2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
40 #include "intel_dsi.h"
41 #include "i915_trace.h"
42 #include <drm/drm_atomic.h>
43 #include <drm/drm_atomic_helper.h>
44 #include <drm/drm_dp_helper.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_plane_helper.h>
47 #include <drm/drm_rect.h>
48 #include <linux/dma_remapping.h>
49 #include <linux/reservation.h>
51 static bool is_mmio_work(struct intel_flip_work
*work
)
53 return work
->mmio_work
.func
;
56 /* Primary plane formats for gen <= 3 */
57 static const uint32_t i8xx_primary_formats
[] = {
64 /* Primary plane formats for gen >= 4 */
65 static const uint32_t i965_primary_formats
[] = {
70 DRM_FORMAT_XRGB2101010
,
71 DRM_FORMAT_XBGR2101010
,
74 static const uint32_t skl_primary_formats
[] = {
81 DRM_FORMAT_XRGB2101010
,
82 DRM_FORMAT_XBGR2101010
,
90 static const uint32_t intel_cursor_formats
[] = {
94 static void i9xx_crtc_clock_get(struct intel_crtc
*crtc
,
95 struct intel_crtc_state
*pipe_config
);
96 static void ironlake_pch_clock_get(struct intel_crtc
*crtc
,
97 struct intel_crtc_state
*pipe_config
);
99 static int intel_framebuffer_init(struct drm_device
*dev
,
100 struct intel_framebuffer
*ifb
,
101 struct drm_mode_fb_cmd2
*mode_cmd
,
102 struct drm_i915_gem_object
*obj
);
103 static void i9xx_set_pipeconf(struct intel_crtc
*intel_crtc
);
104 static void intel_set_pipe_timings(struct intel_crtc
*intel_crtc
);
105 static void intel_set_pipe_src_size(struct intel_crtc
*intel_crtc
);
106 static void intel_cpu_transcoder_set_m_n(struct intel_crtc
*crtc
,
107 struct intel_link_m_n
*m_n
,
108 struct intel_link_m_n
*m2_n2
);
109 static void ironlake_set_pipeconf(struct drm_crtc
*crtc
);
110 static void haswell_set_pipeconf(struct drm_crtc
*crtc
);
111 static void haswell_set_pipemisc(struct drm_crtc
*crtc
);
112 static void vlv_prepare_pll(struct intel_crtc
*crtc
,
113 const struct intel_crtc_state
*pipe_config
);
114 static void chv_prepare_pll(struct intel_crtc
*crtc
,
115 const struct intel_crtc_state
*pipe_config
);
116 static void intel_begin_crtc_commit(struct drm_crtc
*, struct drm_crtc_state
*);
117 static void intel_finish_crtc_commit(struct drm_crtc
*, struct drm_crtc_state
*);
118 static void intel_crtc_init_scalers(struct intel_crtc
*crtc
,
119 struct intel_crtc_state
*crtc_state
);
120 static void skylake_pfit_enable(struct intel_crtc
*crtc
);
121 static void ironlake_pfit_disable(struct intel_crtc
*crtc
, bool force
);
122 static void ironlake_pfit_enable(struct intel_crtc
*crtc
);
123 static void intel_modeset_setup_hw_state(struct drm_device
*dev
);
124 static void intel_pre_disable_primary_noatomic(struct drm_crtc
*crtc
);
125 static int ilk_max_pixel_rate(struct drm_atomic_state
*state
);
126 static int glk_calc_cdclk(int max_pixclk
);
127 static int bxt_calc_cdclk(int max_pixclk
);
132 } dot
, vco
, n
, m
, m1
, m2
, p
, p1
;
136 int p2_slow
, p2_fast
;
140 /* returns HPLL frequency in kHz */
141 static int valleyview_get_vco(struct drm_i915_private
*dev_priv
)
143 int hpll_freq
, vco_freq
[] = { 800, 1600, 2000, 2400 };
145 /* Obtain SKU information */
146 mutex_lock(&dev_priv
->sb_lock
);
147 hpll_freq
= vlv_cck_read(dev_priv
, CCK_FUSE_REG
) &
148 CCK_FUSE_HPLL_FREQ_MASK
;
149 mutex_unlock(&dev_priv
->sb_lock
);
151 return vco_freq
[hpll_freq
] * 1000;
154 int vlv_get_cck_clock(struct drm_i915_private
*dev_priv
,
155 const char *name
, u32 reg
, int ref_freq
)
160 mutex_lock(&dev_priv
->sb_lock
);
161 val
= vlv_cck_read(dev_priv
, reg
);
162 mutex_unlock(&dev_priv
->sb_lock
);
164 divider
= val
& CCK_FREQUENCY_VALUES
;
166 WARN((val
& CCK_FREQUENCY_STATUS
) !=
167 (divider
<< CCK_FREQUENCY_STATUS_SHIFT
),
168 "%s change in progress\n", name
);
170 return DIV_ROUND_CLOSEST(ref_freq
<< 1, divider
+ 1);
173 static int vlv_get_cck_clock_hpll(struct drm_i915_private
*dev_priv
,
174 const char *name
, u32 reg
)
176 if (dev_priv
->hpll_freq
== 0)
177 dev_priv
->hpll_freq
= valleyview_get_vco(dev_priv
);
179 return vlv_get_cck_clock(dev_priv
, name
, reg
,
180 dev_priv
->hpll_freq
);
184 intel_pch_rawclk(struct drm_i915_private
*dev_priv
)
186 return (I915_READ(PCH_RAWCLK_FREQ
) & RAWCLK_FREQ_MASK
) * 1000;
190 intel_vlv_hrawclk(struct drm_i915_private
*dev_priv
)
192 /* RAWCLK_FREQ_VLV register updated from power well code */
193 return vlv_get_cck_clock_hpll(dev_priv
, "hrawclk",
194 CCK_DISPLAY_REF_CLOCK_CONTROL
);
198 intel_g4x_hrawclk(struct drm_i915_private
*dev_priv
)
202 /* hrawclock is 1/4 the FSB frequency */
203 clkcfg
= I915_READ(CLKCFG
);
204 switch (clkcfg
& CLKCFG_FSB_MASK
) {
213 case CLKCFG_FSB_1067
:
215 case CLKCFG_FSB_1333
:
217 /* these two are just a guess; one of them might be right */
218 case CLKCFG_FSB_1600
:
219 case CLKCFG_FSB_1600_ALT
:
226 void intel_update_rawclk(struct drm_i915_private
*dev_priv
)
228 if (HAS_PCH_SPLIT(dev_priv
))
229 dev_priv
->rawclk_freq
= intel_pch_rawclk(dev_priv
);
230 else if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
))
231 dev_priv
->rawclk_freq
= intel_vlv_hrawclk(dev_priv
);
232 else if (IS_G4X(dev_priv
) || IS_PINEVIEW(dev_priv
))
233 dev_priv
->rawclk_freq
= intel_g4x_hrawclk(dev_priv
);
235 return; /* no rawclk on other platforms, or no need to know it */
237 DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv
->rawclk_freq
);
240 static void intel_update_czclk(struct drm_i915_private
*dev_priv
)
242 if (!(IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
)))
245 dev_priv
->czclk_freq
= vlv_get_cck_clock_hpll(dev_priv
, "czclk",
246 CCK_CZ_CLOCK_CONTROL
);
248 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv
->czclk_freq
);
251 static inline u32
/* units of 100MHz */
252 intel_fdi_link_freq(struct drm_i915_private
*dev_priv
,
253 const struct intel_crtc_state
*pipe_config
)
255 if (HAS_DDI(dev_priv
))
256 return pipe_config
->port_clock
; /* SPLL */
257 else if (IS_GEN5(dev_priv
))
258 return ((I915_READ(FDI_PLL_BIOS_0
) & FDI_PLL_FB_CLOCK_MASK
) + 2) * 10000;
263 static const struct intel_limit intel_limits_i8xx_dac
= {
264 .dot
= { .min
= 25000, .max
= 350000 },
265 .vco
= { .min
= 908000, .max
= 1512000 },
266 .n
= { .min
= 2, .max
= 16 },
267 .m
= { .min
= 96, .max
= 140 },
268 .m1
= { .min
= 18, .max
= 26 },
269 .m2
= { .min
= 6, .max
= 16 },
270 .p
= { .min
= 4, .max
= 128 },
271 .p1
= { .min
= 2, .max
= 33 },
272 .p2
= { .dot_limit
= 165000,
273 .p2_slow
= 4, .p2_fast
= 2 },
276 static const struct intel_limit intel_limits_i8xx_dvo
= {
277 .dot
= { .min
= 25000, .max
= 350000 },
278 .vco
= { .min
= 908000, .max
= 1512000 },
279 .n
= { .min
= 2, .max
= 16 },
280 .m
= { .min
= 96, .max
= 140 },
281 .m1
= { .min
= 18, .max
= 26 },
282 .m2
= { .min
= 6, .max
= 16 },
283 .p
= { .min
= 4, .max
= 128 },
284 .p1
= { .min
= 2, .max
= 33 },
285 .p2
= { .dot_limit
= 165000,
286 .p2_slow
= 4, .p2_fast
= 4 },
289 static const struct intel_limit intel_limits_i8xx_lvds
= {
290 .dot
= { .min
= 25000, .max
= 350000 },
291 .vco
= { .min
= 908000, .max
= 1512000 },
292 .n
= { .min
= 2, .max
= 16 },
293 .m
= { .min
= 96, .max
= 140 },
294 .m1
= { .min
= 18, .max
= 26 },
295 .m2
= { .min
= 6, .max
= 16 },
296 .p
= { .min
= 4, .max
= 128 },
297 .p1
= { .min
= 1, .max
= 6 },
298 .p2
= { .dot_limit
= 165000,
299 .p2_slow
= 14, .p2_fast
= 7 },
302 static const struct intel_limit intel_limits_i9xx_sdvo
= {
303 .dot
= { .min
= 20000, .max
= 400000 },
304 .vco
= { .min
= 1400000, .max
= 2800000 },
305 .n
= { .min
= 1, .max
= 6 },
306 .m
= { .min
= 70, .max
= 120 },
307 .m1
= { .min
= 8, .max
= 18 },
308 .m2
= { .min
= 3, .max
= 7 },
309 .p
= { .min
= 5, .max
= 80 },
310 .p1
= { .min
= 1, .max
= 8 },
311 .p2
= { .dot_limit
= 200000,
312 .p2_slow
= 10, .p2_fast
= 5 },
315 static const struct intel_limit intel_limits_i9xx_lvds
= {
316 .dot
= { .min
= 20000, .max
= 400000 },
317 .vco
= { .min
= 1400000, .max
= 2800000 },
318 .n
= { .min
= 1, .max
= 6 },
319 .m
= { .min
= 70, .max
= 120 },
320 .m1
= { .min
= 8, .max
= 18 },
321 .m2
= { .min
= 3, .max
= 7 },
322 .p
= { .min
= 7, .max
= 98 },
323 .p1
= { .min
= 1, .max
= 8 },
324 .p2
= { .dot_limit
= 112000,
325 .p2_slow
= 14, .p2_fast
= 7 },
329 static const struct intel_limit intel_limits_g4x_sdvo
= {
330 .dot
= { .min
= 25000, .max
= 270000 },
331 .vco
= { .min
= 1750000, .max
= 3500000},
332 .n
= { .min
= 1, .max
= 4 },
333 .m
= { .min
= 104, .max
= 138 },
334 .m1
= { .min
= 17, .max
= 23 },
335 .m2
= { .min
= 5, .max
= 11 },
336 .p
= { .min
= 10, .max
= 30 },
337 .p1
= { .min
= 1, .max
= 3},
338 .p2
= { .dot_limit
= 270000,
344 static const struct intel_limit intel_limits_g4x_hdmi
= {
345 .dot
= { .min
= 22000, .max
= 400000 },
346 .vco
= { .min
= 1750000, .max
= 3500000},
347 .n
= { .min
= 1, .max
= 4 },
348 .m
= { .min
= 104, .max
= 138 },
349 .m1
= { .min
= 16, .max
= 23 },
350 .m2
= { .min
= 5, .max
= 11 },
351 .p
= { .min
= 5, .max
= 80 },
352 .p1
= { .min
= 1, .max
= 8},
353 .p2
= { .dot_limit
= 165000,
354 .p2_slow
= 10, .p2_fast
= 5 },
357 static const struct intel_limit intel_limits_g4x_single_channel_lvds
= {
358 .dot
= { .min
= 20000, .max
= 115000 },
359 .vco
= { .min
= 1750000, .max
= 3500000 },
360 .n
= { .min
= 1, .max
= 3 },
361 .m
= { .min
= 104, .max
= 138 },
362 .m1
= { .min
= 17, .max
= 23 },
363 .m2
= { .min
= 5, .max
= 11 },
364 .p
= { .min
= 28, .max
= 112 },
365 .p1
= { .min
= 2, .max
= 8 },
366 .p2
= { .dot_limit
= 0,
367 .p2_slow
= 14, .p2_fast
= 14
371 static const struct intel_limit intel_limits_g4x_dual_channel_lvds
= {
372 .dot
= { .min
= 80000, .max
= 224000 },
373 .vco
= { .min
= 1750000, .max
= 3500000 },
374 .n
= { .min
= 1, .max
= 3 },
375 .m
= { .min
= 104, .max
= 138 },
376 .m1
= { .min
= 17, .max
= 23 },
377 .m2
= { .min
= 5, .max
= 11 },
378 .p
= { .min
= 14, .max
= 42 },
379 .p1
= { .min
= 2, .max
= 6 },
380 .p2
= { .dot_limit
= 0,
381 .p2_slow
= 7, .p2_fast
= 7
385 static const struct intel_limit intel_limits_pineview_sdvo
= {
386 .dot
= { .min
= 20000, .max
= 400000},
387 .vco
= { .min
= 1700000, .max
= 3500000 },
388 /* Pineview's Ncounter is a ring counter */
389 .n
= { .min
= 3, .max
= 6 },
390 .m
= { .min
= 2, .max
= 256 },
391 /* Pineview only has one combined m divider, which we treat as m2. */
392 .m1
= { .min
= 0, .max
= 0 },
393 .m2
= { .min
= 0, .max
= 254 },
394 .p
= { .min
= 5, .max
= 80 },
395 .p1
= { .min
= 1, .max
= 8 },
396 .p2
= { .dot_limit
= 200000,
397 .p2_slow
= 10, .p2_fast
= 5 },
400 static const struct intel_limit intel_limits_pineview_lvds
= {
401 .dot
= { .min
= 20000, .max
= 400000 },
402 .vco
= { .min
= 1700000, .max
= 3500000 },
403 .n
= { .min
= 3, .max
= 6 },
404 .m
= { .min
= 2, .max
= 256 },
405 .m1
= { .min
= 0, .max
= 0 },
406 .m2
= { .min
= 0, .max
= 254 },
407 .p
= { .min
= 7, .max
= 112 },
408 .p1
= { .min
= 1, .max
= 8 },
409 .p2
= { .dot_limit
= 112000,
410 .p2_slow
= 14, .p2_fast
= 14 },
413 /* Ironlake / Sandybridge
415 * We calculate clock using (register_value + 2) for N/M1/M2, so here
416 * the range value for them is (actual_value - 2).
418 static const struct intel_limit intel_limits_ironlake_dac
= {
419 .dot
= { .min
= 25000, .max
= 350000 },
420 .vco
= { .min
= 1760000, .max
= 3510000 },
421 .n
= { .min
= 1, .max
= 5 },
422 .m
= { .min
= 79, .max
= 127 },
423 .m1
= { .min
= 12, .max
= 22 },
424 .m2
= { .min
= 5, .max
= 9 },
425 .p
= { .min
= 5, .max
= 80 },
426 .p1
= { .min
= 1, .max
= 8 },
427 .p2
= { .dot_limit
= 225000,
428 .p2_slow
= 10, .p2_fast
= 5 },
431 static const struct intel_limit intel_limits_ironlake_single_lvds
= {
432 .dot
= { .min
= 25000, .max
= 350000 },
433 .vco
= { .min
= 1760000, .max
= 3510000 },
434 .n
= { .min
= 1, .max
= 3 },
435 .m
= { .min
= 79, .max
= 118 },
436 .m1
= { .min
= 12, .max
= 22 },
437 .m2
= { .min
= 5, .max
= 9 },
438 .p
= { .min
= 28, .max
= 112 },
439 .p1
= { .min
= 2, .max
= 8 },
440 .p2
= { .dot_limit
= 225000,
441 .p2_slow
= 14, .p2_fast
= 14 },
444 static const struct intel_limit intel_limits_ironlake_dual_lvds
= {
445 .dot
= { .min
= 25000, .max
= 350000 },
446 .vco
= { .min
= 1760000, .max
= 3510000 },
447 .n
= { .min
= 1, .max
= 3 },
448 .m
= { .min
= 79, .max
= 127 },
449 .m1
= { .min
= 12, .max
= 22 },
450 .m2
= { .min
= 5, .max
= 9 },
451 .p
= { .min
= 14, .max
= 56 },
452 .p1
= { .min
= 2, .max
= 8 },
453 .p2
= { .dot_limit
= 225000,
454 .p2_slow
= 7, .p2_fast
= 7 },
457 /* LVDS 100mhz refclk limits. */
458 static const struct intel_limit intel_limits_ironlake_single_lvds_100m
= {
459 .dot
= { .min
= 25000, .max
= 350000 },
460 .vco
= { .min
= 1760000, .max
= 3510000 },
461 .n
= { .min
= 1, .max
= 2 },
462 .m
= { .min
= 79, .max
= 126 },
463 .m1
= { .min
= 12, .max
= 22 },
464 .m2
= { .min
= 5, .max
= 9 },
465 .p
= { .min
= 28, .max
= 112 },
466 .p1
= { .min
= 2, .max
= 8 },
467 .p2
= { .dot_limit
= 225000,
468 .p2_slow
= 14, .p2_fast
= 14 },
471 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m
= {
472 .dot
= { .min
= 25000, .max
= 350000 },
473 .vco
= { .min
= 1760000, .max
= 3510000 },
474 .n
= { .min
= 1, .max
= 3 },
475 .m
= { .min
= 79, .max
= 126 },
476 .m1
= { .min
= 12, .max
= 22 },
477 .m2
= { .min
= 5, .max
= 9 },
478 .p
= { .min
= 14, .max
= 42 },
479 .p1
= { .min
= 2, .max
= 6 },
480 .p2
= { .dot_limit
= 225000,
481 .p2_slow
= 7, .p2_fast
= 7 },
484 static const struct intel_limit intel_limits_vlv
= {
486 * These are the data rate limits (measured in fast clocks)
487 * since those are the strictest limits we have. The fast
488 * clock and actual rate limits are more relaxed, so checking
489 * them would make no difference.
491 .dot
= { .min
= 25000 * 5, .max
= 270000 * 5 },
492 .vco
= { .min
= 4000000, .max
= 6000000 },
493 .n
= { .min
= 1, .max
= 7 },
494 .m1
= { .min
= 2, .max
= 3 },
495 .m2
= { .min
= 11, .max
= 156 },
496 .p1
= { .min
= 2, .max
= 3 },
497 .p2
= { .p2_slow
= 2, .p2_fast
= 20 }, /* slow=min, fast=max */
500 static const struct intel_limit intel_limits_chv
= {
502 * These are the data rate limits (measured in fast clocks)
503 * since those are the strictest limits we have. The fast
504 * clock and actual rate limits are more relaxed, so checking
505 * them would make no difference.
507 .dot
= { .min
= 25000 * 5, .max
= 540000 * 5},
508 .vco
= { .min
= 4800000, .max
= 6480000 },
509 .n
= { .min
= 1, .max
= 1 },
510 .m1
= { .min
= 2, .max
= 2 },
511 .m2
= { .min
= 24 << 22, .max
= 175 << 22 },
512 .p1
= { .min
= 2, .max
= 4 },
513 .p2
= { .p2_slow
= 1, .p2_fast
= 14 },
516 static const struct intel_limit intel_limits_bxt
= {
517 /* FIXME: find real dot limits */
518 .dot
= { .min
= 0, .max
= INT_MAX
},
519 .vco
= { .min
= 4800000, .max
= 6700000 },
520 .n
= { .min
= 1, .max
= 1 },
521 .m1
= { .min
= 2, .max
= 2 },
522 /* FIXME: find real m2 limits */
523 .m2
= { .min
= 2 << 22, .max
= 255 << 22 },
524 .p1
= { .min
= 2, .max
= 4 },
525 .p2
= { .p2_slow
= 1, .p2_fast
= 20 },
529 needs_modeset(struct drm_crtc_state
*state
)
531 return drm_atomic_crtc_needs_modeset(state
);
535 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
536 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
537 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
538 * The helpers' return value is the rate of the clock that is fed to the
539 * display engine's pipe which can be the above fast dot clock rate or a
540 * divided-down version of it.
542 /* m1 is reserved as 0 in Pineview, n is a ring counter */
543 static int pnv_calc_dpll_params(int refclk
, struct dpll
*clock
)
545 clock
->m
= clock
->m2
+ 2;
546 clock
->p
= clock
->p1
* clock
->p2
;
547 if (WARN_ON(clock
->n
== 0 || clock
->p
== 0))
549 clock
->vco
= DIV_ROUND_CLOSEST(refclk
* clock
->m
, clock
->n
);
550 clock
->dot
= DIV_ROUND_CLOSEST(clock
->vco
, clock
->p
);
555 static uint32_t i9xx_dpll_compute_m(struct dpll
*dpll
)
557 return 5 * (dpll
->m1
+ 2) + (dpll
->m2
+ 2);
560 static int i9xx_calc_dpll_params(int refclk
, struct dpll
*clock
)
562 clock
->m
= i9xx_dpll_compute_m(clock
);
563 clock
->p
= clock
->p1
* clock
->p2
;
564 if (WARN_ON(clock
->n
+ 2 == 0 || clock
->p
== 0))
566 clock
->vco
= DIV_ROUND_CLOSEST(refclk
* clock
->m
, clock
->n
+ 2);
567 clock
->dot
= DIV_ROUND_CLOSEST(clock
->vco
, clock
->p
);
572 static int vlv_calc_dpll_params(int refclk
, struct dpll
*clock
)
574 clock
->m
= clock
->m1
* clock
->m2
;
575 clock
->p
= clock
->p1
* clock
->p2
;
576 if (WARN_ON(clock
->n
== 0 || clock
->p
== 0))
578 clock
->vco
= DIV_ROUND_CLOSEST(refclk
* clock
->m
, clock
->n
);
579 clock
->dot
= DIV_ROUND_CLOSEST(clock
->vco
, clock
->p
);
581 return clock
->dot
/ 5;
584 int chv_calc_dpll_params(int refclk
, struct dpll
*clock
)
586 clock
->m
= clock
->m1
* clock
->m2
;
587 clock
->p
= clock
->p1
* clock
->p2
;
588 if (WARN_ON(clock
->n
== 0 || clock
->p
== 0))
590 clock
->vco
= DIV_ROUND_CLOSEST_ULL((uint64_t)refclk
* clock
->m
,
592 clock
->dot
= DIV_ROUND_CLOSEST(clock
->vco
, clock
->p
);
594 return clock
->dot
/ 5;
597 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
599 * Returns whether the given set of divisors are valid for a given refclk with
600 * the given connectors.
603 static bool intel_PLL_is_valid(struct drm_i915_private
*dev_priv
,
604 const struct intel_limit
*limit
,
605 const struct dpll
*clock
)
607 if (clock
->n
< limit
->n
.min
|| limit
->n
.max
< clock
->n
)
608 INTELPllInvalid("n out of range\n");
609 if (clock
->p1
< limit
->p1
.min
|| limit
->p1
.max
< clock
->p1
)
610 INTELPllInvalid("p1 out of range\n");
611 if (clock
->m2
< limit
->m2
.min
|| limit
->m2
.max
< clock
->m2
)
612 INTELPllInvalid("m2 out of range\n");
613 if (clock
->m1
< limit
->m1
.min
|| limit
->m1
.max
< clock
->m1
)
614 INTELPllInvalid("m1 out of range\n");
616 if (!IS_PINEVIEW(dev_priv
) && !IS_VALLEYVIEW(dev_priv
) &&
617 !IS_CHERRYVIEW(dev_priv
) && !IS_GEN9_LP(dev_priv
))
618 if (clock
->m1
<= clock
->m2
)
619 INTELPllInvalid("m1 <= m2\n");
621 if (!IS_VALLEYVIEW(dev_priv
) && !IS_CHERRYVIEW(dev_priv
) &&
622 !IS_GEN9_LP(dev_priv
)) {
623 if (clock
->p
< limit
->p
.min
|| limit
->p
.max
< clock
->p
)
624 INTELPllInvalid("p out of range\n");
625 if (clock
->m
< limit
->m
.min
|| limit
->m
.max
< clock
->m
)
626 INTELPllInvalid("m out of range\n");
629 if (clock
->vco
< limit
->vco
.min
|| limit
->vco
.max
< clock
->vco
)
630 INTELPllInvalid("vco out of range\n");
631 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
632 * connector, etc., rather than just a single range.
634 if (clock
->dot
< limit
->dot
.min
|| limit
->dot
.max
< clock
->dot
)
635 INTELPllInvalid("dot out of range\n");
641 i9xx_select_p2_div(const struct intel_limit
*limit
,
642 const struct intel_crtc_state
*crtc_state
,
645 struct drm_device
*dev
= crtc_state
->base
.crtc
->dev
;
647 if (intel_crtc_has_type(crtc_state
, INTEL_OUTPUT_LVDS
)) {
649 * For LVDS just rely on its current settings for dual-channel.
650 * We haven't figured out how to reliably set up different
651 * single/dual channel state, if we even can.
653 if (intel_is_dual_link_lvds(dev
))
654 return limit
->p2
.p2_fast
;
656 return limit
->p2
.p2_slow
;
658 if (target
< limit
->p2
.dot_limit
)
659 return limit
->p2
.p2_slow
;
661 return limit
->p2
.p2_fast
;
666 * Returns a set of divisors for the desired target clock with the given
667 * refclk, or FALSE. The returned values represent the clock equation:
668 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
670 * Target and reference clocks are specified in kHz.
672 * If match_clock is provided, then best_clock P divider must match the P
673 * divider from @match_clock used for LVDS downclocking.
676 i9xx_find_best_dpll(const struct intel_limit
*limit
,
677 struct intel_crtc_state
*crtc_state
,
678 int target
, int refclk
, struct dpll
*match_clock
,
679 struct dpll
*best_clock
)
681 struct drm_device
*dev
= crtc_state
->base
.crtc
->dev
;
685 memset(best_clock
, 0, sizeof(*best_clock
));
687 clock
.p2
= i9xx_select_p2_div(limit
, crtc_state
, target
);
689 for (clock
.m1
= limit
->m1
.min
; clock
.m1
<= limit
->m1
.max
;
691 for (clock
.m2
= limit
->m2
.min
;
692 clock
.m2
<= limit
->m2
.max
; clock
.m2
++) {
693 if (clock
.m2
>= clock
.m1
)
695 for (clock
.n
= limit
->n
.min
;
696 clock
.n
<= limit
->n
.max
; clock
.n
++) {
697 for (clock
.p1
= limit
->p1
.min
;
698 clock
.p1
<= limit
->p1
.max
; clock
.p1
++) {
701 i9xx_calc_dpll_params(refclk
, &clock
);
702 if (!intel_PLL_is_valid(to_i915(dev
),
707 clock
.p
!= match_clock
->p
)
710 this_err
= abs(clock
.dot
- target
);
711 if (this_err
< err
) {
720 return (err
!= target
);
724 * Returns a set of divisors for the desired target clock with the given
725 * refclk, or FALSE. The returned values represent the clock equation:
726 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
728 * Target and reference clocks are specified in kHz.
730 * If match_clock is provided, then best_clock P divider must match the P
731 * divider from @match_clock used for LVDS downclocking.
734 pnv_find_best_dpll(const struct intel_limit
*limit
,
735 struct intel_crtc_state
*crtc_state
,
736 int target
, int refclk
, struct dpll
*match_clock
,
737 struct dpll
*best_clock
)
739 struct drm_device
*dev
= crtc_state
->base
.crtc
->dev
;
743 memset(best_clock
, 0, sizeof(*best_clock
));
745 clock
.p2
= i9xx_select_p2_div(limit
, crtc_state
, target
);
747 for (clock
.m1
= limit
->m1
.min
; clock
.m1
<= limit
->m1
.max
;
749 for (clock
.m2
= limit
->m2
.min
;
750 clock
.m2
<= limit
->m2
.max
; clock
.m2
++) {
751 for (clock
.n
= limit
->n
.min
;
752 clock
.n
<= limit
->n
.max
; clock
.n
++) {
753 for (clock
.p1
= limit
->p1
.min
;
754 clock
.p1
<= limit
->p1
.max
; clock
.p1
++) {
757 pnv_calc_dpll_params(refclk
, &clock
);
758 if (!intel_PLL_is_valid(to_i915(dev
),
763 clock
.p
!= match_clock
->p
)
766 this_err
= abs(clock
.dot
- target
);
767 if (this_err
< err
) {
776 return (err
!= target
);
780 * Returns a set of divisors for the desired target clock with the given
781 * refclk, or FALSE. The returned values represent the clock equation:
782 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
784 * Target and reference clocks are specified in kHz.
786 * If match_clock is provided, then best_clock P divider must match the P
787 * divider from @match_clock used for LVDS downclocking.
790 g4x_find_best_dpll(const struct intel_limit
*limit
,
791 struct intel_crtc_state
*crtc_state
,
792 int target
, int refclk
, struct dpll
*match_clock
,
793 struct dpll
*best_clock
)
795 struct drm_device
*dev
= crtc_state
->base
.crtc
->dev
;
799 /* approximately equals target * 0.00585 */
800 int err_most
= (target
>> 8) + (target
>> 9);
802 memset(best_clock
, 0, sizeof(*best_clock
));
804 clock
.p2
= i9xx_select_p2_div(limit
, crtc_state
, target
);
806 max_n
= limit
->n
.max
;
807 /* based on hardware requirement, prefer smaller n to precision */
808 for (clock
.n
= limit
->n
.min
; clock
.n
<= max_n
; clock
.n
++) {
809 /* based on hardware requirement, prefere larger m1,m2 */
810 for (clock
.m1
= limit
->m1
.max
;
811 clock
.m1
>= limit
->m1
.min
; clock
.m1
--) {
812 for (clock
.m2
= limit
->m2
.max
;
813 clock
.m2
>= limit
->m2
.min
; clock
.m2
--) {
814 for (clock
.p1
= limit
->p1
.max
;
815 clock
.p1
>= limit
->p1
.min
; clock
.p1
--) {
818 i9xx_calc_dpll_params(refclk
, &clock
);
819 if (!intel_PLL_is_valid(to_i915(dev
),
824 this_err
= abs(clock
.dot
- target
);
825 if (this_err
< err_most
) {
839 * Check if the calculated PLL configuration is more optimal compared to the
840 * best configuration and error found so far. Return the calculated error.
842 static bool vlv_PLL_is_optimal(struct drm_device
*dev
, int target_freq
,
843 const struct dpll
*calculated_clock
,
844 const struct dpll
*best_clock
,
845 unsigned int best_error_ppm
,
846 unsigned int *error_ppm
)
849 * For CHV ignore the error and consider only the P value.
850 * Prefer a bigger P value based on HW requirements.
852 if (IS_CHERRYVIEW(to_i915(dev
))) {
855 return calculated_clock
->p
> best_clock
->p
;
858 if (WARN_ON_ONCE(!target_freq
))
861 *error_ppm
= div_u64(1000000ULL *
862 abs(target_freq
- calculated_clock
->dot
),
865 * Prefer a better P value over a better (smaller) error if the error
866 * is small. Ensure this preference for future configurations too by
867 * setting the error to 0.
869 if (*error_ppm
< 100 && calculated_clock
->p
> best_clock
->p
) {
875 return *error_ppm
+ 10 < best_error_ppm
;
879 * Returns a set of divisors for the desired target clock with the given
880 * refclk, or FALSE. The returned values represent the clock equation:
881 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
884 vlv_find_best_dpll(const struct intel_limit
*limit
,
885 struct intel_crtc_state
*crtc_state
,
886 int target
, int refclk
, struct dpll
*match_clock
,
887 struct dpll
*best_clock
)
889 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->base
.crtc
);
890 struct drm_device
*dev
= crtc
->base
.dev
;
892 unsigned int bestppm
= 1000000;
893 /* min update 19.2 MHz */
894 int max_n
= min(limit
->n
.max
, refclk
/ 19200);
897 target
*= 5; /* fast clock */
899 memset(best_clock
, 0, sizeof(*best_clock
));
901 /* based on hardware requirement, prefer smaller n to precision */
902 for (clock
.n
= limit
->n
.min
; clock
.n
<= max_n
; clock
.n
++) {
903 for (clock
.p1
= limit
->p1
.max
; clock
.p1
>= limit
->p1
.min
; clock
.p1
--) {
904 for (clock
.p2
= limit
->p2
.p2_fast
; clock
.p2
>= limit
->p2
.p2_slow
;
905 clock
.p2
-= clock
.p2
> 10 ? 2 : 1) {
906 clock
.p
= clock
.p1
* clock
.p2
;
907 /* based on hardware requirement, prefer bigger m1,m2 values */
908 for (clock
.m1
= limit
->m1
.min
; clock
.m1
<= limit
->m1
.max
; clock
.m1
++) {
911 clock
.m2
= DIV_ROUND_CLOSEST(target
* clock
.p
* clock
.n
,
914 vlv_calc_dpll_params(refclk
, &clock
);
916 if (!intel_PLL_is_valid(to_i915(dev
),
921 if (!vlv_PLL_is_optimal(dev
, target
,
939 * Returns a set of divisors for the desired target clock with the given
940 * refclk, or FALSE. The returned values represent the clock equation:
941 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
944 chv_find_best_dpll(const struct intel_limit
*limit
,
945 struct intel_crtc_state
*crtc_state
,
946 int target
, int refclk
, struct dpll
*match_clock
,
947 struct dpll
*best_clock
)
949 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->base
.crtc
);
950 struct drm_device
*dev
= crtc
->base
.dev
;
951 unsigned int best_error_ppm
;
956 memset(best_clock
, 0, sizeof(*best_clock
));
957 best_error_ppm
= 1000000;
960 * Based on hardware doc, the n always set to 1, and m1 always
961 * set to 2. If requires to support 200Mhz refclk, we need to
962 * revisit this because n may not 1 anymore.
964 clock
.n
= 1, clock
.m1
= 2;
965 target
*= 5; /* fast clock */
967 for (clock
.p1
= limit
->p1
.max
; clock
.p1
>= limit
->p1
.min
; clock
.p1
--) {
968 for (clock
.p2
= limit
->p2
.p2_fast
;
969 clock
.p2
>= limit
->p2
.p2_slow
;
970 clock
.p2
-= clock
.p2
> 10 ? 2 : 1) {
971 unsigned int error_ppm
;
973 clock
.p
= clock
.p1
* clock
.p2
;
975 m2
= DIV_ROUND_CLOSEST_ULL(((uint64_t)target
* clock
.p
*
976 clock
.n
) << 22, refclk
* clock
.m1
);
978 if (m2
> INT_MAX
/clock
.m1
)
983 chv_calc_dpll_params(refclk
, &clock
);
985 if (!intel_PLL_is_valid(to_i915(dev
), limit
, &clock
))
988 if (!vlv_PLL_is_optimal(dev
, target
, &clock
, best_clock
,
989 best_error_ppm
, &error_ppm
))
993 best_error_ppm
= error_ppm
;
1001 bool bxt_find_best_dpll(struct intel_crtc_state
*crtc_state
, int target_clock
,
1002 struct dpll
*best_clock
)
1004 int refclk
= 100000;
1005 const struct intel_limit
*limit
= &intel_limits_bxt
;
1007 return chv_find_best_dpll(limit
, crtc_state
,
1008 target_clock
, refclk
, NULL
, best_clock
);
1011 bool intel_crtc_active(struct intel_crtc
*crtc
)
1013 /* Be paranoid as we can arrive here with only partial
1014 * state retrieved from the hardware during setup.
1016 * We can ditch the adjusted_mode.crtc_clock check as soon
1017 * as Haswell has gained clock readout/fastboot support.
1019 * We can ditch the crtc->primary->fb check as soon as we can
1020 * properly reconstruct framebuffers.
1022 * FIXME: The intel_crtc->active here should be switched to
1023 * crtc->state->active once we have proper CRTC states wired up
1026 return crtc
->active
&& crtc
->base
.primary
->state
->fb
&&
1027 crtc
->config
->base
.adjusted_mode
.crtc_clock
;
1030 enum transcoder
intel_pipe_to_cpu_transcoder(struct drm_i915_private
*dev_priv
,
1033 struct intel_crtc
*crtc
= intel_get_crtc_for_pipe(dev_priv
, pipe
);
1035 return crtc
->config
->cpu_transcoder
;
1038 static bool pipe_dsl_stopped(struct drm_i915_private
*dev_priv
, enum pipe pipe
)
1040 i915_reg_t reg
= PIPEDSL(pipe
);
1044 if (IS_GEN2(dev_priv
))
1045 line_mask
= DSL_LINEMASK_GEN2
;
1047 line_mask
= DSL_LINEMASK_GEN3
;
1049 line1
= I915_READ(reg
) & line_mask
;
1051 line2
= I915_READ(reg
) & line_mask
;
1053 return line1
== line2
;
1057 * intel_wait_for_pipe_off - wait for pipe to turn off
1058 * @crtc: crtc whose pipe to wait for
1060 * After disabling a pipe, we can't wait for vblank in the usual way,
1061 * spinning on the vblank interrupt status bit, since we won't actually
1062 * see an interrupt when the pipe is disabled.
