formats;
15188 num_formats = ARRAY_SIZE(i8xx_primary_formats);
15190 primary->update_plane = i9xx_update_primary_plane;
15191 primary->disable_plane = i9xx_disable_primary_plane;
15194 if (INTEL_GEN(dev_priv) >= 9)
15195 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15196 0, &intel_plane_funcs,
15197 intel_primary_formats, num_formats,
15198 DRM_PLANE_TYPE_PRIMARY,
15199 "plane 1%c", pipe_name(pipe));
15200 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
15201 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15202 0, &intel_plane_funcs,
15203 intel_primary_formats, num_formats,
15204 DRM_PLANE_TYPE_PRIMARY,
15205 "primary %c", pipe_name(pipe));
15206 else
15207 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15208 0, &intel_plane_funcs,
15209 intel_primary_formats, num_formats,
15210 DRM_PLANE_TYPE_PRIMARY,
15211 "plane %c", plane_name(primary->plane));
15212 if (ret)
15213 goto fail;
15215 if (INTEL_GEN(dev_priv) >= 9) {
15216 supported_rotations =
15217 DRM_ROTATE_0 | DRM_ROTATE_90 |
15218 DRM_ROTATE_180 | DRM_ROTATE_270;
15219 } else if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
15220 supported_rotations =
15221 DRM_ROTATE_0 | DRM_ROTATE_180 |
15222 DRM_REFLECT_X;
15223 } else if (INTEL_GEN(dev_priv) >= 4) {
15224 supported_rotations =
15225 DRM_ROTATE_0 | DRM_ROTATE_180;
15226 } else {
15227 supported_rotations = DRM_ROTATE_0;
15230 if (INTEL_GEN(dev_priv) >= 4)
15231 drm_plane_create_rotation_property(&primary->base,
15232 DRM_ROTATE_0,
15233 supported_rotations);
15235 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
15237 return primary;
15239 fail:
15240 kfree(state);
15241 kfree(primary);
15243 return ERR_PTR(ret);
15246 static int
15247 intel_check_cursor_plane(struct drm_plane *plane,
15248 struct intel_crtc_state *crtc_state,
15249 struct intel_plane_state *state)
15251 struct drm_framebuffer *fb = state->base.fb;
15252 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15253 enum pipe pipe = to_intel_plane(plane)->pipe;
15254 unsigned stride;
15255 int ret;
15257 ret = drm_plane_helper_check_state(&state->base,
15258 &state->clip,
15259 DRM_PLANE_HELPER_NO_SCALING,
15260 DRM_PLANE_HELPER_NO_SCALING,
15261 true, true);
15262 if (ret)
15263 return ret;
15265 /* if we want to turn off the cursor ignore width and height */
15266 if (!obj)
15267 return 0;
15269 /* Check for which cursor types we support */
15270 if (!cursor_size_ok(to_i915(plane->dev), state->base.crtc_w,
15271 state->base.crtc_h)) {
15272 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
15273 state->base.crtc_w, state->base.crtc_h);
15274 return -EINVAL;
15277 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
15278 if (obj->base.size < stride * state->base.crtc_h) {
15279 DRM_DEBUG_KMS("buffer is too small\n");
15280 return -ENOMEM;
15283 if (fb->modifier != DRM_FORMAT_MOD_NONE) {
15284 DRM_DEBUG_KMS("cursor cannot be tiled\n");
15285 return -EINVAL;
15289 * There's something wrong with the cursor on CHV pipe C.
15290 * If it straddles the left edge of the screen then
15291 * moving it away from the edge or disabling it often
15292 * results in a pipe underrun, and often that can lead to
15293 * dead pipe (constant underrun reported, and it scans
15294 * out just a solid color). To recover from that, the
15295 * display power well must be turned off and on again.
15296 * Refuse the put the cursor into that compromised position.
15298 if (IS_CHERRYVIEW(to_i915(plane->dev)) && pipe == PIPE_C &&
15299 state->base.visible && state->base.crtc_x < 0) {
15300 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
15301 return -EINVAL;
15304 return 0;
15307 static void
15308 intel_disable_cursor_plane(struct drm_plane *plane,
15309 struct drm_crtc *crtc)
15311 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15313 intel_crtc->cursor_addr = 0;
15314 intel_crtc_update_cursor(crtc, NULL);
15317 static void
15318 intel_update_cursor_plane(struct drm_plane *plane,
15319 const struct intel_crtc_state *crtc_state,
15320 const struct intel_plane_state *state)
15322 struct drm_crtc *crtc = crtc_state->base.crtc;
15323 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15324 struct drm_i915_private *dev_priv = to_i915(plane->dev);
15325 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
15326 uint32_t addr;
15328 if (!obj)
15329 addr = 0;
15330 else if (!INTEL_INFO(dev_priv)->cursor_needs_physical)
15331 addr = intel_plane_ggtt_offset(state);
15332 else
15333 addr = obj->phys_handle->busaddr;
15335 intel_crtc->cursor_addr = addr;
15336 intel_crtc_update_cursor(crtc, state);
15339 static struct intel_plane *
15340 intel_cursor_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
15342 struct intel_plane *cursor = NULL;
15343 struct intel_plane_state *state = NULL;
15344 int ret;
15346 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
15347 if (!cursor) {
15348 ret = -ENOMEM;
15349 goto fail;
15352 state = intel_create_plane_state(&cursor->base);
15353 if (!state) {
15354 ret = -ENOMEM;
15355 goto fail;
15358 cursor->base.state = &state->base;
15360 cursor->can_scale = false;
15361 cursor->max_downscale = 1;
15362 cursor->pipe = pipe;
15363 cursor->plane = pipe;
15364 cursor->id = PLANE_CURSOR;
15365 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
15366 cursor->check_plane = intel_check_cursor_plane;
15367 cursor->update_plane = intel_update_cursor_plane;
15368 cursor->disable_plane = intel_disable_cursor_plane;
15370 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
15371 0, &intel_cursor_plane_funcs,
15372 intel_cursor_formats,
15373 ARRAY_SIZE(intel_cursor_formats),
15374 DRM_PLANE_TYPE_CURSOR,
15375 "cursor %c", pipe_name(pipe));
15376 if (ret)
15377 goto fail;
15379 if (INTEL_GEN(dev_priv) >= 4)
15380 drm_plane_create_rotation_property(&cursor->base,
15381 DRM_ROTATE_0,
15382 DRM_ROTATE_0 |
15383 DRM_ROTATE_180);
15385 if (INTEL_GEN(dev_priv) >= 9)
15386 state->scaler_id = -1;
15388 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
15390 return cursor;
15392 fail:
15393 kfree(state);
15394 kfree(cursor);
15396 return ERR_PTR(ret);
15399 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
15400 struct intel_crtc_state *crtc_state)
15402 struct intel_crtc_scaler_state *scaler_state =
15403 &crtc_state->scaler_state;
15404 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15405 int i;
15407 crtc->num_scalers = dev_priv->info.num_scalers[crtc->pipe];
15408 if (!crtc->num_scalers)
15409 return;
15411 for (i = 0; i < crtc->num_scalers; i++) {
15412 struct intel_scaler *scaler = &scaler_state->scalers[i];
15414 scaler->in_use = 0;
15415 scaler->mode = PS_SCALER_MODE_DYN;
15418 scaler_state->scaler_id = -1;
15421 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
15423 struct intel_crtc *intel_crtc;
15424 struct intel_crtc_state *crtc_state = NULL;
15425 struct intel_plane *primary = NULL;
15426 struct intel_plane *cursor = NULL;
15427 int sprite, ret;
15429 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
15430 if (!intel_crtc)
15431 return -ENOMEM;
15433 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
15434 if (!crtc_state) {
15435 ret = -ENOMEM;
15436 goto fail;
15438 intel_crtc->config = crtc_state;
15439 intel_crtc->base.state = &crtc_state->base;
15440 crtc_state->base.crtc = &intel_crtc->base;
15442 primary = intel_primary_plane_create(dev_priv, pipe);
15443 if (IS_ERR(primary)) {
15444 ret = PTR_ERR(primary);
15445 goto fail;
15447 intel_crtc->plane_ids_mask |= BIT(primary->id);
15449 for_each_sprite(dev_priv, pipe, sprite) {
15450 struct intel_plane *plane;
15452 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
15453 if (IS_ERR(plane)) {
15454 ret = PTR_ERR(plane);
15455 goto fail;
15457 intel_crtc->plane_ids_mask |= BIT(plane->id);
15460 cursor = intel_cursor_plane_create(dev_priv, pipe);
15461 if (IS_ERR(cursor)) {
15462 ret = PTR_ERR(cursor);
15463 goto fail;
15465 intel_crtc->plane_ids_mask |= BIT(cursor->id);
15467 ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
15468 &primary->base, &cursor->base,
15469 &intel_crtc_funcs,
15470 "pipe %c", pipe_name(pipe));
15471 if (ret)
15472 goto fail;
15474 intel_crtc->pipe = pipe;
15475 intel_crtc->plane = primary->plane;
15477 intel_crtc->cursor_base = ~0;
15478 intel_crtc->cursor_cntl = ~0;
15479 intel_crtc->cursor_size = ~0;
15481 intel_crtc->wm.cxsr_allowed = true;
15483 /* initialize shared scalers */
15484 intel_crtc_init_scalers(intel_crtc, crtc_state);
15486 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
15487 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
15488 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = intel_crtc;
15489 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = intel_crtc;
15491 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
15493 intel_color_init(&intel_crtc->base);
15495 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
15497 return 0;
15499 fail:
15501 * drm_mode_config_cleanup() will free up any
15502 * crtcs/planes already initialized.
15504 kfree(crtc_state);
15505 kfree(intel_crtc);
15507 return ret;
15510 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
15512 struct drm_encoder *encoder = connector->base.encoder;
15513 struct drm_device *dev = connector->base.dev;
15515 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
15517 if (!encoder || WARN_ON(!encoder->crtc))
15518 return INVALID_PIPE;
15520 return to_intel_crtc(encoder->crtc)->pipe;
15523 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
15524 struct drm_file *file)
15526 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
15527 struct drm_crtc *drmmode_crtc;
15528 struct intel_crtc *crtc;
15530 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
15531 if (!drmmode_crtc)
15532 return -ENOENT;
15534 crtc = to_intel_crtc(drmmode_crtc);
15535 pipe_from_crtc_id->pipe = crtc->pipe;
15537 return 0;
15540 static int intel_encoder_clones(struct intel_encoder *encoder)
15542 struct drm_device *dev = encoder->base.dev;
15543 struct intel_encoder *source_encoder;
15544 int index_mask = 0;
15545 int entry = 0;
15547 for_each_intel_encoder(dev, source_encoder) {
15548 if (encoders_cloneable(encoder, source_encoder))
15549 index_mask |= (1 << entry);
15551 entry++;
15554 return index_mask;
15557 static bool has_edp_a(struct drm_i915_private *dev_priv)
15559 if (!IS_MOBILE(dev_priv))
15560 return false;
15562 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
15563 return false;
15565 if (IS_GEN5(dev_priv) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
15566 return false;
15568 return true;
15571 static bool intel_crt_present(struct drm_i915_private *dev_priv)
15573 if (INTEL_GEN(dev_priv) >= 9)
15574 return false;
15576 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
15577 return false;
15579 if (IS_CHERRYVIEW(dev_priv))
15580 return false;
15582 if (HAS_PCH_LPT_H(dev_priv) &&
15583 I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
15584 return false;
15586 /* DDI E can't be used if DDI A requires 4 lanes */
15587 if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
15588 return false;
15590 if (!dev_priv->vbt.int_crt_support)
15591 return false;
15593 return true;
15596 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
15598 int pps_num;
15599 int pps_idx;
15601 if (HAS_DDI(dev_priv))
15602 return;
15604 * This w/a is needed at least on CPT/PPT, but to be sure apply it
15605 * everywhere where registers can be write protected.
15607 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15608 pps_num = 2;
15609 else
15610 pps_num = 1;
15612 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
15613 u32 val = I915_READ(PP_CONTROL(pps_idx));
15615 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
15616 I915_WRITE(PP_CONTROL(pps_idx), val);
15620 static void intel_pps_init(struct drm_i915_private *dev_priv)
15622 if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
15623 dev_priv->pps_mmio_base = PCH_PPS_BASE;
15624 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15625 dev_priv->pps_mmio_base = VLV_PPS_BASE;
15626 else
15627 dev_priv->pps_mmio_base = PPS_BASE;
15629 intel_pps_unlock_regs_wa(dev_priv);
15632 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
15634 struct intel_encoder *encoder;
15635 bool dpd_is_edp = false;
15637 intel_pps_init(dev_priv);
15640 * intel_edp_init_connector() depends on this completing first, to
15641 * prevent the registeration of both eDP and LVDS and the incorrect
15642 * sharing of the PPS.
15644 intel_lvds_init(dev_priv);
15646 if (intel_crt_present(dev_priv))
15647 intel_crt_init(dev_priv);
15649 if (IS_GEN9_LP(dev_priv)) {
15651 * FIXME: Broxton doesn't support port detection via the
15652 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
15653 * detect the ports.
15655 intel_ddi_init(dev_priv, PORT_A);
15656 intel_ddi_init(dev_priv, PORT_B);
15657 intel_ddi_init(dev_priv, PORT_C);
15659 intel_dsi_init(dev_priv);
15660 } else if (HAS_DDI(dev_priv)) {
15661 int found;
15664 * Haswell uses DDI functions to detect digital outputs.
15665 * On SKL pre-D0 the strap isn't connected, so we assume
15666 * it's there.
15668 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
15669 /* WaIgnoreDDIAStrap: skl */
15670 if (found || IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15671 intel_ddi_init(dev_priv, PORT_A);
15673 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
15674 * register */
15675 found = I915_READ(SFUSE_STRAP);
15677 if (found & SFUSE_STRAP_DDIB_DETECTED)
15678 intel_ddi_init(dev_priv, PORT_B);
15679 if (found & SFUSE_STRAP_DDIC_DETECTED)
15680 intel_ddi_init(dev_priv, PORT_C);
15681 if (found & SFUSE_STRAP_DDID_DETECTED)
15682 intel_ddi_init(dev_priv, PORT_D);
15684 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
15686 if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
15687 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
15688 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
15689 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
15690 intel_ddi_init(dev_priv, PORT_E);
15692 } else if (HAS_PCH_SPLIT(dev_priv)) {
15693 int found;
15694 dpd_is_edp = intel_dp_is_edp(dev_priv, PORT_D);
15696 if (has_edp_a(dev_priv))
15697 intel_dp_init(dev_priv, DP_A, PORT_A);
15699 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
15700 /* PCH SDVOB multiplex with HDMIB */
15701 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
15702 if (!found)
15703 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
15704 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
15705 intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
15708 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
15709 intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
15711 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
15712 intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
15714 if (I915_READ(PCH_DP_C) & DP_DETECTED)
15715 intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
15717 if (I915_READ(PCH_DP_D) & DP_DETECTED)
15718 intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
15719 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15720 bool has_edp, has_port;
15723 * The DP_DETECTED bit is the latched state of the DDC
15724 * SDA pin at boot. However since eDP doesn't require DDC
15725 * (no way to plug in a DP->HDMI dongle) the DDC pins for
15726 * eDP ports may have been muxed to an alternate function.
15727 * Thus we can't rely on the DP_DETECTED bit alone to detect
15728 * eDP ports. Consult the VBT as well as DP_DETECTED to
15729 * detect eDP ports.
15731 * Sadly the straps seem to be missing sometimes even for HDMI
15732 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
15733 * and VBT for the presence of the port. Additionally we can't
15734 * trust the port type the VBT declares as we've seen at least
15735 * HDMI ports that the VBT claim are DP or eDP.