1064 * On Gen4 and above:
1065 * wait for the pipe register state bit to turn off
1068 * wait for the display line value to settle (it usually
1069 * ends up stopping at the start of the next frame).
1072 static void intel_wait_for_pipe_off(struct intel_crtc
*crtc
)
1074 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
1075 enum transcoder cpu_transcoder
= crtc
->config
->cpu_transcoder
;
1076 enum pipe pipe
= crtc
->pipe
;
1078 if (INTEL_GEN(dev_priv
) >= 4) {
1079 i915_reg_t reg
= PIPECONF(cpu_transcoder
);
1081 /* Wait for the Pipe State to go off */
1082 if (intel_wait_for_register(dev_priv
,
1083 reg
, I965_PIPECONF_ACTIVE
, 0,
1085 WARN(1, "pipe_off wait timed out\n");
1087 /* Wait for the display line to settle */
1088 if (wait_for(pipe_dsl_stopped(dev_priv
, pipe
), 100))
1089 WARN(1, "pipe_off wait timed out\n");
1093 /* Only for pre-ILK configs */
1094 void assert_pll(struct drm_i915_private
*dev_priv
,
1095 enum pipe pipe
, bool state
)
1100 val
= I915_READ(DPLL(pipe
));
1101 cur_state
= !!(val
& DPLL_VCO_ENABLE
);
1102 I915_STATE_WARN(cur_state
!= state
,
1103 "PLL state assertion failure (expected %s, current %s)\n",
1104 onoff(state
), onoff(cur_state
));
1107 /* XXX: the dsi pll is shared between MIPI DSI ports */
1108 void assert_dsi_pll(struct drm_i915_private
*dev_priv
, bool state
)
1113 mutex_lock(&dev_priv
->sb_lock
);
1114 val
= vlv_cck_read(dev_priv
, CCK_REG_DSI_PLL_CONTROL
);
1115 mutex_unlock(&dev_priv
->sb_lock
);
1117 cur_state
= val
& DSI_PLL_VCO_EN
;
1118 I915_STATE_WARN(cur_state
!= state
,
1119 "DSI PLL state assertion failure (expected %s, current %s)\n",
1120 onoff(state
), onoff(cur_state
));
1123 static void assert_fdi_tx(struct drm_i915_private
*dev_priv
,
1124 enum pipe pipe
, bool state
)
1127 enum transcoder cpu_transcoder
= intel_pipe_to_cpu_transcoder(dev_priv
,
1130 if (HAS_DDI(dev_priv
)) {
1131 /* DDI does not have a specific FDI_TX register */
1132 u32 val
= I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder
));
1133 cur_state
= !!(val
& TRANS_DDI_FUNC_ENABLE
);
1135 u32 val
= I915_READ(FDI_TX_CTL(pipe
));
1136 cur_state
= !!(val
& FDI_TX_ENABLE
);
1138 I915_STATE_WARN(cur_state
!= state
,
1139 "FDI TX state assertion failure (expected %s, current %s)\n",
1140 onoff(state
), onoff(cur_state
));
1142 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1145 static void assert_fdi_rx(struct drm_i915_private
*dev_priv
,
1146 enum pipe pipe
, bool state
)
1151 val
= I915_READ(FDI_RX_CTL(pipe
));
1152 cur_state
= !!(val
& FDI_RX_ENABLE
);
1153 I915_STATE_WARN(cur_state
!= state
,
1154 "FDI RX state assertion failure (expected %s, current %s)\n",
1155 onoff(state
), onoff(cur_state
));
1157 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1158 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1160 static void assert_fdi_tx_pll_enabled(struct drm_i915_private
*dev_priv
,
1165 /* ILK FDI PLL is always enabled */
1166 if (IS_GEN5(dev_priv
))
1169 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1170 if (HAS_DDI(dev_priv
))
1173 val
= I915_READ(FDI_TX_CTL(pipe
));
1174 I915_STATE_WARN(!(val
& FDI_TX_PLL_ENABLE
), "FDI TX PLL assertion failure, should be active but is disabled\n");
1177 void assert_fdi_rx_pll(struct drm_i915_private
*dev_priv
,
1178 enum pipe pipe
, bool state
)
1183 val
= I915_READ(FDI_RX_CTL(pipe
));
1184 cur_state
= !!(val
& FDI_RX_PLL_ENABLE
);
1185 I915_STATE_WARN(cur_state
!= state
,
1186 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1187 onoff(state
), onoff(cur_state
));
1190 void assert_panel_unlocked(struct drm_i915_private
*dev_priv
, enum pipe pipe
)
1194 enum pipe panel_pipe
= PIPE_A
;
1197 if (WARN_ON(HAS_DDI(dev_priv
)))
1200 if (HAS_PCH_SPLIT(dev_priv
)) {
1203 pp_reg
= PP_CONTROL(0);
1204 port_sel
= I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK
;
1206 if (port_sel
== PANEL_PORT_SELECT_LVDS
&&
1207 I915_READ(PCH_LVDS
) & LVDS_PIPEB_SELECT
)
1208 panel_pipe
= PIPE_B
;
1209 /* XXX: else fix for eDP */
1210 } else if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
)) {
1211 /* presumably write lock depends on pipe, not port select */
1212 pp_reg
= PP_CONTROL(pipe
);
1215 pp_reg
= PP_CONTROL(0);
1216 if (I915_READ(LVDS
) & LVDS_PIPEB_SELECT
)
1217 panel_pipe
= PIPE_B
;
1220 val
= I915_READ(pp_reg
);
1221 if (!(val
& PANEL_POWER_ON
) ||
1222 ((val
& PANEL_UNLOCK_MASK
) == PANEL_UNLOCK_REGS
))
1225 I915_STATE_WARN(panel_pipe
== pipe
&& locked
,
1226 "panel assertion failure, pipe %c regs locked\n",
1230 static void assert_cursor(struct drm_i915_private
*dev_priv
,
1231 enum pipe pipe
, bool state
)
1235 if (IS_I845G(dev_priv
) || IS_I865G(dev_priv
))
1236 cur_state
= I915_READ(CURCNTR(PIPE_A
)) & CURSOR_ENABLE
;
1238 cur_state
= I915_READ(CURCNTR(pipe
)) & CURSOR_MODE
;
1240 I915_STATE_WARN(cur_state
!= state
,
1241 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1242 pipe_name(pipe
), onoff(state
), onoff(cur_state
));
1244 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1245 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1247 void assert_pipe(struct drm_i915_private
*dev_priv
,
1248 enum pipe pipe
, bool state
)
1251 enum transcoder cpu_transcoder
= intel_pipe_to_cpu_transcoder(dev_priv
,
1253 enum intel_display_power_domain power_domain
;
1255 /* if we need the pipe quirk it must be always on */
1256 if ((pipe
== PIPE_A
&& dev_priv
->quirks
& QUIRK_PIPEA_FORCE
) ||
1257 (pipe
== PIPE_B
&& dev_priv
->quirks
& QUIRK_PIPEB_FORCE
))
1260 power_domain
= POWER_DOMAIN_TRANSCODER(cpu_transcoder
);
1261 if (intel_display_power_get_if_enabled(dev_priv
, power_domain
)) {
1262 u32 val
= I915_READ(PIPECONF(cpu_transcoder
));
1263 cur_state
= !!(val
& PIPECONF_ENABLE
);
1265 intel_display_power_put(dev_priv
, power_domain
);
1270 I915_STATE_WARN(cur_state
!= state
,
1271 "pipe %c assertion failure (expected %s, current %s)\n",
1272 pipe_name(pipe
), onoff(state
), onoff(cur_state
));
1275 static void assert_plane(struct drm_i915_private
*dev_priv
,
1276 enum plane plane
, bool state
)
1281 val
= I915_READ(DSPCNTR(plane
));
1282 cur_state
= !!(val
& DISPLAY_PLANE_ENABLE
);
1283 I915_STATE_WARN(cur_state
!= state
,
1284 "plane %c assertion failure (expected %s, current %s)\n",
1285 plane_name(plane
), onoff(state
), onoff(cur_state
));
1288 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1289 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1291 static void assert_planes_disabled(struct drm_i915_private
*dev_priv
,
1296 /* Primary planes are fixed to pipes on gen4+ */
1297 if (INTEL_GEN(dev_priv
) >= 4) {
1298 u32 val
= I915_READ(DSPCNTR(pipe
));
1299 I915_STATE_WARN(val
& DISPLAY_PLANE_ENABLE
,
1300 "plane %c assertion failure, should be disabled but not\n",
1305 /* Need to check both planes against the pipe */
1306 for_each_pipe(dev_priv
, i
) {
1307 u32 val
= I915_READ(DSPCNTR(i
));
1308 enum pipe cur_pipe
= (val
& DISPPLANE_SEL_PIPE_MASK
) >>
1309 DISPPLANE_SEL_PIPE_SHIFT
;
1310 I915_STATE_WARN((val
& DISPLAY_PLANE_ENABLE
) && pipe
== cur_pipe
,
1311 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1312 plane_name(i
), pipe_name(pipe
));
1316 static void assert_sprites_disabled(struct drm_i915_private
*dev_priv
,
1321 if (INTEL_GEN(dev_priv
) >= 9) {
1322 for_each_sprite(dev_priv
, pipe
, sprite
) {
1323 u32 val
= I915_READ(PLANE_CTL(pipe
, sprite
));
1324 I915_STATE_WARN(val
& PLANE_CTL_ENABLE
,
1325 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1326 sprite
, pipe_name(pipe
));
1328 } else if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
)) {
1329 for_each_sprite(dev_priv
, pipe
, sprite
) {
1330 u32 val
= I915_READ(SPCNTR(pipe
, PLANE_SPRITE0
+ sprite
));
1331 I915_STATE_WARN(val
& SP_ENABLE
,
1332 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1333 sprite_name(pipe
, sprite
), pipe_name(pipe
));
1335 } else if (INTEL_GEN(dev_priv
) >= 7) {
1336 u32 val
= I915_READ(SPRCTL(pipe
));
1337 I915_STATE_WARN(val
& SPRITE_ENABLE
,
1338 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1339 plane_name(pipe
), pipe_name(pipe
));
1340 } else if (INTEL_GEN(dev_priv
) >= 5) {
1341 u32 val
= I915_READ(DVSCNTR(pipe
));
1342 I915_STATE_WARN(val
& DVS_ENABLE
,
1343 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1344 plane_name(pipe
), pipe_name(pipe
));
1348 static void assert_vblank_disabled(struct drm_crtc
*crtc
)
1350 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc
) == 0))
1351 drm_crtc_vblank_put(crtc
);
1354 void assert_pch_transcoder_disabled(struct drm_i915_private
*dev_priv
,
1360 val
= I915_READ(PCH_TRANSCONF(pipe
));
1361 enabled
= !!(val
& TRANS_ENABLE
);
1362 I915_STATE_WARN(enabled
,
1363 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1367 static bool dp_pipe_enabled(struct drm_i915_private
*dev_priv
,
1368 enum pipe pipe
, u32 port_sel
, u32 val
)
1370 if ((val
& DP_PORT_EN
) == 0)
1373 if (HAS_PCH_CPT(dev_priv
)) {
1374 u32 trans_dp_ctl
= I915_READ(TRANS_DP_CTL(pipe
));
1375 if ((trans_dp_ctl
& TRANS_DP_PORT_SEL_MASK
) != port_sel
)
1377 } else if (IS_CHERRYVIEW(dev_priv
)) {
1378 if ((val
& DP_PIPE_MASK_CHV
) != DP_PIPE_SELECT_CHV(pipe
))
1381 if ((val
& DP_PIPE_MASK
) != (pipe
<< 30))
1387 static bool hdmi_pipe_enabled(struct drm_i915_private
*dev_priv
,
1388 enum pipe pipe
, u32 val
)
1390 if ((val
& SDVO_ENABLE
) == 0)
1393 if (HAS_PCH_CPT(dev_priv
)) {
1394 if ((val
& SDVO_PIPE_SEL_MASK_CPT
) != SDVO_PIPE_SEL_CPT(pipe
))
1396 } else if (IS_CHERRYVIEW(dev_priv
)) {
1397 if ((val
& SDVO_PIPE_SEL_MASK_CHV
) != SDVO_PIPE_SEL_CHV(pipe
))
1400 if ((val
& SDVO_PIPE_SEL_MASK
) != SDVO_PIPE_SEL(pipe
))
1406 static bool lvds_pipe_enabled(struct drm_i915_private
*dev_priv
,
1407 enum pipe pipe
, u32 val
)
1409 if ((val
& LVDS_PORT_EN
) == 0)
1412 if (HAS_PCH_CPT(dev_priv
)) {
1413 if ((val
& PORT_TRANS_SEL_MASK
) != PORT_TRANS_SEL_CPT(pipe
))
1416 if ((val
& LVDS_PIPE_MASK
) != LVDS_PIPE(pipe
))
1422 static bool adpa_pipe_enabled(struct drm_i915_private
*dev_priv
,
1423 enum pipe pipe
, u32 val
)
1425 if ((val
& ADPA_DAC_ENABLE
) == 0)
1427 if (HAS_PCH_CPT(dev_priv
)) {
1428 if ((val
& PORT_TRANS_SEL_MASK
) != PORT_TRANS_SEL_CPT(pipe
))
1431 if ((val
& ADPA_PIPE_SELECT_MASK
) != ADPA_PIPE_SELECT(pipe
))
1437 static void assert_pch_dp_disabled(struct drm_i915_private
*dev_priv
,
1438 enum pipe pipe
, i915_reg_t reg
,
1441 u32 val
= I915_READ(reg
);
1442 I915_STATE_WARN(dp_pipe_enabled(dev_priv
, pipe
, port_sel
, val
),
1443 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1444 i915_mmio_reg_offset(reg
), pipe_name(pipe
));
1446 I915_STATE_WARN(HAS_PCH_IBX(dev_priv
) && (val
& DP_PORT_EN
) == 0
1447 && (val
& DP_PIPEB_SELECT
),
1448 "IBX PCH dp port still using transcoder B\n");
1451 static void assert_pch_hdmi_disabled(struct drm_i915_private
*dev_priv
,
1452 enum pipe pipe
, i915_reg_t reg
)
1454 u32 val
= I915_READ(reg
);
1455 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv
, pipe
, val
),
1456 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1457 i915_mmio_reg_offset(reg
), pipe_name(pipe
));
1459 I915_STATE_WARN(HAS_PCH_IBX(dev_priv
) && (val
& SDVO_ENABLE
) == 0
1460 && (val
& SDVO_PIPE_B_SELECT
),
1461 "IBX PCH hdmi port still using transcoder B\n");
1464 static void assert_pch_ports_disabled(struct drm_i915_private
*dev_priv
,
1469 assert_pch_dp_disabled(dev_priv
, pipe
, PCH_DP_B
, TRANS_DP_PORT_SEL_B
);
1470 assert_pch_dp_disabled(dev_priv
, pipe
, PCH_DP_C
, TRANS_DP_PORT_SEL_C
);
1471 assert_pch_dp_disabled(dev_priv
, pipe
, PCH_DP_D
, TRANS_DP_PORT_SEL_D
);
1473 val
= I915_READ(PCH_ADPA
);
1474 I915_STATE_WARN(adpa_pipe_enabled(dev_priv
, pipe
, val
),
1475 "PCH VGA enabled on transcoder %c, should be disabled\n",
1478 val
= I915_READ(PCH_LVDS
);
1479 I915_STATE_WARN(lvds_pipe_enabled(dev_priv
, pipe
, val
),
1480 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1483 assert_pch_hdmi_disabled(dev_priv
, pipe
, PCH_HDMIB
);
1484 assert_pch_hdmi_disabled(dev_priv
, pipe
, PCH_HDMIC
);
1485 assert_pch_hdmi_disabled(dev_priv
, pipe
, PCH_HDMID
);
1488 static void _vlv_enable_pll(struct intel_crtc
*crtc
,
1489 const struct intel_crtc_state
*pipe_config
)
1491 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
1492 enum pipe pipe
= crtc
->pipe
;
1494 I915_WRITE(DPLL(pipe
), pipe_config
->dpll_hw_state
.dpll
);
1495 POSTING_READ(DPLL(pipe
));
1498 if (intel_wait_for_register(dev_priv
,
1503 DRM_ERROR("DPLL %d failed to lock\n", pipe
);
1506 static void vlv_enable_pll(struct intel_crtc
*crtc
,
1507 const struct intel_crtc_state
*pipe_config
)
1509 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
1510 enum pipe pipe
= crtc
->pipe
;
1512 assert_pipe_disabled(dev_priv
, pipe
);
1514 /* PLL is protected by panel, make sure we can write it */
1515 assert_panel_unlocked(dev_priv
, pipe
);
1517 if (pipe_config
->dpll_hw_state
.dpll
& DPLL_VCO_ENABLE
)
1518 _vlv_enable_pll(crtc
, pipe_config
);
1520 I915_WRITE(DPLL_MD(pipe
), pipe_config
->dpll_hw_state
.dpll_md
);
1521 POSTING_READ(DPLL_MD(pipe
));
1525 static void _chv_enable_pll(struct intel_crtc
*crtc
,
1526 const struct intel_crtc_state
*pipe_config
)
1528 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
1529 enum pipe pipe
= crtc
->pipe
;
1530 enum dpio_channel port
= vlv_pipe_to_channel(pipe
);
1533 mutex_lock(&dev_priv
->sb_lock
);
1535 /* Enable back the 10bit clock to display controller */
1536 tmp
= vlv_dpio_read(dev_priv
, pipe
, CHV_CMN_DW14(port
));
1537 tmp
|= DPIO_DCLKP_EN
;
1538 vlv_dpio_write(dev_priv
, pipe
, CHV_CMN_DW14(port
), tmp
);
1540 mutex_unlock(&dev_priv
->sb_lock
);
1543 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1548 I915_WRITE(DPLL(pipe
), pipe_config
->dpll_hw_state
.dpll
);
1550 /* Check PLL is locked */
1551 if (intel_wait_for_register(dev_priv
,
1552 DPLL(pipe
), DPLL_LOCK_VLV
, DPLL_LOCK_VLV
,
1554 DRM_ERROR("PLL %d failed to lock\n", pipe
);
1557 static void chv_enable_pll(struct intel_crtc
*crtc
,
1558 const struct intel_crtc_state
*pipe_config
)
1560 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
1561 enum pipe pipe
= crtc
->pipe
;
1563 assert_pipe_disabled(dev_priv
, pipe
);
1565 /* PLL is protected by panel, make sure we can write it */
1566 assert_panel_unlocked(dev_priv
, pipe
);
1568 if (pipe_config
->dpll_hw_state
.dpll
& DPLL_VCO_ENABLE
)
1569 _chv_enable_pll(crtc
, pipe_config
);
1571 if (pipe
!= PIPE_A
) {
1573 * WaPixelRepeatModeFixForC0:chv
1575 * DPLLCMD is AWOL. Use chicken bits to propagate
1576 * the value from DPLLBMD to either pipe B or C.
1578 I915_WRITE(CBR4_VLV
, pipe
== PIPE_B
? CBR_DPLLBMD_PIPE_B
: CBR_DPLLBMD_PIPE_C
);
1579 I915_WRITE(DPLL_MD(PIPE_B
), pipe_config
->dpll_hw_state
.dpll_md
);
1580 I915_WRITE(CBR4_VLV
, 0);
1581 dev_priv
->chv_dpll_md
[pipe
] = pipe_config
->dpll_hw_state
.dpll_md
;
1584 * DPLLB VGA mode also seems to cause problems.
1585 * We should always have it disabled.
1587 WARN_ON((I915_READ(DPLL(PIPE_B
)) & DPLL_VGA_MODE_DIS
) == 0);
1589 I915_WRITE(DPLL_MD(pipe
), pipe_config
->dpll_hw_state
.dpll_md
);
1590 POSTING_READ(DPLL_MD(pipe
));
1594 static int intel_num_dvo_pipes(struct drm_i915_private
*dev_priv
)
1596 struct intel_crtc
*crtc
;
1599 for_each_intel_crtc(&dev_priv
->drm
, crtc
) {
1600 count
+= crtc
->base
.state
->active
&&
1601 intel_crtc_has_type(crtc
->config
, INTEL_OUTPUT_DVO
);
1607 static void i9xx_enable_pll(struct intel_crtc
*crtc
)
1609 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
1610 i915_reg_t reg
= DPLL(crtc
->pipe
);
1611 u32 dpll
= crtc
->config
->dpll_hw_state
.dpll
;
1613 assert_pipe_disabled(dev_priv
, crtc
->pipe
);
1615 /* PLL is protected by panel, make sure we can write it */
1616 if (IS_MOBILE(dev_priv
) && !IS_I830(dev_priv
))
1617 assert_panel_unlocked(dev_priv
, crtc
->pipe
);
1619 /* Enable DVO 2x clock on both PLLs if necessary */
1620 if (IS_I830(dev_priv
) && intel_num_dvo_pipes(dev_priv
) > 0) {
1622 * It appears to be important that we don't enable this
1623 * for the current pipe before otherwise configuring the
1624 * PLL. No idea how this should be handled if multiple
1625 * DVO outputs are enabled simultaneosly.
1627 dpll
|= DPLL_DVO_2X_MODE
;
1628 I915_WRITE(DPLL(!crtc
->pipe
),
1629 I915_READ(DPLL(!crtc
->pipe
)) | DPLL_DVO_2X_MODE
);
1633 * Apparently we need to have VGA mode enabled prior to changing
1634 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1635 * dividers, even though the register value does change.
1639 I915_WRITE(reg
, dpll
);
1641 /* Wait for the clocks to stabilize. */
1645 if (INTEL_GEN(dev_priv
) >= 4) {
1646 I915_WRITE(DPLL_MD(crtc
->pipe
),
1647 crtc
->config
->dpll_hw_state
.dpll_md
);
1649 /* The pixel multiplier can only be updated once the
1650 * DPLL is enabled and the clocks are stable.
1652 * So write it again.
1654 I915_WRITE(reg
, dpll
);
1657 /* We do this three times for luck */
1658 I915_WRITE(reg
, dpll
);
1660 udelay(150); /* wait for warmup */
1661 I915_WRITE(reg
, dpll
);
1663 udelay(150); /* wait for warmup */
1664 I915_WRITE(reg
, dpll
);
1666 udelay(150); /* wait for warmup */
1670 * i9xx_disable_pll - disable a PLL
1671 * @dev_priv: i915 private structure
1672 * @pipe: pipe PLL to disable
1674 * Disable the PLL for @pipe, making sure the pipe is off first.
1676 * Note! This is for pre-ILK only.
1678 static void i9xx_disable_pll(struct intel_crtc
*crtc
)
1680 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
1681 enum pipe pipe
= crtc
->pipe
;
1683 /* Disable DVO 2x clock on both PLLs if necessary */
1684 if (IS_I830(dev_priv
) &&
1685 intel_crtc_has_type(crtc
->config
, INTEL_OUTPUT_DVO
) &&
1686 !intel_num_dvo_pipes(dev_priv
)) {
1687 I915_WRITE(DPLL(PIPE_B
),
1688 I915_READ(DPLL(PIPE_B
)) & ~DPLL_DVO_2X_MODE
);
1689 I915_WRITE(DPLL(PIPE_A
),
1690 I915_READ(DPLL(PIPE_A
)) & ~DPLL_DVO_2X_MODE
);
1693 /* Don't disable pipe or pipe PLLs if needed */
1694 if ((pipe
== PIPE_A
&& dev_priv
->quirks
& QUIRK_PIPEA_FORCE
) ||
1695 (pipe
== PIPE_B
&& dev_priv
->quirks
& QUIRK_PIPEB_FORCE
))
1698 /* Make sure the pipe isn't still relying on us */
1699 assert_pipe_disabled(dev_priv
, pipe
);
1701 I915_WRITE(DPLL(pipe
), DPLL_VGA_MODE_DIS
);
1702 POSTING_READ(DPLL(pipe
));
1705 static void vlv_disable_pll(struct drm_i915_private
*dev_priv
, enum pipe pipe
)
1709 /* Make sure the pipe isn't still relying on us */
1710 assert_pipe_disabled(dev_priv
, pipe
);
1712 val
= DPLL_INTEGRATED_REF_CLK_VLV
|
1713 DPLL_REF_CLK_ENABLE_VLV
| DPLL_VGA_MODE_DIS
;
1715 val
|= DPLL_INTEGRATED_CRI_CLK_VLV
;
1717 I915_WRITE(DPLL(pipe
), val
);
1718 POSTING_READ(DPLL(pipe
));
1721 static void chv_disable_pll(struct drm_i915_private
*dev_priv
, enum pipe pipe
)
1723 enum dpio_channel port
= vlv_pipe_to_channel(pipe
);
1726 /* Make sure the pipe isn't still relying on us */
1727 assert_pipe_disabled(dev_priv
, pipe
);
1729 val
= DPLL_SSC_REF_CLK_CHV
|
1730 DPLL_REF_CLK_ENABLE_VLV
| DPLL_VGA_MODE_DIS
;
1732 val
|= DPLL_INTEGRATED_CRI_CLK_VLV
;
1734 I915_WRITE(DPLL(pipe
), val
);
1735 POSTING_READ(DPLL(pipe
));
1737 mutex_lock(&dev_priv
->sb_lock
);
1739 /* Disable 10bit clock to display controller */
1740 val
= vlv_dpio_read(dev_priv
, pipe
, CHV_CMN_DW14(port
));
1741 val
&= ~DPIO_DCLKP_EN
;
1742 vlv_dpio_write(dev_priv
, pipe
, CHV_CMN_DW14(port
), val
);
1744 mutex_unlock(&dev_priv
->sb_lock
);
1747 void vlv_wait_port_ready(struct drm_i915_private
*dev_priv
,
1748 struct intel_digital_port
*dport
,
1749 unsigned int expected_mask
)
1752 i915_reg_t dpll_reg
;
1754 switch (dport
->port
) {
1756 port_mask
= DPLL_PORTB_READY_MASK
;
1760 port_mask
= DPLL_PORTC_READY_MASK
;
1762 expected_mask
<<= 4;
1765 port_mask
= DPLL_PORTD_READY_MASK
;
1766 dpll_reg
= DPIO_PHY_STATUS
;
1772 if (intel_wait_for_register(dev_priv
,
1773 dpll_reg
, port_mask
, expected_mask
,
1775 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1776 port_name(dport
->port
), I915_READ(dpll_reg
) & port_mask
, expected_mask
);
1779 static void ironlake_enable_pch_transcoder(struct drm_i915_private
*dev_priv
,
1782 struct intel_crtc
*intel_crtc
= intel_get_crtc_for_pipe(dev_priv
,
1785 uint32_t val
, pipeconf_val
;
1787 /* Make sure PCH DPLL is enabled */
1788 assert_shared_dpll_enabled(dev_priv
, intel_crtc
->config
->shared_dpll
);
1790 /* FDI must be feeding us bits for PCH ports */
1791 assert_fdi_tx_enabled(dev_priv
, pipe
);
1792 assert_fdi_rx_enabled(dev_priv
, pipe
);
1794 if (HAS_PCH_CPT(dev_priv
)) {
1795 /* Workaround: Set the timing override bit before enabling the
1796 * pch transcoder. */
1797 reg
= TRANS_CHICKEN2(pipe
);
1798 val
= I915_READ(reg
);
1799 val
|= TRANS_CHICKEN2_TIMING_OVERRIDE
;
1800 I915_WRITE(reg
, val
);
1803 reg
= PCH_TRANSCONF(pipe
);
1804 val
= I915_READ(reg
);
1805 pipeconf_val
= I915_READ(PIPECONF(pipe
));
1807 if (HAS_PCH_IBX(dev_priv
)) {
1809 * Make the BPC in transcoder be consistent with
1810 * that in pipeconf reg. For HDMI we must use 8bpc
1811 * here for both 8bpc and 12bpc.
1813 val
&= ~PIPECONF_BPC_MASK
;
1814 if (intel_crtc_has_type(intel_crtc
->config
, INTEL_OUTPUT_HDMI
))
1815 val
|= PIPECONF_8BPC
;
1817 val
|= pipeconf_val
& PIPECONF_BPC_MASK
;
1820 val
&= ~TRANS_INTERLACE_MASK
;
1821 if ((pipeconf_val
& PIPECONF_INTERLACE_MASK
) == PIPECONF_INTERLACED_ILK
)
1822 if (HAS_PCH_IBX(dev_priv
) &&
1823 intel_crtc_has_type(intel_crtc
->config
, INTEL_OUTPUT_SDVO
))
1824 val
|= TRANS_LEGACY_INTERLACED_ILK
;
1826 val
|= TRANS_INTERLACED
;
1828 val
|= TRANS_PROGRESSIVE
;
1830 I915_WRITE(reg
, val
| TRANS_ENABLE
);
1831 if (intel_wait_for_register(dev_priv
,
1832 reg
, TRANS_STATE_ENABLE
, TRANS_STATE_ENABLE
,
1834 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe
));
1837 static void lpt_enable_pch_transcoder(struct drm_i915_private
*dev_priv
,
1838 enum transcoder cpu_transcoder
)
1840 u32 val
, pipeconf_val
;
1842 /* FDI must be feeding us bits for PCH ports */
1843 assert_fdi_tx_enabled(dev_priv
, (enum pipe
) cpu_transcoder
);
1844 assert_fdi_rx_enabled(dev_priv
, TRANSCODER_A
);
1846 /* Workaround: set timing override bit. */
1847 val
= I915_READ(TRANS_CHICKEN2(PIPE_A
));
1848 val
|= TRANS_CHICKEN2_TIMING_OVERRIDE
;
1849 I915_WRITE(TRANS_CHICKEN2(PIPE_A
), val
);
1852 pipeconf_val
= I915_READ(PIPECONF(cpu_transcoder
));
1854 if ((pipeconf_val
& PIPECONF_INTERLACE_MASK_HSW
) ==
1855 PIPECONF_INTERLACED_ILK
)
1856 val
|= TRANS_INTERLACED
;
1858 val
|= TRANS_PROGRESSIVE
;
1860 I915_WRITE(LPT_TRANSCONF
, val
);
1861 if (intel_wait_for_register(dev_priv
,
1866 DRM_ERROR("Failed to enable PCH transcoder\n");
1869 static void ironlake_disable_pch_transcoder(struct drm_i915_private
*dev_priv
,
1875 /* FDI relies on the transcoder */
1876 assert_fdi_tx_disabled(dev_priv
, pipe
);
1877 assert_fdi_rx_disabled(dev_priv
, pipe
);
1879 /* Ports must be off as well */
1880 assert_pch_ports_disabled(dev_priv
, pipe
);
1882 reg
= PCH_TRANSCONF(pipe
);
1883 val
= I915_READ(reg
);
1884 val
&= ~TRANS_ENABLE
;
1885 I915_WRITE(reg
, val
);
1886 /* wait for PCH transcoder off, transcoder state */
1887 if (intel_wait_for_register(dev_priv
,
1888 reg
, TRANS_STATE_ENABLE
, 0,
1890 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe
));
1892 if (HAS_PCH_CPT(dev_priv
)) {
1893 /* Workaround: Clear the timing override chicken bit again. */
1894 reg
= TRANS_CHICKEN2(pipe
);
1895 val
= I915_READ(reg
);
1896 val
&= ~TRANS_CHICKEN2_TIMING_OVERRIDE
;
1897 I915_WRITE(reg
, val
);
1901 void lpt_disable_pch_transcoder(struct drm_i915_private
*dev_priv
)
1905 val
= I915_READ(LPT_TRANSCONF
);
1906 val
&= ~TRANS_ENABLE
;
1907 I915_WRITE(LPT_TRANSCONF
, val
);
1908 /* wait for PCH transcoder off, transcoder state */
1909 if (intel_wait_for_register(dev_priv
,
1910 LPT_TRANSCONF
, TRANS_STATE_ENABLE
, 0,
1912 DRM_ERROR("Failed to disable PCH transcoder\n");
1914 /* Workaround: clear timing override bit. */
1915 val
= I915_READ(TRANS_CHICKEN2(PIPE_A
));
1916 val
&= ~TRANS_CHICKEN2_TIMING_OVERRIDE
;
1917 I915_WRITE(TRANS_CHICKEN2(PIPE_A
), val
);
1920 enum transcoder
intel_crtc_pch_transcoder(struct intel_crtc
*crtc
)
1922 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
1924 WARN_ON(!crtc
->config
->has_pch_encoder
);
1926 if (HAS_PCH_LPT(dev_priv
))
1927 return TRANSCODER_A
;
1929 return (enum transcoder
) crtc
->pipe
;
1933 * intel_enable_pipe - enable a pipe, asserting requirements
1934 * @crtc: crtc responsible for the pipe
1936 * Enable @crtc's pipe, making sure that various hardware specific requirements
1937 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1939 static void intel_enable_pipe(struct intel_crtc
*crtc
)
1941 struct drm_device
*dev
= crtc
->base
.dev
;
1942 struct drm_i915_private
*dev_priv
= to_i915(dev
);
1943 enum pipe pipe
= crtc
->pipe
;
1944 enum transcoder cpu_transcoder
= crtc
->config
->cpu_transcoder
;
1948 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe
));
1950 assert_planes_disabled(dev_priv
, pipe
);
1951 assert_cursor_disabled(dev_priv
, pipe
);
1952 assert_sprites_disabled(dev_priv
, pipe
);
1955 * A pipe without a PLL won't actually be able to drive bits from
1956 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1959 if (HAS_GMCH_DISPLAY(dev_priv
)) {
1960 if (intel_crtc_has_type(crtc
->config
, INTEL_OUTPUT_DSI
))
1961 assert_dsi_pll_enabled(dev_priv
);
1963 assert_pll_enabled(dev_priv
, pipe
);
1965 if (crtc
->config
->has_pch_encoder
) {
1966 /* if driving the PCH, we need FDI enabled */
1967 assert_fdi_rx_pll_enabled(dev_priv
,
1968 (enum pipe
) intel_crtc_pch_transcoder(crtc
));
1969 assert_fdi_tx_pll_enabled(dev_priv
,
1970 (enum pipe
) cpu_transcoder
);
1972 /* FIXME: assert CPU port conditions for SNB+ */
1975 reg
= PIPECONF(cpu_transcoder
);
1976 val
= I915_READ(reg
);
1977 if (val
& PIPECONF_ENABLE
) {
1978 WARN_ON(!((pipe
== PIPE_A
&& dev_priv
->quirks
& QUIRK_PIPEA_FORCE
) ||
1979 (pipe
== PIPE_B
&& dev_priv
->quirks
& QUIRK_PIPEB_FORCE
)));
1983 I915_WRITE(reg
, val
| PIPECONF_ENABLE
);
1987 * Until the pipe starts DSL will read as 0, which would cause
1988 * an apparent vblank timestamp jump, which messes up also the
1989 * frame count when it's derived from the timestamps. So let's
1990 * wait for the pipe to start properly before we call
1991 * drm_crtc_vblank_on()
1993 if (dev
->max_vblank_count
== 0 &&
1994 wait_for(intel_get_crtc_scanline(crtc
) != crtc
->scanline_offset
, 50))
1995 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe
));
1999 * intel_disable_pipe - disable a pipe, asserting requirements
2000 * @crtc: crtc whose pipes is to be disabled
2002 * Disable the pipe of @crtc, making sure that various hardware
2003 * specific requirements are met, if applicable, e.g. plane
2004 * disabled, panel fitter off, etc.
2006 * Will wait until the pipe has shut down before returning.
2008 static void intel_disable_pipe(struct intel_crtc
*crtc
)
2010 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
2011 enum transcoder cpu_transcoder
= crtc
->config
->cpu_transcoder
;
2012 enum pipe pipe
= crtc
->pipe
;
2016 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe
));
2019 * Make sure planes won't keep trying to pump pixels to us,
2020 * or we might hang the display.
2022 assert_planes_disabled(dev_priv
, pipe
);
2023 assert_cursor_disabled(dev_priv
, pipe
);
2024 assert_sprites_disabled(dev_priv
, pipe
);
2026 reg
= PIPECONF(cpu_transcoder
);
2027 val
= I915_READ(reg
);
2028 if ((val
& PIPECONF_ENABLE
) == 0)
2032 * Double wide has implications for planes
2033 * so best keep it disabled when not needed.