15737 has_edp = intel_dp_is_edp(dev_priv, PORT_B);
15738 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
15739 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
15740 has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
15741 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
15742 intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
15744 has_edp = intel_dp_is_edp(dev_priv, PORT_C);
15745 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
15746 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
15747 has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
15748 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
15749 intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
15751 if (IS_CHERRYVIEW(dev_priv)) {
15753 * eDP not supported on port D,
15754 * so no need to worry about it
15756 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
15757 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
15758 intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
15759 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
15760 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
15763 intel_dsi_init(dev_priv);
15764 } else if (!IS_GEN2(dev_priv) && !IS_PINEVIEW(dev_priv)) {
15765 bool found = false;
15767 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15768 DRM_DEBUG_KMS("probing SDVOB\n");
15769 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
15770 if (!found && IS_G4X(dev_priv)) {
15771 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
15772 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
15775 if (!found && IS_G4X(dev_priv))
15776 intel_dp_init(dev_priv, DP_B, PORT_B);
15779 /* Before G4X SDVOC doesn't have its own detect register */
15781 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15782 DRM_DEBUG_KMS("probing SDVOC\n");
15783 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
15786 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
15788 if (IS_G4X(dev_priv)) {
15789 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
15790 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
15792 if (IS_G4X(dev_priv))
15793 intel_dp_init(dev_priv, DP_C, PORT_C);
15796 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
15797 intel_dp_init(dev_priv, DP_D, PORT_D);
15798 } else if (IS_GEN2(dev_priv))
15799 intel_dvo_init(dev_priv);
15801 if (SUPPORTS_TV(dev_priv))
15802 intel_tv_init(dev_priv);
15804 intel_psr_init(dev_priv);
15806 for_each_intel_encoder(&dev_priv->drm, encoder) {
15807 encoder->base.possible_crtcs = encoder->crtc_mask;
15808 encoder->base.possible_clones =
15809 intel_encoder_clones(encoder);
15812 intel_init_pch_refclk(dev_priv);
15814 drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
15817 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
15819 struct drm_device *dev = fb->dev;
15820 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15822 drm_framebuffer_cleanup(fb);
15823 mutex_lock(&dev->struct_mutex);
15824 WARN_ON(!intel_fb->obj->framebuffer_references--);
15825 i915_gem_object_put(intel_fb->obj);
15826 mutex_unlock(&dev->struct_mutex);
15827 kfree(intel_fb);
15830 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
15831 struct drm_file *file,
15832 unsigned int *handle)
15834 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15835 struct drm_i915_gem_object *obj = intel_fb->obj;
15837 if (obj->userptr.mm) {
15838 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
15839 return -EINVAL;
15842 return drm_gem_handle_create(file, &obj->base, handle);
15845 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
15846 struct drm_file *file,
15847 unsigned flags, unsigned color,
15848 struct drm_clip_rect *clips,
15849 unsigned num_clips)
15851 struct drm_device *dev = fb->dev;
15852 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15853 struct drm_i915_gem_object *obj = intel_fb->obj;
15855 mutex_lock(&dev->struct_mutex);
15856 if (obj->pin_display && obj->cache_dirty)
15857 i915_gem_clflush_object(obj, true);
15858 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
15859 mutex_unlock(&dev->struct_mutex);
15861 return 0;
15864 static const struct drm_framebuffer_funcs intel_fb_funcs = {
15865 .destroy = intel_user_framebuffer_destroy,
15866 .create_handle = intel_user_framebuffer_create_handle,
15867 .dirty = intel_user_framebuffer_dirty,
15870 static
15871 u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
15872 uint64_t fb_modifier, uint32_t pixel_format)
15874 u32 gen = INTEL_INFO(dev_priv)->gen;
15876 if (gen >= 9) {
15877 int cpp = drm_format_plane_cpp(pixel_format, 0);
15879 /* "The stride in bytes must not exceed the of the size of 8K
15880 * pixels and 32K bytes."
15882 return min(8192 * cpp, 32768);
15883 } else if (gen >= 5 && !IS_VALLEYVIEW(dev_priv) &&
15884 !IS_CHERRYVIEW(dev_priv)) {
15885 return 32*1024;
15886 } else if (gen >= 4) {
15887 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15888 return 16*1024;
15889 else
15890 return 32*1024;
15891 } else if (gen >= 3) {
15892 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15893 return 8*1024;
15894 else
15895 return 16*1024;
15896 } else {
15897 /* XXX DSPC is limited to 4k tiled */
15898 return 8*1024;
15902 static int intel_framebuffer_init(struct drm_device *dev,
15903 struct intel_framebuffer *intel_fb,
15904 struct drm_mode_fb_cmd2 *mode_cmd,
15905 struct drm_i915_gem_object *obj)
15907 struct drm_i915_private *dev_priv = to_i915(dev);
15908 unsigned int tiling = i915_gem_object_get_tiling(obj);
15909 int ret;
15910 u32 pitch_limit, stride_alignment;
15911 struct drm_format_name_buf format_name;
15913 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
15915 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
15917 * If there's a fence, enforce that
15918 * the fb modifier and tiling mode match.
15920 if (tiling != I915_TILING_NONE &&
15921 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15922 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
15923 return -EINVAL;
15925 } else {
15926 if (tiling == I915_TILING_X) {
15927 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
15928 } else if (tiling == I915_TILING_Y) {
15929 DRM_DEBUG("No Y tiling for legacy addfb\n");
15930 return -EINVAL;
15934 /* Passed in modifier sanity checking. */
15935 switch (mode_cmd->modifier[0]) {
15936 case I915_FORMAT_MOD_Y_TILED:
15937 case I915_FORMAT_MOD_Yf_TILED:
15938 if (INTEL_GEN(dev_priv) < 9) {
15939 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
15940 mode_cmd->modifier[0]);
15941 return -EINVAL;
15943 case DRM_FORMAT_MOD_NONE:
15944 case I915_FORMAT_MOD_X_TILED:
15945 break;
15946 default:
15947 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
15948 mode_cmd->modifier[0]);
15949 return -EINVAL;
15953 * gen2/3 display engine uses the fence if present,
15954 * so the tiling mode must match the fb modifier exactly.
15956 if (INTEL_INFO(dev_priv)->gen < 4 &&
15957 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15958 DRM_DEBUG("tiling_mode must match fb modifier exactly on gen2/3\n");
15959 return -EINVAL;
15962 stride_alignment = intel_fb_stride_alignment(dev_priv,
15963 mode_cmd->modifier[0],
15964 mode_cmd->pixel_format);
15965 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
15966 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
15967 mode_cmd->pitches[0], stride_alignment);
15968 return -EINVAL;
15971 pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->modifier[0],
15972 mode_cmd->pixel_format);
15973 if (mode_cmd->pitches[0] > pitch_limit) {
15974 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
15975 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
15976 "tiled" : "linear",
15977 mode_cmd->pitches[0], pitch_limit);
15978 return -EINVAL;
15982 * If there's a fence, enforce that
15983 * the fb pitch and fence stride match.
15985 if (tiling != I915_TILING_NONE &&
15986 mode_cmd->pitches[0] != i915_gem_object_get_stride(obj)) {
15987 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
15988 mode_cmd->pitches[0],
15989 i915_gem_object_get_stride(obj));
15990 return -EINVAL;
15993 /* Reject formats not supported by any plane early. */
15994 switch (mode_cmd->pixel_format) {
15995 case DRM_FORMAT_C8:
15996 case DRM_FORMAT_RGB565:
15997 case DRM_FORMAT_XRGB8888:
15998 case DRM_FORMAT_ARGB8888:
15999 break;
16000 case DRM_FORMAT_XRGB1555:
16001 if (INTEL_GEN(dev_priv) > 3) {
16002 DRM_DEBUG("unsupported pixel format: %s\n",
16003 drm_get_format_name(mode_cmd->pixel_format, &format_name));
16004 return -EINVAL;
16006 break;
16007 case DRM_FORMAT_ABGR8888:
16008 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
16009 INTEL_GEN(dev_priv) < 9) {
16010 DRM_DEBUG("unsupported pixel format: %s\n",
16011 drm_get_format_name(mode_cmd->pixel_format, &format_name));
16012 return -EINVAL;
16014 break;
16015 case DRM_FORMAT_XBGR8888:
16016 case DRM_FORMAT_XRGB2101010:
16017 case DRM_FORMAT_XBGR2101010:
16018 if (INTEL_GEN(dev_priv) < 4) {
16019 DRM_DEBUG("unsupported pixel format: %s\n",
16020 drm_get_format_name(mode_cmd->pixel_format, &format_name));
16021 return -EINVAL;
16023 break;
16024 case DRM_FORMAT_ABGR2101010:
16025 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
16026 DRM_DEBUG("unsupported pixel format: %s\n",
16027 drm_get_format_name(mode_cmd->pixel_format, &format_name));
16028 return -EINVAL;
16030 break;
16031 case DRM_FORMAT_YUYV:
16032 case DRM_FORMAT_UYVY:
16033 case DRM_FORMAT_YVYU:
16034 case DRM_FORMAT_VYUY:
16035 if (INTEL_GEN(dev_priv) < 5) {
16036 DRM_DEBUG("unsupported pixel format: %s\n",
16037 drm_get_format_name(mode_cmd->pixel_format, &format_name));
16038 return -EINVAL;
16040 break;
16041 default:
16042 DRM_DEBUG("unsupported pixel format: %s\n",
16043 drm_get_format_name(mode_cmd->pixel_format, &format_name));
16044 return -EINVAL;
16047 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
16048 if (mode_cmd->offsets[0] != 0)
16049 return -EINVAL;
16051 drm_helper_mode_fill_fb_struct(dev, &intel_fb->base, mode_cmd);
16052 intel_fb->obj = obj;
16054 ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
16055 if (ret)
16056 return ret;
16058 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
16059 if (ret) {
16060 DRM_ERROR("framebuffer init failed %d\n", ret);
16061 return ret;
16064 intel_fb->obj->framebuffer_references++;
16066 return 0;
16069 static struct drm_framebuffer *
16070 intel_user_framebuffer_create(struct drm_device *dev,
16071 struct drm_file *filp,
16072 const struct drm_mode_fb_cmd2 *user_mode_cmd)
16074 struct drm_framebuffer *fb;
16075 struct drm_i915_gem_object *obj;
16076 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
16078 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
16079 if (!obj)
16080 return ERR_PTR(-ENOENT);
16082 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
16083 if (IS_ERR(fb))
16084 i915_gem_object_put(obj);
16086 return fb;
16089 static void intel_atomic_state_free(struct drm_atomic_state *state)
16091 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
16093 drm_atomic_state_default_release(state);
16095 i915_sw_fence_fini(&intel_state->commit_ready);
16097 kfree(state);
16100 static const struct drm_mode_config_funcs intel_mode_funcs = {
16101 .fb_create = intel_user_framebuffer_create,
16102 .output_poll_changed = intel_fbdev_output_poll_changed,
16103 .atomic_check = intel_atomic_check,
16104 .atomic_commit = intel_atomic_commit,
16105 .atomic_state_alloc = intel_atomic_state_alloc,
16106 .atomic_state_clear = intel_atomic_state_clear,
16107 .atomic_state_free = intel_atomic_state_free,
16111 * intel_init_display_hooks - initialize the display modesetting hooks
16112 * @dev_priv: device private
16114 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
16116 if (INTEL_INFO(dev_priv)->gen >= 9) {
16117 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
16118 dev_priv->display.get_initial_plane_config =
16119 skylake_get_initial_plane_config;
16120 dev_priv->display.crtc_compute_clock =
16121 haswell_crtc_compute_clock;
16122 dev_priv->display.crtc_enable = haswell_crtc_enable;
16123 dev_priv->display.crtc_disable = haswell_crtc_disable;
16124 } else if (HAS_DDI(dev_priv)) {
16125 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
16126 dev_priv->display.get_initial_plane_config =
16127 ironlake_get_initial_plane_config;
16128 dev_priv->display.crtc_compute_clock =
16129 haswell_crtc_compute_clock;
16130 dev_priv->display.crtc_enable = haswell_crtc_enable;
16131 dev_priv->display.crtc_disable = haswell_crtc_disable;
16132 } else if (HAS_PCH_SPLIT(dev_priv)) {
16133 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
16134 dev_priv->display.get_initial_plane_config =
16135 ironlake_get_initial_plane_config;
16136 dev_priv->display.crtc_compute_clock =
16137 ironlake_crtc_compute_clock;
16138 dev_priv->display.crtc_enable = ironlake_crtc_enable;
16139 dev_priv->display.crtc_disable = ironlake_crtc_disable;
16140 } else if (IS_CHERRYVIEW(dev_priv)) {
16141 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16142 dev_priv->display.get_initial_plane_config =
16143 i9xx_get_initial_plane_config;
16144 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
16145 dev_priv->display.crtc_enable = valleyview_crtc_enable;
16146 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16147 } else if (IS_VALLEYVIEW(dev_priv)) {
16148 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16149 dev_priv->display.get_initial_plane_config =
16150 i9xx_get_initial_plane_config;
16151 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
16152 dev_priv->display.crtc_enable = valleyview_crtc_enable;
16153 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16154 } else if (IS_G4X(dev_priv)) {
16155 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16156 dev_priv->display.get_initial_plane_config =
16157 i9xx_get_initial_plane_config;
16158 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
16159 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16160 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16161 } else if (IS_PINEVIEW(dev_priv)) {
16162 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16163 dev_priv->display.get_initial_plane_config =
16164 i9xx_get_initial_plane_config;
16165 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
16166 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16167 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16168 } else if (!IS_GEN2(dev_priv)) {
16169 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16170 dev_priv->display.get_initial_plane_config =
16171 i9xx_get_initial_plane_config;
16172 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
16173 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16174 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16175 } else {
16176 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16177 dev_priv->display.get_initial_plane_config =
16178 i9xx_get_initial_plane_config;
16179 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
16180 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16181 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16184 /* Returns the core display clock speed */
16185 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
16186 dev_priv->display.get_display_clock_speed =
16187 skylake_get_display_clock_speed;
16188 else if (IS_GEN9_LP(dev_priv))
16189 dev_priv->display.get_display_clock_speed =
16190 broxton_get_display_clock_speed;
16191 else if (IS_BROADWELL(dev_priv))
16192 dev_priv->display.get_display_clock_speed =
16193 broadwell_get_display_clock_speed;
16194 else if (IS_HASWELL(dev_priv))
16195 dev_priv->display.get_display_clock_speed =
16196 haswell_get_display_clock_speed;
16197 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16198 dev_priv->display.get_display_clock_speed =
16199 valleyview_get_display_clock_speed;
16200 else if (IS_GEN5(dev_priv))
16201 dev_priv->display.get_display_clock_speed =
16202 ilk_get_display_clock_speed;
16203 else if (IS_I945G(dev_priv) || IS_I965G(dev_priv) ||
16204 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
16205 dev_priv->display.get_display_clock_speed =
16206 i945_get_display_clock_speed;
16207 else if (IS_GM45(dev_priv))
16208 dev_priv->display.get_display_clock_speed =
16209 gm45_get_display_clock_speed;
16210 else if (IS_I965GM(dev_priv))
16211 dev_priv->display.get_display_clock_speed =
16212 i965gm_get_display_clock_speed;
16213 else if (IS_PINEVIEW(dev_priv))
16214 dev_priv->display.get_display_clock_speed =
16215 pnv_get_display_clock_speed;
16216 else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
16217 dev_priv->display.get_display_clock_speed =
16218 g33_get_display_clock_speed;
16219 else if (IS_I915G(dev_priv))
16220 dev_priv->display.get_display_clock_speed =
16221 i915_get_display_clock_speed;
16222 else if (IS_I945GM(dev_priv) || IS_I845G(dev_priv))
16223 dev_priv->display.get_display_clock_speed =
16224 i9xx_misc_get_display_clock_speed;
16225 else if (IS_I915GM(dev_priv))
16226 dev_priv->display.get_display_clock_speed =
16227 i915gm_get_display_clock_speed;
16228 else if (IS_I865G(dev_priv))
16229 dev_priv->display.get_display_clock_speed =
16230 i865_get_display_clock_speed;
16231 else if (IS_I85X(dev_priv))
16232 dev_priv->display.get_display_clock_speed =
16233 i85x_get_display_clock_speed;
16234 else { /* 830 */
16235 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
16236 dev_priv->display.get_display_clock_speed =
16237 i830_get_display_clock_speed;
16240 if (IS_GEN5(dev_priv)) {
16241 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
16242 } else if (IS_GEN6(dev_priv)) {
16243 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
16244 } else if (IS_IVYBRIDGE(dev_priv)) {
16245 /* FIXME: detect B0+ stepping and use auto training */
16246 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
16247 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
16248 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
16251 if (IS_BROADWELL(dev_priv)) {
16252 dev_priv->display.modeset_commit_cdclk =
16253 broadwell_modeset_commit_cdclk;
16254 dev_priv->display.modeset_calc_cdclk =
16255 broadwell_modeset_calc_cdclk;
16256 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16257 dev_priv->display.modeset_commit_cdclk =
16258 valleyview_modeset_commit_cdclk;
16259 dev_priv->display.modeset_calc_cdclk =
16260 valleyview_modeset_calc_cdclk;
16261 } else if (IS_GEN9_LP(dev_priv)) {
16262 dev_priv->display.modeset_commit_cdclk =
16263 bxt_modeset_commit_cdclk;
16264 dev_priv->display.modeset_calc_cdclk =
16265 bxt_modeset_calc_cdclk;
16266 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
16267 dev_priv->display.modeset_commit_cdclk =
16268 skl_modeset_commit_cdclk;
16269 dev_priv->display.modeset_calc_cdclk =
16270 skl_modeset_calc_cdclk;
16273 if (dev_priv->info.gen >= 9)
16274 dev_priv->display.update_crtcs = skl_update_crtcs;
16275 else
16276 dev_priv->display.update_crtcs = intel_update_crtcs;
16278 switch (INTEL_INFO(dev_priv)->gen) {
16279 case 2:
16280 dev_priv->display.queue_flip = intel_gen2_queue_flip;
16281 break;
16283 case 3:
16284 dev_priv->display.queue_flip = intel_gen3_queue_flip;
16285 break;
16287 case 4:
16288 case 5:
16289 dev_priv->display.queue_flip = intel_gen4_queue_flip;
16290 break;
16292 case 6:
16293 dev_priv->display.queue_flip = intel_gen6_queue_flip;
16294 break;
16295 case 7:
16296 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
16297 dev_priv->display.queue_flip = intel_gen7_queue_flip;
16298 break;
16299 case 9:
16300 /* Drop through - unsupported since execlist only. */
16301 default:
16302 /* Default just returns -ENODEV to indicate unsupported */
16303 dev_priv->display.queue_flip = intel_default_queue_flip;
16308 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
16309 * resume, or other times. This quirk makes sure that's the case for
16310 * affected systems.