2035 if (crtc
->config
->double_wide
)
2036 val
&= ~PIPECONF_DOUBLE_WIDE
;
2038 /* Don't disable pipe or pipe PLLs if needed */
2039 if (!(pipe
== PIPE_A
&& dev_priv
->quirks
& QUIRK_PIPEA_FORCE
) &&
2040 !(pipe
== PIPE_B
&& dev_priv
->quirks
& QUIRK_PIPEB_FORCE
))
2041 val
&= ~PIPECONF_ENABLE
;
2043 I915_WRITE(reg
, val
);
2044 if ((val
& PIPECONF_ENABLE
) == 0)
2045 intel_wait_for_pipe_off(crtc
);
2048 static unsigned int intel_tile_size(const struct drm_i915_private
*dev_priv
)
2050 return IS_GEN2(dev_priv
) ? 2048 : 4096;
2053 static unsigned int intel_tile_width_bytes(const struct drm_i915_private
*dev_priv
,
2054 uint64_t fb_modifier
, unsigned int cpp
)
2056 switch (fb_modifier
) {
2057 case DRM_FORMAT_MOD_NONE
:
2059 case I915_FORMAT_MOD_X_TILED
:
2060 if (IS_GEN2(dev_priv
))
2064 case I915_FORMAT_MOD_Y_TILED
:
2065 if (IS_GEN2(dev_priv
) || HAS_128_BYTE_Y_TILING(dev_priv
))
2069 case I915_FORMAT_MOD_Yf_TILED
:
2085 MISSING_CASE(fb_modifier
);
2090 unsigned int intel_tile_height(const struct drm_i915_private
*dev_priv
,
2091 uint64_t fb_modifier
, unsigned int cpp
)
2093 if (fb_modifier
== DRM_FORMAT_MOD_NONE
)
2096 return intel_tile_size(dev_priv
) /
2097 intel_tile_width_bytes(dev_priv
, fb_modifier
, cpp
);
2100 /* Return the tile dimensions in pixel units */
2101 static void intel_tile_dims(const struct drm_i915_private
*dev_priv
,
2102 unsigned int *tile_width
,
2103 unsigned int *tile_height
,
2104 uint64_t fb_modifier
,
2107 unsigned int tile_width_bytes
=
2108 intel_tile_width_bytes(dev_priv
, fb_modifier
, cpp
);
2110 *tile_width
= tile_width_bytes
/ cpp
;
2111 *tile_height
= intel_tile_size(dev_priv
) / tile_width_bytes
;
2115 intel_fb_align_height(struct drm_device
*dev
, unsigned int height
,
2116 uint32_t pixel_format
, uint64_t fb_modifier
)
2118 unsigned int cpp
= drm_format_plane_cpp(pixel_format
, 0);
2119 unsigned int tile_height
= intel_tile_height(to_i915(dev
), fb_modifier
, cpp
);
2121 return ALIGN(height
, tile_height
);
2124 unsigned int intel_rotation_info_size(const struct intel_rotation_info
*rot_info
)
2126 unsigned int size
= 0;
2129 for (i
= 0 ; i
< ARRAY_SIZE(rot_info
->plane
); i
++)
2130 size
+= rot_info
->plane
[i
].width
* rot_info
->plane
[i
].height
;
2136 intel_fill_fb_ggtt_view(struct i915_ggtt_view
*view
,
2137 const struct drm_framebuffer
*fb
,
2138 unsigned int rotation
)
2140 view
->type
= I915_GGTT_VIEW_NORMAL
;
2141 if (drm_rotation_90_or_270(rotation
)) {
2142 view
->type
= I915_GGTT_VIEW_ROTATED
;
2143 view
->rotated
= to_intel_framebuffer(fb
)->rot_info
;
2147 static unsigned int intel_linear_alignment(const struct drm_i915_private
*dev_priv
)
2149 if (INTEL_INFO(dev_priv
)->gen
>= 9)
2151 else if (IS_I965G(dev_priv
) || IS_I965GM(dev_priv
) ||
2152 IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
))
2154 else if (INTEL_INFO(dev_priv
)->gen
>= 4)
2160 static unsigned int intel_surf_alignment(const struct drm_i915_private
*dev_priv
,
2161 uint64_t fb_modifier
)
2163 switch (fb_modifier
) {
2164 case DRM_FORMAT_MOD_NONE
:
2165 return intel_linear_alignment(dev_priv
);
2166 case I915_FORMAT_MOD_X_TILED
:
2167 if (INTEL_INFO(dev_priv
)->gen
>= 9)
2170 case I915_FORMAT_MOD_Y_TILED
:
2171 case I915_FORMAT_MOD_Yf_TILED
:
2172 return 1 * 1024 * 1024;
2174 MISSING_CASE(fb_modifier
);
2180 intel_pin_and_fence_fb_obj(struct drm_framebuffer
*fb
, unsigned int rotation
)
2182 struct drm_device
*dev
= fb
->dev
;
2183 struct drm_i915_private
*dev_priv
= to_i915(dev
);
2184 struct drm_i915_gem_object
*obj
= intel_fb_obj(fb
);
2185 struct i915_ggtt_view view
;
2186 struct i915_vma
*vma
;
2189 WARN_ON(!mutex_is_locked(&dev
->struct_mutex
));
2191 alignment
= intel_surf_alignment(dev_priv
, fb
->modifier
);
2193 intel_fill_fb_ggtt_view(&view
, fb
, rotation
);
2195 /* Note that the w/a also requires 64 PTE of padding following the
2196 * bo. We currently fill all unused PTE with the shadow page and so
2197 * we should always have valid PTE following the scanout preventing
2200 if (intel_scanout_needs_vtd_wa(dev_priv
) && alignment
< 256 * 1024)
2201 alignment
= 256 * 1024;
2204 * Global gtt pte registers are special registers which actually forward
2205 * writes to a chunk of system memory. Which means that there is no risk
2206 * that the register values disappear as soon as we call
2207 * intel_runtime_pm_put(), so it is correct to wrap only the
2208 * pin/unpin/fence and not more.
2210 intel_runtime_pm_get(dev_priv
);
2212 vma
= i915_gem_object_pin_to_display_plane(obj
, alignment
, &view
);
2216 if (i915_vma_is_map_and_fenceable(vma
)) {
2217 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2218 * fence, whereas 965+ only requires a fence if using
2219 * framebuffer compression. For simplicity, we always, when
2220 * possible, install a fence as the cost is not that onerous.
2222 * If we fail to fence the tiled scanout, then either the
2223 * modeset will reject the change (which is highly unlikely as
2224 * the affected systems, all but one, do not have unmappable
2225 * space) or we will not be able to enable full powersaving
2226 * techniques (also likely not to apply due to various limits
2227 * FBC and the like impose on the size of the buffer, which
2228 * presumably we violated anyway with this unmappable buffer).
2229 * Anyway, it is presumably better to stumble onwards with
2230 * something and try to run the system in a "less than optimal"
2231 * mode that matches the user configuration.
2233 if (i915_vma_get_fence(vma
) == 0)
2234 i915_vma_pin_fence(vma
);
2239 intel_runtime_pm_put(dev_priv
);
2243 void intel_unpin_fb_vma(struct i915_vma
*vma
)
2245 lockdep_assert_held(&vma
->vm
->i915
->drm
.struct_mutex
);
2247 i915_vma_unpin_fence(vma
);
2248 i915_gem_object_unpin_from_display_plane(vma
);
2252 static int intel_fb_pitch(const struct drm_framebuffer
*fb
, int plane
,
2253 unsigned int rotation
)
2255 if (drm_rotation_90_or_270(rotation
))
2256 return to_intel_framebuffer(fb
)->rotated
[plane
].pitch
;
2258 return fb
->pitches
[plane
];
2262 * Convert the x/y offsets into a linear offset.
2263 * Only valid with 0/180 degree rotation, which is fine since linear
2264 * offset is only used with linear buffers on pre-hsw and tiled buffers
2265 * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2267 u32
intel_fb_xy_to_linear(int x
, int y
,
2268 const struct intel_plane_state
*state
,
2271 const struct drm_framebuffer
*fb
= state
->base
.fb
;
2272 unsigned int cpp
= fb
->format
->cpp
[plane
];
2273 unsigned int pitch
= fb
->pitches
[plane
];
2275 return y
* pitch
+ x
* cpp
;
2279 * Add the x/y offsets derived from fb->offsets[] to the user
2280 * specified plane src x/y offsets. The resulting x/y offsets
2281 * specify the start of scanout from the beginning of the gtt mapping.
2283 void intel_add_fb_offsets(int *x
, int *y
,
2284 const struct intel_plane_state
*state
,
2288 const struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(state
->base
.fb
);
2289 unsigned int rotation
= state
->base
.rotation
;
2291 if (drm_rotation_90_or_270(rotation
)) {
2292 *x
+= intel_fb
->rotated
[plane
].x
;
2293 *y
+= intel_fb
->rotated
[plane
].y
;
2295 *x
+= intel_fb
->normal
[plane
].x
;
2296 *y
+= intel_fb
->normal
[plane
].y
;
2301 * Input tile dimensions and pitch must already be
2302 * rotated to match x and y, and in pixel units.
2304 static u32
_intel_adjust_tile_offset(int *x
, int *y
,
2305 unsigned int tile_width
,
2306 unsigned int tile_height
,
2307 unsigned int tile_size
,
2308 unsigned int pitch_tiles
,
2312 unsigned int pitch_pixels
= pitch_tiles
* tile_width
;
2315 WARN_ON(old_offset
& (tile_size
- 1));
2316 WARN_ON(new_offset
& (tile_size
- 1));
2317 WARN_ON(new_offset
> old_offset
);
2319 tiles
= (old_offset
- new_offset
) / tile_size
;
2321 *y
+= tiles
/ pitch_tiles
* tile_height
;
2322 *x
+= tiles
% pitch_tiles
* tile_width
;
2324 /* minimize x in case it got needlessly big */
2325 *y
+= *x
/ pitch_pixels
* tile_height
;
2332 * Adjust the tile offset by moving the difference into
2335 static u32
intel_adjust_tile_offset(int *x
, int *y
,
2336 const struct intel_plane_state
*state
, int plane
,
2337 u32 old_offset
, u32 new_offset
)
2339 const struct drm_i915_private
*dev_priv
= to_i915(state
->base
.plane
->dev
);
2340 const struct drm_framebuffer
*fb
= state
->base
.fb
;
2341 unsigned int cpp
= fb
->format
->cpp
[plane
];
2342 unsigned int rotation
= state
->base
.rotation
;
2343 unsigned int pitch
= intel_fb_pitch(fb
, plane
, rotation
);
2345 WARN_ON(new_offset
> old_offset
);
2347 if (fb
->modifier
!= DRM_FORMAT_MOD_NONE
) {
2348 unsigned int tile_size
, tile_width
, tile_height
;
2349 unsigned int pitch_tiles
;
2351 tile_size
= intel_tile_size(dev_priv
);
2352 intel_tile_dims(dev_priv
, &tile_width
, &tile_height
,
2355 if (drm_rotation_90_or_270(rotation
)) {
2356 pitch_tiles
= pitch
/ tile_height
;
2357 swap(tile_width
, tile_height
);
2359 pitch_tiles
= pitch
/ (tile_width
* cpp
);
2362 _intel_adjust_tile_offset(x
, y
, tile_width
, tile_height
,
2363 tile_size
, pitch_tiles
,
2364 old_offset
, new_offset
);
2366 old_offset
+= *y
* pitch
+ *x
* cpp
;
2368 *y
= (old_offset
- new_offset
) / pitch
;
2369 *x
= ((old_offset
- new_offset
) - *y
* pitch
) / cpp
;
2376 * Computes the linear offset to the base tile and adjusts
2377 * x, y. bytes per pixel is assumed to be a power-of-two.
2379 * In the 90/270 rotated case, x and y are assumed
2380 * to be already rotated to match the rotated GTT view, and
2381 * pitch is the tile_height aligned framebuffer height.
2383 * This function is used when computing the derived information
2384 * under intel_framebuffer, so using any of that information
2385 * here is not allowed. Anything under drm_framebuffer can be
2386 * used. This is why the user has to pass in the pitch since it
2387 * is specified in the rotated orientation.
2389 static u32
_intel_compute_tile_offset(const struct drm_i915_private
*dev_priv
,
2391 const struct drm_framebuffer
*fb
, int plane
,
2393 unsigned int rotation
,
2396 uint64_t fb_modifier
= fb
->modifier
;
2397 unsigned int cpp
= fb
->format
->cpp
[plane
];
2398 u32 offset
, offset_aligned
;
2403 if (fb_modifier
!= DRM_FORMAT_MOD_NONE
) {
2404 unsigned int tile_size
, tile_width
, tile_height
;
2405 unsigned int tile_rows
, tiles
, pitch_tiles
;
2407 tile_size
= intel_tile_size(dev_priv
);
2408 intel_tile_dims(dev_priv
, &tile_width
, &tile_height
,
2411 if (drm_rotation_90_or_270(rotation
)) {
2412 pitch_tiles
= pitch
/ tile_height
;
2413 swap(tile_width
, tile_height
);
2415 pitch_tiles
= pitch
/ (tile_width
* cpp
);
2418 tile_rows
= *y
/ tile_height
;
2421 tiles
= *x
/ tile_width
;
2424 offset
= (tile_rows
* pitch_tiles
+ tiles
) * tile_size
;
2425 offset_aligned
= offset
& ~alignment
;
2427 _intel_adjust_tile_offset(x
, y
, tile_width
, tile_height
,
2428 tile_size
, pitch_tiles
,
2429 offset
, offset_aligned
);
2431 offset
= *y
* pitch
+ *x
* cpp
;
2432 offset_aligned
= offset
& ~alignment
;
2434 *y
= (offset
& alignment
) / pitch
;
2435 *x
= ((offset
& alignment
) - *y
* pitch
) / cpp
;
2438 return offset_aligned
;
2441 u32
intel_compute_tile_offset(int *x
, int *y
,
2442 const struct intel_plane_state
*state
,
2445 const struct drm_i915_private
*dev_priv
= to_i915(state
->base
.plane
->dev
);
2446 const struct drm_framebuffer
*fb
= state
->base
.fb
;
2447 unsigned int rotation
= state
->base
.rotation
;
2448 int pitch
= intel_fb_pitch(fb
, plane
, rotation
);
2451 /* AUX_DIST needs only 4K alignment */
2452 if (fb
->format
->format
== DRM_FORMAT_NV12
&& plane
== 1)
2455 alignment
= intel_surf_alignment(dev_priv
, fb
->modifier
);
2457 return _intel_compute_tile_offset(dev_priv
, x
, y
, fb
, plane
, pitch
,
2458 rotation
, alignment
);
2461 /* Convert the fb->offset[] linear offset into x/y offsets */
2462 static void intel_fb_offset_to_xy(int *x
, int *y
,
2463 const struct drm_framebuffer
*fb
, int plane
)
2465 unsigned int cpp
= fb
->format
->cpp
[plane
];
2466 unsigned int pitch
= fb
->pitches
[plane
];
2467 u32 linear_offset
= fb
->offsets
[plane
];
2469 *y
= linear_offset
/ pitch
;
2470 *x
= linear_offset
% pitch
/ cpp
;
2473 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier
)
2475 switch (fb_modifier
) {
2476 case I915_FORMAT_MOD_X_TILED
:
2477 return I915_TILING_X
;
2478 case I915_FORMAT_MOD_Y_TILED
:
2479 return I915_TILING_Y
;
2481 return I915_TILING_NONE
;
2486 intel_fill_fb_info(struct drm_i915_private
*dev_priv
,
2487 struct drm_framebuffer
*fb
)
2489 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
2490 struct intel_rotation_info
*rot_info
= &intel_fb
->rot_info
;
2491 u32 gtt_offset_rotated
= 0;
2492 unsigned int max_size
= 0;
2493 int i
, num_planes
= fb
->format
->num_planes
;
2494 unsigned int tile_size
= intel_tile_size(dev_priv
);
2496 for (i
= 0; i
< num_planes
; i
++) {
2497 unsigned int width
, height
;
2498 unsigned int cpp
, size
;
2502 cpp
= fb
->format
->cpp
[i
];
2503 width
= drm_framebuffer_plane_width(fb
->width
, fb
, i
);
2504 height
= drm_framebuffer_plane_height(fb
->height
, fb
, i
);
2506 intel_fb_offset_to_xy(&x
, &y
, fb
, i
);
2509 * The fence (if used) is aligned to the start of the object
2510 * so having the framebuffer wrap around across the edge of the
2511 * fenced region doesn't really work. We have no API to configure
2512 * the fence start offset within the object (nor could we probably
2513 * on gen2/3). So it's just easier if we just require that the
2514 * fb layout agrees with the fence layout. We already check that the
2515 * fb stride matches the fence stride elsewhere.
2517 if (i915_gem_object_is_tiled(intel_fb
->obj
) &&
2518 (x
+ width
) * cpp
> fb
->pitches
[i
]) {
2519 DRM_DEBUG("bad fb plane %d offset: 0x%x\n",
2525 * First pixel of the framebuffer from
2526 * the start of the normal gtt mapping.
2528 intel_fb
->normal
[i
].x
= x
;
2529 intel_fb
->normal
[i
].y
= y
;
2531 offset
= _intel_compute_tile_offset(dev_priv
, &x
, &y
,
2532 fb
, 0, fb
->pitches
[i
],
2533 DRM_ROTATE_0
, tile_size
);
2534 offset
/= tile_size
;
2536 if (fb
->modifier
!= DRM_FORMAT_MOD_NONE
) {
2537 unsigned int tile_width
, tile_height
;
2538 unsigned int pitch_tiles
;
2541 intel_tile_dims(dev_priv
, &tile_width
, &tile_height
,
2544 rot_info
->plane
[i
].offset
= offset
;
2545 rot_info
->plane
[i
].stride
= DIV_ROUND_UP(fb
->pitches
[i
], tile_width
* cpp
);
2546 rot_info
->plane
[i
].width
= DIV_ROUND_UP(x
+ width
, tile_width
);
2547 rot_info
->plane
[i
].height
= DIV_ROUND_UP(y
+ height
, tile_height
);
2549 intel_fb
->rotated
[i
].pitch
=
2550 rot_info
->plane
[i
].height
* tile_height
;
2552 /* how many tiles does this plane need */
2553 size
= rot_info
->plane
[i
].stride
* rot_info
->plane
[i
].height
;
2555 * If the plane isn't horizontally tile aligned,
2556 * we need one more tile.
2561 /* rotate the x/y offsets to match the GTT view */
2567 rot_info
->plane
[i
].width
* tile_width
,
2568 rot_info
->plane
[i
].height
* tile_height
,
2573 /* rotate the tile dimensions to match the GTT view */
2574 pitch_tiles
= intel_fb
->rotated
[i
].pitch
/ tile_height
;
2575 swap(tile_width
, tile_height
);
2578 * We only keep the x/y offsets, so push all of the
2579 * gtt offset into the x/y offsets.
2581 _intel_adjust_tile_offset(&x
, &y
, tile_size
,
2582 tile_width
, tile_height
, pitch_tiles
,
2583 gtt_offset_rotated
* tile_size
, 0);
2585 gtt_offset_rotated
+= rot_info
->plane
[i
].width
* rot_info
->plane
[i
].height
;
2588 * First pixel of the framebuffer from
2589 * the start of the rotated gtt mapping.
2591 intel_fb
->rotated
[i
].x
= x
;
2592 intel_fb
->rotated
[i
].y
= y
;
2594 size
= DIV_ROUND_UP((y
+ height
) * fb
->pitches
[i
] +
2595 x
* cpp
, tile_size
);
2598 /* how many tiles in total needed in the bo */
2599 max_size
= max(max_size
, offset
+ size
);
2602 if (max_size
* tile_size
> to_intel_framebuffer(fb
)->obj
->base
.size
) {
2603 DRM_DEBUG("fb too big for bo (need %u bytes, have %zu bytes)\n",
2604 max_size
* tile_size
, to_intel_framebuffer(fb
)->obj
->base
.size
);
2611 static int i9xx_format_to_fourcc(int format
)
2614 case DISPPLANE_8BPP
:
2615 return DRM_FORMAT_C8
;
2616 case DISPPLANE_BGRX555
:
2617 return DRM_FORMAT_XRGB1555
;
2618 case DISPPLANE_BGRX565
:
2619 return DRM_FORMAT_RGB565
;
2621 case DISPPLANE_BGRX888
:
2622 return DRM_FORMAT_XRGB8888
;
2623 case DISPPLANE_RGBX888
:
2624 return DRM_FORMAT_XBGR8888
;
2625 case DISPPLANE_BGRX101010
:
2626 return DRM_FORMAT_XRGB2101010
;
2627 case DISPPLANE_RGBX101010
:
2628 return DRM_FORMAT_XBGR2101010
;
2632 static int skl_format_to_fourcc(int format
, bool rgb_order
, bool alpha
)
2635 case PLANE_CTL_FORMAT_RGB_565
:
2636 return DRM_FORMAT_RGB565
;
2638 case PLANE_CTL_FORMAT_XRGB_8888
:
2641 return DRM_FORMAT_ABGR8888
;
2643 return DRM_FORMAT_XBGR8888
;
2646 return DRM_FORMAT_ARGB8888
;
2648 return DRM_FORMAT_XRGB8888
;
2650 case PLANE_CTL_FORMAT_XRGB_2101010
:
2652 return DRM_FORMAT_XBGR2101010
;
2654 return DRM_FORMAT_XRGB2101010
;
2659 intel_alloc_initial_plane_obj(struct intel_crtc
*crtc
,
2660 struct intel_initial_plane_config
*plane_config
)
2662 struct drm_device
*dev
= crtc
->base
.dev
;
2663 struct drm_i915_private
*dev_priv
= to_i915(dev
);
2664 struct i915_ggtt
*ggtt
= &dev_priv
->ggtt
;
2665 struct drm_i915_gem_object
*obj
= NULL
;
2666 struct drm_mode_fb_cmd2 mode_cmd
= { 0 };
2667 struct drm_framebuffer
*fb
= &plane_config
->fb
->base
;
2668 u32 base_aligned
= round_down(plane_config
->base
, PAGE_SIZE
);
2669 u32 size_aligned
= round_up(plane_config
->base
+ plane_config
->size
,
2672 size_aligned
-= base_aligned
;
2674 if (plane_config
->size
== 0)
2677 /* If the FB is too big, just don't use it since fbdev is not very
2678 * important and we should probably use that space with FBC or other
2680 if (size_aligned
* 2 > ggtt
->stolen_usable_size
)
2683 mutex_lock(&dev
->struct_mutex
);
2685 obj
= i915_gem_object_create_stolen_for_preallocated(dev_priv
,
2690 mutex_unlock(&dev
->struct_mutex
);
2694 if (plane_config
->tiling
== I915_TILING_X
)
2695 obj
->tiling_and_stride
= fb
->pitches
[0] | I915_TILING_X
;
2697 mode_cmd
.pixel_format
= fb
->format
->format
;
2698 mode_cmd
.width
= fb
->width
;
2699 mode_cmd
.height
= fb
->height
;
2700 mode_cmd
.pitches
[0] = fb
->pitches
[0];
2701 mode_cmd
.modifier
[0] = fb
->modifier
;
2702 mode_cmd
.flags
= DRM_MODE_FB_MODIFIERS
;
2704 if (intel_framebuffer_init(dev
, to_intel_framebuffer(fb
),
2706 DRM_DEBUG_KMS("intel fb init failed\n");
2710 mutex_unlock(&dev
->struct_mutex
);
2712 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj
);
2716 i915_gem_object_put(obj
);
2717 mutex_unlock(&dev
->struct_mutex
);
2721 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2723 update_state_fb(struct drm_plane
*plane
)
2725 if (plane
->fb
== plane
->state
->fb
)
2728 if (plane
->state
->fb
)
2729 drm_framebuffer_unreference(plane
->state
->fb
);
2730 plane
->state
->fb
= plane
->fb
;
2731 if (plane
->state
->fb
)
2732 drm_framebuffer_reference(plane
->state
->fb
);
2736 intel_find_initial_plane_obj(struct intel_crtc
*intel_crtc
,
2737 struct intel_initial_plane_config
*plane_config
)
2739 struct drm_device
*dev
= intel_crtc
->base
.dev
;
2740 struct drm_i915_private
*dev_priv
= to_i915(dev
);
2742 struct drm_i915_gem_object
*obj
;
2743 struct drm_plane
*primary
= intel_crtc
->base
.primary
;
2744 struct drm_plane_state
*plane_state
= primary
->state
;
2745 struct drm_crtc_state
*crtc_state
= intel_crtc
->base
.state
;
2746 struct intel_plane
*intel_plane
= to_intel_plane(primary
);
2747 struct intel_plane_state
*intel_state
=
2748 to_intel_plane_state(plane_state
);
2749 struct drm_framebuffer
*fb
;
2751 if (!plane_config
->fb
)
2754 if (intel_alloc_initial_plane_obj(intel_crtc
, plane_config
)) {
2755 fb
= &plane_config
->fb
->base
;
2759 kfree(plane_config
->fb
);
2762 * Failed to alloc the obj, check to see if we should share
2763 * an fb with another CRTC instead
2765 for_each_crtc(dev
, c
) {
2766 struct intel_plane_state
*state
;
2768 if (c
== &intel_crtc
->base
)
2771 if (!to_intel_crtc(c
)->active
)
2774 state
= to_intel_plane_state(c
->primary
->state
);
2778 if (intel_plane_ggtt_offset(state
) == plane_config
->base
) {
2779 fb
= c
->primary
->fb
;
2780 drm_framebuffer_reference(fb
);
2786 * We've failed to reconstruct the BIOS FB. Current display state
2787 * indicates that the primary plane is visible, but has a NULL FB,
2788 * which will lead to problems later if we don't fix it up. The
2789 * simplest solution is to just disable the primary plane now and
2790 * pretend the BIOS never had it enabled.
2792 plane_state
->visible
= false;
2793 crtc_state
->plane_mask
&= ~(1 << drm_plane_index(primary
));
2794 intel_pre_disable_primary_noatomic(&intel_crtc
->base
);
2795 intel_plane
->disable_plane(primary
, &intel_crtc
->base
);
2800 mutex_lock(&dev
->struct_mutex
);
2802 intel_pin_and_fence_fb_obj(fb
, primary
->state
->rotation
);
2803 mutex_unlock(&dev
->struct_mutex
);
2804 if (IS_ERR(intel_state
->vma
)) {
2805 DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
2806 intel_crtc
->pipe
, PTR_ERR(intel_state
->vma
));
2808 intel_state
->vma
= NULL
;
2809 drm_framebuffer_unreference(fb
);
2813 plane_state
->src_x
= 0;
2814 plane_state
->src_y
= 0;
2815 plane_state
->src_w
= fb
->width
<< 16;
2816 plane_state
->src_h
= fb
->height
<< 16;
2818 plane_state
->crtc_x
= 0;
2819 plane_state
->crtc_y
= 0;
2820 plane_state
->crtc_w
= fb
->width
;
2821 plane_state
->crtc_h
= fb
->height
;
2823 intel_state
->base
.src
= drm_plane_state_src(plane_state
);
2824 intel_state
->base
.dst
= drm_plane_state_dest(plane_state
);
2826 obj
= intel_fb_obj(fb
);
2827 if (i915_gem_object_is_tiled(obj
))
2828 dev_priv
->preserve_bios_swizzle
= true;
2830 drm_framebuffer_reference(fb
);
2831 primary
->fb
= primary
->state
->fb
= fb
;
2832 primary
->crtc
= primary
->state
->crtc
= &intel_crtc
->base
;
2833 intel_crtc
->base
.state
->plane_mask
|= (1 << drm_plane_index(primary
));
2834 atomic_or(to_intel_plane(primary
)->frontbuffer_bit
,
2835 &obj
->frontbuffer_bits
);
2838 static int skl_max_plane_width(const struct drm_framebuffer
*fb
, int plane
,
2839 unsigned int rotation
)
2841 int cpp
= fb
->format
->cpp
[plane
];
2843 switch (fb
->modifier
) {
2844 case DRM_FORMAT_MOD_NONE
:
2845 case I915_FORMAT_MOD_X_TILED
:
2858 case I915_FORMAT_MOD_Y_TILED
:
2859 case I915_FORMAT_MOD_Yf_TILED
:
2874 MISSING_CASE(fb
->modifier
);
2880 static int skl_check_main_surface(struct intel_plane_state
*plane_state
)
2882 const struct drm_i915_private
*dev_priv
= to_i915(plane_state
->base
.plane
->dev
);
2883 const struct drm_framebuffer
*fb
= plane_state
->base
.fb
;
2884 unsigned int rotation
= plane_state
->base
.rotation
;
2885 int x
= plane_state
->base
.src
.x1
>> 16;
2886 int y
= plane_state
->base
.src
.y1
>> 16;
2887 int w
= drm_rect_width(&plane_state
->base
.src
) >> 16;
2888 int h
= drm_rect_height(&plane_state
->base
.src
) >> 16;
2889 int max_width
= skl_max_plane_width(fb
, 0, rotation
);
2890 int max_height
= 4096;
2891 u32 alignment
, offset
, aux_offset
= plane_state
->aux
.offset
;
2893 if (w
> max_width
|| h
> max_height
) {
2894 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2895 w
, h
, max_width
, max_height
);
2899 intel_add_fb_offsets(&x
, &y
, plane_state
, 0);
2900 offset
= intel_compute_tile_offset(&x
, &y
, plane_state
, 0);
2902 alignment
= intel_surf_alignment(dev_priv
, fb
->modifier
);
2905 * AUX surface offset is specified as the distance from the
2906 * main surface offset, and it must be non-negative. Make
2907 * sure that is what we will get.
2909 if (offset
> aux_offset
)
2910 offset
= intel_adjust_tile_offset(&x
, &y
, plane_state
, 0,
2911 offset
, aux_offset
& ~(alignment
- 1));
2914 * When using an X-tiled surface, the plane blows up
2915 * if the x offset + width exceed the stride.
2917 * TODO: linear and Y-tiled seem fine, Yf untested,
2919 if (fb
->modifier
== I915_FORMAT_MOD_X_TILED
) {
2920 int cpp
= fb
->format
->cpp
[0];
2922 while ((x
+ w
) * cpp
> fb
->pitches
[0]) {
2924 DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2928 offset
= intel_adjust_tile_offset(&x
, &y
, plane_state
, 0,
2929 offset
, offset
- alignment
);
2933 plane_state
->main
.offset
= offset
;
2934 plane_state
->main
.x
= x
;
2935 plane_state
->main
.y
= y
;
2940 static int skl_check_nv12_aux_surface(struct intel_plane_state
*plane_state
)
2942 const struct drm_framebuffer
*fb
= plane_state
->base
.fb
;
2943 unsigned int rotation
= plane_state
->base
.rotation
;
2944 int max_width
= skl_max_plane_width(fb
, 1, rotation
);
2945 int max_height
= 4096;
2946 int x
= plane_state
->base
.src
.x1
>> 17;
2947 int y
= plane_state
->base
.src
.y1
>> 17;
2948 int w
= drm_rect_width(&plane_state
->base
.src
) >> 17;
2949 int h
= drm_rect_height(&plane_state
->base
.src
) >> 17;
2952 intel_add_fb_offsets(&x
, &y
, plane_state
, 1);
2953 offset
= intel_compute_tile_offset(&x
, &y
, plane_state
, 1);
2955 /* FIXME not quite sure how/if these apply to the chroma plane */
2956 if (w
> max_width
|| h
> max_height
) {
2957 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2958 w
, h
, max_width
, max_height
);
2962 plane_state
->aux
.offset
= offset
;
2963 plane_state
->aux
.x
= x
;
2964 plane_state
->aux
.y
= y
;
2969 int skl_check_plane_surface(struct intel_plane_state
*plane_state
)
2971 const struct drm_framebuffer
*fb
= plane_state
->base
.fb
;
2972 unsigned int rotation
= plane_state
->base
.rotation
;
2975 if (!plane_state
->base
.visible
)
2978 /* Rotate src coordinates to match rotated GTT view */
2979 if (drm_rotation_90_or_270(rotation
))
2980 drm_rect_rotate(&plane_state
->base
.src
,
2981 fb
->width
<< 16, fb
->height
<< 16,
2985 * Handle the AUX surface first since
2986 * the main surface setup depends on it.
2988 if (fb
->format
->format
== DRM_FORMAT_NV12
) {
2989 ret
= skl_check_nv12_aux_surface(plane_state
);
2993 plane_state
->aux
.offset
= ~0xfff;
2994 plane_state
->aux
.x
= 0;
2995 plane_state
->aux
.y
= 0;
2998 ret
= skl_check_main_surface(plane_state
);
3005 static void i9xx_update_primary_plane(struct drm_plane
*primary
,
3006 const struct intel_crtc_state
*crtc_state
,
3007 const struct intel_plane_state
*plane_state
)
3009 struct drm_i915_private
*dev_priv
= to_i915(primary
->dev
);
3010 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc_state
->base
.crtc
);
3011 struct drm_framebuffer
*fb
= plane_state
->base
.fb
;
3012 int plane
= intel_crtc
->plane
;
3015 i915_reg_t reg
= DSPCNTR(plane
);
3016 unsigned int rotation
= plane_state
->base
.rotation
;
3017 int x
= plane_state
->base
.src
.x1
>> 16;
3018 int y
= plane_state
->base
.src
.y1
>> 16;
3020 dspcntr
= DISPPLANE_GAMMA_ENABLE
;
3022 dspcntr
|= DISPLAY_PLANE_ENABLE
;
3024 if (INTEL_GEN(dev_priv
) < 4) {
3025 if (intel_crtc
->pipe
== PIPE_B
)
3026 dspcntr
|= DISPPLANE_SEL_PIPE_B
;
3028 /* pipesrc and dspsize control the size that is scaled from,
3029 * which should always be the user's requested size.