16312 static void quirk_pipea_force(struct drm_device *dev)
16314 struct drm_i915_private *dev_priv = to_i915(dev);
16316 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
16317 DRM_INFO("applying pipe a force quirk\n");
16320 static void quirk_pipeb_force(struct drm_device *dev)
16322 struct drm_i915_private *dev_priv = to_i915(dev);
16324 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
16325 DRM_INFO("applying pipe b force quirk\n");
16329 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
16331 static void quirk_ssc_force_disable(struct drm_device *dev)
16333 struct drm_i915_private *dev_priv = to_i915(dev);
16334 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
16335 DRM_INFO("applying lvds SSC disable quirk\n");
16339 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
16340 * brightness value
16342 static void quirk_invert_brightness(struct drm_device *dev)
16344 struct drm_i915_private *dev_priv = to_i915(dev);
16345 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
16346 DRM_INFO("applying inverted panel brightness quirk\n");
16349 /* Some VBT's incorrectly indicate no backlight is present */
16350 static void quirk_backlight_present(struct drm_device *dev)
16352 struct drm_i915_private *dev_priv = to_i915(dev);
16353 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
16354 DRM_INFO("applying backlight present quirk\n");
16357 struct intel_quirk {
16358 int device;
16359 int subsystem_vendor;
16360 int subsystem_device;
16361 void (*hook)(struct drm_device *dev);
16364 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
16365 struct intel_dmi_quirk {
16366 void (*hook)(struct drm_device *dev);
16367 const struct dmi_system_id (*dmi_id_list)[];
16370 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
16372 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
16373 return 1;
16376 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
16378 .dmi_id_list = &(const struct dmi_system_id[]) {
16380 .callback = intel_dmi_reverse_brightness,
16381 .ident = "NCR Corporation",
16382 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
16383 DMI_MATCH(DMI_PRODUCT_NAME, ""),
16386 { } /* terminating entry */
16388 .hook = quirk_invert_brightness,
16392 static struct intel_quirk intel_quirks[] = {
16393 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
16394 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
16396 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
16397 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
16399 /* 830 needs to leave pipe A & dpll A up */
16400 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
16402 /* 830 needs to leave pipe B & dpll B up */
16403 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
16405 /* Lenovo U160 cannot use SSC on LVDS */
16406 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
16408 /* Sony Vaio Y cannot use SSC on LVDS */
16409 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
16411 /* Acer Aspire 5734Z must invert backlight brightness */
16412 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
16414 /* Acer/eMachines G725 */
16415 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
16417 /* Acer/eMachines e725 */
16418 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
16420 /* Acer/Packard Bell NCL20 */
16421 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
16423 /* Acer Aspire 4736Z */
16424 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
16426 /* Acer Aspire 5336 */
16427 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
16429 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
16430 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
16432 /* Acer C720 Chromebook (Core i3 4005U) */
16433 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
16435 /* Apple Macbook 2,1 (Core 2 T7400) */
16436 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
16438 /* Apple Macbook 4,1 */
16439 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
16441 /* Toshiba CB35 Chromebook (Celeron 2955U) */
16442 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
16444 /* HP Chromebook 14 (Celeron 2955U) */
16445 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
16447 /* Dell Chromebook 11 */
16448 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
16450 /* Dell Chromebook 11 (2015 version) */
16451 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
16454 static void intel_init_quirks(struct drm_device *dev)
16456 struct pci_dev *d = dev->pdev;
16457 int i;
16459 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
16460 struct intel_quirk *q = &intel_quirks[i];
16462 if (d->device == q->device &&
16463 (d->subsystem_vendor == q->subsystem_vendor ||
16464 q->subsystem_vendor == PCI_ANY_ID) &&
16465 (d->subsystem_device == q->subsystem_device ||
16466 q->subsystem_device == PCI_ANY_ID))
16467 q->hook(dev);
16469 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
16470 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
16471 intel_dmi_quirks[i].hook(dev);
16475 /* Disable the VGA plane that we never use */
16476 static void i915_disable_vga(struct drm_i915_private *dev_priv)
16478 struct pci_dev *pdev = dev_priv->drm.pdev;
16479 u8 sr1;
16480 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
16482 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
16483 vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
16484 outb(SR01, VGA_SR_INDEX);
16485 sr1 = inb(VGA_SR_DATA);
16486 outb(sr1 | 1<<5, VGA_SR_DATA);
16487 vga_put(pdev, VGA_RSRC_LEGACY_IO);
16488 udelay(300);
16490 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
16491 POSTING_READ(vga_reg);
16494 void intel_modeset_init_hw(struct drm_device *dev)
16496 struct drm_i915_private *dev_priv = to_i915(dev);
16498 intel_update_cdclk(dev_priv);
16500 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16502 intel_init_clock_gating(dev_priv);
16506 * Calculate what we think the watermarks should be for the state we've read
16507 * out of the hardware and then immediately program those watermarks so that
16508 * we ensure the hardware settings match our internal state.
16510 * We can calculate what we think WM's should be by creating a duplicate of the
16511 * current state (which was constructed during hardware readout) and running it
16512 * through the atomic check code to calculate new watermark values in the
16513 * state object.
16515 static void sanitize_watermarks(struct drm_device *dev)
16517 struct drm_i915_private *dev_priv = to_i915(dev);
16518 struct drm_atomic_state *state;
16519 struct intel_atomic_state *intel_state;
16520 struct drm_crtc *crtc;
16521 struct drm_crtc_state *cstate;
16522 struct drm_modeset_acquire_ctx ctx;
16523 int ret;
16524 int i;
16526 /* Only supported on platforms that use atomic watermark design */
16527 if (!dev_priv->display.optimize_watermarks)
16528 return;
16531 * We need to hold connection_mutex before calling duplicate_state so
16532 * that the connector loop is protected.
16534 drm_modeset_acquire_init(&ctx, 0);
16535 retry:
16536 ret = drm_modeset_lock_all_ctx(dev, &ctx);
16537 if (ret == -EDEADLK) {
16538 drm_modeset_backoff(&ctx);
16539 goto retry;
16540 } else if (WARN_ON(ret)) {
16541 goto fail;
16544 state = drm_atomic_helper_duplicate_state(dev, &ctx);
16545 if (WARN_ON(IS_ERR(state)))
16546 goto fail;
16548 intel_state = to_intel_atomic_state(state);
16551 * Hardware readout is the only time we don't want to calculate
16552 * intermediate watermarks (since we don't trust the current
16553 * watermarks).
16555 intel_state->skip_intermediate_wm = true;
16557 ret = intel_atomic_check(dev, state);
16558 if (ret) {
16560 * If we fail here, it means that the hardware appears to be
16561 * programmed in a way that shouldn't be possible, given our
16562 * understanding of watermark requirements. This might mean a
16563 * mistake in the hardware readout code or a mistake in the
16564 * watermark calculations for a given platform. Raise a WARN
16565 * so that this is noticeable.
16567 * If this actually happens, we'll have to just leave the
16568 * BIOS-programmed watermarks untouched and hope for the best.
16570 WARN(true, "Could not determine valid watermarks for inherited state\n");
16571 goto put_state;
16574 /* Write calculated watermark values back */
16575 for_each_crtc_in_state(state, crtc, cstate, i) {
16576 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
16578 cs->wm.need_postvbl_update = true;
16579 dev_priv->display.optimize_watermarks(intel_state, cs);
16582 put_state:
16583 drm_atomic_state_put(state);
16584 fail:
16585 drm_modeset_drop_locks(&ctx);
16586 drm_modeset_acquire_fini(&ctx);
16589 int intel_modeset_init(struct drm_device *dev)
16591 struct drm_i915_private *dev_priv = to_i915(dev);
16592 struct i915_ggtt *ggtt = &dev_priv->ggtt;
16593 enum pipe pipe;
16594 struct intel_crtc *crtc;
16596 drm_mode_config_init(dev);
16598 dev->mode_config.min_width = 0;
16599 dev->mode_config.min_height = 0;
16601 dev->mode_config.preferred_depth = 24;
16602 dev->mode_config.prefer_shadow = 1;
16604 dev->mode_config.allow_fb_modifiers = true;
16606 dev->mode_config.funcs = &intel_mode_funcs;
16608 intel_init_quirks(dev);
16610 intel_init_pm(dev_priv);
16612 if (INTEL_INFO(dev_priv)->num_pipes == 0)
16613 return 0;
16616 * There may be no VBT; and if the BIOS enabled SSC we can
16617 * just keep using it to avoid unnecessary flicker. Whereas if the
16618 * BIOS isn't using it, don't assume it will work even if the VBT
16619 * indicates as much.