3031 I915_WRITE(DSPSIZE(plane
),
3032 ((crtc_state
->pipe_src_h
- 1) << 16) |
3033 (crtc_state
->pipe_src_w
- 1));
3034 I915_WRITE(DSPPOS(plane
), 0);
3035 } else if (IS_CHERRYVIEW(dev_priv
) && plane
== PLANE_B
) {
3036 I915_WRITE(PRIMSIZE(plane
),
3037 ((crtc_state
->pipe_src_h
- 1) << 16) |
3038 (crtc_state
->pipe_src_w
- 1));
3039 I915_WRITE(PRIMPOS(plane
), 0);
3040 I915_WRITE(PRIMCNSTALPHA(plane
), 0);
3043 switch (fb
->format
->format
) {
3045 dspcntr
|= DISPPLANE_8BPP
;
3047 case DRM_FORMAT_XRGB1555
:
3048 dspcntr
|= DISPPLANE_BGRX555
;
3050 case DRM_FORMAT_RGB565
:
3051 dspcntr
|= DISPPLANE_BGRX565
;
3053 case DRM_FORMAT_XRGB8888
:
3054 dspcntr
|= DISPPLANE_BGRX888
;
3056 case DRM_FORMAT_XBGR8888
:
3057 dspcntr
|= DISPPLANE_RGBX888
;
3059 case DRM_FORMAT_XRGB2101010
:
3060 dspcntr
|= DISPPLANE_BGRX101010
;
3062 case DRM_FORMAT_XBGR2101010
:
3063 dspcntr
|= DISPPLANE_RGBX101010
;
3069 if (INTEL_GEN(dev_priv
) >= 4 &&
3070 fb
->modifier
== I915_FORMAT_MOD_X_TILED
)
3071 dspcntr
|= DISPPLANE_TILED
;
3073 if (rotation
& DRM_ROTATE_180
)
3074 dspcntr
|= DISPPLANE_ROTATE_180
;
3076 if (rotation
& DRM_REFLECT_X
)
3077 dspcntr
|= DISPPLANE_MIRROR
;
3079 if (IS_G4X(dev_priv
))
3080 dspcntr
|= DISPPLANE_TRICKLE_FEED_DISABLE
;
3082 intel_add_fb_offsets(&x
, &y
, plane_state
, 0);
3084 if (INTEL_GEN(dev_priv
) >= 4)
3085 intel_crtc
->dspaddr_offset
=
3086 intel_compute_tile_offset(&x
, &y
, plane_state
, 0);
3088 if (rotation
& DRM_ROTATE_180
) {
3089 x
+= crtc_state
->pipe_src_w
- 1;
3090 y
+= crtc_state
->pipe_src_h
- 1;
3091 } else if (rotation
& DRM_REFLECT_X
) {
3092 x
+= crtc_state
->pipe_src_w
- 1;
3095 linear_offset
= intel_fb_xy_to_linear(x
, y
, plane_state
, 0);
3097 if (INTEL_GEN(dev_priv
) < 4)
3098 intel_crtc
->dspaddr_offset
= linear_offset
;
3100 intel_crtc
->adjusted_x
= x
;
3101 intel_crtc
->adjusted_y
= y
;
3103 I915_WRITE(reg
, dspcntr
);
3105 I915_WRITE(DSPSTRIDE(plane
), fb
->pitches
[0]);
3106 if (INTEL_GEN(dev_priv
) >= 4) {
3107 I915_WRITE(DSPSURF(plane
),
3108 intel_plane_ggtt_offset(plane_state
) +
3109 intel_crtc
->dspaddr_offset
);
3110 I915_WRITE(DSPTILEOFF(plane
), (y
<< 16) | x
);
3111 I915_WRITE(DSPLINOFF(plane
), linear_offset
);
3113 I915_WRITE(DSPADDR(plane
),
3114 intel_plane_ggtt_offset(plane_state
) +
3115 intel_crtc
->dspaddr_offset
);
3120 static void i9xx_disable_primary_plane(struct drm_plane
*primary
,
3121 struct drm_crtc
*crtc
)
3123 struct drm_device
*dev
= crtc
->dev
;
3124 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3125 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3126 int plane
= intel_crtc
->plane
;
3128 I915_WRITE(DSPCNTR(plane
), 0);
3129 if (INTEL_INFO(dev_priv
)->gen
>= 4)
3130 I915_WRITE(DSPSURF(plane
), 0);
3132 I915_WRITE(DSPADDR(plane
), 0);
3133 POSTING_READ(DSPCNTR(plane
));
3136 static void ironlake_update_primary_plane(struct drm_plane
*primary
,
3137 const struct intel_crtc_state
*crtc_state
,
3138 const struct intel_plane_state
*plane_state
)
3140 struct drm_device
*dev
= primary
->dev
;
3141 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3142 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc_state
->base
.crtc
);
3143 struct drm_framebuffer
*fb
= plane_state
->base
.fb
;
3144 int plane
= intel_crtc
->plane
;
3147 i915_reg_t reg
= DSPCNTR(plane
);
3148 unsigned int rotation
= plane_state
->base
.rotation
;
3149 int x
= plane_state
->base
.src
.x1
>> 16;
3150 int y
= plane_state
->base
.src
.y1
>> 16;
3152 dspcntr
= DISPPLANE_GAMMA_ENABLE
;
3153 dspcntr
|= DISPLAY_PLANE_ENABLE
;
3155 if (IS_HASWELL(dev_priv
) || IS_BROADWELL(dev_priv
))
3156 dspcntr
|= DISPPLANE_PIPE_CSC_ENABLE
;
3158 switch (fb
->format
->format
) {
3160 dspcntr
|= DISPPLANE_8BPP
;
3162 case DRM_FORMAT_RGB565
:
3163 dspcntr
|= DISPPLANE_BGRX565
;
3165 case DRM_FORMAT_XRGB8888
:
3166 dspcntr
|= DISPPLANE_BGRX888
;
3168 case DRM_FORMAT_XBGR8888
:
3169 dspcntr
|= DISPPLANE_RGBX888
;
3171 case DRM_FORMAT_XRGB2101010
:
3172 dspcntr
|= DISPPLANE_BGRX101010
;
3174 case DRM_FORMAT_XBGR2101010
:
3175 dspcntr
|= DISPPLANE_RGBX101010
;
3181 if (fb
->modifier
== I915_FORMAT_MOD_X_TILED
)
3182 dspcntr
|= DISPPLANE_TILED
;
3184 if (rotation
& DRM_ROTATE_180
)
3185 dspcntr
|= DISPPLANE_ROTATE_180
;
3187 if (!IS_HASWELL(dev_priv
) && !IS_BROADWELL(dev_priv
))
3188 dspcntr
|= DISPPLANE_TRICKLE_FEED_DISABLE
;
3190 intel_add_fb_offsets(&x
, &y
, plane_state
, 0);
3192 intel_crtc
->dspaddr_offset
=
3193 intel_compute_tile_offset(&x
, &y
, plane_state
, 0);
3195 /* HSW+ does this automagically in hardware */
3196 if (!IS_HASWELL(dev_priv
) && !IS_BROADWELL(dev_priv
) &&
3197 rotation
& DRM_ROTATE_180
) {
3198 x
+= crtc_state
->pipe_src_w
- 1;
3199 y
+= crtc_state
->pipe_src_h
- 1;
3202 linear_offset
= intel_fb_xy_to_linear(x
, y
, plane_state
, 0);
3204 intel_crtc
->adjusted_x
= x
;
3205 intel_crtc
->adjusted_y
= y
;
3207 I915_WRITE(reg
, dspcntr
);
3209 I915_WRITE(DSPSTRIDE(plane
), fb
->pitches
[0]);
3210 I915_WRITE(DSPSURF(plane
),
3211 intel_plane_ggtt_offset(plane_state
) +
3212 intel_crtc
->dspaddr_offset
);
3213 if (IS_HASWELL(dev_priv
) || IS_BROADWELL(dev_priv
)) {
3214 I915_WRITE(DSPOFFSET(plane
), (y
<< 16) | x
);
3216 I915_WRITE(DSPTILEOFF(plane
), (y
<< 16) | x
);
3217 I915_WRITE(DSPLINOFF(plane
), linear_offset
);
3222 u32
intel_fb_stride_alignment(const struct drm_i915_private
*dev_priv
,
3223 uint64_t fb_modifier
, uint32_t pixel_format
)
3225 if (fb_modifier
== DRM_FORMAT_MOD_NONE
) {
3228 int cpp
= drm_format_plane_cpp(pixel_format
, 0);
3230 return intel_tile_width_bytes(dev_priv
, fb_modifier
, cpp
);
3234 static void skl_detach_scaler(struct intel_crtc
*intel_crtc
, int id
)
3236 struct drm_device
*dev
= intel_crtc
->base
.dev
;
3237 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3239 I915_WRITE(SKL_PS_CTRL(intel_crtc
->pipe
, id
), 0);
3240 I915_WRITE(SKL_PS_WIN_POS(intel_crtc
->pipe
, id
), 0);
3241 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc
->pipe
, id
), 0);
3245 * This function detaches (aka. unbinds) unused scalers in hardware
3247 static void skl_detach_scalers(struct intel_crtc
*intel_crtc
)
3249 struct intel_crtc_scaler_state
*scaler_state
;
3252 scaler_state
= &intel_crtc
->config
->scaler_state
;
3254 /* loop through and disable scalers that aren't in use */
3255 for (i
= 0; i
< intel_crtc
->num_scalers
; i
++) {
3256 if (!scaler_state
->scalers
[i
].in_use
)
3257 skl_detach_scaler(intel_crtc
, i
);
3261 u32
skl_plane_stride(const struct drm_framebuffer
*fb
, int plane
,
3262 unsigned int rotation
)
3264 const struct drm_i915_private
*dev_priv
= to_i915(fb
->dev
);
3265 u32 stride
= intel_fb_pitch(fb
, plane
, rotation
);
3268 * The stride is either expressed as a multiple of 64 bytes chunks for
3269 * linear buffers or in number of tiles for tiled buffers.
3271 if (drm_rotation_90_or_270(rotation
)) {
3272 int cpp
= fb
->format
->cpp
[plane
];
3274 stride
/= intel_tile_height(dev_priv
, fb
->modifier
, cpp
);
3276 stride
/= intel_fb_stride_alignment(dev_priv
, fb
->modifier
,
3277 fb
->format
->format
);
3283 u32
skl_plane_ctl_format(uint32_t pixel_format
)
3285 switch (pixel_format
) {
3287 return PLANE_CTL_FORMAT_INDEXED
;
3288 case DRM_FORMAT_RGB565
:
3289 return PLANE_CTL_FORMAT_RGB_565
;
3290 case DRM_FORMAT_XBGR8888
:
3291 return PLANE_CTL_FORMAT_XRGB_8888
| PLANE_CTL_ORDER_RGBX
;
3292 case DRM_FORMAT_XRGB8888
:
3293 return PLANE_CTL_FORMAT_XRGB_8888
;
3295 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3296 * to be already pre-multiplied. We need to add a knob (or a different
3297 * DRM_FORMAT) for user-space to configure that.
3299 case DRM_FORMAT_ABGR8888
:
3300 return PLANE_CTL_FORMAT_XRGB_8888
| PLANE_CTL_ORDER_RGBX
|
3301 PLANE_CTL_ALPHA_SW_PREMULTIPLY
;
3302 case DRM_FORMAT_ARGB8888
:
3303 return PLANE_CTL_FORMAT_XRGB_8888
|
3304 PLANE_CTL_ALPHA_SW_PREMULTIPLY
;
3305 case DRM_FORMAT_XRGB2101010
:
3306 return PLANE_CTL_FORMAT_XRGB_2101010
;
3307 case DRM_FORMAT_XBGR2101010
:
3308 return PLANE_CTL_ORDER_RGBX
| PLANE_CTL_FORMAT_XRGB_2101010
;
3309 case DRM_FORMAT_YUYV
:
3310 return PLANE_CTL_FORMAT_YUV422
| PLANE_CTL_YUV422_YUYV
;
3311 case DRM_FORMAT_YVYU
:
3312 return PLANE_CTL_FORMAT_YUV422
| PLANE_CTL_YUV422_YVYU
;
3313 case DRM_FORMAT_UYVY
:
3314 return PLANE_CTL_FORMAT_YUV422
| PLANE_CTL_YUV422_UYVY
;
3315 case DRM_FORMAT_VYUY
:
3316 return PLANE_CTL_FORMAT_YUV422
| PLANE_CTL_YUV422_VYUY
;
3318 MISSING_CASE(pixel_format
);
3324 u32
skl_plane_ctl_tiling(uint64_t fb_modifier
)
3326 switch (fb_modifier
) {
3327 case DRM_FORMAT_MOD_NONE
:
3329 case I915_FORMAT_MOD_X_TILED
:
3330 return PLANE_CTL_TILED_X
;
3331 case I915_FORMAT_MOD_Y_TILED
:
3332 return PLANE_CTL_TILED_Y
;
3333 case I915_FORMAT_MOD_Yf_TILED
:
3334 return PLANE_CTL_TILED_YF
;
3336 MISSING_CASE(fb_modifier
);
3342 u32
skl_plane_ctl_rotation(unsigned int rotation
)
3348 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3349 * while i915 HW rotation is clockwise, thats why this swapping.
3352 return PLANE_CTL_ROTATE_270
;
3353 case DRM_ROTATE_180
:
3354 return PLANE_CTL_ROTATE_180
;
3355 case DRM_ROTATE_270
:
3356 return PLANE_CTL_ROTATE_90
;
3358 MISSING_CASE(rotation
);
3364 static void skylake_update_primary_plane(struct drm_plane
*plane
,
3365 const struct intel_crtc_state
*crtc_state
,
3366 const struct intel_plane_state
*plane_state
)
3368 struct drm_device
*dev
= plane
->dev
;
3369 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3370 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc_state
->base
.crtc
);
3371 struct drm_framebuffer
*fb
= plane_state
->base
.fb
;
3372 enum plane_id plane_id
= to_intel_plane(plane
)->id
;
3373 enum pipe pipe
= to_intel_plane(plane
)->pipe
;
3375 unsigned int rotation
= plane_state
->base
.rotation
;
3376 u32 stride
= skl_plane_stride(fb
, 0, rotation
);
3377 u32 surf_addr
= plane_state
->main
.offset
;
3378 int scaler_id
= plane_state
->scaler_id
;
3379 int src_x
= plane_state
->main
.x
;
3380 int src_y
= plane_state
->main
.y
;
3381 int src_w
= drm_rect_width(&plane_state
->base
.src
) >> 16;
3382 int src_h
= drm_rect_height(&plane_state
->base
.src
) >> 16;
3383 int dst_x
= plane_state
->base
.dst
.x1
;
3384 int dst_y
= plane_state
->base
.dst
.y1
;
3385 int dst_w
= drm_rect_width(&plane_state
->base
.dst
);
3386 int dst_h
= drm_rect_height(&plane_state
->base
.dst
);
3388 plane_ctl
= PLANE_CTL_ENABLE
|
3389 PLANE_CTL_PIPE_GAMMA_ENABLE
|
3390 PLANE_CTL_PIPE_CSC_ENABLE
;
3392 plane_ctl
|= skl_plane_ctl_format(fb
->format
->format
);
3393 plane_ctl
|= skl_plane_ctl_tiling(fb
->modifier
);
3394 plane_ctl
|= PLANE_CTL_PLANE_GAMMA_DISABLE
;
3395 plane_ctl
|= skl_plane_ctl_rotation(rotation
);
3397 /* Sizes are 0 based */
3403 intel_crtc
->dspaddr_offset
= surf_addr
;
3405 intel_crtc
->adjusted_x
= src_x
;
3406 intel_crtc
->adjusted_y
= src_y
;
3408 I915_WRITE(PLANE_CTL(pipe
, plane_id
), plane_ctl
);
3409 I915_WRITE(PLANE_OFFSET(pipe
, plane_id
), (src_y
<< 16) | src_x
);
3410 I915_WRITE(PLANE_STRIDE(pipe
, plane_id
), stride
);
3411 I915_WRITE(PLANE_SIZE(pipe
, plane_id
), (src_h
<< 16) | src_w
);
3413 if (scaler_id
>= 0) {
3414 uint32_t ps_ctrl
= 0;
3416 WARN_ON(!dst_w
|| !dst_h
);
3417 ps_ctrl
= PS_SCALER_EN
| PS_PLANE_SEL(plane_id
) |
3418 crtc_state
->scaler_state
.scalers
[scaler_id
].mode
;
3419 I915_WRITE(SKL_PS_CTRL(pipe
, scaler_id
), ps_ctrl
);
3420 I915_WRITE(SKL_PS_PWR_GATE(pipe
, scaler_id
), 0);
3421 I915_WRITE(SKL_PS_WIN_POS(pipe
, scaler_id
), (dst_x
<< 16) | dst_y
);
3422 I915_WRITE(SKL_PS_WIN_SZ(pipe
, scaler_id
), (dst_w
<< 16) | dst_h
);
3423 I915_WRITE(PLANE_POS(pipe
, plane_id
), 0);
3425 I915_WRITE(PLANE_POS(pipe
, plane_id
), (dst_y
<< 16) | dst_x
);
3428 I915_WRITE(PLANE_SURF(pipe
, plane_id
),
3429 intel_plane_ggtt_offset(plane_state
) + surf_addr
);
3431 POSTING_READ(PLANE_SURF(pipe
, plane_id
));
3434 static void skylake_disable_primary_plane(struct drm_plane
*primary
,
3435 struct drm_crtc
*crtc
)
3437 struct drm_device
*dev
= crtc
->dev
;
3438 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3439 enum plane_id plane_id
= to_intel_plane(primary
)->id
;
3440 enum pipe pipe
= to_intel_plane(primary
)->pipe
;
3442 I915_WRITE(PLANE_CTL(pipe
, plane_id
), 0);
3443 I915_WRITE(PLANE_SURF(pipe
, plane_id
), 0);
3444 POSTING_READ(PLANE_SURF(pipe
, plane_id
));
3447 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3449 intel_pipe_set_base_atomic(struct drm_crtc
*crtc
, struct drm_framebuffer
*fb
,
3450 int x
, int y
, enum mode_set_atomic state
)
3452 /* Support for kgdboc is disabled, this needs a major rework. */
3453 DRM_ERROR("legacy panic handler not supported any more.\n");
3458 static void intel_complete_page_flips(struct drm_i915_private
*dev_priv
)
3460 struct intel_crtc
*crtc
;
3462 for_each_intel_crtc(&dev_priv
->drm
, crtc
)
3463 intel_finish_page_flip_cs(dev_priv
, crtc
->pipe
);
3466 static void intel_update_primary_planes(struct drm_device
*dev
)
3468 struct drm_crtc
*crtc
;
3470 for_each_crtc(dev
, crtc
) {
3471 struct intel_plane
*plane
= to_intel_plane(crtc
->primary
);
3472 struct intel_plane_state
*plane_state
=
3473 to_intel_plane_state(plane
->base
.state
);
3475 if (plane_state
->base
.visible
)
3476 plane
->update_plane(&plane
->base
,
3477 to_intel_crtc_state(crtc
->state
),
3483 __intel_display_resume(struct drm_device
*dev
,
3484 struct drm_atomic_state
*state
)
3486 struct drm_crtc_state
*crtc_state
;
3487 struct drm_crtc
*crtc
;
3490 intel_modeset_setup_hw_state(dev
);
3491 i915_redisable_vga(to_i915(dev
));
3496 for_each_crtc_in_state(state
, crtc
, crtc_state
, i
) {
3498 * Force recalculation even if we restore
3499 * current state. With fast modeset this may not result
3500 * in a modeset when the state is compatible.
3502 crtc_state
->mode_changed
= true;
3505 /* ignore any reset values/BIOS leftovers in the WM registers */
3506 to_intel_atomic_state(state
)->skip_intermediate_wm
= true;
3508 ret
= drm_atomic_commit(state
);
3510 WARN_ON(ret
== -EDEADLK
);
3514 static bool gpu_reset_clobbers_display(struct drm_i915_private
*dev_priv
)
3516 return intel_has_gpu_reset(dev_priv
) &&
3517 INTEL_GEN(dev_priv
) < 5 && !IS_G4X(dev_priv
);
3520 void intel_prepare_reset(struct drm_i915_private
*dev_priv
)
3522 struct drm_device
*dev
= &dev_priv
->drm
;
3523 struct drm_modeset_acquire_ctx
*ctx
= &dev_priv
->reset_ctx
;
3524 struct drm_atomic_state
*state
;
3528 * Need mode_config.mutex so that we don't
3529 * trample ongoing ->detect() and whatnot.
3531 mutex_lock(&dev
->mode_config
.mutex
);
3532 drm_modeset_acquire_init(ctx
, 0);
3534 ret
= drm_modeset_lock_all_ctx(dev
, ctx
);
3535 if (ret
!= -EDEADLK
)
3538 drm_modeset_backoff(ctx
);
3541 /* reset doesn't touch the display, but flips might get nuked anyway, */
3542 if (!i915
.force_reset_modeset_test
&&
3543 !gpu_reset_clobbers_display(dev_priv
))
3547 * Disabling the crtcs gracefully seems nicer. Also the
3548 * g33 docs say we should at least disable all the planes.
3550 state
= drm_atomic_helper_duplicate_state(dev
, ctx
);
3551 if (IS_ERR(state
)) {
3552 ret
= PTR_ERR(state
);
3553 DRM_ERROR("Duplicating state failed with %i\n", ret
);
3557 ret
= drm_atomic_helper_disable_all(dev
, ctx
);
3559 DRM_ERROR("Suspending crtc's failed with %i\n", ret
);
3560 drm_atomic_state_put(state
);
3564 dev_priv
->modeset_restore_state
= state
;
3565 state
->acquire_ctx
= ctx
;
3568 void intel_finish_reset(struct drm_i915_private
*dev_priv
)
3570 struct drm_device
*dev
= &dev_priv
->drm
;
3571 struct drm_modeset_acquire_ctx
*ctx
= &dev_priv
->reset_ctx
;
3572 struct drm_atomic_state
*state
= dev_priv
->modeset_restore_state
;
3576 * Flips in the rings will be nuked by the reset,
3577 * so complete all pending flips so that user space
3578 * will get its events and not get stuck.
3580 intel_complete_page_flips(dev_priv
);
3582 dev_priv
->modeset_restore_state
= NULL
;
3584 /* reset doesn't touch the display */
3585 if (!gpu_reset_clobbers_display(dev_priv
)) {
3588 * Flips in the rings have been nuked by the reset,
3589 * so update the base address of all primary
3590 * planes to the the last fb to make sure we're
3591 * showing the correct fb after a reset.
3593 * FIXME: Atomic will make this obsolete since we won't schedule
3594 * CS-based flips (which might get lost in gpu resets) any more.
3596 intel_update_primary_planes(dev
);
3598 ret
= __intel_display_resume(dev
, state
);
3600 DRM_ERROR("Restoring old state failed with %i\n", ret
);
3604 * The display has been reset as well,
3605 * so need a full re-initialization.
3607 intel_runtime_pm_disable_interrupts(dev_priv
);
3608 intel_runtime_pm_enable_interrupts(dev_priv
);
3610 intel_pps_unlock_regs_wa(dev_priv
);
3611 intel_modeset_init_hw(dev
);
3613 spin_lock_irq(&dev_priv
->irq_lock
);
3614 if (dev_priv
->display
.hpd_irq_setup
)
3615 dev_priv
->display
.hpd_irq_setup(dev_priv
);
3616 spin_unlock_irq(&dev_priv
->irq_lock
);
3618 ret
= __intel_display_resume(dev
, state
);
3620 DRM_ERROR("Restoring old state failed with %i\n", ret
);
3622 intel_hpd_init(dev_priv
);
3626 drm_atomic_state_put(state
);
3627 drm_modeset_drop_locks(ctx
);
3628 drm_modeset_acquire_fini(ctx
);
3629 mutex_unlock(&dev
->mode_config
.mutex
);
3632 static bool abort_flip_on_reset(struct intel_crtc
*crtc
)
3634 struct i915_gpu_error
*error
= &to_i915(crtc
->base
.dev
)->gpu_error
;
3636 if (i915_reset_in_progress(error
))
3639 if (crtc
->reset_count
!= i915_reset_count(error
))
3645 static bool intel_crtc_has_pending_flip(struct drm_crtc
*crtc
)
3647 struct drm_device
*dev
= crtc
->dev
;
3648 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3651 if (abort_flip_on_reset(intel_crtc
))
3654 spin_lock_irq(&dev
->event_lock
);
3655 pending
= to_intel_crtc(crtc
)->flip_work
!= NULL
;
3656 spin_unlock_irq(&dev
->event_lock
);
3661 static void intel_update_pipe_config(struct intel_crtc
*crtc
,
3662 struct intel_crtc_state
*old_crtc_state
)
3664 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
3665 struct intel_crtc_state
*pipe_config
=
3666 to_intel_crtc_state(crtc
->base
.state
);
3668 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3669 crtc
->base
.mode
= crtc
->base
.state
->mode
;
3671 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3672 old_crtc_state
->pipe_src_w
, old_crtc_state
->pipe_src_h
,
3673 pipe_config
->pipe_src_w
, pipe_config
->pipe_src_h
);
3676 * Update pipe size and adjust fitter if needed: the reason for this is
3677 * that in compute_mode_changes we check the native mode (not the pfit
3678 * mode) to see if we can flip rather than do a full mode set. In the
3679 * fastboot case, we'll flip, but if we don't update the pipesrc and
3680 * pfit state, we'll end up with a big fb scanned out into the wrong
3684 I915_WRITE(PIPESRC(crtc
->pipe
),
3685 ((pipe_config
->pipe_src_w
- 1) << 16) |
3686 (pipe_config
->pipe_src_h
- 1));
3688 /* on skylake this is done by detaching scalers */
3689 if (INTEL_GEN(dev_priv
) >= 9) {
3690 skl_detach_scalers(crtc
);
3692 if (pipe_config
->pch_pfit
.enabled
)
3693 skylake_pfit_enable(crtc
);
3694 } else if (HAS_PCH_SPLIT(dev_priv
)) {
3695 if (pipe_config
->pch_pfit
.enabled
)
3696 ironlake_pfit_enable(crtc
);
3697 else if (old_crtc_state
->pch_pfit
.enabled
)
3698 ironlake_pfit_disable(crtc
, true);
3702 static void intel_fdi_normal_train(struct drm_crtc
*crtc
)
3704 struct drm_device
*dev
= crtc
->dev
;
3705 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3706 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3707 int pipe
= intel_crtc
->pipe
;
3711 /* enable normal train */
3712 reg
= FDI_TX_CTL(pipe
);
3713 temp
= I915_READ(reg
);
3714 if (IS_IVYBRIDGE(dev_priv
)) {
3715 temp
&= ~FDI_LINK_TRAIN_NONE_IVB
;
3716 temp
|= FDI_LINK_TRAIN_NONE_IVB
| FDI_TX_ENHANCE_FRAME_ENABLE
;
3718 temp
&= ~FDI_LINK_TRAIN_NONE
;
3719 temp
|= FDI_LINK_TRAIN_NONE
| FDI_TX_ENHANCE_FRAME_ENABLE
;
3721 I915_WRITE(reg
, temp
);
3723 reg
= FDI_RX_CTL(pipe
);
3724 temp
= I915_READ(reg
);
3725 if (HAS_PCH_CPT(dev_priv
)) {
3726 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
3727 temp
|= FDI_LINK_TRAIN_NORMAL_CPT
;
3729 temp
&= ~FDI_LINK_TRAIN_NONE
;
3730 temp
|= FDI_LINK_TRAIN_NONE
;
3732 I915_WRITE(reg
, temp
| FDI_RX_ENHANCE_FRAME_ENABLE
);
3734 /* wait one idle pattern time */
3738 /* IVB wants error correction enabled */
3739 if (IS_IVYBRIDGE(dev_priv
))
3740 I915_WRITE(reg
, I915_READ(reg
) | FDI_FS_ERRC_ENABLE
|
3741 FDI_FE_ERRC_ENABLE
);
3744 /* The FDI link training functions for ILK/Ibexpeak. */
3745 static void ironlake_fdi_link_train(struct drm_crtc
*crtc
)
3747 struct drm_device
*dev
= crtc
->dev
;
3748 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3749 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3750 int pipe
= intel_crtc
->pipe
;
3754 /* FDI needs bits from pipe first */
3755 assert_pipe_enabled(dev_priv
, pipe
);
3757 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3759 reg
= FDI_RX_IMR(pipe
);
3760 temp
= I915_READ(reg
);
3761 temp
&= ~FDI_RX_SYMBOL_LOCK
;
3762 temp
&= ~FDI_RX_BIT_LOCK
;
3763 I915_WRITE(reg
, temp
);
3767 /* enable CPU FDI TX and PCH FDI RX */
3768 reg
= FDI_TX_CTL(pipe
);
3769 temp
= I915_READ(reg
);
3770 temp
&= ~FDI_DP_PORT_WIDTH_MASK
;
3771 temp
|= FDI_DP_PORT_WIDTH(intel_crtc
->config
->fdi_lanes
);
3772 temp
&= ~FDI_LINK_TRAIN_NONE
;
3773 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
3774 I915_WRITE(reg
, temp
| FDI_TX_ENABLE
);
3776 reg
= FDI_RX_CTL(pipe
);
3777 temp
= I915_READ(reg
);
3778 temp
&= ~FDI_LINK_TRAIN_NONE
;
3779 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
3780 I915_WRITE(reg
, temp
| FDI_RX_ENABLE
);
3785 /* Ironlake workaround, enable clock pointer after FDI enable*/
3786 I915_WRITE(FDI_RX_CHICKEN(pipe
), FDI_RX_PHASE_SYNC_POINTER_OVR
);
3787 I915_WRITE(FDI_RX_CHICKEN(pipe
), FDI_RX_PHASE_SYNC_POINTER_OVR
|
3788 FDI_RX_PHASE_SYNC_POINTER_EN
);
3790 reg
= FDI_RX_IIR(pipe
);
3791 for (tries
= 0; tries
< 5; tries
++) {
3792 temp
= I915_READ(reg
);
3793 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
3795 if ((temp
& FDI_RX_BIT_LOCK
)) {
3796 DRM_DEBUG_KMS("FDI train 1 done.\n");
3797 I915_WRITE(reg
, temp
| FDI_RX_BIT_LOCK
);
3802 DRM_ERROR("FDI train 1 fail!\n");
3805 reg
= FDI_TX_CTL(pipe
);
3806 temp
= I915_READ(reg
);
3807 temp
&= ~FDI_LINK_TRAIN_NONE
;
3808 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
3809 I915_WRITE(reg
, temp
);
3811 reg
= FDI_RX_CTL(pipe
);
3812 temp
= I915_READ(reg
);
3813 temp
&= ~FDI_LINK_TRAIN_NONE
;
3814 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
3815 I915_WRITE(reg
, temp
);
3820 reg
= FDI_RX_IIR(pipe
);
3821 for (tries
= 0; tries
< 5; tries
++) {
3822 temp
= I915_READ(reg
);
3823 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
3825 if (temp
& FDI_RX_SYMBOL_LOCK
) {
3826 I915_WRITE(reg
, temp
| FDI_RX_SYMBOL_LOCK
);
3827 DRM_DEBUG_KMS("FDI train 2 done.\n");
3832 DRM_ERROR("FDI train 2 fail!\n");
3834 DRM_DEBUG_KMS("FDI train done\n");
3838 static const int snb_b_fdi_train_param
[] = {
3839 FDI_LINK_TRAIN_400MV_0DB_SNB_B
,
3840 FDI_LINK_TRAIN_400MV_6DB_SNB_B
,
3841 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B
,
3842 FDI_LINK_TRAIN_800MV_0DB_SNB_B
,
3845 /* The FDI link training functions for SNB/Cougarpoint. */
3846 static void gen6_fdi_link_train(struct drm_crtc
*crtc
)
3848 struct drm_device
*dev
= crtc
->dev
;
3849 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3850 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3851 int pipe
= intel_crtc
->pipe
;
3855 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3857 reg
= FDI_RX_IMR(pipe
);
3858 temp
= I915_READ(reg
);
3859 temp
&= ~FDI_RX_SYMBOL_LOCK
;
3860 temp
&= ~FDI_RX_BIT_LOCK
;
3861 I915_WRITE(reg
, temp
);
3866 /* enable CPU FDI TX and PCH FDI RX */
3867 reg
= FDI_TX_CTL(pipe
);
3868 temp
= I915_READ(reg
);
3869 temp
&= ~FDI_DP_PORT_WIDTH_MASK
;
3870 temp
|= FDI_DP_PORT_WIDTH(intel_crtc
->config
->fdi_lanes
);
3871 temp
&= ~FDI_LINK_TRAIN_NONE
;
3872 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
3873 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
3875 temp
|= FDI_LINK_TRAIN_400MV_0DB_SNB_B
;
3876 I915_WRITE(reg
, temp
| FDI_TX_ENABLE
);
3878 I915_WRITE(FDI_RX_MISC(pipe
),
3879 FDI_RX_TP1_TO_TP2_48
| FDI_RX_FDI_DELAY_90
);
3881 reg
= FDI_RX_CTL(pipe
);
3882 temp
= I915_READ(reg
);
3883 if (HAS_PCH_CPT(dev_priv
)) {
3884 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
3885 temp
|= FDI_LINK_TRAIN_PATTERN_1_CPT
;
3887 temp
&= ~FDI_LINK_TRAIN_NONE
;
3888 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
3890 I915_WRITE(reg
, temp
| FDI_RX_ENABLE
);
3895 for (i
= 0; i
< 4; i
++) {
3896 reg
= FDI_TX_CTL(pipe
);
3897 temp
= I915_READ(reg
);
3898 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
3899 temp
|= snb_b_fdi_train_param
[i
];
3900 I915_WRITE(reg
, temp
);
3905 for (retry
= 0; retry
< 5; retry
++) {
3906 reg
= FDI_RX_IIR(pipe
);
3907 temp
= I915_READ(reg
);
3908 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
3909 if (temp
& FDI_RX_BIT_LOCK
) {
3910 I915_WRITE(reg
, temp
| FDI_RX_BIT_LOCK
);
3911 DRM_DEBUG_KMS("FDI train 1 done.\n");
3920 DRM_ERROR("FDI train 1 fail!\n");
3923 reg
= FDI_TX_CTL(pipe
);
3924 temp
= I915_READ(reg
);
3925 temp
&= ~FDI_LINK_TRAIN_NONE
;
3926 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
3927 if (IS_GEN6(dev_priv
)) {
3928 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
3930 temp
|= FDI_LINK_TRAIN_400MV_0DB_SNB_B
;
3932 I915_WRITE(reg
, temp
);
3934 reg
= FDI_RX_CTL(pipe
);
3935 temp
= I915_READ(reg
);
3936 if (HAS_PCH_CPT(dev_priv
)) {
3937 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
3938 temp
|= FDI_LINK_TRAIN_PATTERN_2_CPT
;
3940 temp
&= ~FDI_LINK_TRAIN_NONE
;
3941 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
3943 I915_WRITE(reg
, temp
);
3948 for (i
= 0; i
< 4; i
++) {
3949 reg
= FDI_TX_CTL(pipe
);
3950 temp
= I915_READ(reg
);
3951 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
3952 temp
|= snb_b_fdi_train_param
[i
];
3953 I915_WRITE(reg
, temp
);
3958 for (retry
= 0; retry
< 5; retry
++) {
3959 reg
= FDI_RX_IIR(pipe
);
3960 temp
= I915_READ(reg
);
3961 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
3962 if (temp
& FDI_RX_SYMBOL_LOCK
) {
3963 I915_WRITE(reg
, temp
| FDI_RX_SYMBOL_LOCK
);
3964 DRM_DEBUG_KMS("FDI train 2 done.\n");
3973 DRM_ERROR("FDI train 2 fail!\n");
3975 DRM_DEBUG_KMS("FDI train done.\n");
3978 /* Manual link training for Ivy Bridge A0 parts */
3979 static void ivb_manual_fdi_link_train(struct drm_crtc
*crtc
)
3981 struct drm_device
*dev
= crtc
->dev
;
3982 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3983 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3984 int pipe
= intel_crtc
->pipe
;
3988 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3990 reg
= FDI_RX_IMR(pipe
);
3991 temp
= I915_READ(reg
);
3992 temp
&= ~FDI_RX_SYMBOL_LOCK
;
3993 temp
&= ~FDI_RX_BIT_LOCK
;
3994 I915_WRITE(reg
, temp
);
3999 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4000 I915_READ(FDI_RX_IIR(pipe
)));
4002 /* Try each vswing and preemphasis setting twice before moving on */
4003 for (j
= 0; j
< ARRAY_SIZE(snb_b_fdi_train_param
) * 2; j
++) {
4004 /* disable first in case we need to retry */
4005 reg
= FDI_TX_CTL(pipe
);
4006 temp
= I915_READ(reg
);
4007 temp
&= ~(FDI_LINK_TRAIN_AUTO
| FDI_LINK_TRAIN_NONE_IVB
);
4008 temp
&= ~FDI_TX_ENABLE
;
4009 I915_WRITE(reg
, temp
);
4011 reg
= FDI_RX_CTL(pipe
);
4012 temp
= I915_READ(reg
);
4013 temp
&= ~FDI_LINK_TRAIN_AUTO
;
4014 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
4015 temp
&= ~FDI_RX_ENABLE
;
4016 I915_WRITE(reg
, temp
);
4018 /* enable CPU FDI TX and PCH FDI RX */
4019 reg
= FDI_TX_CTL(pipe
);
4020 temp
= I915_READ(reg
);
4021 temp
&= ~FDI_DP_PORT_WIDTH_MASK
;
4022 temp
|= FDI_DP_PORT_WIDTH(intel_crtc
->config
->fdi_lanes
);
4023 temp
|= FDI_LINK_TRAIN_PATTERN_1_IVB
;
4024 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
4025 temp
|= snb_b_fdi_train_param
[j
/2];
4026 temp
|= FDI_COMPOSITE_SYNC
;
4027 I915_WRITE(reg
, temp
| FDI_TX_ENABLE
);
4029 I915_WRITE(FDI_RX_MISC(pipe
),
4030 FDI_RX_TP1_TO_TP2_48
| FDI_RX_FDI_DELAY_90
);
4032 reg
= FDI_RX_CTL(pipe
);
4033 temp
= I915_READ(reg
);
4034 temp
|= FDI_LINK_TRAIN_PATTERN_1_CPT
;
4035 temp
|= FDI_COMPOSITE_SYNC
;
4036 I915_WRITE(reg
, temp
| FDI_RX_ENABLE
);
4039 udelay(1); /* should be 0.5us */
4041 for (i
= 0; i
< 4; i
++) {
4042 reg
= FDI_RX_IIR(pipe
);
4043 temp
= I915_READ(reg
);
4044 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
4046 if (temp
& FDI_RX_BIT_LOCK
||
4047 (I915_READ(reg
) & FDI_RX_BIT_LOCK
)) {
4048 I915_WRITE(reg
, temp
| FDI_RX_BIT_LOCK
);
4049 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4053 udelay(1); /* should be 0.5us */
4056 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j
/ 2);
4061 reg
= FDI_TX_CTL(pipe
);
4062 temp
= I915_READ(reg
);
4063 temp
&= ~FDI_LINK_TRAIN_NONE_IVB
;
4064 temp
|= FDI_LINK_TRAIN_PATTERN_2_IVB
;
4065 I915_WRITE(reg
, temp
);
4067 reg
= FDI_RX_CTL(pipe
);
4068 temp
= I915_READ(reg
);
4069 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
4070 temp
|= FDI_LINK_TRAIN_PATTERN_2_CPT
;
4071 I915_WRITE(reg
, temp
);
4074 udelay(2); /* should be 1.5us */
4076 for (i
= 0; i
< 4; i
++) {
4077 reg
= FDI_RX_IIR(pipe
);
4078 temp
= I915_READ(reg
);
4079 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
4081 if (temp
& FDI_RX_SYMBOL_LOCK
||
4082 (I915_READ(reg
) & FDI_RX_SYMBOL_LOCK
)) {
4083 I915_WRITE(reg
, temp
| FDI_RX_SYMBOL_LOCK
);
4084 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4088 udelay(2); /* should be 1.5us */
4091 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j
/ 2);
4095 DRM_DEBUG_KMS("FDI train done.\n");
4098 static void ironlake_fdi_pll_enable(struct intel_crtc
*intel_crtc
)
4100 struct drm_device
*dev
= intel_crtc
->base
.dev
;
4101 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4102 int pipe
= intel_crtc
->pipe
;
4106 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4107 reg
= FDI_RX_CTL(pipe
);
4108 temp
= I915_READ(reg
);
4109 temp
&= ~(FDI_DP_PORT_WIDTH_MASK
| (0x7 << 16));
4110 temp
|= FDI_DP_PORT_WIDTH(intel_crtc
->config
->fdi_lanes
);
4111 temp
|= (I915_READ(PIPECONF(pipe
)) & PIPECONF_BPC_MASK
) << 11;
4112 I915_WRITE(reg
, temp
| FDI_RX_PLL_ENABLE
);
4117 /* Switch from Rawclk to PCDclk */
4118 temp
= I915_READ(reg
);
4119 I915_WRITE(reg
, temp
| FDI_PCDCLK
);
4124 /* Enable CPU FDI TX PLL, always on for Ironlake */
4125 reg
= FDI_TX_CTL(pipe
);
4126 temp
= I915_READ(reg
);
4127 if ((temp
& FDI_TX_PLL_ENABLE
) == 0) {
4128 I915_WRITE(reg
, temp
| FDI_TX_PLL_ENABLE
);
4135 static void ironlake_fdi_pll_disable(struct intel_crtc
*intel_crtc
)
4137 struct drm_device
*dev
= intel_crtc
->base
.dev
;
4138 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4139 int pipe
= intel_crtc
->pipe
;
4143 /* Switch from PCDclk to Rawclk */
4144 reg
= FDI_RX_CTL(pipe
);
4145 temp
= I915_READ(reg
);
4146 I915_WRITE(reg
, temp
& ~FDI_PCDCLK
);
4148 /* Disable CPU FDI TX PLL */
4149 reg
= FDI_TX_CTL(pipe
);
4150 temp
= I915_READ(reg
);
4151 I915_WRITE(reg
, temp
& ~FDI_TX_PLL_ENABLE
);
4156 reg
= FDI_RX_CTL(pipe
);
4157 temp
= I915_READ(reg
);
4158 I915_WRITE(reg
, temp
& ~FDI_RX_PLL_ENABLE
);
4160 /* Wait for the clocks to turn off. */
4165 static void ironlake_fdi_disable(struct drm_crtc
*crtc
)
4167 struct drm_device
*dev
= crtc
->dev
;
4168 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4169 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4170 int pipe
= intel_crtc
->pipe
;
4174 /* disable CPU FDI tx and PCH FDI rx */
4175 reg
= FDI_TX_CTL(pipe
);
4176 temp
= I915_READ(reg
);
4177 I915_WRITE(reg
, temp
& ~FDI_TX_ENABLE
);
4180 reg
= FDI_RX_CTL(pipe
);
4181 temp
= I915_READ(reg
);
4182 temp
&= ~(0x7 << 16);
4183 temp
|= (I915_READ(PIPECONF(pipe
)) & PIPECONF_BPC_MASK
) << 11;
4184 I915_WRITE(reg
, temp
& ~FDI_RX_ENABLE
);
4189 /* Ironlake workaround, disable clock pointer after downing FDI */
4190 if (HAS_PCH_IBX(dev_priv
))
4191 I915_WRITE(FDI_RX_CHICKEN(pipe
), FDI_RX_PHASE_SYNC_POINTER_OVR
);
4193 /* still set train pattern 1 */
4194 reg
= FDI_TX_CTL(pipe
);
4195 temp
= I915_READ(reg
);
4196 temp
&= ~FDI_LINK_TRAIN_NONE
;
4197 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
4198 I915_WRITE(reg
, temp
);
4200 reg
= FDI_RX_CTL(pipe
);
4201 temp
= I915_READ(reg
);
4202 if (HAS_PCH_CPT(dev_priv
)) {
4203 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
4204 temp
|= FDI_LINK_TRAIN_PATTERN_1_CPT
;
4206 temp
&= ~FDI_LINK_TRAIN_NONE
;
4207 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
4209 /* BPC in FDI rx is consistent with that in PIPECONF */
4210 temp
&= ~(0x07 << 16);
4211 temp
|= (I915_READ(PIPECONF(pipe
)) & PIPECONF_BPC_MASK
) << 11;
4212 I915_WRITE(reg
, temp
);
4218 bool intel_has_pending_fb_unpin(struct drm_i915_private
*dev_priv
)
4220 struct intel_crtc
*crtc
;
4222 /* Note that we don't need to be called with mode_config.lock here
4223 * as our list of CRTC objects is static for the lifetime of the
4224 * device and so cannot disappear as we iterate. Similarly, we can
4225 * happily treat the predicates as racy, atomic checks as userspace
4226 * cannot claim and pin a new fb without at least acquring the
4227 * struct_mutex and so serialising with us.
4229 for_each_intel_crtc(&dev_priv
->drm
, crtc
) {
4230 if (atomic_read(&crtc
->unpin_work_count
) == 0)
4233 if (crtc
->flip_work
)
4234 intel_wait_for_vblank(dev_priv
, crtc
->pipe
);
4242 static void page_flip_completed(struct intel_crtc
*intel_crtc
)
4244 struct drm_i915_private
*dev_priv
= to_i915(intel_crtc
->base
.dev
);
4245 struct intel_flip_work
*work
= intel_crtc
->flip_work
;
4247 intel_crtc
->flip_work
= NULL
;
4250 drm_crtc_send_vblank_event(&intel_crtc
->base
, work
->event
);
4252 drm_crtc_vblank_put(&intel_crtc
->base
);
4254 wake_up_all(&dev_priv
->pending_flip_queue
);
4255 queue_work(dev_priv
->wq
, &work
->unpin_work
);
4257 trace_i915_flip_complete(intel_crtc
->plane
,
4258 work
->pending_flip_obj
);
4261 static int intel_crtc_wait_for_pending_flips(struct drm_crtc
*crtc
)
4263 struct drm_device
*dev
= crtc
->dev
;
4264 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4267 WARN_ON(waitqueue_active(&dev_priv
->pending_flip_queue
));
4269 ret
= wait_event_interruptible_timeout(
4270 dev_priv
->pending_flip_queue
,
4271 !intel_crtc_has_pending_flip(crtc
),
4278 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4279 struct intel_flip_work
*work
;
4281 spin_lock_irq(&dev
->event_lock
);
4282 work
= intel_crtc
->flip_work
;
4283 if (work
&& !is_mmio_work(work
)) {
4284 WARN_ONCE(1, "Removing stuck page flip\n");
4285 page_flip_completed(intel_crtc
);
4287 spin_unlock_irq(&dev
->event_lock
);
4293 void lpt_disable_iclkip(struct drm_i915_private
*dev_priv
)
4297 I915_WRITE(PIXCLK_GATE
, PIXCLK_GATE_GATE
);
4299 mutex_lock(&dev_priv
->sb_lock
);
4301 temp
= intel_sbi_read(dev_priv
, SBI_SSCCTL6
, SBI_ICLK
);
4302 temp
|= SBI_SSCCTL_DISABLE
;
4303 intel_sbi_write(dev_priv
, SBI_SSCCTL6
, temp
, SBI_ICLK
);
4305 mutex_unlock(&dev_priv
->sb_lock
);
4308 /* Program iCLKIP clock to the desired frequency */
4309 static void lpt_program_iclkip(struct drm_crtc
*crtc
)
4311 struct drm_i915_private
*dev_priv
= to_i915(crtc
->dev
);
4312 int clock
= to_intel_crtc(crtc
)->config
->base
.adjusted_mode
.crtc_clock
;
4313 u32 divsel
, phaseinc
, auxdiv
, phasedir
= 0;
4316 lpt_disable_iclkip(dev_priv
);
4318 /* The iCLK virtual clock root frequency is in MHz,
4319 * but the adjusted_mode->crtc_clock in in KHz. To get the
4320 * divisors, it is necessary to divide one by another, so we
4321 * convert the virtual clock precision to KHz here for higher
4324 for (auxdiv
= 0; auxdiv
< 2; auxdiv
++) {
4325 u32 iclk_virtual_root_freq
= 172800 * 1000;
4326 u32 iclk_pi_range
= 64;
4327 u32 desired_divisor
;
4329 desired_divisor
= DIV_ROUND_CLOSEST(iclk_virtual_root_freq
,
4331 divsel
= (desired_divisor
/ iclk_pi_range
) - 2;
4332 phaseinc
= desired_divisor
% iclk_pi_range
;
4335 * Near 20MHz is a corner case which is
4336 * out of range for the 7-bit divisor
4342 /* This should not happen with any sane values */
4343 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel
) &
4344 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK
);
4345 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir
) &
4346 ~SBI_SSCDIVINTPHASE_INCVAL_MASK
);
4348 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4355 mutex_lock(&dev_priv
->sb_lock
);
4357 /* Program SSCDIVINTPHASE6 */
4358 temp
= intel_sbi_read(dev_priv
, SBI_SSCDIVINTPHASE6
, SBI_ICLK
);
4359 temp
&= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK
;
4360 temp
|= SBI_SSCDIVINTPHASE_DIVSEL(divsel
);
4361 temp
&= ~SBI_SSCDIVINTPHASE_INCVAL_MASK
;
4362 temp
|= SBI_SSCDIVINTPHASE_INCVAL(phaseinc
);
4363 temp
|= SBI_SSCDIVINTPHASE_DIR(phasedir
);
4364 temp
|= SBI_SSCDIVINTPHASE_PROPAGATE
;
4365 intel_sbi_write(dev_priv
, SBI_SSCDIVINTPHASE6
, temp
, SBI_ICLK
);
4367 /* Program SSCAUXDIV */
4368 temp
= intel_sbi_read(dev_priv
, SBI_SSCAUXDIV6
, SBI_ICLK
);
4369 temp
&= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4370 temp
|= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv
);
4371 intel_sbi_write(dev_priv
, SBI_SSCAUXDIV6
, temp
, SBI_ICLK
);
4373 /* Enable modulator and associated divider */
4374 temp
= intel_sbi_read(dev_priv
, SBI_SSCCTL6
, SBI_ICLK
);
4375 temp
&= ~SBI_SSCCTL_DISABLE
;
4376 intel_sbi_write(dev_priv
, SBI_SSCCTL6
, temp
, SBI_ICLK
);
4378 mutex_unlock(&dev_priv
->sb_lock
);
4380 /* Wait for initialization time */
4383 I915_WRITE(PIXCLK_GATE
, PIXCLK_GATE_UNGATE
);
4386 int lpt_get_iclkip(struct drm_i915_private
*dev_priv
)
4388 u32 divsel
, phaseinc
, auxdiv
;
4389 u32 iclk_virtual_root_freq
= 172800 * 1000;
4390 u32 iclk_pi_range
= 64;
4391 u32 desired_divisor
;
4394 if ((I915_READ(PIXCLK_GATE
) & PIXCLK_GATE_UNGATE
) == 0)
4397 mutex_lock(&dev_priv
->sb_lock
);
4399 temp
= intel_sbi_read(dev_priv
, SBI_SSCCTL6
, SBI_ICLK
);
4400 if (temp
& SBI_SSCCTL_DISABLE
) {
4401 mutex_unlock(&dev_priv
->sb_lock
);
4405 temp
= intel_sbi_read(dev_priv
, SBI_SSCDIVINTPHASE6
, SBI_ICLK
);
4406 divsel
= (temp
& SBI_SSCDIVINTPHASE_DIVSEL_MASK
) >>
4407 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT
;
4408 phaseinc
= (temp
& SBI_SSCDIVINTPHASE_INCVAL_MASK
) >>
4409 SBI_SSCDIVINTPHASE_INCVAL_SHIFT
;
4411 temp
= intel_sbi_read(dev_priv
, SBI_SSCAUXDIV6
, SBI_ICLK
);
4412 auxdiv
= (temp
& SBI_SSCAUXDIV_FINALDIV2SEL_MASK
) >>
4413 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT
;
4415 mutex_unlock(&dev_priv
->sb_lock
);
4417 desired_divisor
= (divsel
+ 2) * iclk_pi_range
+ phaseinc
;
4419 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq
,
4420 desired_divisor
<< auxdiv
);
4423 static void ironlake_pch_transcoder_set_timings(struct intel_crtc
*crtc
,
4424 enum pipe pch_transcoder
)
4426 struct drm_device
*dev
= crtc
->base
.dev
;
4427 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4428 enum transcoder cpu_transcoder
= crtc
->config
->cpu_transcoder
;
4430 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder
),
4431 I915_READ(HTOTAL(cpu_transcoder
)));
4432 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder
),
4433 I915_READ(HBLANK(cpu_transcoder
)));
4434 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder
),
4435 I915_READ(HSYNC(cpu_transcoder
)));
4437 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder
),
4438 I915_READ(VTOTAL(cpu_transcoder
)));
4439 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder
),
4440 I915_READ(VBLANK(cpu_transcoder
)));
4441 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder
),
4442 I915_READ(VSYNC(cpu_transcoder
)));
4443 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder
),
4444 I915_READ(VSYNCSHIFT(cpu_transcoder
)));
4447 static void cpt_set_fdi_bc_bifurcation(struct drm_device
*dev
, bool enable
)
4449 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4452 temp
= I915_READ(SOUTH_CHICKEN1
);
4453 if (!!(temp
& FDI_BC_BIFURCATION_SELECT
) == enable
)
4456 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B
)) & FDI_RX_ENABLE
);
4457 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C
)) & FDI_RX_ENABLE
);
4459 temp
&= ~FDI_BC_BIFURCATION_SELECT
;
4461 temp
|= FDI_BC_BIFURCATION_SELECT
;
4463 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable
? "en" : "dis");
4464 I915_WRITE(SOUTH_CHICKEN1
, temp
);
4465 POSTING_READ(SOUTH_CHICKEN1
);
4468 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc
*intel_crtc
)
4470 struct drm_device
*dev
= intel_crtc
->base
.dev
;
4472 switch (intel_crtc
->pipe
) {
4476 if (intel_crtc
->config
->fdi_lanes
> 2)
4477 cpt_set_fdi_bc_bifurcation(dev
, false);
4479 cpt_set_fdi_bc_bifurcation(dev
, true);
4483 cpt_set_fdi_bc_bifurcation(dev
, true);
4491 /* Return which DP Port should be selected for Transcoder DP control */
4493 intel_trans_dp_port_sel(struct drm_crtc
*crtc
)
4495 struct drm_device
*dev
= crtc
->dev
;
4496 struct intel_encoder
*encoder
;
4498 for_each_encoder_on_crtc(dev
, crtc
, encoder
) {
4499 if (encoder
->type
== INTEL_OUTPUT_DP
||
4500 encoder
->type
== INTEL_OUTPUT_EDP
)
4501 return enc_to_dig_port(&encoder
->base
)->port
;
4508 * Enable PCH resources required for PCH ports:
4510 * - FDI training & RX/TX
4511 * - update transcoder timings
4512 * - DP transcoding bits
4515 static void ironlake_pch_enable(struct drm_crtc
*crtc
)
4517 struct drm_device
*dev
= crtc
->dev
;
4518 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4519 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4520 int pipe
= intel_crtc
->pipe
;
4523 assert_pch_transcoder_disabled(dev_priv
, pipe
);
4525 if (IS_IVYBRIDGE(dev_priv
))
4526 ivybridge_update_fdi_bc_bifurcation(intel_crtc
);
4528 /* Write the TU size bits before fdi link training, so that error
4529 * detection works. */
4530 I915_WRITE(FDI_RX_TUSIZE1(pipe
),
4531 I915_READ(PIPE_DATA_M1(pipe
)) & TU_SIZE_MASK
);
4533 /* For PCH output, training FDI link */
4534 dev_priv
->display
.fdi_link_train(crtc
);
4536 /* We need to program the right clock selection before writing the pixel
4537 * mutliplier into the DPLL. */
4538 if (HAS_PCH_CPT(dev_priv
)) {
4541 temp
= I915_READ(PCH_DPLL_SEL
);
4542 temp
|= TRANS_DPLL_ENABLE(pipe
);
4543 sel
= TRANS_DPLLB_SEL(pipe
);
4544 if (intel_crtc
->config
->shared_dpll
==
4545 intel_get_shared_dpll_by_id(dev_priv
, DPLL_ID_PCH_PLL_B
))
4549 I915_WRITE(PCH_DPLL_SEL
, temp
);
4552 /* XXX: pch pll's can be enabled any time before we enable the PCH
4553 * transcoder, and we actually should do this to not upset any PCH
4554 * transcoder that already use the clock when we share it.
4556 * Note that enable_shared_dpll tries to do the right thing, but
4557 * get_shared_dpll unconditionally resets the pll - we need that to have
4558 * the right LVDS enable sequence. */
4559 intel_enable_shared_dpll(intel_crtc
);
4561 /* set transcoder timing, panel must allow it */
4562 assert_panel_unlocked(dev_priv
, pipe
);
4563 ironlake_pch_transcoder_set_timings(intel_crtc
, pipe
);
4565 intel_fdi_normal_train(crtc
);
4567 /* For PCH DP, enable TRANS_DP_CTL */
4568 if (HAS_PCH_CPT(dev_priv
) &&
4569 intel_crtc_has_dp_encoder(intel_crtc
->config
)) {
4570 const struct drm_display_mode
*adjusted_mode
=
4571 &intel_crtc
->config
->base
.adjusted_mode
;
4572 u32 bpc
= (I915_READ(PIPECONF(pipe
)) & PIPECONF_BPC_MASK
) >> 5;
4573 i915_reg_t reg
= TRANS_DP_CTL(pipe
);
4574 temp
= I915_READ(reg
);
4575 temp
&= ~(TRANS_DP_PORT_SEL_MASK
|
4576 TRANS_DP_SYNC_MASK
|
4578 temp
|= TRANS_DP_OUTPUT_ENABLE
;
4579 temp
|= bpc
<< 9; /* same format but at 11:9 */
4581 if (adjusted_mode
->flags
& DRM_MODE_FLAG_PHSYNC
)
4582 temp
|= TRANS_DP_HSYNC_ACTIVE_HIGH
;
4583 if (adjusted_mode
->flags
& DRM_MODE_FLAG_PVSYNC
)
4584 temp
|= TRANS_DP_VSYNC_ACTIVE_HIGH
;
4586 switch (intel_trans_dp_port_sel(crtc
)) {
4588 temp
|= TRANS_DP_PORT_SEL_B
;
4591 temp
|= TRANS_DP_PORT_SEL_C
;
4594 temp
|= TRANS_DP_PORT_SEL_D
;
4600 I915_WRITE(reg
, temp
);
4603 ironlake_enable_pch_transcoder(dev_priv
, pipe
);
4606 static void lpt_pch_enable(struct drm_crtc
*crtc
)
4608 struct drm_device
*dev
= crtc
->dev
;
4609 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4610 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4611 enum transcoder cpu_transcoder
= intel_crtc
->config
->cpu_transcoder
;
4613 assert_pch_transcoder_disabled(dev_priv
, TRANSCODER_A
);
4615 lpt_program_iclkip(crtc
);
4617 /* Set transcoder timing. */
4618 ironlake_pch_transcoder_set_timings(intel_crtc
, PIPE_A
);
4620 lpt_enable_pch_transcoder(dev_priv
, cpu_transcoder
);
4623 static void cpt_verify_modeset(struct drm_device
*dev
, int pipe
)
4625 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4626 i915_reg_t dslreg
= PIPEDSL(pipe
);
4629 temp
= I915_READ(dslreg
);
4631 if (wait_for(I915_READ(dslreg
) != temp
, 5)) {
4632 if (wait_for(I915_READ(dslreg
) != temp
, 5))
4633 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe
));
4638 skl_update_scaler(struct intel_crtc_state
*crtc_state
, bool force_detach
,
4639 unsigned scaler_user
, int *scaler_id
, unsigned int rotation
,
4640 int src_w
, int src_h
, int dst_w
, int dst_h
)
4642 struct intel_crtc_scaler_state
*scaler_state
=
4643 &crtc_state
->scaler_state
;
4644 struct intel_crtc
*intel_crtc
=
4645 to_intel_crtc(crtc_state
->base
.crtc
);
4648 need_scaling
= drm_rotation_90_or_270(rotation
) ?
4649 (src_h
!= dst_w
|| src_w
!= dst_h
):
4650 (src_w
!= dst_w
|| src_h
!= dst_h
);
4653 * if plane is being disabled or scaler is no more required or force detach
4654 * - free scaler binded to this plane/crtc
4655 * - in order to do this, update crtc->scaler_usage
4657 * Here scaler state in crtc_state is set free so that
4658 * scaler can be assigned to other user. Actual register
4659 * update to free the scaler is done in plane/panel-fit programming.
4660 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4662 if (force_detach
|| !need_scaling
) {
4663 if (*scaler_id
>= 0) {
4664 scaler_state
->scaler_users
&= ~(1 << scaler_user
);
4665 scaler_state
->scalers
[*scaler_id
].in_use
= 0;
4667 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4668 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4669 intel_crtc
->pipe
, scaler_user
, *scaler_id
,
4670 scaler_state
->scaler_users
);
4677 if (src_w
< SKL_MIN_SRC_W
|| src_h
< SKL_MIN_SRC_H
||
4678 dst_w
< SKL_MIN_DST_W
|| dst_h
< SKL_MIN_DST_H
||
4680 src_w
> SKL_MAX_SRC_W
|| src_h
> SKL_MAX_SRC_H
||
4681 dst_w
> SKL_MAX_DST_W
|| dst_h
> SKL_MAX_DST_H
) {
4682 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4683 "size is out of scaler range\n",
4684 intel_crtc
->pipe
, scaler_user
, src_w
, src_h
, dst_w
, dst_h
);
4688 /* mark this plane as a scaler user in crtc_state */
4689 scaler_state
->scaler_users
|= (1 << scaler_user
);
4690 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4691 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4692 intel_crtc
->pipe
, scaler_user
, src_w
, src_h
, dst_w
, dst_h
,
4693 scaler_state
->scaler_users
);
4699 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4701 * @state: crtc's scaler state
4704 * 0 - scaler_usage updated successfully
4705 * error - requested scaling cannot be supported or other error condition
4707 int skl_update_scaler_crtc(struct intel_crtc_state
*state
)
4709 const struct drm_display_mode
*adjusted_mode
= &state
->base
.adjusted_mode
;
4711 return skl_update_scaler(state
, !state
->base
.active
, SKL_CRTC_INDEX
,
4712 &state
->scaler_state
.scaler_id
, DRM_ROTATE_0
,
4713 state
->pipe_src_w
, state
->pipe_src_h
,
4714 adjusted_mode
->crtc_hdisplay
, adjusted_mode
->crtc_vdisplay
);
4718 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4720 * @state: crtc's scaler state
4721 * @plane_state: atomic plane state to update
4724 * 0 - scaler_usage updated successfully
4725 * error - requested scaling cannot be supported or other error condition
4727 static int skl_update_scaler_plane(struct intel_crtc_state
*crtc_state
,
4728 struct intel_plane_state
*plane_state
)
4731 struct intel_plane
*intel_plane
=
4732 to_intel_plane(plane_state
->base
.plane
);
4733 struct drm_framebuffer
*fb
= plane_state
->base
.fb
;
4736 bool force_detach
= !fb
|| !plane_state
->base
.visible
;
4738 ret
= skl_update_scaler(crtc_state
, force_detach
,
4739 drm_plane_index(&intel_plane
->base
),
4740 &plane_state
->scaler_id
,
4741 plane_state
->base
.rotation
,
4742 drm_rect_width(&plane_state
->base
.src
) >> 16,
4743 drm_rect_height(&plane_state
->base
.src
) >> 16,
4744 drm_rect_width(&plane_state
->base
.dst
),
4745 drm_rect_height(&plane_state
->base
.dst
));
4747 if (ret
|| plane_state
->scaler_id
< 0)
4750 /* check colorkey */
4751 if (plane_state
->ckey
.flags
!= I915_SET_COLORKEY_NONE
) {
4752 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4753 intel_plane
->base
.base
.id
,
4754 intel_plane
->base
.name
);
4758 /* Check src format */
4759 switch (fb
->format
->format
) {
4760 case DRM_FORMAT_RGB565
:
4761 case DRM_FORMAT_XBGR8888
:
4762 case DRM_FORMAT_XRGB8888
:
4763 case DRM_FORMAT_ABGR8888
:
4764 case DRM_FORMAT_ARGB8888
:
4765 case DRM_FORMAT_XRGB2101010
:
4766 case DRM_FORMAT_XBGR2101010
:
4767 case DRM_FORMAT_YUYV
:
4768 case DRM_FORMAT_YVYU
:
4769 case DRM_FORMAT_UYVY
:
4770 case DRM_FORMAT_VYUY
:
4773 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4774 intel_plane
->base
.base
.id
, intel_plane
->base
.name
,
4775 fb
->base
.id
, fb
->format
->format
);
4782 static void skylake_scaler_disable(struct intel_crtc
*crtc
)
4786 for (i
= 0; i
< crtc
->num_scalers
; i
++)
4787 skl_detach_scaler(crtc
, i
);
4790 static void skylake_pfit_enable(struct intel_crtc
*crtc
)
4792 struct drm_device
*dev
= crtc
->base
.dev
;
4793 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4794 int pipe
= crtc
->pipe
;
4795 struct intel_crtc_scaler_state
*scaler_state
=
4796 &crtc
->config
->scaler_state
;
4798 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc
->config
);
4800 if (crtc
->config
->pch_pfit
.enabled
) {
4803 if (WARN_ON(crtc
->config
->scaler_state
.scaler_id
< 0)) {
4804 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4808 id
= scaler_state
->scaler_id
;
4809 I915_WRITE(SKL_PS_CTRL(pipe
, id
), PS_SCALER_EN
|
4810 PS_FILTER_MEDIUM
| scaler_state
->scalers
[id
].mode
);
4811 I915_WRITE(SKL_PS_WIN_POS(pipe
, id
), crtc
->config
->pch_pfit
.pos
);
4812 I915_WRITE(SKL_PS_WIN_SZ(pipe
, id
), crtc
->config
->pch_pfit
.size
);
4814 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc
->config
, id
);
4818 static void ironlake_pfit_enable(struct intel_crtc
*crtc
)
4820 struct drm_device
*dev
= crtc
->base
.dev
;
4821 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4822 int pipe
= crtc
->pipe
;
4824 if (crtc
->config
->pch_pfit
.enabled
) {
4825 /* Force use of hard-coded filter coefficients
4826 * as some pre-programmed values are broken,
4829 if (IS_IVYBRIDGE(dev_priv
) || IS_HASWELL(dev_priv
))
4830 I915_WRITE(PF_CTL(pipe
), PF_ENABLE
| PF_FILTER_MED_3x3
|
4831 PF_PIPE_SEL_IVB(pipe
));
4833 I915_WRITE(PF_CTL(pipe
), PF_ENABLE
| PF_FILTER_MED_3x3
);
4834 I915_WRITE(PF_WIN_POS(pipe
), crtc
->config
->pch_pfit
.pos
);
4835 I915_WRITE(PF_WIN_SZ(pipe
), crtc
->config
->pch_pfit
.size
);
4839 void hsw_enable_ips(struct intel_crtc
*crtc
)
4841 struct drm_device
*dev
= crtc
->base
.dev
;
4842 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4844 if (!crtc
->config
->ips_enabled
)
4848 * We can only enable IPS after we enable a plane and wait for a vblank
4849 * This function is called from post_plane_update, which is run after
4853 assert_plane_enabled(dev_priv
, crtc
->plane
);
4854 if (IS_BROADWELL(dev_priv
)) {
4855 mutex_lock(&dev_priv
->rps
.hw_lock
);
4856 WARN_ON(sandybridge_pcode_write(dev_priv
, DISPLAY_IPS_CONTROL
, 0xc0000000));
4857 mutex_unlock(&dev_priv
->rps
.hw_lock
);
4858 /* Quoting Art Runyan: "its not safe to expect any particular
4859 * value in IPS_CTL bit 31 after enabling IPS through the
4860 * mailbox." Moreover, the mailbox may return a bogus state,
4861 * so we need to just enable it and continue on.
4864 I915_WRITE(IPS_CTL
, IPS_ENABLE
);
4865 /* The bit only becomes 1 in the next vblank, so this wait here
4866 * is essentially intel_wait_for_vblank. If we don't have this
4867 * and don't wait for vblanks until the end of crtc_enable, then
4868 * the HW state readout code will complain that the expected
4869 * IPS_CTL value is not the one we read. */
4870 if (intel_wait_for_register(dev_priv
,
4871 IPS_CTL
, IPS_ENABLE
, IPS_ENABLE
,
4873 DRM_ERROR("Timed out waiting for IPS enable\n");
4877 void hsw_disable_ips(struct intel_crtc
*crtc
)
4879 struct drm_device
*dev
= crtc
->base
.dev
;
4880 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4882 if (!crtc
->config
->ips_enabled
)
4885 assert_plane_enabled(dev_priv
, crtc
->plane
);
4886 if (IS_BROADWELL(dev_priv
)) {
4887 mutex_lock(&dev_priv
->rps
.hw_lock
);
4888 WARN_ON(sandybridge_pcode_write(dev_priv
, DISPLAY_IPS_CONTROL
, 0));
4889 mutex_unlock(&dev_priv
->rps
.hw_lock
);
4890 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4891 if (intel_wait_for_register(dev_priv
,
4892 IPS_CTL
, IPS_ENABLE
, 0,
4894 DRM_ERROR("Timed out waiting for IPS disable\n");
4896 I915_WRITE(IPS_CTL
, 0);
4897 POSTING_READ(IPS_CTL
);
4900 /* We need to wait for a vblank before we can disable the plane. */
4901 intel_wait_for_vblank(dev_priv
, crtc
->pipe
);
4904 static void intel_crtc_dpms_overlay_disable(struct intel_crtc
*intel_crtc
)
4906 if (intel_crtc
->overlay
) {
4907 struct drm_device
*dev
= intel_crtc
->base
.dev
;
4908 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4910 mutex_lock(&dev
->struct_mutex
);
4911 dev_priv
->mm
.interruptible
= false;
4912 (void) intel_overlay_switch_off(intel_crtc
->overlay
);
4913 dev_priv
->mm
.interruptible
= true;
4914 mutex_unlock(&dev
->struct_mutex
);
4917 /* Let userspace switch the overlay on again. In most cases userspace
4918 * has to recompute where to put it anyway.
4923 * intel_post_enable_primary - Perform operations after enabling primary plane
4924 * @crtc: the CRTC whose primary plane was just enabled
4926 * Performs potentially sleeping operations that must be done after the primary
4927 * plane is enabled, such as updating FBC and IPS. Note that this may be
4928 * called due to an explicit primary plane update, or due to an implicit
4929 * re-enable that is caused when a sprite plane is updated to no longer
4930 * completely hide the primary plane.
4933 intel_post_enable_primary(struct drm_crtc
*crtc
)
4935 struct drm_device
*dev
= crtc
->dev
;
4936 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4937 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4938 int pipe
= intel_crtc
->pipe
;
4941 * FIXME IPS should be fine as long as one plane is
4942 * enabled, but in practice it seems to have problems
4943 * when going from primary only to sprite only and vice
4946 hsw_enable_ips(intel_crtc
);
4949 * Gen2 reports pipe underruns whenever all planes are disabled.
4950 * So don't enable underrun reporting before at least some planes
4952 * FIXME: Need to fix the logic to work when we turn off all planes
4953 * but leave the pipe running.
4955 if (IS_GEN2(dev_priv
))
4956 intel_set_cpu_fifo_underrun_reporting(dev_priv
, pipe
, true);
4958 /* Underruns don't always raise interrupts, so check manually. */
4959 intel_check_cpu_fifo_underruns(dev_priv
);
4960 intel_check_pch_fifo_underruns(dev_priv
);
4963 /* FIXME move all this to pre_plane_update() with proper state tracking */
4965 intel_pre_disable_primary(struct drm_crtc
*crtc
)
4967 struct drm_device
*dev
= crtc
->dev
;
4968 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4969 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4970 int pipe
= intel_crtc
->pipe
;
4973 * Gen2 reports pipe underruns whenever all planes are disabled.
4974 * So diasble underrun reporting before all the planes get disabled.
4975 * FIXME: Need to fix the logic to work when we turn off all planes
4976 * but leave the pipe running.
4978 if (IS_GEN2(dev_priv
))
4979 intel_set_cpu_fifo_underrun_reporting(dev_priv
, pipe
, false);
4982 * FIXME IPS should be fine as long as one plane is
4983 * enabled, but in practice it seems to have problems
4984 * when going from primary only to sprite only and vice
4987 hsw_disable_ips(intel_crtc
);
4990 /* FIXME get rid of this and use pre_plane_update */
4992 intel_pre_disable_primary_noatomic(struct drm_crtc
*crtc
)
4994 struct drm_device
*dev
= crtc
->dev
;
4995 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4996 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4997 int pipe
= intel_crtc
->pipe
;
4999 intel_pre_disable_primary(crtc
);
5002 * Vblank time updates from the shadow to live plane control register
5003 * are blocked if the memory self-refresh mode is active at that
5004 * moment. So to make sure the plane gets truly disabled, disable
5005 * first the self-refresh mode. The self-refresh enable bit in turn
5006 * will be checked/applied by the HW only at the next frame start
5007 * event which is after the vblank start event, so we need to have a
5008 * wait-for-vblank between disabling the plane and the pipe.
5010 if (HAS_GMCH_DISPLAY(dev_priv
) &&
5011 intel_set_memory_cxsr(dev_priv
, false))
5012 intel_wait_for_vblank(dev_priv
, pipe
);
5015 static void intel_post_plane_update(struct intel_crtc_state
*old_crtc_state
)
5017 struct intel_crtc
*crtc
= to_intel_crtc(old_crtc_state
->base
.crtc
);
5018 struct drm_atomic_state
*old_state
= old_crtc_state
->base
.state
;
5019 struct intel_crtc_state
*pipe_config
=
5020 to_intel_crtc_state(crtc
->base
.state
);
5021 struct drm_plane
*primary
= crtc
->base
.primary
;
5022 struct drm_plane_state
*old_pri_state
=
5023 drm_atomic_get_existing_plane_state(old_state
, primary
);
5025 intel_frontbuffer_flip(to_i915(crtc
->base
.dev
), pipe_config
->fb_bits
);
5027 crtc
->wm
.cxsr_allowed
= true;
5029 if (pipe_config
->update_wm_post
&& pipe_config
->base
.active
)
5030 intel_update_watermarks(crtc
);
5032 if (old_pri_state
) {
5033 struct intel_plane_state
*primary_state
=
5034 to_intel_plane_state(primary
->state
);
5035 struct intel_plane_state
*old_primary_state
=
5036 to_intel_plane_state(old_pri_state
);
5038 intel_fbc_post_update(crtc
);
5040 if (primary_state
->base
.visible
&&
5041 (needs_modeset(&pipe_config
->base
) ||
5042 !old_primary_state
->base
.visible
))
5043 intel_post_enable_primary(&crtc
->base
);
5047 static void intel_pre_plane_update(struct intel_crtc_state
*old_crtc_state
)
5049 struct intel_crtc
*crtc
= to_intel_crtc(old_crtc_state
->base
.crtc
);
5050 struct drm_device
*dev
= crtc
->base
.dev
;
5051 struct drm_i915_private
*dev_priv
= to_i915(dev
);
5052 struct intel_crtc_state
*pipe_config
=
5053 to_intel_crtc_state(crtc
->base
.state
);
5054 struct drm_atomic_state
*old_state
= old_crtc_state
->base
.state
;
5055 struct drm_plane
*primary
= crtc
->base
.primary
;
5056 struct drm_plane_state
*old_pri_state
=
5057 drm_atomic_get_existing_plane_state(old_state
, primary
);
5058 bool modeset
= needs_modeset(&pipe_config
->base
);
5059 struct intel_atomic_state
*old_intel_state
=
5060 to_intel_atomic_state(old_state
);
5062 if (old_pri_state
) {
5063 struct intel_plane_state
*primary_state
=
5064 to_intel_plane_state(primary
->state
);
5065 struct intel_plane_state
*old_primary_state
=
5066 to_intel_plane_state(old_pri_state
);
5068 intel_fbc_pre_update(crtc
, pipe_config
, primary_state
);
5070 if (old_primary_state
->base
.visible
&&
5071 (modeset
|| !primary_state
->base
.visible
))
5072 intel_pre_disable_primary(&crtc
->base
);
5075 if (pipe_config
->disable_cxsr
&& HAS_GMCH_DISPLAY(dev_priv
)) {
5076 crtc
->wm
.cxsr_allowed
= false;
5079 * Vblank time updates from the shadow to live plane control register
5080 * are blocked if the memory self-refresh mode is active at that
5081 * moment. So to make sure the plane gets truly disabled, disable
5082 * first the self-refresh mode. The self-refresh enable bit in turn
5083 * will be checked/applied by the HW only at the next frame start
5084 * event which is after the vblank start event, so we need to have a
5085 * wait-for-vblank between disabling the plane and the pipe.
5087 if (old_crtc_state
->base
.active
&&
5088 intel_set_memory_cxsr(dev_priv
, false))
5089 intel_wait_for_vblank(dev_priv
, crtc
->pipe
);
5093 * IVB workaround: must disable low power watermarks for at least
5094 * one frame before enabling scaling. LP watermarks can be re-enabled
5095 * when scaling is disabled.
5097 * WaCxSRDisabledForSpriteScaling:ivb
5099 if (pipe_config
->disable_lp_wm
&& ilk_disable_lp_wm(dev
))
5100 intel_wait_for_vblank(dev_priv
, crtc
->pipe
);
5103 * If we're doing a modeset, we're done. No need to do any pre-vblank
5104 * watermark programming here.
5106 if (needs_modeset(&pipe_config
->base
))
5110 * For platforms that support atomic watermarks, program the
5111 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
5112 * will be the intermediate values that are safe for both pre- and
5113 * post- vblank; when vblank happens, the 'active' values will be set
5114 * to the final 'target' values and we'll do this again to get the
5115 * optimal watermarks. For gen9+ platforms, the values we program here
5116 * will be the final target values which will get automatically latched
5117 * at vblank time; no further programming will be necessary.
5119 * If a platform hasn't been transitioned to atomic watermarks yet,
5120 * we'll continue to update watermarks the old way, if flags tell
5123 if (dev_priv
->display
.initial_watermarks
!= NULL
)
5124 dev_priv
->display
.initial_watermarks(old_intel_state
,
5126 else if (pipe_config
->update_wm_pre
)
5127 intel_update_watermarks(crtc
);
5130 static void intel_crtc_disable_planes(struct drm_crtc
*crtc
, unsigned plane_mask
)
5132 struct drm_device
*dev
= crtc
->dev
;
5133 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5134 struct drm_plane
*p
;
5135 int pipe
= intel_crtc
->pipe
;
5137 intel_crtc_dpms_overlay_disable(intel_crtc
);
5139 drm_for_each_plane_mask(p
, dev
, plane_mask
)
5140 to_intel_plane(p
)->disable_plane(p
, crtc
);
5143 * FIXME: Once we grow proper nuclear flip support out of this we need
5144 * to compute the mask of flip planes precisely. For the time being
5145 * consider this a flip to a NULL plane.