16621 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
16622 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
16623 DREF_SSC1_ENABLE);
16625 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
16626 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
16627 bios_lvds_use_ssc ? "en" : "dis",
16628 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
16629 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
16633 if (IS_GEN2(dev_priv)) {
16634 dev->mode_config.max_width = 2048;
16635 dev->mode_config.max_height = 2048;
16636 } else if (IS_GEN3(dev_priv)) {
16637 dev->mode_config.max_width = 4096;
16638 dev->mode_config.max_height = 4096;
16639 } else {
16640 dev->mode_config.max_width = 8192;
16641 dev->mode_config.max_height = 8192;
16644 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
16645 dev->mode_config.cursor_width = IS_I845G(dev_priv) ? 64 : 512;
16646 dev->mode_config.cursor_height = 1023;
16647 } else if (IS_GEN2(dev_priv)) {
16648 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
16649 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
16650 } else {
16651 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
16652 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
16655 dev->mode_config.fb_base = ggtt->mappable_base;
16657 DRM_DEBUG_KMS("%d display pipe%s available.\n",
16658 INTEL_INFO(dev_priv)->num_pipes,
16659 INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
16661 for_each_pipe(dev_priv, pipe) {
16662 int ret;
16664 ret = intel_crtc_init(dev_priv, pipe);
16665 if (ret) {
16666 drm_mode_config_cleanup(dev);
16667 return ret;
16671 intel_update_czclk(dev_priv);
16672 intel_update_cdclk(dev_priv);
16673 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16675 intel_shared_dpll_init(dev);
16677 if (dev_priv->max_cdclk_freq == 0)
16678 intel_update_max_cdclk(dev_priv);
16680 /* Just disable it once at startup */
16681 i915_disable_vga(dev_priv);
16682 intel_setup_outputs(dev_priv);
16684 drm_modeset_lock_all(dev);
16685 intel_modeset_setup_hw_state(dev);
16686 drm_modeset_unlock_all(dev);
16688 for_each_intel_crtc(dev, crtc) {
16689 struct intel_initial_plane_config plane_config = {};
16691 if (!crtc->active)
16692 continue;
16695 * Note that reserving the BIOS fb up front prevents us
16696 * from stuffing other stolen allocations like the ring
16697 * on top. This prevents some ugliness at boot time, and
16698 * can even allow for smooth boot transitions if the BIOS
16699 * fb is large enough for the active pipe configuration.
16701 dev_priv->display.get_initial_plane_config(crtc,
16702 &plane_config);
16705 * If the fb is shared between multiple heads, we'll
16706 * just get the first one.
16708 intel_find_initial_plane_obj(crtc, &plane_config);
16712 * Make sure hardware watermarks really match the state we read out.
16713 * Note that we need to do this after reconstructing the BIOS fb's
16714 * since the watermark calculation done here will use pstate->fb.
16716 sanitize_watermarks(dev);
16718 return 0;
16721 static void intel_enable_pipe_a(struct drm_device *dev)
16723 struct intel_connector *connector;
16724 struct drm_connector *crt = NULL;
16725 struct intel_load_detect_pipe load_detect_temp;
16726 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
16728 /* We can't just switch on the pipe A, we need to set things up with a
16729 * proper mode and output configuration. As a gross hack, enable pipe A
16730 * by enabling the load detect pipe once. */
16731 for_each_intel_connector(dev, connector) {
16732 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
16733 crt = &connector->base;
16734 break;
16738 if (!crt)
16739 return;
16741 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
16742 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
16745 static bool
16746 intel_check_plane_mapping(struct intel_crtc *crtc)
16748 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
16749 u32 val;
16751 if (INTEL_INFO(dev_priv)->num_pipes == 1)
16752 return true;
16754 val = I915_READ(DSPCNTR(!crtc->plane));
16756 if ((val & DISPLAY_PLANE_ENABLE) &&
16757 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
16758 return false;
16760 return true;
16763 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
16765 struct drm_device *dev = crtc->base.dev;
16766 struct intel_encoder *encoder;
16768 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
16769 return true;
16771 return false;
16774 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
16776 struct drm_device *dev = encoder->base.dev;
16777 struct intel_connector *connector;
16779 for_each_connector_on_encoder(dev, &encoder->base, connector)
16780 return connector;
16782 return NULL;
16785 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
16786 enum transcoder pch_transcoder)
16788 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
16789 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
16792 static void intel_sanitize_crtc(struct intel_crtc *crtc)
16794 struct drm_device *dev = crtc->base.dev;
16795 struct drm_i915_private *dev_priv = to_i915(dev);
16796 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
16798 /* Clear any frame start delays used for debugging left by the BIOS */
16799 if (!transcoder_is_dsi(cpu_transcoder)) {
16800 i915_reg_t reg = PIPECONF(cpu_transcoder);
16802 I915_WRITE(reg,
16803 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
16806 /* restore vblank interrupts to correct state */
16807 drm_crtc_vblank_reset(&crtc->base);
16808 if (crtc->active) {
16809 struct intel_plane *plane;
16811 drm_crtc_vblank_on(&crtc->base);
16813 /* Disable everything but the primary plane */
16814 for_each_intel_plane_on_crtc(dev, crtc, plane) {
16815 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
16816 continue;
16818 plane->disable_plane(&plane->base, &crtc->base);
16822 /* We need to sanitize the plane -> pipe mapping first because this will
16823 * disable the crtc (and hence change the state) if it is wrong. Note
16824 * that gen4+ has a fixed plane -> pipe mapping. */
16825 if (INTEL_GEN(dev_priv) < 4 && !intel_check_plane_mapping(crtc)) {
16826 bool plane;
16828 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
16829 crtc->base.base.id, crtc->base.name);
16831 /* Pipe has the wrong plane attached and the plane is active.
16832 * Temporarily change the plane mapping and disable everything
16833 * ... */
16834 plane = crtc->plane;
16835 crtc->base.primary->state->visible = true;
16836 crtc->plane = !plane;
16837 intel_crtc_disable_noatomic(&crtc->base);
16838 crtc->plane = plane;
16841 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
16842 crtc->pipe == PIPE_A && !crtc->active) {
16843 /* BIOS forgot to enable pipe A, this mostly happens after
16844 * resume. Force-enable the pipe to fix this, the update_dpms
16845 * call below we restore the pipe to the right state, but leave
16846 * the required bits on. */
16847 intel_enable_pipe_a(dev);
16850 /* Adjust the state of the output pipe according to whether we
16851 * have active connectors/encoders. */
16852 if (crtc->active && !intel_crtc_has_encoders(crtc))
16853 intel_crtc_disable_noatomic(&crtc->base);
16855 if (crtc->active || HAS_GMCH_DISPLAY(dev_priv)) {
16857 * We start out with underrun reporting disabled to avoid races.
16858 * For correct bookkeeping mark this on active crtcs.
16860 * Also on gmch platforms we dont have any hardware bits to
16861 * disable the underrun reporting. Which means we need to start
16862 * out with underrun reporting disabled also on inactive pipes,
16863 * since otherwise we'll complain about the garbage we read when
16864 * e.g. coming up after runtime pm.
16866 * No protection against concurrent access is required - at
16867 * worst a fifo underrun happens which also sets this to false.
16869 crtc->cpu_fifo_underrun_disabled = true;
16871 * We track the PCH trancoder underrun reporting state
16872 * within the crtc. With crtc for pipe A housing the underrun
16873 * reporting state for PCH transcoder A, crtc for pipe B housing
16874 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
16875 * and marking underrun reporting as disabled for the non-existing
16876 * PCH transcoders B and C would prevent enabling the south
16877 * error interrupt (see cpt_can_enable_serr_int()).