5147 intel_frontbuffer_flip(to_i915(dev
), INTEL_FRONTBUFFER_ALL_MASK(pipe
));
5150 static void intel_encoders_pre_pll_enable(struct drm_crtc
*crtc
,
5151 struct intel_crtc_state
*crtc_state
,
5152 struct drm_atomic_state
*old_state
)
5154 struct drm_connector_state
*old_conn_state
;
5155 struct drm_connector
*conn
;
5158 for_each_connector_in_state(old_state
, conn
, old_conn_state
, i
) {
5159 struct drm_connector_state
*conn_state
= conn
->state
;
5160 struct intel_encoder
*encoder
=
5161 to_intel_encoder(conn_state
->best_encoder
);
5163 if (conn_state
->crtc
!= crtc
)
5166 if (encoder
->pre_pll_enable
)
5167 encoder
->pre_pll_enable(encoder
, crtc_state
, conn_state
);
5171 static void intel_encoders_pre_enable(struct drm_crtc
*crtc
,
5172 struct intel_crtc_state
*crtc_state
,
5173 struct drm_atomic_state
*old_state
)
5175 struct drm_connector_state
*old_conn_state
;
5176 struct drm_connector
*conn
;
5179 for_each_connector_in_state(old_state
, conn
, old_conn_state
, i
) {
5180 struct drm_connector_state
*conn_state
= conn
->state
;
5181 struct intel_encoder
*encoder
=
5182 to_intel_encoder(conn_state
->best_encoder
);
5184 if (conn_state
->crtc
!= crtc
)
5187 if (encoder
->pre_enable
)
5188 encoder
->pre_enable(encoder
, crtc_state
, conn_state
);
5192 static void intel_encoders_enable(struct drm_crtc
*crtc
,
5193 struct intel_crtc_state
*crtc_state
,
5194 struct drm_atomic_state
*old_state
)
5196 struct drm_connector_state
*old_conn_state
;
5197 struct drm_connector
*conn
;
5200 for_each_connector_in_state(old_state
, conn
, old_conn_state
, i
) {
5201 struct drm_connector_state
*conn_state
= conn
->state
;
5202 struct intel_encoder
*encoder
=
5203 to_intel_encoder(conn_state
->best_encoder
);
5205 if (conn_state
->crtc
!= crtc
)
5208 encoder
->enable(encoder
, crtc_state
, conn_state
);
5209 intel_opregion_notify_encoder(encoder
, true);
5213 static void intel_encoders_disable(struct drm_crtc
*crtc
,
5214 struct intel_crtc_state
*old_crtc_state
,
5215 struct drm_atomic_state
*old_state
)
5217 struct drm_connector_state
*old_conn_state
;
5218 struct drm_connector
*conn
;
5221 for_each_connector_in_state(old_state
, conn
, old_conn_state
, i
) {
5222 struct intel_encoder
*encoder
=
5223 to_intel_encoder(old_conn_state
->best_encoder
);
5225 if (old_conn_state
->crtc
!= crtc
)
5228 intel_opregion_notify_encoder(encoder
, false);
5229 encoder
->disable(encoder
, old_crtc_state
, old_conn_state
);
5233 static void intel_encoders_post_disable(struct drm_crtc
*crtc
,
5234 struct intel_crtc_state
*old_crtc_state
,
5235 struct drm_atomic_state
*old_state
)
5237 struct drm_connector_state
*old_conn_state
;
5238 struct drm_connector
*conn
;
5241 for_each_connector_in_state(old_state
, conn
, old_conn_state
, i
) {
5242 struct intel_encoder
*encoder
=
5243 to_intel_encoder(old_conn_state
->best_encoder
);
5245 if (old_conn_state
->crtc
!= crtc
)
5248 if (encoder
->post_disable
)
5249 encoder
->post_disable(encoder
, old_crtc_state
, old_conn_state
);
5253 static void intel_encoders_post_pll_disable(struct drm_crtc
*crtc
,
5254 struct intel_crtc_state
*old_crtc_state
,
5255 struct drm_atomic_state
*old_state
)
5257 struct drm_connector_state
*old_conn_state
;
5258 struct drm_connector
*conn
;
5261 for_each_connector_in_state(old_state
, conn
, old_conn_state
, i
) {
5262 struct intel_encoder
*encoder
=
5263 to_intel_encoder(old_conn_state
->best_encoder
);
5265 if (old_conn_state
->crtc
!= crtc
)
5268 if (encoder
->post_pll_disable
)
5269 encoder
->post_pll_disable(encoder
, old_crtc_state
, old_conn_state
);
5273 static void ironlake_crtc_enable(struct intel_crtc_state
*pipe_config
,
5274 struct drm_atomic_state
*old_state
)
5276 struct drm_crtc
*crtc
= pipe_config
->base
.crtc
;
5277 struct drm_device
*dev
= crtc
->dev
;
5278 struct drm_i915_private
*dev_priv
= to_i915(dev
);
5279 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5280 int pipe
= intel_crtc
->pipe
;
5281 struct intel_atomic_state
*old_intel_state
=
5282 to_intel_atomic_state(old_state
);
5284 if (WARN_ON(intel_crtc
->active
))
5288 * Sometimes spurious CPU pipe underruns happen during FDI
5289 * training, at least with VGA+HDMI cloning. Suppress them.
5291 * On ILK we get an occasional spurious CPU pipe underruns
5292 * between eDP port A enable and vdd enable. Also PCH port
5293 * enable seems to result in the occasional CPU pipe underrun.
5295 * Spurious PCH underruns also occur during PCH enabling.
5297 if (intel_crtc
->config
->has_pch_encoder
|| IS_GEN5(dev_priv
))
5298 intel_set_cpu_fifo_underrun_reporting(dev_priv
, pipe
, false);
5299 if (intel_crtc
->config
->has_pch_encoder
)
5300 intel_set_pch_fifo_underrun_reporting(dev_priv
, pipe
, false);
5302 if (intel_crtc
->config
->has_pch_encoder
)
5303 intel_prepare_shared_dpll(intel_crtc
);
5305 if (intel_crtc_has_dp_encoder(intel_crtc
->config
))
5306 intel_dp_set_m_n(intel_crtc
, M1_N1
);
5308 intel_set_pipe_timings(intel_crtc
);
5309 intel_set_pipe_src_size(intel_crtc
);
5311 if (intel_crtc
->config
->has_pch_encoder
) {
5312 intel_cpu_transcoder_set_m_n(intel_crtc
,
5313 &intel_crtc
->config
->fdi_m_n
, NULL
);
5316 ironlake_set_pipeconf(crtc
);
5318 intel_crtc
->active
= true;
5320 intel_encoders_pre_enable(crtc
, pipe_config
, old_state
);
5322 if (intel_crtc
->config
->has_pch_encoder
) {
5323 /* Note: FDI PLL enabling _must_ be done before we enable the
5324 * cpu pipes, hence this is separate from all the other fdi/pch
5326 ironlake_fdi_pll_enable(intel_crtc
);
5328 assert_fdi_tx_disabled(dev_priv
, pipe
);
5329 assert_fdi_rx_disabled(dev_priv
, pipe
);
5332 ironlake_pfit_enable(intel_crtc
);
5335 * On ILK+ LUT must be loaded before the pipe is running but with
5338 intel_color_load_luts(&pipe_config
->base
);
5340 if (dev_priv
->display
.initial_watermarks
!= NULL
)
5341 dev_priv
->display
.initial_watermarks(old_intel_state
, intel_crtc
->config
);
5342 intel_enable_pipe(intel_crtc
);
5344 if (intel_crtc
->config
->has_pch_encoder
)
5345 ironlake_pch_enable(crtc
);
5347 assert_vblank_disabled(crtc
);
5348 drm_crtc_vblank_on(crtc
);
5350 intel_encoders_enable(crtc
, pipe_config
, old_state
);
5352 if (HAS_PCH_CPT(dev_priv
))
5353 cpt_verify_modeset(dev
, intel_crtc
->pipe
);
5355 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5356 if (intel_crtc
->config
->has_pch_encoder
)
5357 intel_wait_for_vblank(dev_priv
, pipe
);
5358 intel_set_cpu_fifo_underrun_reporting(dev_priv
, pipe
, true);
5359 intel_set_pch_fifo_underrun_reporting(dev_priv
, pipe
, true);
5362 /* IPS only exists on ULT machines and is tied to pipe A. */
5363 static bool hsw_crtc_supports_ips(struct intel_crtc
*crtc
)
5365 return HAS_IPS(to_i915(crtc
->base
.dev
)) && crtc
->pipe
== PIPE_A
;
5368 static void haswell_crtc_enable(struct intel_crtc_state
*pipe_config
,
5369 struct drm_atomic_state
*old_state
)
5371 struct drm_crtc
*crtc
= pipe_config
->base
.crtc
;
5372 struct drm_i915_private
*dev_priv
= to_i915(crtc
->dev
);
5373 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5374 int pipe
= intel_crtc
->pipe
, hsw_workaround_pipe
;
5375 enum transcoder cpu_transcoder
= intel_crtc
->config
->cpu_transcoder
;
5376 struct intel_atomic_state
*old_intel_state
=
5377 to_intel_atomic_state(old_state
);
5379 if (WARN_ON(intel_crtc
->active
))
5382 if (intel_crtc
->config
->has_pch_encoder
)
5383 intel_set_pch_fifo_underrun_reporting(dev_priv
, TRANSCODER_A
,
5386 intel_encoders_pre_pll_enable(crtc
, pipe_config
, old_state
);
5388 if (intel_crtc
->config
->shared_dpll
)
5389 intel_enable_shared_dpll(intel_crtc
);
5391 if (intel_crtc_has_dp_encoder(intel_crtc
->config
))
5392 intel_dp_set_m_n(intel_crtc
, M1_N1
);
5394 if (!transcoder_is_dsi(cpu_transcoder
))
5395 intel_set_pipe_timings(intel_crtc
);
5397 intel_set_pipe_src_size(intel_crtc
);
5399 if (cpu_transcoder
!= TRANSCODER_EDP
&&
5400 !transcoder_is_dsi(cpu_transcoder
)) {
5401 I915_WRITE(PIPE_MULT(cpu_transcoder
),
5402 intel_crtc
->config
->pixel_multiplier
- 1);
5405 if (intel_crtc
->config
->has_pch_encoder
) {
5406 intel_cpu_transcoder_set_m_n(intel_crtc
,
5407 &intel_crtc
->config
->fdi_m_n
, NULL
);
5410 if (!transcoder_is_dsi(cpu_transcoder
))
5411 haswell_set_pipeconf(crtc
);
5413 haswell_set_pipemisc(crtc
);
5415 intel_color_set_csc(&pipe_config
->base
);
5417 intel_crtc
->active
= true;
5419 if (intel_crtc
->config
->has_pch_encoder
)
5420 intel_set_cpu_fifo_underrun_reporting(dev_priv
, pipe
, false);
5422 intel_set_cpu_fifo_underrun_reporting(dev_priv
, pipe
, true);
5424 intel_encoders_pre_enable(crtc
, pipe_config
, old_state
);
5426 if (intel_crtc
->config
->has_pch_encoder
)
5427 dev_priv
->display
.fdi_link_train(crtc
);
5429 if (!transcoder_is_dsi(cpu_transcoder
))
5430 intel_ddi_enable_pipe_clock(intel_crtc
);
5432 if (INTEL_GEN(dev_priv
) >= 9)
5433 skylake_pfit_enable(intel_crtc
);
5435 ironlake_pfit_enable(intel_crtc
);
5438 * On ILK+ LUT must be loaded before the pipe is running but with
5441 intel_color_load_luts(&pipe_config
->base
);
5443 intel_ddi_set_pipe_settings(crtc
);
5444 if (!transcoder_is_dsi(cpu_transcoder
))
5445 intel_ddi_enable_transcoder_func(crtc
);
5447 if (dev_priv
->display
.initial_watermarks
!= NULL
)
5448 dev_priv
->display
.initial_watermarks(old_intel_state
, pipe_config
);
5450 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5451 if (!transcoder_is_dsi(cpu_transcoder
))
5452 intel_enable_pipe(intel_crtc
);
5454 if (intel_crtc
->config
->has_pch_encoder
)
5455 lpt_pch_enable(crtc
);
5457 if (intel_crtc_has_type(intel_crtc
->config
, INTEL_OUTPUT_DP_MST
))
5458 intel_ddi_set_vc_payload_alloc(crtc
, true);
5460 assert_vblank_disabled(crtc
);
5461 drm_crtc_vblank_on(crtc
);
5463 intel_encoders_enable(crtc
, pipe_config
, old_state
);
5465 if (intel_crtc
->config
->has_pch_encoder
) {
5466 intel_wait_for_vblank(dev_priv
, pipe
);
5467 intel_wait_for_vblank(dev_priv
, pipe
);
5468 intel_set_cpu_fifo_underrun_reporting(dev_priv
, pipe
, true);
5469 intel_set_pch_fifo_underrun_reporting(dev_priv
, TRANSCODER_A
,
5473 /* If we change the relative order between pipe/planes enabling, we need
5474 * to change the workaround. */
5475 hsw_workaround_pipe
= pipe_config
->hsw_workaround_pipe
;
5476 if (IS_HASWELL(dev_priv
) && hsw_workaround_pipe
!= INVALID_PIPE
) {
5477 intel_wait_for_vblank(dev_priv
, hsw_workaround_pipe
);
5478 intel_wait_for_vblank(dev_priv
, hsw_workaround_pipe
);
5482 static void ironlake_pfit_disable(struct intel_crtc
*crtc
, bool force
)
5484 struct drm_device
*dev
= crtc
->base
.dev
;
5485 struct drm_i915_private
*dev_priv
= to_i915(dev
);
5486 int pipe
= crtc
->pipe
;
5488 /* To avoid upsetting the power well on haswell only disable the pfit if
5489 * it's in use. The hw state code will make sure we get this right. */
5490 if (force
|| crtc
->config
->pch_pfit
.enabled
) {
5491 I915_WRITE(PF_CTL(pipe
), 0);
5492 I915_WRITE(PF_WIN_POS(pipe
), 0);
5493 I915_WRITE(PF_WIN_SZ(pipe
), 0);
5497 static void ironlake_crtc_disable(struct intel_crtc_state
*old_crtc_state
,
5498 struct drm_atomic_state
*old_state
)
5500 struct drm_crtc
*crtc
= old_crtc_state
->base
.crtc
;
5501 struct drm_device
*dev
= crtc
->dev
;
5502 struct drm_i915_private
*dev_priv
= to_i915(dev
);
5503 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5504 int pipe
= intel_crtc
->pipe
;
5507 * Sometimes spurious CPU pipe underruns happen when the
5508 * pipe is already disabled, but FDI RX/TX is still enabled.
5509 * Happens at least with VGA+HDMI cloning. Suppress them.
5511 if (intel_crtc
->config
->has_pch_encoder
) {
5512 intel_set_cpu_fifo_underrun_reporting(dev_priv
, pipe
, false);
5513 intel_set_pch_fifo_underrun_reporting(dev_priv
, pipe
, false);
5516 intel_encoders_disable(crtc
, old_crtc_state
, old_state
);
5518 drm_crtc_vblank_off(crtc
);
5519 assert_vblank_disabled(crtc
);
5521 intel_disable_pipe(intel_crtc
);
5523 ironlake_pfit_disable(intel_crtc
, false);
5525 if (intel_crtc
->config
->has_pch_encoder
)
5526 ironlake_fdi_disable(crtc
);
5528 intel_encoders_post_disable(crtc
, old_crtc_state
, old_state
);
5530 if (intel_crtc
->config
->has_pch_encoder
) {
5531 ironlake_disable_pch_transcoder(dev_priv
, pipe
);
5533 if (HAS_PCH_CPT(dev_priv
)) {
5537 /* disable TRANS_DP_CTL */
5538 reg
= TRANS_DP_CTL(pipe
);
5539 temp
= I915_READ(reg
);
5540 temp
&= ~(TRANS_DP_OUTPUT_ENABLE
|
5541 TRANS_DP_PORT_SEL_MASK
);
5542 temp
|= TRANS_DP_PORT_SEL_NONE
;
5543 I915_WRITE(reg
, temp
);
5545 /* disable DPLL_SEL */
5546 temp
= I915_READ(PCH_DPLL_SEL
);
5547 temp
&= ~(TRANS_DPLL_ENABLE(pipe
) | TRANS_DPLLB_SEL(pipe
));
5548 I915_WRITE(PCH_DPLL_SEL
, temp
);
5551 ironlake_fdi_pll_disable(intel_crtc
);
5554 intel_set_cpu_fifo_underrun_reporting(dev_priv
, pipe
, true);
5555 intel_set_pch_fifo_underrun_reporting(dev_priv
, pipe
, true);
5558 static void haswell_crtc_disable(struct intel_crtc_state
*old_crtc_state
,
5559 struct drm_atomic_state
*old_state
)
5561 struct drm_crtc
*crtc
= old_crtc_state
->base
.crtc
;
5562 struct drm_i915_private
*dev_priv
= to_i915(crtc
->dev
);
5563 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5564 enum transcoder cpu_transcoder
= intel_crtc
->config
->cpu_transcoder
;
5566 if (intel_crtc
->config
->has_pch_encoder
)
5567 intel_set_pch_fifo_underrun_reporting(dev_priv
, TRANSCODER_A
,
5570 intel_encoders_disable(crtc
, old_crtc_state
, old_state
);
5572 drm_crtc_vblank_off(crtc
);
5573 assert_vblank_disabled(crtc
);
5575 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5576 if (!transcoder_is_dsi(cpu_transcoder
))
5577 intel_disable_pipe(intel_crtc
);
5579 if (intel_crtc_has_type(intel_crtc
->config
, INTEL_OUTPUT_DP_MST
))
5580 intel_ddi_set_vc_payload_alloc(crtc
, false);
5582 if (!transcoder_is_dsi(cpu_transcoder
))
5583 intel_ddi_disable_transcoder_func(dev_priv
, cpu_transcoder
);
5585 if (INTEL_GEN(dev_priv
) >= 9)
5586 skylake_scaler_disable(intel_crtc
);
5588 ironlake_pfit_disable(intel_crtc
, false);
5590 if (!transcoder_is_dsi(cpu_transcoder
))
5591 intel_ddi_disable_pipe_clock(intel_crtc
);
5593 intel_encoders_post_disable(crtc
, old_crtc_state
, old_state
);
5595 if (old_crtc_state
->has_pch_encoder
)
5596 intel_set_pch_fifo_underrun_reporting(dev_priv
, TRANSCODER_A
,
5600 static void i9xx_pfit_enable(struct intel_crtc
*crtc
)
5602 struct drm_device
*dev
= crtc
->base
.dev
;
5603 struct drm_i915_private
*dev_priv
= to_i915(dev
);
5604 struct intel_crtc_state
*pipe_config
= crtc
->config
;
5606 if (!pipe_config
->gmch_pfit
.control
)
5610 * The panel fitter should only be adjusted whilst the pipe is disabled,
5611 * according to register description and PRM.
5613 WARN_ON(I915_READ(PFIT_CONTROL
) & PFIT_ENABLE
);
5614 assert_pipe_disabled(dev_priv
, crtc
->pipe
);
5616 I915_WRITE(PFIT_PGM_RATIOS
, pipe_config
->gmch_pfit
.pgm_ratios
);
5617 I915_WRITE(PFIT_CONTROL
, pipe_config
->gmch_pfit
.control
);
5619 /* Border color in case we don't scale up to the full screen. Black by
5620 * default, change to something else for debugging. */
5621 I915_WRITE(BCLRPAT(crtc
->pipe
), 0);
5624 static enum intel_display_power_domain
port_to_power_domain(enum port port
)
5628 return POWER_DOMAIN_PORT_DDI_A_LANES
;
5630 return POWER_DOMAIN_PORT_DDI_B_LANES
;
5632 return POWER_DOMAIN_PORT_DDI_C_LANES
;
5634 return POWER_DOMAIN_PORT_DDI_D_LANES
;
5636 return POWER_DOMAIN_PORT_DDI_E_LANES
;
5639 return POWER_DOMAIN_PORT_OTHER
;
5643 static enum intel_display_power_domain
port_to_aux_power_domain(enum port port
)
5647 return POWER_DOMAIN_AUX_A
;
5649 return POWER_DOMAIN_AUX_B
;
5651 return POWER_DOMAIN_AUX_C
;
5653 return POWER_DOMAIN_AUX_D
;
5655 /* FIXME: Check VBT for actual wiring of PORT E */
5656 return POWER_DOMAIN_AUX_D
;
5659 return POWER_DOMAIN_AUX_A
;
5663 enum intel_display_power_domain
5664 intel_display_port_power_domain(struct intel_encoder
*intel_encoder
)
5666 struct drm_i915_private
*dev_priv
= to_i915(intel_encoder
->base
.dev
);
5667 struct intel_digital_port
*intel_dig_port
;
5669 switch (intel_encoder
->type
) {
5670 case INTEL_OUTPUT_UNKNOWN
:
5671 /* Only DDI platforms should ever use this output type */
5672 WARN_ON_ONCE(!HAS_DDI(dev_priv
));
5673 case INTEL_OUTPUT_DP
:
5674 case INTEL_OUTPUT_HDMI
:
5675 case INTEL_OUTPUT_EDP
:
5676 intel_dig_port
= enc_to_dig_port(&intel_encoder
->base
);
5677 return port_to_power_domain(intel_dig_port
->port
);
5678 case INTEL_OUTPUT_DP_MST
:
5679 intel_dig_port
= enc_to_mst(&intel_encoder
->base
)->primary
;
5680 return port_to_power_domain(intel_dig_port
->port
);
5681 case INTEL_OUTPUT_ANALOG
:
5682 return POWER_DOMAIN_PORT_CRT
;
5683 case INTEL_OUTPUT_DSI
:
5684 return POWER_DOMAIN_PORT_DSI
;
5686 return POWER_DOMAIN_PORT_OTHER
;
5690 enum intel_display_power_domain
5691 intel_display_port_aux_power_domain(struct intel_encoder
*intel_encoder
)
5693 struct drm_i915_private
*dev_priv
= to_i915(intel_encoder
->base
.dev
);
5694 struct intel_digital_port
*intel_dig_port
;
5696 switch (intel_encoder
->type
) {
5697 case INTEL_OUTPUT_UNKNOWN
:
5698 case INTEL_OUTPUT_HDMI
:
5700 * Only DDI platforms should ever use these output types.
5701 * We can get here after the HDMI detect code has already set
5702 * the type of the shared encoder. Since we can't be sure
5703 * what's the status of the given connectors, play safe and
5704 * run the DP detection too.
5706 WARN_ON_ONCE(!HAS_DDI(dev_priv
));
5707 case INTEL_OUTPUT_DP
:
5708 case INTEL_OUTPUT_EDP
:
5709 intel_dig_port
= enc_to_dig_port(&intel_encoder
->base
);
5710 return port_to_aux_power_domain(intel_dig_port
->port
);
5711 case INTEL_OUTPUT_DP_MST
:
5712 intel_dig_port
= enc_to_mst(&intel_encoder
->base
)->primary
;
5713 return port_to_aux_power_domain(intel_dig_port
->port
);
5715 MISSING_CASE(intel_encoder
->type
);
5716 return POWER_DOMAIN_AUX_A
;
5720 static unsigned long get_crtc_power_domains(struct drm_crtc
*crtc
,
5721 struct intel_crtc_state
*crtc_state
)
5723 struct drm_device
*dev
= crtc
->dev
;
5724 struct drm_encoder
*encoder
;
5725 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5726 enum pipe pipe
= intel_crtc
->pipe
;
5728 enum transcoder transcoder
= crtc_state
->cpu_transcoder
;
5730 if (!crtc_state
->base
.active
)
5733 mask
= BIT(POWER_DOMAIN_PIPE(pipe
));
5734 mask
|= BIT(POWER_DOMAIN_TRANSCODER(transcoder
));
5735 if (crtc_state
->pch_pfit
.enabled
||
5736 crtc_state
->pch_pfit
.force_thru
)
5737 mask
|= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe
));
5739 drm_for_each_encoder_mask(encoder
, dev
, crtc_state
->base
.encoder_mask
) {
5740 struct intel_encoder
*intel_encoder
= to_intel_encoder(encoder
);
5742 mask
|= BIT(intel_display_port_power_domain(intel_encoder
));
5745 if (crtc_state
->shared_dpll
)
5746 mask
|= BIT(POWER_DOMAIN_PLLS
);
5751 static unsigned long
5752 modeset_get_crtc_power_domains(struct drm_crtc
*crtc
,
5753 struct intel_crtc_state
*crtc_state
)
5755 struct drm_i915_private
*dev_priv
= to_i915(crtc
->dev
);
5756 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5757 enum intel_display_power_domain domain
;
5758 unsigned long domains
, new_domains
, old_domains
;
5760 old_domains
= intel_crtc
->enabled_power_domains
;
5761 intel_crtc
->enabled_power_domains
= new_domains
=
5762 get_crtc_power_domains(crtc
, crtc_state
);
5764 domains
= new_domains
& ~old_domains
;
5766 for_each_power_domain(domain
, domains
)
5767 intel_display_power_get(dev_priv
, domain
);
5769 return old_domains
& ~new_domains
;
5772 static void modeset_put_power_domains(struct drm_i915_private
*dev_priv
,
5773 unsigned long domains
)
5775 enum intel_display_power_domain domain
;
5777 for_each_power_domain(domain
, domains
)
5778 intel_display_power_put(dev_priv
, domain
);
5781 static int intel_compute_max_dotclk(struct drm_i915_private
*dev_priv
)
5783 int max_cdclk_freq
= dev_priv
->max_cdclk_freq
;
5785 if (IS_GEMINILAKE(dev_priv
))
5786 return 2 * max_cdclk_freq
;
5787 else if (INTEL_INFO(dev_priv
)->gen
>= 9 ||
5788 IS_HASWELL(dev_priv
) || IS_BROADWELL(dev_priv
))
5789 return max_cdclk_freq
;
5790 else if (IS_CHERRYVIEW(dev_priv
))
5791 return max_cdclk_freq
*95/100;
5792 else if (INTEL_INFO(dev_priv
)->gen
< 4)
5793 return 2*max_cdclk_freq
*90/100;
5795 return max_cdclk_freq
*90/100;
5798 static int skl_calc_cdclk(int max_pixclk
, int vco
);
5800 static void intel_update_max_cdclk(struct drm_i915_private
*dev_priv
)
5802 if (IS_SKYLAKE(dev_priv
) || IS_KABYLAKE(dev_priv
)) {
5803 u32 limit
= I915_READ(SKL_DFSM
) & SKL_DFSM_CDCLK_LIMIT_MASK
;
5806 vco
= dev_priv
->skl_preferred_vco_freq
;
5807 WARN_ON(vco
!= 8100000 && vco
!= 8640000);
5810 * Use the lower (vco 8640) cdclk values as a
5811 * first guess. skl_calc_cdclk() will correct it
5812 * if the preferred vco is 8100 instead.
5814 if (limit
== SKL_DFSM_CDCLK_LIMIT_675
)
5816 else if (limit
== SKL_DFSM_CDCLK_LIMIT_540
)
5818 else if (limit
== SKL_DFSM_CDCLK_LIMIT_450
)
5823 dev_priv
->max_cdclk_freq
= skl_calc_cdclk(max_cdclk
, vco
);
5824 } else if (IS_GEMINILAKE(dev_priv
)) {
5825 dev_priv
->max_cdclk_freq
= 316800;
5826 } else if (IS_BROXTON(dev_priv
)) {
5827 dev_priv
->max_cdclk_freq
= 624000;
5828 } else if (IS_BROADWELL(dev_priv
)) {
5830 * FIXME with extra cooling we can allow
5831 * 540 MHz for ULX and 675 Mhz for ULT.
5832 * How can we know if extra cooling is
5833 * available? PCI ID, VTB, something else?
5835 if (I915_READ(FUSE_STRAP
) & HSW_CDCLK_LIMIT
)
5836 dev_priv
->max_cdclk_freq
= 450000;
5837 else if (IS_BDW_ULX(dev_priv
))
5838 dev_priv
->max_cdclk_freq
= 450000;
5839 else if (IS_BDW_ULT(dev_priv
))
5840 dev_priv
->max_cdclk_freq
= 540000;
5842 dev_priv
->max_cdclk_freq
= 675000;
5843 } else if (IS_CHERRYVIEW(dev_priv
)) {
5844 dev_priv
->max_cdclk_freq
= 320000;
5845 } else if (IS_VALLEYVIEW(dev_priv
)) {
5846 dev_priv
->max_cdclk_freq
= 400000;
5848 /* otherwise assume cdclk is fixed */
5849 dev_priv
->max_cdclk_freq
= dev_priv
->cdclk_freq
;
5852 dev_priv
->max_dotclk_freq
= intel_compute_max_dotclk(dev_priv
);
5854 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5855 dev_priv
->max_cdclk_freq
);
5857 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5858 dev_priv
->max_dotclk_freq
);
5861 static void intel_update_cdclk(struct drm_i915_private
*dev_priv
)
5863 dev_priv
->cdclk_freq
= dev_priv
->display
.get_display_clock_speed(dev_priv
);
5865 if (INTEL_GEN(dev_priv
) >= 9)
5866 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5867 dev_priv
->cdclk_freq
, dev_priv
->cdclk_pll
.vco
,
5868 dev_priv
->cdclk_pll
.ref
);
5870 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5871 dev_priv
->cdclk_freq
);
5874 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5875 * Programmng [sic] note: bit[9:2] should be programmed to the number
5876 * of cdclk that generates 4MHz reference clock freq which is used to
5877 * generate GMBus clock. This will vary with the cdclk freq.
5879 if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
))
5880 I915_WRITE(GMBUSFREQ_VLV
, DIV_ROUND_UP(dev_priv
->cdclk_freq
, 1000));
5883 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5884 static int skl_cdclk_decimal(int cdclk
)
5886 return DIV_ROUND_CLOSEST(cdclk
- 1000, 500);
5889 static int bxt_de_pll_vco(struct drm_i915_private
*dev_priv
, int cdclk
)
5893 if (cdclk
== dev_priv
->cdclk_pll
.ref
)
5898 MISSING_CASE(cdclk
);
5910 return dev_priv
->cdclk_pll
.ref
* ratio
;
5913 static int glk_de_pll_vco(struct drm_i915_private
*dev_priv
, int cdclk
)
5917 if (cdclk
== dev_priv
->cdclk_pll
.ref
)
5922 MISSING_CASE(cdclk
);
5930 return dev_priv
->cdclk_pll
.ref
* ratio
;
5933 static void bxt_de_pll_disable(struct drm_i915_private
*dev_priv
)
5935 I915_WRITE(BXT_DE_PLL_ENABLE
, 0);
5938 if (intel_wait_for_register(dev_priv
,
5939 BXT_DE_PLL_ENABLE
, BXT_DE_PLL_LOCK
, 0,
5941 DRM_ERROR("timeout waiting for DE PLL unlock\n");
5943 dev_priv
->cdclk_pll
.vco
= 0;
5946 static void bxt_de_pll_enable(struct drm_i915_private
*dev_priv
, int vco
)
5948 int ratio
= DIV_ROUND_CLOSEST(vco
, dev_priv
->cdclk_pll
.ref
);
5951 val
= I915_READ(BXT_DE_PLL_CTL
);
5952 val
&= ~BXT_DE_PLL_RATIO_MASK
;
5953 val
|= BXT_DE_PLL_RATIO(ratio
);
5954 I915_WRITE(BXT_DE_PLL_CTL
, val
);
5956 I915_WRITE(BXT_DE_PLL_ENABLE
, BXT_DE_PLL_PLL_ENABLE
);
5959 if (intel_wait_for_register(dev_priv
,
5964 DRM_ERROR("timeout waiting for DE PLL lock\n");
5966 dev_priv
->cdclk_pll
.vco
= vco
;
5969 static void bxt_set_cdclk(struct drm_i915_private
*dev_priv
, int cdclk
)
5974 if (IS_GEMINILAKE(dev_priv
))
5975 vco
= glk_de_pll_vco(dev_priv
, cdclk
);
5977 vco
= bxt_de_pll_vco(dev_priv
, cdclk
);
5979 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk
, vco
);
5981 /* cdclk = vco / 2 / div{1,1.5,2,4} */
5982 switch (DIV_ROUND_CLOSEST(vco
, cdclk
)) {
5984 divider
= BXT_CDCLK_CD2X_DIV_SEL_4
;
5987 divider
= BXT_CDCLK_CD2X_DIV_SEL_2
;
5990 WARN(IS_GEMINILAKE(dev_priv
), "Unsupported divider\n");
5991 divider
= BXT_CDCLK_CD2X_DIV_SEL_1_5
;
5994 divider
= BXT_CDCLK_CD2X_DIV_SEL_1
;
5997 WARN_ON(cdclk
!= dev_priv
->cdclk_pll
.ref
);
6000 divider
= BXT_CDCLK_CD2X_DIV_SEL_1
;
6004 /* Inform power controller of upcoming frequency change */
6005 mutex_lock(&dev_priv
->rps
.hw_lock
);
6006 ret
= sandybridge_pcode_write(dev_priv
, HSW_PCODE_DE_WRITE_FREQ_REQ
,
6008 mutex_unlock(&dev_priv
->rps
.hw_lock
);
6011 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
6016 if (dev_priv
->cdclk_pll
.vco
!= 0 &&
6017 dev_priv
->cdclk_pll
.vco
!= vco
)
6018 bxt_de_pll_disable(dev_priv
);
6020 if (dev_priv
->cdclk_pll
.vco
!= vco
)
6021 bxt_de_pll_enable(dev_priv
, vco
);
6023 val
= divider
| skl_cdclk_decimal(cdclk
);
6025 * FIXME if only the cd2x divider needs changing, it could be done
6026 * without shutting off the pipe (if only one pipe is active).
6028 val
|= BXT_CDCLK_CD2X_PIPE_NONE
;
6030 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6033 if (cdclk
>= 500000)
6034 val
|= BXT_CDCLK_SSA_PRECHARGE_ENABLE
;
6035 I915_WRITE(CDCLK_CTL
, val
);
6037 mutex_lock(&dev_priv
->rps
.hw_lock
);
6038 ret
= sandybridge_pcode_write(dev_priv
, HSW_PCODE_DE_WRITE_FREQ_REQ
,
6039 DIV_ROUND_UP(cdclk
, 25000));
6040 mutex_unlock(&dev_priv
->rps
.hw_lock
);
6043 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
6048 intel_update_cdclk(dev_priv
);
6051 static void bxt_sanitize_cdclk(struct drm_i915_private
*dev_priv
)
6053 u32 cdctl
, expected
;
6055 intel_update_cdclk(dev_priv
);
6057 if (dev_priv
->cdclk_pll
.vco
== 0 ||
6058 dev_priv
->cdclk_freq
== dev_priv
->cdclk_pll
.ref
)
6061 /* DPLL okay; verify the cdclock
6063 * Some BIOS versions leave an incorrect decimal frequency value and
6064 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
6065 * so sanitize this register.
6067 cdctl
= I915_READ(CDCLK_CTL
);
6069 * Let's ignore the pipe field, since BIOS could have configured the
6070 * dividers both synching to an active pipe, or asynchronously
6073 cdctl
&= ~BXT_CDCLK_CD2X_PIPE_NONE
;
6075 expected
= (cdctl
& BXT_CDCLK_CD2X_DIV_SEL_MASK
) |
6076 skl_cdclk_decimal(dev_priv
->cdclk_freq
);
6078 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6081 if (dev_priv
->cdclk_freq
>= 500000)
6082 expected
|= BXT_CDCLK_SSA_PRECHARGE_ENABLE
;
6084 if (cdctl
== expected
)
6085 /* All well; nothing to sanitize */
6089 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6091 /* force cdclk programming */
6092 dev_priv
->cdclk_freq
= 0;
6094 /* force full PLL disable + enable */
6095 dev_priv
->cdclk_pll
.vco
= -1;
6098 void bxt_init_cdclk(struct drm_i915_private
*dev_priv
)
6102 bxt_sanitize_cdclk(dev_priv
);
6104 if (dev_priv
->cdclk_freq
!= 0 && dev_priv
->cdclk_pll
.vco
!= 0)
6109 * - The initial CDCLK needs to be read from VBT.
6110 * Need to make this change after VBT has changes for BXT.
6112 if (IS_GEMINILAKE(dev_priv
))
6113 cdclk
= glk_calc_cdclk(0);
6115 cdclk
= bxt_calc_cdclk(0);
6117 bxt_set_cdclk(dev_priv
, cdclk
);
6120 void bxt_uninit_cdclk(struct drm_i915_private
*dev_priv
)
6122 bxt_set_cdclk(dev_priv
, dev_priv
->cdclk_pll
.ref
);
6125 static int skl_calc_cdclk(int max_pixclk
, int vco
)
6127 if (vco
== 8640000) {
6128 if (max_pixclk
> 540000)
6130 else if (max_pixclk
> 432000)
6132 else if (max_pixclk
> 308571)
6137 if (max_pixclk
> 540000)
6139 else if (max_pixclk
> 450000)
6141 else if (max_pixclk
> 337500)
6149 skl_dpll0_update(struct drm_i915_private
*dev_priv
)
6153 dev_priv
->cdclk_pll
.ref
= 24000;
6154 dev_priv
->cdclk_pll
.vco
= 0;
6156 val
= I915_READ(LCPLL1_CTL
);
6157 if ((val
& LCPLL_PLL_ENABLE
) == 0)
6160 if (WARN_ON((val
& LCPLL_PLL_LOCK
) == 0))
6163 val
= I915_READ(DPLL_CTRL1
);
6165 if (WARN_ON((val
& (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0
) |
6166 DPLL_CTRL1_SSC(SKL_DPLL0
) |
6167 DPLL_CTRL1_OVERRIDE(SKL_DPLL0
))) !=
6168 DPLL_CTRL1_OVERRIDE(SKL_DPLL0
)))
6171 switch (val
& DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0
)) {
6172 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810
, SKL_DPLL0
):
6173 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350
, SKL_DPLL0
):
6174 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620
, SKL_DPLL0
):
6175 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700
, SKL_DPLL0
):
6176 dev_priv
->cdclk_pll
.vco
= 8100000;
6178 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080
, SKL_DPLL0
):
6179 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160
, SKL_DPLL0
):
6180 dev_priv
->cdclk_pll
.vco
= 8640000;
6183 MISSING_CASE(val
& DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0
));
6188 void skl_set_preferred_cdclk_vco(struct drm_i915_private
*dev_priv
, int vco
)
6190 bool changed
= dev_priv
->skl_preferred_vco_freq
!= vco
;
6192 dev_priv
->skl_preferred_vco_freq
= vco
;
6195 intel_update_max_cdclk(dev_priv
);
6199 skl_dpll0_enable(struct drm_i915_private
*dev_priv
, int vco
)
6201 int min_cdclk
= skl_calc_cdclk(0, vco
);
6204 WARN_ON(vco
!= 8100000 && vco
!= 8640000);
6206 /* select the minimum CDCLK before enabling DPLL 0 */
6207 val
= CDCLK_FREQ_337_308
| skl_cdclk_decimal(min_cdclk
);
6208 I915_WRITE(CDCLK_CTL
, val
);
6209 POSTING_READ(CDCLK_CTL
);
6212 * We always enable DPLL0 with the lowest link rate possible, but still
6213 * taking into account the VCO required to operate the eDP panel at the
6214 * desired frequency. The usual DP link rates operate with a VCO of
6215 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
6216 * The modeset code is responsible for the selection of the exact link
6217 * rate later on, with the constraint of choosing a frequency that
6220 val
= I915_READ(DPLL_CTRL1
);
6222 val
&= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0
) | DPLL_CTRL1_SSC(SKL_DPLL0
) |
6223 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0
));
6224 val
|= DPLL_CTRL1_OVERRIDE(SKL_DPLL0
);
6226 val
|= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080
,
6229 val
|= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810
,
6232 I915_WRITE(DPLL_CTRL1
, val
);
6233 POSTING_READ(DPLL_CTRL1
);
6235 I915_WRITE(LCPLL1_CTL
, I915_READ(LCPLL1_CTL
) | LCPLL_PLL_ENABLE
);
6237 if (intel_wait_for_register(dev_priv
,
6238 LCPLL1_CTL
, LCPLL_PLL_LOCK
, LCPLL_PLL_LOCK
,
6240 DRM_ERROR("DPLL0 not locked\n");
6242 dev_priv
->cdclk_pll
.vco
= vco
;
6244 /* We'll want to keep using the current vco from now on. */
6245 skl_set_preferred_cdclk_vco(dev_priv
, vco
);
6249 skl_dpll0_disable(struct drm_i915_private
*dev_priv
)
6251 I915_WRITE(LCPLL1_CTL
, I915_READ(LCPLL1_CTL
) & ~LCPLL_PLL_ENABLE
);
6252 if (intel_wait_for_register(dev_priv
,
6253 LCPLL1_CTL
, LCPLL_PLL_LOCK
, 0,
6255 DRM_ERROR("Couldn't disable DPLL0\n");
6257 dev_priv
->cdclk_pll
.vco
= 0;
6260 static void skl_set_cdclk(struct drm_i915_private
*dev_priv
, int cdclk
, int vco
)
6262 u32 freq_select
, pcu_ack
;
6265 WARN_ON((cdclk
== 24000) != (vco
== 0));
6267 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk
, vco
);
6269 mutex_lock(&dev_priv
->rps
.hw_lock
);
6270 ret
= skl_pcode_request(dev_priv
, SKL_PCODE_CDCLK_CONTROL
,
6271 SKL_CDCLK_PREPARE_FOR_CHANGE
,
6272 SKL_CDCLK_READY_FOR_CHANGE
,
6273 SKL_CDCLK_READY_FOR_CHANGE
, 3);
6274 mutex_unlock(&dev_priv
->rps
.hw_lock
);
6276 DRM_ERROR("Failed to inform PCU about cdclk change (%d)\n",
6285 freq_select
= CDCLK_FREQ_450_432
;
6289 freq_select
= CDCLK_FREQ_540
;
6295 freq_select
= CDCLK_FREQ_337_308
;
6300 freq_select
= CDCLK_FREQ_675_617
;
6305 if (dev_priv
->cdclk_pll
.vco
!= 0 &&
6306 dev_priv
->cdclk_pll
.vco
!= vco
)
6307 skl_dpll0_disable(dev_priv
);
6309 if (dev_priv
->cdclk_pll
.vco
!= vco
)
6310 skl_dpll0_enable(dev_priv
, vco
);
6312 I915_WRITE(CDCLK_CTL
, freq_select
| skl_cdclk_decimal(cdclk
));
6313 POSTING_READ(CDCLK_CTL
);
6315 /* inform PCU of the change */
6316 mutex_lock(&dev_priv
->rps
.hw_lock
);
6317 sandybridge_pcode_write(dev_priv
, SKL_PCODE_CDCLK_CONTROL
, pcu_ack
);
6318 mutex_unlock(&dev_priv
->rps
.hw_lock
);
6320 intel_update_cdclk(dev_priv
);
6323 static void skl_sanitize_cdclk(struct drm_i915_private
*dev_priv
);
6325 void skl_uninit_cdclk(struct drm_i915_private
*dev_priv
)
6327 skl_set_cdclk(dev_priv
, dev_priv
->cdclk_pll
.ref
, 0);
6330 void skl_init_cdclk(struct drm_i915_private
*dev_priv
)
6334 skl_sanitize_cdclk(dev_priv
);
6336 if (dev_priv
->cdclk_freq
!= 0 && dev_priv
->cdclk_pll
.vco
!= 0) {
6338 * Use the current vco as our initial
6339 * guess as to what the preferred vco is.
6341 if (dev_priv
->skl_preferred_vco_freq
== 0)
6342 skl_set_preferred_cdclk_vco(dev_priv
,
6343 dev_priv
->cdclk_pll
.vco
);
6347 vco
= dev_priv
->skl_preferred_vco_freq
;
6350 cdclk
= skl_calc_cdclk(0, vco
);
6352 skl_set_cdclk(dev_priv
, cdclk
, vco
);
6355 static void skl_sanitize_cdclk(struct drm_i915_private
*dev_priv
)
6357 uint32_t cdctl
, expected
;
6360 * check if the pre-os intialized the display
6361 * There is SWF18 scratchpad register defined which is set by the
6362 * pre-os which can be used by the OS drivers to check the status
6364 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
6367 intel_update_cdclk(dev_priv
);
6368 /* Is PLL enabled and locked ? */
6369 if (dev_priv
->cdclk_pll
.vco
== 0 ||
6370 dev_priv
->cdclk_freq
== dev_priv
->cdclk_pll
.ref
)
6373 /* DPLL okay; verify the cdclock
6375 * Noticed in some instances that the freq selection is correct but
6376 * decimal part is programmed wrong from BIOS where pre-os does not
6377 * enable display. Verify the same as well.
6379 cdctl
= I915_READ(CDCLK_CTL
);
6380 expected
= (cdctl
& CDCLK_FREQ_SEL_MASK
) |
6381 skl_cdclk_decimal(dev_priv
->cdclk_freq
);
6382 if (cdctl
== expected
)
6383 /* All well; nothing to sanitize */
6387 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6389 /* force cdclk programming */
6390 dev_priv
->cdclk_freq
= 0;
6391 /* force full PLL disable + enable */
6392 dev_priv
->cdclk_pll
.vco
= -1;
6395 /* Adjust CDclk dividers to allow high res or save power if possible */
6396 static void valleyview_set_cdclk(struct drm_device
*dev
, int cdclk
)
6398 struct drm_i915_private
*dev_priv
= to_i915(dev
);
6401 WARN_ON(dev_priv
->display
.get_display_clock_speed(dev_priv
)
6402 != dev_priv
->cdclk_freq
);
6404 if (cdclk
>= 320000) /* jump to highest voltage for 400MHz too */
6406 else if (cdclk
== 266667)
6411 mutex_lock(&dev_priv
->rps
.hw_lock
);
6412 val
= vlv_punit_read(dev_priv
, PUNIT_REG_DSPFREQ
);
6413 val
&= ~DSPFREQGUAR_MASK
;
6414 val
|= (cmd
<< DSPFREQGUAR_SHIFT
);
6415 vlv_punit_write(dev_priv
, PUNIT_REG_DSPFREQ
, val
);
6416 if (wait_for((vlv_punit_read(dev_priv
, PUNIT_REG_DSPFREQ
) &
6417 DSPFREQSTAT_MASK
) == (cmd
<< DSPFREQSTAT_SHIFT
),
6419 DRM_ERROR("timed out waiting for CDclk change\n");
6421 mutex_unlock(&dev_priv
->rps
.hw_lock
);
6423 mutex_lock(&dev_priv
->sb_lock
);
6425 if (cdclk
== 400000) {
6428 divider
= DIV_ROUND_CLOSEST(dev_priv
->hpll_freq
<< 1, cdclk
) - 1;
6430 /* adjust cdclk divider */
6431 val
= vlv_cck_read(dev_priv
, CCK_DISPLAY_CLOCK_CONTROL
);
6432 val
&= ~CCK_FREQUENCY_VALUES
;
6434 vlv_cck_write(dev_priv
, CCK_DISPLAY_CLOCK_CONTROL
, val
);
6436 if (wait_for((vlv_cck_read(dev_priv
, CCK_DISPLAY_CLOCK_CONTROL
) &
6437 CCK_FREQUENCY_STATUS
) == (divider
<< CCK_FREQUENCY_STATUS_SHIFT
),
6439 DRM_ERROR("timed out waiting for CDclk change\n");
6442 /* adjust self-refresh exit latency value */
6443 val
= vlv_bunit_read(dev_priv
, BUNIT_REG_BISOC
);
6447 * For high bandwidth configs, we set a higher latency in the bunit
6448 * so that the core display fetch happens in time to avoid underruns.
6450 if (cdclk
== 400000)
6451 val
|= 4500 / 250; /* 4.5 usec */
6453 val
|= 3000 / 250; /* 3.0 usec */
6454 vlv_bunit_write(dev_priv
, BUNIT_REG_BISOC
, val
);
6456 mutex_unlock(&dev_priv
->sb_lock
);
6458 intel_update_cdclk(dev_priv
);
6461 static void cherryview_set_cdclk(struct drm_device
*dev
, int cdclk
)
6463 struct drm_i915_private
*dev_priv
= to_i915(dev
);
6466 WARN_ON(dev_priv
->display
.get_display_clock_speed(dev_priv
)
6467 != dev_priv
->cdclk_freq
);
6476 MISSING_CASE(cdclk
);
6481 * Specs are full of misinformation, but testing on actual
6482 * hardware has shown that we just need to write the desired
6483 * CCK divider into the Punit register.
6485 cmd
= DIV_ROUND_CLOSEST(dev_priv
->hpll_freq
<< 1, cdclk
) - 1;
6487 mutex_lock(&dev_priv
->rps
.hw_lock
);
6488 val
= vlv_punit_read(dev_priv
, PUNIT_REG_DSPFREQ
);
6489 val
&= ~DSPFREQGUAR_MASK_CHV
;
6490 val
|= (cmd
<< DSPFREQGUAR_SHIFT_CHV
);
6491 vlv_punit_write(dev_priv
, PUNIT_REG_DSPFREQ
, val
);
6492 if (wait_for((vlv_punit_read(dev_priv
, PUNIT_REG_DSPFREQ
) &
6493 DSPFREQSTAT_MASK_CHV
) == (cmd
<< DSPFREQSTAT_SHIFT_CHV
),
6495 DRM_ERROR("timed out waiting for CDclk change\n");
6497 mutex_unlock(&dev_priv
->rps
.hw_lock
);
6499 intel_update_cdclk(dev_priv
);
6502 static int valleyview_calc_cdclk(struct drm_i915_private
*dev_priv
,
6505 int freq_320
= (dev_priv
->hpll_freq
<< 1) % 320000 != 0 ? 333333 : 320000;
6506 int limit
= IS_CHERRYVIEW(dev_priv
) ? 95 : 90;
6509 * Really only a few cases to deal with, as only 4 CDclks are supported:
6512 * 320/333MHz (depends on HPLL freq)
6514 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6515 * of the lower bin and adjust if needed.
6517 * We seem to get an unstable or solid color picture at 200MHz.
6518 * Not sure what's wrong. For now use 200MHz only when all pipes
6521 if (!IS_CHERRYVIEW(dev_priv
) &&
6522 max_pixclk
> freq_320
*limit
/100)
6524 else if (max_pixclk
> 266667*limit
/100)
6526 else if (max_pixclk
> 0)
6532 static int glk_calc_cdclk(int max_pixclk
)
6534 if (max_pixclk
> 2 * 158400)
6536 else if (max_pixclk
> 2 * 79200)
6542 static int bxt_calc_cdclk(int max_pixclk
)
6544 if (max_pixclk
> 576000)
6546 else if (max_pixclk
> 384000)
6548 else if (max_pixclk
> 288000)
6550 else if (max_pixclk
> 144000)
6556 /* Compute the max pixel clock for new configuration. */
6557 static int intel_mode_max_pixclk(struct drm_device
*dev
,
6558 struct drm_atomic_state
*state
)
6560 struct intel_atomic_state
*intel_state
= to_intel_atomic_state(state
);
6561 struct drm_i915_private
*dev_priv
= to_i915(dev
);
6562 struct drm_crtc
*crtc
;
6563 struct drm_crtc_state
*crtc_state
;
6564 unsigned max_pixclk
= 0, i
;
6567 memcpy(intel_state
->min_pixclk
, dev_priv
->min_pixclk
,
6568 sizeof(intel_state
->min_pixclk
));
6570 for_each_crtc_in_state(state
, crtc
, crtc_state
, i
) {
6573 if (crtc_state
->enable
)
6574 pixclk
= crtc_state
->adjusted_mode
.crtc_clock
;
6576 intel_state
->min_pixclk
[i
] = pixclk
;
6579 for_each_pipe(dev_priv
, pipe
)
6580 max_pixclk
= max(intel_state
->min_pixclk
[pipe
], max_pixclk
);
6585 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state
*state
)
6587 struct drm_device
*dev
= state
->dev
;
6588 struct drm_i915_private
*dev_priv
= to_i915(dev
);
6589 int max_pixclk
= intel_mode_max_pixclk(dev
, state
);
6590 struct intel_atomic_state
*intel_state
=
6591 to_intel_atomic_state(state
);
6593 intel_state
->cdclk
= intel_state
->dev_cdclk
=
6594 valleyview_calc_cdclk(dev_priv
, max_pixclk
);
6596 if (!intel_state
->active_crtcs
)
6597 intel_state
->dev_cdclk
= valleyview_calc_cdclk(dev_priv
, 0);
6602 static int bxt_modeset_calc_cdclk(struct drm_atomic_state
*state
)
6604 struct drm_i915_private
*dev_priv
= to_i915(state
->dev
);
6605 int max_pixclk
= ilk_max_pixel_rate(state
);
6606 struct intel_atomic_state
*intel_state
=
6607 to_intel_atomic_state(state
);
6610 if (IS_GEMINILAKE(dev_priv
))
6611 cdclk
= glk_calc_cdclk(max_pixclk
);
6613 cdclk
= bxt_calc_cdclk(max_pixclk
);
6615 intel_state
->cdclk
= intel_state
->dev_cdclk
= cdclk
;
6617 if (!intel_state
->active_crtcs
) {
6618 if (IS_GEMINILAKE(dev_priv
))
6619 cdclk
= glk_calc_cdclk(0);
6621 cdclk
= bxt_calc_cdclk(0);
6623 intel_state
->dev_cdclk
= cdclk
;
6629 static void vlv_program_pfi_credits(struct drm_i915_private
*dev_priv
)
6631 unsigned int credits
, default_credits
;
6633 if (IS_CHERRYVIEW(dev_priv
))
6634 default_credits
= PFI_CREDIT(12);
6636 default_credits
= PFI_CREDIT(8);
6638 if (dev_priv
->cdclk_freq
>= dev_priv
->czclk_freq
) {
6639 /* CHV suggested value is 31 or 63 */
6640 if (IS_CHERRYVIEW(dev_priv
))
6641 credits
= PFI_CREDIT_63
;
6643 credits
= PFI_CREDIT(15);
6645 credits
= default_credits
;
6649 * WA - write default credits before re-programming
6650 * FIXME: should we also set the resend bit here?
6652 I915_WRITE(GCI_CONTROL
, VGA_FAST_MODE_DISABLE
|
6655 I915_WRITE(GCI_CONTROL
, VGA_FAST_MODE_DISABLE
|
6656 credits
| PFI_CREDIT_RESEND
);
6659 * FIXME is this guaranteed to clear
6660 * immediately or should we poll for it?
6662 WARN_ON(I915_READ(GCI_CONTROL
) & PFI_CREDIT_RESEND
);
6665 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state
*old_state
)
6667 struct drm_device
*dev
= old_state
->dev
;
6668 struct drm_i915_private
*dev_priv
= to_i915(dev
);
6669 struct intel_atomic_state
*old_intel_state
=
6670 to_intel_atomic_state(old_state
);
6671 unsigned req_cdclk
= old_intel_state
->dev_cdclk
;
6674 * FIXME: We can end up here with all power domains off, yet
6675 * with a CDCLK frequency other than the minimum. To account
6676 * for this take the PIPE-A power domain, which covers the HW
6677 * blocks needed for the following programming. This can be
6678 * removed once it's guaranteed that we get here either with
6679 * the minimum CDCLK set, or the required power domains
6682 intel_display_power_get(dev_priv
, POWER_DOMAIN_PIPE_A
);
6684 if (IS_CHERRYVIEW(dev_priv
))
6685 cherryview_set_cdclk(dev
, req_cdclk
);
6687 valleyview_set_cdclk(dev
, req_cdclk
);
6689 vlv_program_pfi_credits(dev_priv
);
6691 intel_display_power_put(dev_priv
, POWER_DOMAIN_PIPE_A
);
6694 static void valleyview_crtc_enable(struct intel_crtc_state
*pipe_config
,
6695 struct drm_atomic_state
*old_state
)
6697 struct drm_crtc
*crtc
= pipe_config
->base
.crtc
;
6698 struct drm_device
*dev
= crtc
->dev
;
6699 struct drm_i915_private
*dev_priv
= to_i915(dev
);
6700 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6701 int pipe
= intel_crtc
->pipe
;
6703 if (WARN_ON(intel_crtc
->active
))
6706 if (intel_crtc_has_dp_encoder(intel_crtc
->config
))
6707 intel_dp_set_m_n(intel_crtc
, M1_N1
);
6709 intel_set_pipe_timings(intel_crtc
);
6710 intel_set_pipe_src_size(intel_crtc
);
6712 if (IS_CHERRYVIEW(dev_priv
) && pipe
== PIPE_B
) {
6713 struct drm_i915_private
*dev_priv
= to_i915(dev
);
6715 I915_WRITE(CHV_BLEND(pipe
), CHV_BLEND_LEGACY
);
6716 I915_WRITE(CHV_CANVAS(pipe
), 0);
6719 i9xx_set_pipeconf(intel_crtc
);
6721 intel_crtc
->active
= true;
6723 intel_set_cpu_fifo_underrun_reporting(dev_priv
, pipe
, true);
6725 intel_encoders_pre_pll_enable(crtc
, pipe_config
, old_state
);
6727 if (IS_CHERRYVIEW(dev_priv
)) {
6728 chv_prepare_pll(intel_crtc
, intel_crtc
->config
);
6729 chv_enable_pll(intel_crtc
, intel_crtc
->config
);
6731 vlv_prepare_pll(intel_crtc
, intel_crtc
->config
);
6732 vlv_enable_pll(intel_crtc
, intel_crtc
->config
);
6735 intel_encoders_pre_enable(crtc
, pipe_config
, old_state
);
6737 i9xx_pfit_enable(intel_crtc
);
6739 intel_color_load_luts(&pipe_config
->base
);
6741 intel_update_watermarks(intel_crtc
);
6742 intel_enable_pipe(intel_crtc
);
6744 assert_vblank_disabled(crtc
);
6745 drm_crtc_vblank_on(crtc
);
6747 intel_encoders_enable(crtc
, pipe_config
, old_state
);
6750 static void i9xx_set_pll_dividers(struct intel_crtc
*crtc
)
6752 struct drm_device
*dev
= crtc
->base
.dev
;
6753 struct drm_i915_private
*dev_priv
= to_i915(dev
);
6755 I915_WRITE(FP0(crtc
->pipe
), crtc
->config
->dpll_hw_state
.fp0
);
6756 I915_WRITE(FP1(crtc
->pipe
), crtc
->config
->dpll_hw_state
.fp1
);
6759 static void i9xx_crtc_enable(struct intel_crtc_state
*pipe_config
,
6760 struct drm_atomic_state
*old_state
)
6762 struct drm_crtc
*crtc
= pipe_config
->base
.crtc
;
6763 struct drm_device
*dev
= crtc
->dev
;
6764 struct drm_i915_private
*dev_priv
= to_i915(dev
);
6765 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6766 enum pipe pipe
= intel_crtc
->pipe
;
6768 if (WARN_ON(intel_crtc
->active
))
6771 i9xx_set_pll_dividers(intel_crtc
);
6773 if (intel_crtc_has_dp_encoder(intel_crtc
->config
))
6774 intel_dp_set_m_n(intel_crtc
, M1_N1
);
6776 intel_set_pipe_timings(intel_crtc
);
6777 intel_set_pipe_src_size(intel_crtc
);
6779 i9xx_set_pipeconf(intel_crtc
);
6781 intel_crtc
->active
= true;
6783 if (!IS_GEN2(dev_priv
))
6784 intel_set_cpu_fifo_underrun_reporting(dev_priv
, pipe
, true);
6786 intel_encoders_pre_enable(crtc
, pipe_config
, old_state
);
6788 i9xx_enable_pll(intel_crtc
);
6790 i9xx_pfit_enable(intel_crtc
);
6792 intel_color_load_luts(&pipe_config
->base
);
6794 intel_update_watermarks(intel_crtc
);
6795 intel_enable_pipe(intel_crtc
);
6797 assert_vblank_disabled(crtc
);
6798 drm_crtc_vblank_on(crtc
);
6800 intel_encoders_enable(crtc
, pipe_config
, old_state
);
6803 static void i9xx_pfit_disable(struct intel_crtc
*crtc
)
6805 struct drm_device
*dev
= crtc
->base
.dev
;
6806 struct drm_i915_private
*dev_priv
= to_i915(dev
);
6808 if (!crtc
->config
->gmch_pfit
.control
)
6811 assert_pipe_disabled(dev_priv
, crtc
->pipe
);
6813 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6814 I915_READ(PFIT_CONTROL
));
6815 I915_WRITE(PFIT_CONTROL
, 0);
6818 static void i9xx_crtc_disable(struct intel_crtc_state
*old_crtc_state
,
6819 struct drm_atomic_state
*old_state
)
6821 struct drm_crtc
*crtc
= old_crtc_state
->base
.crtc
;
6822 struct drm_device
*dev
= crtc
->dev
;
6823 struct drm_i915_private
*dev_priv
= to_i915(dev
);
6824 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6825 int pipe
= intel_crtc
->pipe
;
6828 * On gen2 planes are double buffered but the pipe isn't, so we must
6829 * wait for planes to fully turn off before disabling the pipe.
6831 if (IS_GEN2(dev_priv
))
6832 intel_wait_for_vblank(dev_priv
, pipe
);
6834 intel_encoders_disable(crtc
, old_crtc_state
, old_state
);
6836 drm_crtc_vblank_off(crtc
);
6837 assert_vblank_disabled(crtc
);
6839 intel_disable_pipe(intel_crtc
);
6841 i9xx_pfit_disable(intel_crtc
);
6843 intel_encoders_post_disable(crtc
, old_crtc_state
, old_state
);
6845 if (!intel_crtc_has_type(intel_crtc
->config
, INTEL_OUTPUT_DSI
)) {
6846 if (IS_CHERRYVIEW(dev_priv
))
6847 chv_disable_pll(dev_priv
, pipe
);
6848 else if (IS_VALLEYVIEW(dev_priv
))
6849 vlv_disable_pll(dev_priv
, pipe
);
6851 i9xx_disable_pll(intel_crtc
);
6854 intel_encoders_post_pll_disable(crtc
, old_crtc_state
, old_state
);
6856 if (!IS_GEN2(dev_priv
))
6857 intel_set_cpu_fifo_underrun_reporting(dev_priv
, pipe
, false);
6860 static void intel_crtc_disable_noatomic(struct drm_crtc
*crtc
)
6862 struct intel_encoder
*encoder
;
6863 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6864 struct drm_i915_private
*dev_priv
= to_i915(crtc
->dev
);
6865 enum intel_display_power_domain domain
;
6866 unsigned long domains
;
6867 struct drm_atomic_state
*state
;
6868 struct intel_crtc_state
*crtc_state
;
6871 if (!intel_crtc
->active
)
6874 if (crtc
->primary
->state
->visible
) {
6875 WARN_ON(intel_crtc
->flip_work
);
6877 intel_pre_disable_primary_noatomic(crtc
);
6879 intel_crtc_disable_planes(crtc
, 1 << drm_plane_index(crtc
->primary
));
6880 crtc
->primary
->state
->visible
= false;
6883 state
= drm_atomic_state_alloc(crtc
->dev
);
6884 state
->acquire_ctx
= crtc
->dev
->mode_config
.acquire_ctx
;
6886 /* Everything's already locked, -EDEADLK can't happen. */
6887 crtc_state
= intel_atomic_get_crtc_state(state
, intel_crtc
);
6888 ret
= drm_atomic_add_affected_connectors(state
, crtc
);
6890 WARN_ON(IS_ERR(crtc_state
) || ret
);
6892 dev_priv
->display
.crtc_disable(crtc_state
, state
);
6894 drm_atomic_state_put(state
);
6896 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6897 crtc
->base
.id
, crtc
->name
);
6899 WARN_ON(drm_atomic_set_mode_for_crtc(crtc
->state
, NULL
) < 0);
6900 crtc
->state
->active
= false;
6901 intel_crtc
->active
= false;
6902 crtc
->enabled
= false;
6903 crtc
->state
->connector_mask
= 0;
6904 crtc
->state
->encoder_mask
= 0;
6906 for_each_encoder_on_crtc(crtc
->dev
, crtc
, encoder
)
6907 encoder
->base
.crtc
= NULL
;
6909 intel_fbc_disable(intel_crtc
);
6910 intel_update_watermarks(intel_crtc
);
6911 intel_disable_shared_dpll(intel_crtc
);
6913 domains
= intel_crtc
->enabled_power_domains
;
6914 for_each_power_domain(domain
, domains
)
6915 intel_display_power_put(dev_priv
, domain
);
6916 intel_crtc
->enabled_power_domains
= 0;
6918 dev_priv
->active_crtcs
&= ~(1 << intel_crtc
->pipe
);
6919 dev_priv
->min_pixclk
[intel_crtc
->pipe
] = 0;
6923 * turn all crtc's off, but do not adjust state
6924 * This has to be paired with a call to intel_modeset_setup_hw_state.
6926 int intel_display_suspend(struct drm_device
*dev
)
6928 struct drm_i915_private
*dev_priv
= to_i915(dev
);
6929 struct drm_atomic_state
*state
;
6932 state
= drm_atomic_helper_suspend(dev
);
6933 ret
= PTR_ERR_OR_ZERO(state
);
6935 DRM_ERROR("Suspending crtc's failed with %i\n", ret
);
6937 dev_priv
->modeset_restore_state
= state
;
6941 void intel_encoder_destroy(struct drm_encoder
*encoder
)
6943 struct intel_encoder
*intel_encoder
= to_intel_encoder(encoder
);
6945 drm_encoder_cleanup(encoder
);
6946 kfree(intel_encoder
);
6949 /* Cross check the actual hw state with our own modeset state tracking (and it's
6950 * internal consistency). */
6951 static void intel_connector_verify_state(struct intel_connector
*connector
)
6953 struct drm_crtc
*crtc
= connector
->base
.state
->crtc
;
6955 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6956 connector
->base
.base
.id
,
6957 connector
->base
.name
);
6959 if (connector
->get_hw_state(connector
)) {
6960 struct intel_encoder
*encoder
= connector
->encoder
;
6961 struct drm_connector_state
*conn_state
= connector
->base
.state
;
6963 I915_STATE_WARN(!crtc
,
6964 "connector enabled without attached crtc\n");
6969 I915_STATE_WARN(!crtc
->state
->active
,
6970 "connector is active, but attached crtc isn't\n");
6972 if (!encoder
|| encoder
->type
== INTEL_OUTPUT_DP_MST
)
6975 I915_STATE_WARN(conn_state
->best_encoder
!= &encoder
->base
,
6976 "atomic encoder doesn't match attached encoder\n");
6978 I915_STATE_WARN(conn_state
->crtc
!= encoder
->base
.crtc
,
6979 "attached encoder crtc differs from connector crtc\n");
6981 I915_STATE_WARN(crtc
&& crtc
->state
->active
,
6982 "attached crtc is active, but connector isn't\n");
6983 I915_STATE_WARN(!crtc
&& connector
->base
.state
->best_encoder
,
6984 "best encoder set without crtc!\n");
6988 int intel_connector_init(struct intel_connector
*connector
)
6990 drm_atomic_helper_connector_reset(&connector
->base
);
6992 if (!connector
->base
.state
)
6998 struct intel_connector
*intel_connector_alloc(void)
7000 struct intel_connector
*connector
;
7002 connector
= kzalloc(sizeof *connector
, GFP_KERNEL
);
7006 if (intel_connector_init(connector
) < 0) {
7014 /* Simple connector->get_hw_state implementation for encoders that support only
7015 * one connector and no cloning and hence the encoder state determines the state
7016 * of the connector. */
7017 bool intel_connector_get_hw_state(struct intel_connector
*connector
)
7020 struct intel_encoder
*encoder
= connector
->encoder
;
7022 return encoder
->get_hw_state(encoder
, &pipe
);
7025 static int pipe_required_fdi_lanes(struct intel_crtc_state
*crtc_state
)
7027 if (crtc_state
->base
.enable
&& crtc_state
->has_pch_encoder
)
7028 return crtc_state
->fdi_lanes
;
7033 static int ironlake_check_fdi_lanes(struct drm_device
*dev
, enum pipe pipe
,
7034 struct intel_crtc_state
*pipe_config
)
7036 struct drm_i915_private
*dev_priv
= to_i915(dev
);
7037 struct drm_atomic_state
*state
= pipe_config
->base
.state
;
7038 struct intel_crtc
*other_crtc
;
7039 struct intel_crtc_state
*other_crtc_state
;
7041 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
7042 pipe_name(pipe
), pipe_config
->fdi_lanes
);
7043 if (pipe_config
->fdi_lanes
> 4) {
7044 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
7045 pipe_name(pipe
), pipe_config
->fdi_lanes
);
7049 if (IS_HASWELL(dev_priv
) || IS_BROADWELL(dev_priv
)) {
7050 if (pipe_config
->fdi_lanes
> 2) {
7051 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
7052 pipe_config
->fdi_lanes
);
7059 if (INTEL_INFO(dev_priv
)->num_pipes
== 2)
7062 /* Ivybridge 3 pipe is really complicated */
7067 if (pipe_config
->fdi_lanes
<= 2)
7070 other_crtc
= intel_get_crtc_for_pipe(dev_priv
, PIPE_C
);
7072 intel_atomic_get_crtc_state(state
, other_crtc
);
7073 if (IS_ERR(other_crtc_state
))
7074 return PTR_ERR(other_crtc_state
);
7076 if (pipe_required_fdi_lanes(other_crtc_state
) > 0) {
7077 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
7078 pipe_name(pipe
), pipe_config
->fdi_lanes
);
7083 if (pipe_config
->fdi_lanes
> 2) {
7084 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
7085 pipe_name(pipe
), pipe_config
->fdi_lanes
);
7089 other_crtc
= intel_get_crtc_for_pipe(dev_priv
, PIPE_B
);
7091 intel_atomic_get_crtc_state(state
, other_crtc
);
7092 if (IS_ERR(other_crtc_state
))
7093 return PTR_ERR(other_crtc_state
);
7095 if (pipe_required_fdi_lanes(other_crtc_state
) > 2) {
7096 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
7106 static int ironlake_fdi_compute_config(struct intel_crtc
*intel_crtc
,
7107 struct intel_crtc_state
*pipe_config
)
7109 struct drm_device
*dev
= intel_crtc
->base
.dev
;
7110 const struct drm_display_mode
*adjusted_mode
= &pipe_config
->base
.adjusted_mode
;
7111 int lane
, link_bw
, fdi_dotclock
, ret
;
7112 bool needs_recompute
= false;
7115 /* FDI is a binary signal running at ~2.7GHz, encoding
7116 * each output octet as 10 bits. The actual frequency
7117 * is stored as a divider into a 100MHz clock, and the
7118 * mode pixel clock is stored in units of 1KHz.
7119 * Hence the bw of each lane in terms of the mode signal
7122 link_bw
= intel_fdi_link_freq(to_i915(dev
), pipe_config
);
7124 fdi_dotclock
= adjusted_mode
->crtc_clock
;
7126 lane
= ironlake_get_lanes_required(fdi_dotclock
, link_bw
,
7127 pipe_config
->pipe_bpp
);
7129 pipe_config
->fdi_lanes
= lane
;
7131 intel_link_compute_m_n(pipe_config
->pipe_bpp
, lane
, fdi_dotclock
,
7132 link_bw
, &pipe_config
->fdi_m_n
);
7134 ret
= ironlake_check_fdi_lanes(dev
, intel_crtc
->pipe
, pipe_config
);
7135 if (ret
== -EINVAL
&& pipe_config
->pipe_bpp
> 6*3) {
7136 pipe_config
->pipe_bpp
-= 2*3;
7137 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
7138 pipe_config
->pipe_bpp
);
7139 needs_recompute
= true;
7140 pipe_config
->bw_constrained
= true;
7145 if (needs_recompute
)
7151 static bool pipe_config_supports_ips(struct drm_i915_private
*dev_priv
,
7152 struct intel_crtc_state
*pipe_config
)
7154 if (pipe_config
->pipe_bpp
> 24)
7157 /* HSW can handle pixel rate up to cdclk? */
7158 if (IS_HASWELL(dev_priv
))
7162 * We compare against max which means we must take
7163 * the increased cdclk requirement into account when
7164 * calculating the new cdclk.
7166 * Should measure whether using a lower cdclk w/o IPS
7168 return ilk_pipe_pixel_rate(pipe_config
) <=
7169 dev_priv
->max_cdclk_freq
* 95 / 100;
7172 static void hsw_compute_ips_config(struct intel_crtc
*crtc
,
7173 struct intel_crtc_state
*pipe_config
)
7175 struct drm_device
*dev
= crtc
->base
.dev
;
7176 struct drm_i915_private
*dev_priv
= to_i915(dev
);
7178 pipe_config
->ips_enabled
= i915
.enable_ips
&&
7179 hsw_crtc_supports_ips(crtc
) &&
7180 pipe_config_supports_ips(dev_priv
, pipe_config
);
7183 static bool intel_crtc_supports_double_wide(const struct intel_crtc
*crtc
)
7185 const struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
7187 /* GDG double wide on either pipe, otherwise pipe A only */
7188 return INTEL_INFO(dev_priv
)->gen
< 4 &&
7189 (crtc
->pipe
== PIPE_A
|| IS_I915G(dev_priv
));
7192 static int intel_crtc_compute_config(struct intel_crtc
*crtc
,
7193 struct intel_crtc_state
*pipe_config
)
7195 struct drm_device
*dev
= crtc
->base
.dev
;
7196 struct drm_i915_private
*dev_priv
= to_i915(dev
);
7197 const struct drm_display_mode
*adjusted_mode
= &pipe_config
->base
.adjusted_mode
;
7198 int clock_limit
= dev_priv
->max_dotclk_freq
;
7200 if (INTEL_GEN(dev_priv
) < 4) {
7201 clock_limit
= dev_priv
->max_cdclk_freq
* 9 / 10;
7204 * Enable double wide mode when the dot clock
7205 * is > 90% of the (display) core speed.