16879 if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
16880 crtc->pch_fifo_underrun_disabled = true;
16884 static void intel_sanitize_encoder(struct intel_encoder *encoder)
16886 struct intel_connector *connector;
16888 /* We need to check both for a crtc link (meaning that the
16889 * encoder is active and trying to read from a pipe) and the
16890 * pipe itself being active. */
16891 bool has_active_crtc = encoder->base.crtc &&
16892 to_intel_crtc(encoder->base.crtc)->active;
16894 connector = intel_encoder_find_connector(encoder);
16895 if (connector && !has_active_crtc) {
16896 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
16897 encoder->base.base.id,
16898 encoder->base.name);
16900 /* Connector is active, but has no active pipe. This is
16901 * fallout from our resume register restoring. Disable
16902 * the encoder manually again. */
16903 if (encoder->base.crtc) {
16904 struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
16906 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
16907 encoder->base.base.id,
16908 encoder->base.name);
16909 encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16910 if (encoder->post_disable)
16911 encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16913 encoder->base.crtc = NULL;
16915 /* Inconsistent output/port/pipe state happens presumably due to
16916 * a bug in one of the get_hw_state functions. Or someplace else
16917 * in our code, like the register restore mess on resume. Clamp
16918 * things to off as a safer default. */
16920 connector->base.dpms = DRM_MODE_DPMS_OFF;
16921 connector->base.encoder = NULL;
16923 /* Enabled encoders without active connectors will be fixed in
16924 * the crtc fixup. */
16927 void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
16929 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
16931 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
16932 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
16933 i915_disable_vga(dev_priv);
16937 void i915_redisable_vga(struct drm_i915_private *dev_priv)
16939 /* This function can be called both from intel_modeset_setup_hw_state or
16940 * at a very early point in our resume sequence, where the power well
16941 * structures are not yet restored. Since this function is at a very
16942 * paranoid "someone might have enabled VGA while we were not looking"
16943 * level, just check if the power well is enabled instead of trying to
16944 * follow the "don't touch the power well if we don't need it" policy
16945 * the rest of the driver uses. */
16946 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
16947 return;
16949 i915_redisable_vga_power_on(dev_priv);
16951 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
16954 static bool primary_get_hw_state(struct intel_plane *plane)
16956 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
16958 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
16961 /* FIXME read out full plane state for all planes */
16962 static void readout_plane_state(struct intel_crtc *crtc)
16964 struct drm_plane *primary = crtc->base.primary;
16965 struct intel_plane_state *plane_state =
16966 to_intel_plane_state(primary->state);
16968 plane_state->base.visible = crtc->active &&
16969 primary_get_hw_state(to_intel_plane(primary));
16971 if (plane_state->base.visible)
16972 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
16975 static void intel_modeset_readout_hw_state(struct drm_device *dev)
16977 struct drm_i915_private *dev_priv = to_i915(dev);
16978 enum pipe pipe;
16979 struct intel_crtc *crtc;
16980 struct intel_encoder *encoder;
16981 struct intel_connector *connector;
16982 int i;
16984 dev_priv->active_crtcs = 0;
16986 for_each_intel_crtc(dev, crtc) {
16987 struct intel_crtc_state *crtc_state =
16988 to_intel_crtc_state(crtc->base.state);
16990 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
16991 memset(crtc_state, 0, sizeof(*crtc_state));
16992 crtc_state->base.crtc = &crtc->base;
16994 crtc_state->base.active = crtc_state->base.enable =
16995 dev_priv->display.get_pipe_config(crtc, crtc_state);
16997 crtc->base.enabled = crtc_state->base.enable;
16998 crtc->active = crtc_state->base.active;
17000 if (crtc_state->base.active)
17001 dev_priv->active_crtcs |= 1 << crtc->pipe;
17003 readout_plane_state(crtc);
17005 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
17006 crtc->base.base.id, crtc->base.name,
17007 enableddisabled(crtc_state->base.active));
17010 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
17011 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
17013 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
17014 &pll->state.hw_state);
17015 pll->state.crtc_mask = 0;
17016 for_each_intel_crtc(dev, crtc) {
17017 struct intel_crtc_state *crtc_state =
17018 to_intel_crtc_state(crtc->base.state);
17020 if (crtc_state->base.active &&
17021 crtc_state->shared_dpll == pll)
17022 pll->state.crtc_mask |= 1 << crtc->pipe;
17024 pll->active_mask = pll->state.crtc_mask;
17026 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
17027 pll->name, pll->state.crtc_mask, pll->on);
17030 for_each_intel_encoder(dev, encoder) {
17031 pipe = 0;
17033 if (encoder->get_hw_state(encoder, &pipe)) {
17034 struct intel_crtc_state *crtc_state;
17036 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17037 crtc_state = to_intel_crtc_state(crtc->base.state);
17039 encoder->base.crtc = &crtc->base;
17040 crtc_state->output_types |= 1 << encoder->type;
17041 encoder->get_config(encoder, crtc_state);
17042 } else {
17043 encoder->base.crtc = NULL;
17046 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
17047 encoder->base.base.id, encoder->base.name,
17048 enableddisabled(encoder->base.crtc),
17049 pipe_name(pipe));
17052 for_each_intel_connector(dev, connector) {
17053 if (connector->get_hw_state(connector)) {
17054 connector->base.dpms = DRM_MODE_DPMS_ON;
17056 encoder = connector->encoder;
17057 connector->base.encoder = &encoder->base;
17059 if (encoder->base.crtc &&
17060 encoder->base.crtc->state->active) {
17062 * This has to be done during hardware readout
17063 * because anything calling .crtc_disable may
17064 * rely on the connector_mask being accurate.
17066 encoder->base.crtc->state->connector_mask |=
17067 1 << drm_connector_index(&connector->base);
17068 encoder->base.crtc->state->encoder_mask |=
17069 1 << drm_encoder_index(&encoder->base);
17072 } else {
17073 connector->base.dpms = DRM_MODE_DPMS_OFF;
17074 connector->base.encoder = NULL;
17076 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
17077 connector->base.base.id, connector->base.name,
17078 enableddisabled(connector->base.encoder));
17081 for_each_intel_crtc(dev, crtc) {
17082 struct intel_crtc_state *crtc_state =
17083 to_intel_crtc_state(crtc->base.state);
17084 int pixclk = 0;
17086 crtc->base.hwmode = crtc_state->base.adjusted_mode;
17088 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
17089 if (crtc_state->base.active) {
17090 intel_mode_from_pipe_config(&crtc->base.mode, crtc_state);
17091 intel_mode_from_pipe_config(&crtc_state->base.adjusted_mode, crtc_state);
17092 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
17095 * The initial mode needs to be set in order to keep
17096 * the atomic core happy. It wants a valid mode if the
17097 * crtc's enabled, so we do the above call.
17099 * But we don't set all the derived state fully, hence
17100 * set a flag to indicate that a full recalculation is
17101 * needed on the next commit.
17103 crtc_state->base.mode.private_flags = I915_MODE_FLAG_INHERITED;
17105 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
17106 pixclk = ilk_pipe_pixel_rate(crtc_state);
17107 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
17108 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
17109 else
17110 WARN_ON(dev_priv->display.modeset_calc_cdclk);
17112 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
17113 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
17114 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
17116 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
17117 update_scanline_offset(crtc);
17120 dev_priv->min_pixclk[crtc->pipe] = pixclk;
17122 intel_pipe_config_sanity_check(dev_priv, crtc_state);
17126 /* Scan out the current hw modeset state,
17127 * and sanitizes it to the current state
17129 static void
17130 intel_modeset_setup_hw_state(struct drm_device *dev)
17132 struct drm_i915_private *dev_priv = to_i915(dev);
17133 enum pipe pipe;
17134 struct intel_crtc *crtc;
17135 struct intel_encoder *encoder;
17136 int i;
17138 intel_modeset_readout_hw_state(dev);
17140 /* HW state is read out, now we need to sanitize this mess. */
17141 for_each_intel_encoder(dev, encoder) {
17142 intel_sanitize_encoder(encoder);
17145 for_each_pipe(dev_priv, pipe) {
17146 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17148 intel_sanitize_crtc(crtc);
17149 intel_dump_pipe_config(crtc, crtc->config,
17150 "[setup_hw_state]");
17153 intel_modeset_update_connector_atomic_state(dev);
17155 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
17156 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
17158 if (!pll->on || pll->active_mask)
17159 continue;
17161 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
17163 pll->funcs.disable(dev_priv, pll);
17164 pll->on = false;
17167 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
17168 vlv_wm_get_hw_state(dev);
17169 else if (IS_GEN9(dev_priv))
17170 skl_wm_get_hw_state(dev);
17171 else if (HAS_PCH_SPLIT(dev_priv))
17172 ilk_wm_get_hw_state(dev);
17174 for_each_intel_crtc(dev, crtc) {
17175 unsigned long put_domains;
17177 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
17178 if (WARN_ON(put_domains))
17179 modeset_put_power_domains(dev_priv, put_domains);
17181 intel_display_set_init_power(dev_priv, false);
17183 intel_fbc_init_pipe_state(dev_priv);
17186 void intel_display_resume(struct drm_device *dev)
17188 struct drm_i915_private *dev_priv = to_i915(dev);
17189 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
17190 struct drm_modeset_acquire_ctx ctx;
17191 int ret;
17193 dev_priv->modeset_restore_state = NULL;
17194 if (state)
17195 state->acquire_ctx = &ctx;
17198 * This is a cludge because with real atomic modeset mode_config.mutex
17199 * won't be taken. Unfortunately some probed state like
17200 * audio_codec_enable is still protected by mode_config.mutex, so lock
17201 * it here for now.
17203 mutex_lock(&dev->mode_config.mutex);
17204 drm_modeset_acquire_init(&ctx, 0);
17206 while (1) {
17207 ret = drm_modeset_lock_all_ctx(dev, &ctx);
17208 if (ret != -EDEADLK)
17209 break;
17211 drm_modeset_backoff(&ctx);
17214 if (!ret)
17215 ret = __intel_display_resume(dev, state);
17217 drm_modeset_drop_locks(&ctx);
17218 drm_modeset_acquire_fini(&ctx);
17219 mutex_unlock(&dev->mode_config.mutex);
17221 if (ret)
17222 DRM_ERROR("Restoring old state failed with %i\n", ret);
17223 if (state)
17224 drm_atomic_state_put(state);
17227 void intel_modeset_gem_init(struct drm_device *dev)
17229 struct drm_i915_private *dev_priv = to_i915(dev);
17231 intel_init_gt_powersave(dev_priv);
17233 intel_modeset_init_hw(dev);
17235 intel_setup_overlay(dev_priv);
17238 int intel_connector_register(struct drm_connector *connector)
17240 struct intel_connector *intel_connector = to_intel_connector(connector);
17241 int ret;
17243 ret = intel_backlight_device_register(intel_connector);
17244 if (ret)
17245 goto err;
17247 return 0;
17249 err:
17250 return ret;
17253 void intel_connector_unregister(struct drm_connector *connector)
17255 struct intel_connector *intel_connector = to_intel_connector(connector);
17257 intel_backlight_device_unregister(intel_connector);
17258 intel_panel_destroy_backlight(connector);
17261 void intel_modeset_cleanup(struct drm_device *dev)
17263 struct drm_i915_private *dev_priv = to_i915(dev);
17265 intel_disable_gt_powersave(dev_priv);
17268 * Interrupts and polling as the first thing to avoid creating havoc.
17269 * Too much stuff here (turning of connectors, ...) would
17270 * experience fancy races otherwise.
17272 intel_irq_uninstall(dev_priv);
17275 * Due to the hpd irq storm handling the hotplug work can re-arm the
17276 * poll handlers. Hence disable polling after hpd handling is shut down.
17278 drm_kms_helper_poll_fini(dev);
17280 intel_unregister_dsm_handler();
17282 intel_fbc_global_disable(dev_priv);
17284 /* flush any delayed tasks or pending work */
17285 flush_scheduled_work();
17287 drm_mode_config_cleanup(dev);
17289 intel_cleanup_overlay(dev_priv);
17291 intel_cleanup_gt_powersave(dev_priv);
17293 intel_teardown_gmbus(dev_priv);
17296 void intel_connector_attach_encoder(struct intel_connector *connector,
17297 struct intel_encoder *encoder)
17299 connector->encoder = encoder;
17300 drm_mode_connector_attach_encoder(&connector->base,
17301 &encoder->base);
17305 * set vga decode state - true == enable VGA decode
17307 int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
17309 unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
17310 u16 gmch_ctrl;
17312 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
17313 DRM_ERROR("failed to read control word\n");
17314 return -EIO;
17317 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
17318 return 0;
17320 if (state)
17321 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
17322 else
17323 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
17325 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
17326 DRM_ERROR("failed to write control word\n");
17327 return -EIO;
17330 return 0;
17333 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
17335 struct intel_display_error_state {
17337 u32 power_well_driver;
17339 int num_transcoders;
17341 struct intel_cursor_error_state {
17342 u32 control;
17343 u32 position;
17344 u32 base;
17345 u32 size;
17346 } cursor[I915_MAX_PIPES];
17348 struct intel_pipe_error_state {
17349 bool power_domain_on;
17350 u32 source;
17351 u32 stat;
17352 } pipe[I915_MAX_PIPES];
17354 struct intel_plane_error_state {
17355 u32 control;
17356 u32 stride;
17357 u32 size;
17358 u32 pos;
17359 u32 addr;
17360 u32 surface;
17361 u32 tile_offset;
17362 } plane[I915_MAX_PIPES];
17364 struct intel_transcoder_error_state {
17365 bool power_domain_on;
17366 enum transcoder cpu_transcoder;
17368 u32 conf;
17370 u32 htotal;
17371 u32 hblank;
17372 u32 hsync;
17373 u32 vtotal;
17374 u32 vblank;
17375 u32 vsync;
17376 } transcoder[4];
17379 struct intel_display_error_state *
17380 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
17382 struct intel_display_error_state *error;
17383 int transcoders[] = {
17384 TRANSCODER_A,
17385 TRANSCODER_B,
17386 TRANSCODER_C,
17387 TRANSCODER_EDP,
17389 int i;
17391 if (INTEL_INFO(dev_priv)->num_pipes == 0)
17392 return NULL;
17394 error = kzalloc(sizeof(*error), GFP_ATOMIC);
17395 if (error == NULL)
17396 return NULL;
17398 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17399 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
17401 for_each_pipe(dev_priv, i) {
17402 error->pipe[i].power_domain_on =
17403 __intel_display_power_is_enabled(dev_priv,
17404 POWER_DOMAIN_PIPE(i));
17405 if (!error->pipe[i].power_domain_on)
17406 continue;
17408 error->cursor[i].control = I915_READ(CURCNTR(i));
17409 error->cursor[i].position = I915_READ(CURPOS(i));
17410 error->cursor[i].base = I915_READ(CURBASE(i));
17412 error->plane[i].control = I915_READ(DSPCNTR(i));
17413 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
17414 if (INTEL_GEN(dev_priv) <= 3) {
17415 error->plane[i].size = I915_READ(DSPSIZE(i));
17416 error->plane[i].pos = I915_READ(DSPPOS(i));
17418 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17419 error->plane[i].addr = I915_READ(DSPADDR(i));
17420 if (INTEL_GEN(dev_priv) >= 4) {
17421 error->plane[i].surface = I915_READ(DSPSURF(i));
17422 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
17425 error->pipe[i].source = I915_READ(PIPESRC(i));
17427 if (HAS_GMCH_DISPLAY(dev_priv))
17428 error->pipe[i].stat = I915_READ(PIPESTAT(i));
17431 /* Note: this does not include DSI transcoders. */
17432 error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
17433 if (HAS_DDI(dev_priv))
17434 error->num_transcoders++; /* Account for eDP. */
17436 for (i = 0; i < error->num_transcoders; i++) {
17437 enum transcoder cpu_transcoder = transcoders[i];
17439 error->transcoder[i].power_domain_on =
17440 __intel_display_power_is_enabled(dev_priv,
17441 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
17442 if (!error->transcoder[i].power_domain_on)
17443 continue;
17445 error->transcoder[i].cpu_transcoder = cpu_transcoder;
17447 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
17448 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
17449 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
17450 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
17451 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
17452 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
17453 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
17456 return error;
17459 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
17461 void
17462 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
17463 struct drm_i915_private *dev_priv,
17464 struct intel_display_error_state *error)
17466 int i;
17468 if (!error)
17469 return;
17471 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
17472 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17473 err_printf(m, "PWR_WELL_CTL2: %08x\n",
17474 error->power_well_driver);
17475 for_each_pipe(dev_priv, i) {
17476 err_printf(m, "Pipe [%d]:\n", i);
17477 err_printf(m, " Power: %s\n",
17478 onoff(error->pipe[i].power_domain_on));
17479 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
17480 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
17482 err_printf(m, "Plane [%d]:\n", i);
17483 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
17484 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
17485 if (INTEL_GEN(dev_priv) <= 3) {
17486 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
17487 err_printf(m, " POS: %08x\n", error->plane[i].pos);
17489 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17490 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
17491 if (INTEL_GEN(dev_priv) >= 4) {
17492 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
17493 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
17496 err_printf(m, "Cursor [%d]:\n", i);
17497 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
17498 err_printf(m, " POS: %08x\n", error->cursor[i].position);
17499 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
17502 for (i = 0; i < error->num_transcoders; i++) {
17503 err_printf(m, "CPU transcoder: %s\n",
17504 transcoder_name(error->transcoder[i].cpu_transcoder));
17505 err_printf(m, " Power: %s\n",
17506 onoff(error->transcoder[i].power_domain_on));
17507 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
17508 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
17509 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
17510 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
17511 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
17512 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
17513 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
17517 #endif