7207 if (intel_crtc_supports_double_wide(crtc
) &&
7208 adjusted_mode
->crtc_clock
> clock_limit
) {
7209 clock_limit
= dev_priv
->max_dotclk_freq
;
7210 pipe_config
->double_wide
= true;
7214 if (adjusted_mode
->crtc_clock
> clock_limit
) {
7215 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
7216 adjusted_mode
->crtc_clock
, clock_limit
,
7217 yesno(pipe_config
->double_wide
));
7222 * Pipe horizontal size must be even in:
7224 * - LVDS dual channel mode
7225 * - Double wide pipe
7227 if ((intel_crtc_has_type(pipe_config
, INTEL_OUTPUT_LVDS
) &&
7228 intel_is_dual_link_lvds(dev
)) || pipe_config
->double_wide
)
7229 pipe_config
->pipe_src_w
&= ~1;
7231 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
7232 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
7234 if ((INTEL_GEN(dev_priv
) > 4 || IS_G4X(dev_priv
)) &&
7235 adjusted_mode
->crtc_hsync_start
== adjusted_mode
->crtc_hdisplay
)
7238 if (HAS_IPS(dev_priv
))
7239 hsw_compute_ips_config(crtc
, pipe_config
);
7241 if (pipe_config
->has_pch_encoder
)
7242 return ironlake_fdi_compute_config(crtc
, pipe_config
);
7247 static int skylake_get_display_clock_speed(struct drm_i915_private
*dev_priv
)
7251 skl_dpll0_update(dev_priv
);
7253 if (dev_priv
->cdclk_pll
.vco
== 0)
7254 return dev_priv
->cdclk_pll
.ref
;
7256 cdctl
= I915_READ(CDCLK_CTL
);
7258 if (dev_priv
->cdclk_pll
.vco
== 8640000) {
7259 switch (cdctl
& CDCLK_FREQ_SEL_MASK
) {
7260 case CDCLK_FREQ_450_432
:
7262 case CDCLK_FREQ_337_308
:
7264 case CDCLK_FREQ_540
:
7266 case CDCLK_FREQ_675_617
:
7269 MISSING_CASE(cdctl
& CDCLK_FREQ_SEL_MASK
);
7272 switch (cdctl
& CDCLK_FREQ_SEL_MASK
) {
7273 case CDCLK_FREQ_450_432
:
7275 case CDCLK_FREQ_337_308
:
7277 case CDCLK_FREQ_540
:
7279 case CDCLK_FREQ_675_617
:
7282 MISSING_CASE(cdctl
& CDCLK_FREQ_SEL_MASK
);
7286 return dev_priv
->cdclk_pll
.ref
;
7289 static void bxt_de_pll_update(struct drm_i915_private
*dev_priv
)
7293 dev_priv
->cdclk_pll
.ref
= 19200;
7294 dev_priv
->cdclk_pll
.vco
= 0;
7296 val
= I915_READ(BXT_DE_PLL_ENABLE
);
7297 if ((val
& BXT_DE_PLL_PLL_ENABLE
) == 0)
7300 if (WARN_ON((val
& BXT_DE_PLL_LOCK
) == 0))
7303 val
= I915_READ(BXT_DE_PLL_CTL
);
7304 dev_priv
->cdclk_pll
.vco
= (val
& BXT_DE_PLL_RATIO_MASK
) *
7305 dev_priv
->cdclk_pll
.ref
;
7308 static int broxton_get_display_clock_speed(struct drm_i915_private
*dev_priv
)
7313 bxt_de_pll_update(dev_priv
);
7315 vco
= dev_priv
->cdclk_pll
.vco
;
7317 return dev_priv
->cdclk_pll
.ref
;
7319 divider
= I915_READ(CDCLK_CTL
) & BXT_CDCLK_CD2X_DIV_SEL_MASK
;
7322 case BXT_CDCLK_CD2X_DIV_SEL_1
:
7325 case BXT_CDCLK_CD2X_DIV_SEL_1_5
:
7326 WARN(IS_GEMINILAKE(dev_priv
), "Unsupported divider\n");
7329 case BXT_CDCLK_CD2X_DIV_SEL_2
:
7332 case BXT_CDCLK_CD2X_DIV_SEL_4
:
7336 MISSING_CASE(divider
);
7337 return dev_priv
->cdclk_pll
.ref
;
7340 return DIV_ROUND_CLOSEST(vco
, div
);
7343 static int broadwell_get_display_clock_speed(struct drm_i915_private
*dev_priv
)
7345 uint32_t lcpll
= I915_READ(LCPLL_CTL
);
7346 uint32_t freq
= lcpll
& LCPLL_CLK_FREQ_MASK
;
7348 if (lcpll
& LCPLL_CD_SOURCE_FCLK
)
7350 else if (I915_READ(FUSE_STRAP
) & HSW_CDCLK_LIMIT
)
7352 else if (freq
== LCPLL_CLK_FREQ_450
)
7354 else if (freq
== LCPLL_CLK_FREQ_54O_BDW
)
7356 else if (freq
== LCPLL_CLK_FREQ_337_5_BDW
)
7362 static int haswell_get_display_clock_speed(struct drm_i915_private
*dev_priv
)
7364 uint32_t lcpll
= I915_READ(LCPLL_CTL
);
7365 uint32_t freq
= lcpll
& LCPLL_CLK_FREQ_MASK
;
7367 if (lcpll
& LCPLL_CD_SOURCE_FCLK
)
7369 else if (I915_READ(FUSE_STRAP
) & HSW_CDCLK_LIMIT
)
7371 else if (freq
== LCPLL_CLK_FREQ_450
)
7373 else if (IS_HSW_ULT(dev_priv
))
7379 static int valleyview_get_display_clock_speed(struct drm_i915_private
*dev_priv
)
7381 return vlv_get_cck_clock_hpll(dev_priv
, "cdclk",
7382 CCK_DISPLAY_CLOCK_CONTROL
);
7385 static int ilk_get_display_clock_speed(struct drm_i915_private
*dev_priv
)
7390 static int i945_get_display_clock_speed(struct drm_i915_private
*dev_priv
)
7395 static int i915_get_display_clock_speed(struct drm_i915_private
*dev_priv
)
7400 static int i9xx_misc_get_display_clock_speed(struct drm_i915_private
*dev_priv
)
7405 static int pnv_get_display_clock_speed(struct drm_i915_private
*dev_priv
)
7407 struct pci_dev
*pdev
= dev_priv
->drm
.pdev
;
7410 pci_read_config_word(pdev
, GCFGC
, &gcfgc
);
7412 switch (gcfgc
& GC_DISPLAY_CLOCK_MASK
) {
7413 case GC_DISPLAY_CLOCK_267_MHZ_PNV
:
7415 case GC_DISPLAY_CLOCK_333_MHZ_PNV
:
7417 case GC_DISPLAY_CLOCK_444_MHZ_PNV
:
7419 case GC_DISPLAY_CLOCK_200_MHZ_PNV
:
7422 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc
);
7423 case GC_DISPLAY_CLOCK_133_MHZ_PNV
:
7425 case GC_DISPLAY_CLOCK_167_MHZ_PNV
:
7430 static int i915gm_get_display_clock_speed(struct drm_i915_private
*dev_priv
)
7432 struct pci_dev
*pdev
= dev_priv
->drm
.pdev
;
7435 pci_read_config_word(pdev
, GCFGC
, &gcfgc
);
7437 if (gcfgc
& GC_LOW_FREQUENCY_ENABLE
)
7440 switch (gcfgc
& GC_DISPLAY_CLOCK_MASK
) {
7441 case GC_DISPLAY_CLOCK_333_MHZ
:
7444 case GC_DISPLAY_CLOCK_190_200_MHZ
:
7450 static int i865_get_display_clock_speed(struct drm_i915_private
*dev_priv
)
7455 static int i85x_get_display_clock_speed(struct drm_i915_private
*dev_priv
)
7457 struct pci_dev
*pdev
= dev_priv
->drm
.pdev
;
7461 * 852GM/852GMV only supports 133 MHz and the HPLLCC
7462 * encoding is different :(
7463 * FIXME is this the right way to detect 852GM/852GMV?
7465 if (pdev
->revision
== 0x1)
7468 pci_bus_read_config_word(pdev
->bus
,
7469 PCI_DEVFN(0, 3), HPLLCC
, &hpllcc
);
7471 /* Assume that the hardware is in the high speed state. This
7472 * should be the default.
7474 switch (hpllcc
& GC_CLOCK_CONTROL_MASK
) {
7475 case GC_CLOCK_133_200
:
7476 case GC_CLOCK_133_200_2
:
7477 case GC_CLOCK_100_200
:
7479 case GC_CLOCK_166_250
:
7481 case GC_CLOCK_100_133
:
7483 case GC_CLOCK_133_266
:
7484 case GC_CLOCK_133_266_2
:
7485 case GC_CLOCK_166_266
:
7489 /* Shouldn't happen */
7493 static int i830_get_display_clock_speed(struct drm_i915_private
*dev_priv
)
7498 static unsigned int intel_hpll_vco(struct drm_i915_private
*dev_priv
)
7500 static const unsigned int blb_vco
[8] = {
7507 static const unsigned int pnv_vco
[8] = {
7514 static const unsigned int cl_vco
[8] = {
7523 static const unsigned int elk_vco
[8] = {
7529 static const unsigned int ctg_vco
[8] = {
7537 const unsigned int *vco_table
;
7541 /* FIXME other chipsets? */
7542 if (IS_GM45(dev_priv
))
7543 vco_table
= ctg_vco
;
7544 else if (IS_G4X(dev_priv
))
7545 vco_table
= elk_vco
;
7546 else if (IS_I965GM(dev_priv
))
7548 else if (IS_PINEVIEW(dev_priv
))
7549 vco_table
= pnv_vco
;
7550 else if (IS_G33(dev_priv
))
7551 vco_table
= blb_vco
;
7555 tmp
= I915_READ(IS_MOBILE(dev_priv
) ? HPLLVCO_MOBILE
: HPLLVCO
);
7557 vco
= vco_table
[tmp
& 0x7];
7559 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp
);
7561 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco
);
7566 static int gm45_get_display_clock_speed(struct drm_i915_private
*dev_priv
)
7568 struct pci_dev
*pdev
= dev_priv
->drm
.pdev
;
7569 unsigned int cdclk_sel
, vco
= intel_hpll_vco(dev_priv
);
7572 pci_read_config_word(pdev
, GCFGC
, &tmp
);
7574 cdclk_sel
= (tmp
>> 12) & 0x1;
7580 return cdclk_sel
? 333333 : 222222;
7582 return cdclk_sel
? 320000 : 228571;
7584 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco
, tmp
);
7589 static int i965gm_get_display_clock_speed(struct drm_i915_private
*dev_priv
)
7591 struct pci_dev
*pdev
= dev_priv
->drm
.pdev
;
7592 static const uint8_t div_3200
[] = { 16, 10, 8 };
7593 static const uint8_t div_4000
[] = { 20, 12, 10 };
7594 static const uint8_t div_5333
[] = { 24, 16, 14 };
7595 const uint8_t *div_table
;
7596 unsigned int cdclk_sel
, vco
= intel_hpll_vco(dev_priv
);
7599 pci_read_config_word(pdev
, GCFGC
, &tmp
);
7601 cdclk_sel
= ((tmp
>> 8) & 0x1f) - 1;
7603 if (cdclk_sel
>= ARRAY_SIZE(div_3200
))
7608 div_table
= div_3200
;
7611 div_table
= div_4000
;
7614 div_table
= div_5333
;
7620 return DIV_ROUND_CLOSEST(vco
, div_table
[cdclk_sel
]);
7623 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco
, tmp
);
7627 static int g33_get_display_clock_speed(struct drm_i915_private
*dev_priv
)
7629 struct pci_dev
*pdev
= dev_priv
->drm
.pdev
;
7630 static const uint8_t div_3200
[] = { 12, 10, 8, 7, 5, 16 };
7631 static const uint8_t div_4000
[] = { 14, 12, 10, 8, 6, 20 };
7632 static const uint8_t div_4800
[] = { 20, 14, 12, 10, 8, 24 };
7633 static const uint8_t div_5333
[] = { 20, 16, 12, 12, 8, 28 };
7634 const uint8_t *div_table
;
7635 unsigned int cdclk_sel
, vco
= intel_hpll_vco(dev_priv
);
7638 pci_read_config_word(pdev
, GCFGC
, &tmp
);
7640 cdclk_sel
= (tmp
>> 4) & 0x7;
7642 if (cdclk_sel
>= ARRAY_SIZE(div_3200
))
7647 div_table
= div_3200
;
7650 div_table
= div_4000
;
7653 div_table
= div_4800
;
7656 div_table
= div_5333
;
7662 return DIV_ROUND_CLOSEST(vco
, div_table
[cdclk_sel
]);
7665 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco
, tmp
);
7670 intel_reduce_m_n_ratio(uint32_t *num
, uint32_t *den
)
7672 while (*num
> DATA_LINK_M_N_MASK
||
7673 *den
> DATA_LINK_M_N_MASK
) {
7679 static void compute_m_n(unsigned int m
, unsigned int n
,
7680 uint32_t *ret_m
, uint32_t *ret_n
)
7682 *ret_n
= min_t(unsigned int, roundup_pow_of_two(n
), DATA_LINK_N_MAX
);
7683 *ret_m
= div_u64((uint64_t) m
* *ret_n
, n
);
7684 intel_reduce_m_n_ratio(ret_m
, ret_n
);
7688 intel_link_compute_m_n(int bits_per_pixel
, int nlanes
,
7689 int pixel_clock
, int link_clock
,
7690 struct intel_link_m_n
*m_n
)
7694 compute_m_n(bits_per_pixel
* pixel_clock
,
7695 link_clock
* nlanes
* 8,
7696 &m_n
->gmch_m
, &m_n
->gmch_n
);
7698 compute_m_n(pixel_clock
, link_clock
,
7699 &m_n
->link_m
, &m_n
->link_n
);
7702 static inline bool intel_panel_use_ssc(struct drm_i915_private
*dev_priv
)
7704 if (i915
.panel_use_ssc
>= 0)
7705 return i915
.panel_use_ssc
!= 0;
7706 return dev_priv
->vbt
.lvds_use_ssc
7707 && !(dev_priv
->quirks
& QUIRK_LVDS_SSC_DISABLE
);
7710 static uint32_t pnv_dpll_compute_fp(struct dpll
*dpll
)
7712 return (1 << dpll
->n
) << 16 | dpll
->m2
;
7715 static uint32_t i9xx_dpll_compute_fp(struct dpll
*dpll
)
7717 return dpll
->n
<< 16 | dpll
->m1
<< 8 | dpll
->m2
;
7720 static void i9xx_update_pll_dividers(struct intel_crtc
*crtc
,
7721 struct intel_crtc_state
*crtc_state
,
7722 struct dpll
*reduced_clock
)
7724 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
7727 if (IS_PINEVIEW(dev_priv
)) {
7728 fp
= pnv_dpll_compute_fp(&crtc_state
->dpll
);
7730 fp2
= pnv_dpll_compute_fp(reduced_clock
);
7732 fp
= i9xx_dpll_compute_fp(&crtc_state
->dpll
);
7734 fp2
= i9xx_dpll_compute_fp(reduced_clock
);
7737 crtc_state
->dpll_hw_state
.fp0
= fp
;
7739 crtc
->lowfreq_avail
= false;
7740 if (intel_crtc_has_type(crtc_state
, INTEL_OUTPUT_LVDS
) &&
7742 crtc_state
->dpll_hw_state
.fp1
= fp2
;
7743 crtc
->lowfreq_avail
= true;
7745 crtc_state
->dpll_hw_state
.fp1
= fp
;
7749 static void vlv_pllb_recal_opamp(struct drm_i915_private
*dev_priv
, enum pipe
7755 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7756 * and set it to a reasonable value instead.
7758 reg_val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PLL_DW9(1));
7759 reg_val
&= 0xffffff00;
7760 reg_val
|= 0x00000030;
7761 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW9(1), reg_val
);
7763 reg_val
= vlv_dpio_read(dev_priv
, pipe
, VLV_REF_DW13
);
7764 reg_val
&= 0x8cffffff;
7765 reg_val
= 0x8c000000;
7766 vlv_dpio_write(dev_priv
, pipe
, VLV_REF_DW13
, reg_val
);
7768 reg_val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PLL_DW9(1));
7769 reg_val
&= 0xffffff00;
7770 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW9(1), reg_val
);
7772 reg_val
= vlv_dpio_read(dev_priv
, pipe
, VLV_REF_DW13
);
7773 reg_val
&= 0x00ffffff;
7774 reg_val
|= 0xb0000000;
7775 vlv_dpio_write(dev_priv
, pipe
, VLV_REF_DW13
, reg_val
);
7778 static void intel_pch_transcoder_set_m_n(struct intel_crtc
*crtc
,
7779 struct intel_link_m_n
*m_n
)
7781 struct drm_device
*dev
= crtc
->base
.dev
;
7782 struct drm_i915_private
*dev_priv
= to_i915(dev
);
7783 int pipe
= crtc
->pipe
;
7785 I915_WRITE(PCH_TRANS_DATA_M1(pipe
), TU_SIZE(m_n
->tu
) | m_n
->gmch_m
);
7786 I915_WRITE(PCH_TRANS_DATA_N1(pipe
), m_n
->gmch_n
);
7787 I915_WRITE(PCH_TRANS_LINK_M1(pipe
), m_n
->link_m
);
7788 I915_WRITE(PCH_TRANS_LINK_N1(pipe
), m_n
->link_n
);
7791 static void intel_cpu_transcoder_set_m_n(struct intel_crtc
*crtc
,
7792 struct intel_link_m_n
*m_n
,
7793 struct intel_link_m_n
*m2_n2
)
7795 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
7796 int pipe
= crtc
->pipe
;
7797 enum transcoder transcoder
= crtc
->config
->cpu_transcoder
;
7799 if (INTEL_GEN(dev_priv
) >= 5) {
7800 I915_WRITE(PIPE_DATA_M1(transcoder
), TU_SIZE(m_n
->tu
) | m_n
->gmch_m
);
7801 I915_WRITE(PIPE_DATA_N1(transcoder
), m_n
->gmch_n
);
7802 I915_WRITE(PIPE_LINK_M1(transcoder
), m_n
->link_m
);
7803 I915_WRITE(PIPE_LINK_N1(transcoder
), m_n
->link_n
);
7804 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7805 * for gen < 8) and if DRRS is supported (to make sure the
7806 * registers are not unnecessarily accessed).
7808 if (m2_n2
&& (IS_CHERRYVIEW(dev_priv
) ||
7809 INTEL_GEN(dev_priv
) < 8) && crtc
->config
->has_drrs
) {
7810 I915_WRITE(PIPE_DATA_M2(transcoder
),
7811 TU_SIZE(m2_n2
->tu
) | m2_n2
->gmch_m
);
7812 I915_WRITE(PIPE_DATA_N2(transcoder
), m2_n2
->gmch_n
);
7813 I915_WRITE(PIPE_LINK_M2(transcoder
), m2_n2
->link_m
);
7814 I915_WRITE(PIPE_LINK_N2(transcoder
), m2_n2
->link_n
);
7817 I915_WRITE(PIPE_DATA_M_G4X(pipe
), TU_SIZE(m_n
->tu
) | m_n
->gmch_m
);
7818 I915_WRITE(PIPE_DATA_N_G4X(pipe
), m_n
->gmch_n
);
7819 I915_WRITE(PIPE_LINK_M_G4X(pipe
), m_n
->link_m
);
7820 I915_WRITE(PIPE_LINK_N_G4X(pipe
), m_n
->link_n
);
7824 void intel_dp_set_m_n(struct intel_crtc
*crtc
, enum link_m_n_set m_n
)
7826 struct intel_link_m_n
*dp_m_n
, *dp_m2_n2
= NULL
;
7829 dp_m_n
= &crtc
->config
->dp_m_n
;
7830 dp_m2_n2
= &crtc
->config
->dp_m2_n2
;
7831 } else if (m_n
== M2_N2
) {
7834 * M2_N2 registers are not supported. Hence m2_n2 divider value
7835 * needs to be programmed into M1_N1.
7837 dp_m_n
= &crtc
->config
->dp_m2_n2
;
7839 DRM_ERROR("Unsupported divider value\n");
7843 if (crtc
->config
->has_pch_encoder
)
7844 intel_pch_transcoder_set_m_n(crtc
, &crtc
->config
->dp_m_n
);
7846 intel_cpu_transcoder_set_m_n(crtc
, dp_m_n
, dp_m2_n2
);
7849 static void vlv_compute_dpll(struct intel_crtc
*crtc
,
7850 struct intel_crtc_state
*pipe_config
)
7852 pipe_config
->dpll_hw_state
.dpll
= DPLL_INTEGRATED_REF_CLK_VLV
|
7853 DPLL_REF_CLK_ENABLE_VLV
| DPLL_VGA_MODE_DIS
;
7854 if (crtc
->pipe
!= PIPE_A
)
7855 pipe_config
->dpll_hw_state
.dpll
|= DPLL_INTEGRATED_CRI_CLK_VLV
;
7857 /* DPLL not used with DSI, but still need the rest set up */
7858 if (!intel_crtc_has_type(pipe_config
, INTEL_OUTPUT_DSI
))
7859 pipe_config
->dpll_hw_state
.dpll
|= DPLL_VCO_ENABLE
|
7860 DPLL_EXT_BUFFER_ENABLE_VLV
;
7862 pipe_config
->dpll_hw_state
.dpll_md
=
7863 (pipe_config
->pixel_multiplier
- 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT
;
7866 static void chv_compute_dpll(struct intel_crtc
*crtc
,
7867 struct intel_crtc_state
*pipe_config
)
7869 pipe_config
->dpll_hw_state
.dpll
= DPLL_SSC_REF_CLK_CHV
|
7870 DPLL_REF_CLK_ENABLE_VLV
| DPLL_VGA_MODE_DIS
;
7871 if (crtc
->pipe
!= PIPE_A
)
7872 pipe_config
->dpll_hw_state
.dpll
|= DPLL_INTEGRATED_CRI_CLK_VLV
;
7874 /* DPLL not used with DSI, but still need the rest set up */
7875 if (!intel_crtc_has_type(pipe_config
, INTEL_OUTPUT_DSI
))
7876 pipe_config
->dpll_hw_state
.dpll
|= DPLL_VCO_ENABLE
;
7878 pipe_config
->dpll_hw_state
.dpll_md
=
7879 (pipe_config
->pixel_multiplier
- 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT
;
7882 static void vlv_prepare_pll(struct intel_crtc
*crtc
,
7883 const struct intel_crtc_state
*pipe_config
)
7885 struct drm_device
*dev
= crtc
->base
.dev
;
7886 struct drm_i915_private
*dev_priv
= to_i915(dev
);
7887 enum pipe pipe
= crtc
->pipe
;
7889 u32 bestn
, bestm1
, bestm2
, bestp1
, bestp2
;
7890 u32 coreclk
, reg_val
;
7893 I915_WRITE(DPLL(pipe
),
7894 pipe_config
->dpll_hw_state
.dpll
&
7895 ~(DPLL_VCO_ENABLE
| DPLL_EXT_BUFFER_ENABLE_VLV
));
7897 /* No need to actually set up the DPLL with DSI */
7898 if ((pipe_config
->dpll_hw_state
.dpll
& DPLL_VCO_ENABLE
) == 0)
7901 mutex_lock(&dev_priv
->sb_lock
);
7903 bestn
= pipe_config
->dpll
.n
;
7904 bestm1
= pipe_config
->dpll
.m1
;
7905 bestm2
= pipe_config
->dpll
.m2
;
7906 bestp1
= pipe_config
->dpll
.p1
;
7907 bestp2
= pipe_config
->dpll
.p2
;
7909 /* See eDP HDMI DPIO driver vbios notes doc */
7911 /* PLL B needs special handling */
7913 vlv_pllb_recal_opamp(dev_priv
, pipe
);
7915 /* Set up Tx target for periodic Rcomp update */
7916 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW9_BCAST
, 0x0100000f);
7918 /* Disable target IRef on PLL */
7919 reg_val
= vlv_dpio_read(dev_priv
, pipe
, VLV_PLL_DW8(pipe
));
7920 reg_val
&= 0x00ffffff;
7921 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW8(pipe
), reg_val
);
7923 /* Disable fast lock */
7924 vlv_dpio_write(dev_priv
, pipe
, VLV_CMN_DW0
, 0x610);
7926 /* Set idtafcrecal before PLL is enabled */
7927 mdiv
= ((bestm1
<< DPIO_M1DIV_SHIFT
) | (bestm2
& DPIO_M2DIV_MASK
));
7928 mdiv
|= ((bestp1
<< DPIO_P1_SHIFT
) | (bestp2
<< DPIO_P2_SHIFT
));
7929 mdiv
|= ((bestn
<< DPIO_N_SHIFT
));
7930 mdiv
|= (1 << DPIO_K_SHIFT
);
7933 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7934 * but we don't support that).
7935 * Note: don't use the DAC post divider as it seems unstable.
7937 mdiv
|= (DPIO_POST_DIV_HDMIDP
<< DPIO_POST_DIV_SHIFT
);
7938 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW3(pipe
), mdiv
);
7940 mdiv
|= DPIO_ENABLE_CALIBRATION
;
7941 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW3(pipe
), mdiv
);
7943 /* Set HBR and RBR LPF coefficients */
7944 if (pipe_config
->port_clock
== 162000 ||
7945 intel_crtc_has_type(crtc
->config
, INTEL_OUTPUT_ANALOG
) ||
7946 intel_crtc_has_type(crtc
->config
, INTEL_OUTPUT_HDMI
))
7947 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW10(pipe
),
7950 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW10(pipe
),
7953 if (intel_crtc_has_dp_encoder(pipe_config
)) {
7954 /* Use SSC source */
7956 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW5(pipe
),
7959 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW5(pipe
),
7961 } else { /* HDMI or VGA */
7962 /* Use bend source */
7964 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW5(pipe
),
7967 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW5(pipe
),
7971 coreclk
= vlv_dpio_read(dev_priv
, pipe
, VLV_PLL_DW7(pipe
));
7972 coreclk
= (coreclk
& 0x0000ff00) | 0x01c00000;
7973 if (intel_crtc_has_dp_encoder(crtc
->config
))
7974 coreclk
|= 0x01000000;
7975 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW7(pipe
), coreclk
);
7977 vlv_dpio_write(dev_priv
, pipe
, VLV_PLL_DW11(pipe
), 0x87871000);
7978 mutex_unlock(&dev_priv
->sb_lock
);
7981 static void chv_prepare_pll(struct intel_crtc
*crtc
,
7982 const struct intel_crtc_state
*pipe_config
)
7984 struct drm_device
*dev
= crtc
->base
.dev
;
7985 struct drm_i915_private
*dev_priv
= to_i915(dev
);
7986 enum pipe pipe
= crtc
->pipe
;
7987 enum dpio_channel port
= vlv_pipe_to_channel(pipe
);
7988 u32 loopfilter
, tribuf_calcntr
;
7989 u32 bestn
, bestm1
, bestm2
, bestp1
, bestp2
, bestm2_frac
;
7993 /* Enable Refclk and SSC */
7994 I915_WRITE(DPLL(pipe
),
7995 pipe_config
->dpll_hw_state
.dpll
& ~DPLL_VCO_ENABLE
);
7997 /* No need to actually set up the DPLL with DSI */
7998 if ((pipe_config
->dpll_hw_state
.dpll
& DPLL_VCO_ENABLE
) == 0)
8001 bestn
= pipe_config
->dpll
.n
;
8002 bestm2_frac
= pipe_config
->dpll
.m2
& 0x3fffff;
8003 bestm1
= pipe_config
->dpll
.m1
;
8004 bestm2
= pipe_config
->dpll
.m2
>> 22;
8005 bestp1
= pipe_config
->dpll
.p1
;
8006 bestp2
= pipe_config
->dpll
.p2
;
8007 vco
= pipe_config
->dpll
.vco
;
8011 mutex_lock(&dev_priv
->sb_lock
);
8013 /* p1 and p2 divider */
8014 vlv_dpio_write(dev_priv
, pipe
, CHV_CMN_DW13(port
),
8015 5 << DPIO_CHV_S1_DIV_SHIFT
|
8016 bestp1
<< DPIO_CHV_P1_DIV_SHIFT
|
8017 bestp2
<< DPIO_CHV_P2_DIV_SHIFT
|
8018 1 << DPIO_CHV_K_DIV_SHIFT
);
8020 /* Feedback post-divider - m2 */
8021 vlv_dpio_write(dev_priv
, pipe
, CHV_PLL_DW0(port
), bestm2
);
8023 /* Feedback refclk divider - n and m1 */
8024 vlv_dpio_write(dev_priv
, pipe
, CHV_PLL_DW1(port
),
8025 DPIO_CHV_M1_DIV_BY_2
|
8026 1 << DPIO_CHV_N_DIV_SHIFT
);
8028 /* M2 fraction division */
8029 vlv_dpio_write(dev_priv
, pipe
, CHV_PLL_DW2(port
), bestm2_frac
);
8031 /* M2 fraction division enable */
8032 dpio_val
= vlv_dpio_read(dev_priv
, pipe
, CHV_PLL_DW3(port
));
8033 dpio_val
&= ~(DPIO_CHV_FEEDFWD_GAIN_MASK
| DPIO_CHV_FRAC_DIV_EN
);
8034 dpio_val
|= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT
);
8036 dpio_val
|= DPIO_CHV_FRAC_DIV_EN
;
8037 vlv_dpio_write(dev_priv
, pipe
, CHV_PLL_DW3(port
), dpio_val
);
8039 /* Program digital lock detect threshold */
8040 dpio_val
= vlv_dpio_read(dev_priv
, pipe
, CHV_PLL_DW9(port
));
8041 dpio_val
&= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK
|
8042 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE
);
8043 dpio_val
|= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT
);
8045 dpio_val
|= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE
;
8046 vlv_dpio_write(dev_priv
, pipe
, CHV_PLL_DW9(port
), dpio_val
);
8049 if (vco
== 5400000) {
8050 loopfilter
|= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT
);
8051 loopfilter
|= (0x8 << DPIO_CHV_INT_COEFF_SHIFT
);
8052 loopfilter
|= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT
);
8053 tribuf_calcntr
= 0x9;
8054 } else if (vco
<= 6200000) {
8055 loopfilter
|= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT
);
8056 loopfilter
|= (0xB << DPIO_CHV_INT_COEFF_SHIFT
);
8057 loopfilter
|= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT
);
8058 tribuf_calcntr
= 0x9;
8059 } else if (vco
<= 6480000) {
8060 loopfilter
|= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT
);
8061 loopfilter
|= (0x9 << DPIO_CHV_INT_COEFF_SHIFT
);
8062 loopfilter
|= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT
);
8063 tribuf_calcntr
= 0x8;
8065 /* Not supported. Apply the same limits as in the max case */
8066 loopfilter
|= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT
);
8067 loopfilter
|= (0x9 << DPIO_CHV_INT_COEFF_SHIFT
);
8068 loopfilter
|= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT
);
8071 vlv_dpio_write(dev_priv
, pipe
, CHV_PLL_DW6(port
), loopfilter
);
8073 dpio_val
= vlv_dpio_read(dev_priv
, pipe
, CHV_PLL_DW8(port
));
8074 dpio_val
&= ~DPIO_CHV_TDC_TARGET_CNT_MASK
;
8075 dpio_val
|= (tribuf_calcntr
<< DPIO_CHV_TDC_TARGET_CNT_SHIFT
);
8076 vlv_dpio_write(dev_priv
, pipe
, CHV_PLL_DW8(port
), dpio_val
);
8079 vlv_dpio_write(dev_priv
, pipe
, CHV_CMN_DW14(port
),
8080 vlv_dpio_read(dev_priv
, pipe
, CHV_CMN_DW14(port
)) |
8083 mutex_unlock(&dev_priv
->sb_lock
);
8087 * vlv_force_pll_on - forcibly enable just the PLL
8088 * @dev_priv: i915 private structure
8089 * @pipe: pipe PLL to enable
8090 * @dpll: PLL configuration
8092 * Enable the PLL for @pipe using the supplied @dpll config. To be used
8093 * in cases where we need the PLL enabled even when @pipe is not going to
8096 int vlv_force_pll_on(struct drm_i915_private
*dev_priv
, enum pipe pipe
,
8097 const struct dpll
*dpll
)
8099 struct intel_crtc
*crtc
= intel_get_crtc_for_pipe(dev_priv
, pipe
);
8100 struct intel_crtc_state
*pipe_config
;
8102 pipe_config
= kzalloc(sizeof(*pipe_config
), GFP_KERNEL
);
8106 pipe_config
->base
.crtc
= &crtc
->base
;
8107 pipe_config
->pixel_multiplier
= 1;
8108 pipe_config
->dpll
= *dpll
;
8110 if (IS_CHERRYVIEW(dev_priv
)) {
8111 chv_compute_dpll(crtc
, pipe_config
);
8112 chv_prepare_pll(crtc
, pipe_config
);
8113 chv_enable_pll(crtc
, pipe_config
);
8115 vlv_compute_dpll(crtc
, pipe_config
);
8116 vlv_prepare_pll(crtc
, pipe_config
);
8117 vlv_enable_pll(crtc
, pipe_config
);
8126 * vlv_force_pll_off - forcibly disable just the PLL
8127 * @dev_priv: i915 private structure
8128 * @pipe: pipe PLL to disable
8130 * Disable the PLL for @pipe. To be used in cases where we need
8131 * the PLL enabled even when @pipe is not going to be enabled.
8133 void vlv_force_pll_off(struct drm_i915_private
*dev_priv
, enum pipe pipe
)
8135 if (IS_CHERRYVIEW(dev_priv
))
8136 chv_disable_pll(dev_priv
, pipe
);
8138 vlv_disable_pll(dev_priv
, pipe
);
8141 static void i9xx_compute_dpll(struct intel_crtc
*crtc
,
8142 struct intel_crtc_state
*crtc_state
,
8143 struct dpll
*reduced_clock
)
8145 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
8147 struct dpll
*clock
= &crtc_state
->dpll
;
8149 i9xx_update_pll_dividers(crtc
, crtc_state
, reduced_clock
);
8151 dpll
= DPLL_VGA_MODE_DIS
;
8153 if (intel_crtc_has_type(crtc_state
, INTEL_OUTPUT_LVDS
))
8154 dpll
|= DPLLB_MODE_LVDS
;
8156 dpll
|= DPLLB_MODE_DAC_SERIAL
;
8158 if (IS_I945G(dev_priv
) || IS_I945GM(dev_priv
) ||
8159 IS_G33(dev_priv
) || IS_PINEVIEW(dev_priv
)) {
8160 dpll
|= (crtc_state
->pixel_multiplier
- 1)
8161 << SDVO_MULTIPLIER_SHIFT_HIRES
;
8164 if (intel_crtc_has_type(crtc_state
, INTEL_OUTPUT_SDVO
) ||
8165 intel_crtc_has_type(crtc_state
, INTEL_OUTPUT_HDMI
))
8166 dpll
|= DPLL_SDVO_HIGH_SPEED
;
8168 if (intel_crtc_has_dp_encoder(crtc_state
))
8169 dpll
|= DPLL_SDVO_HIGH_SPEED
;
8171 /* compute bitmask from p1 value */
8172 if (IS_PINEVIEW(dev_priv
))
8173 dpll
|= (1 << (clock
->p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW
;
8175 dpll
|= (1 << (clock
->p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
8176 if (IS_G4X(dev_priv
) && reduced_clock
)
8177 dpll
|= (1 << (reduced_clock
->p1
- 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT
;
8179 switch (clock
->p2
) {
8181 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
;
8184 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_7
;
8187 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10
;
8190 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_14
;
8193 if (INTEL_GEN(dev_priv
) >= 4)
8194 dpll
|= (6 << PLL_LOAD_PULSE_PHASE_SHIFT
);
8196 if (crtc_state
->sdvo_tv_clock
)
8197 dpll
|= PLL_REF_INPUT_TVCLKINBC
;
8198 else if (intel_crtc_has_type(crtc_state
, INTEL_OUTPUT_LVDS
) &&
8199 intel_panel_use_ssc(dev_priv
))
8200 dpll
|= PLLB_REF_INPUT_SPREADSPECTRUMIN
;
8202 dpll
|= PLL_REF_INPUT_DREFCLK
;
8204 dpll
|= DPLL_VCO_ENABLE
;
8205 crtc_state
->dpll_hw_state
.dpll
= dpll
;
8207 if (INTEL_GEN(dev_priv
) >= 4) {
8208 u32 dpll_md
= (crtc_state
->pixel_multiplier
- 1)
8209 << DPLL_MD_UDI_MULTIPLIER_SHIFT
;
8210 crtc_state
->dpll_hw_state
.dpll_md
= dpll_md
;
8214 static void i8xx_compute_dpll(struct intel_crtc
*crtc
,
8215 struct intel_crtc_state
*crtc_state
,
8216 struct dpll
*reduced_clock
)
8218 struct drm_device
*dev
= crtc
->base
.dev
;
8219 struct drm_i915_private
*dev_priv
= to_i915(dev
);
8221 struct dpll
*clock
= &crtc_state
->dpll
;
8223 i9xx_update_pll_dividers(crtc
, crtc_state
, reduced_clock
);
8225 dpll
= DPLL_VGA_MODE_DIS
;
8227 if (intel_crtc_has_type(crtc_state
, INTEL_OUTPUT_LVDS
)) {
8228 dpll
|= (1 << (clock
->p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
8231 dpll
|= PLL_P1_DIVIDE_BY_TWO
;
8233 dpll
|= (clock
->p1
- 2) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
8235 dpll
|= PLL_P2_DIVIDE_BY_4
;
8238 if (!IS_I830(dev_priv
) &&
8239 intel_crtc_has_type(crtc_state
, INTEL_OUTPUT_DVO
))
8240 dpll
|= DPLL_DVO_2X_MODE
;
8242 if (intel_crtc_has_type(crtc_state
, INTEL_OUTPUT_LVDS
) &&
8243 intel_panel_use_ssc(dev_priv
))
8244 dpll
|= PLLB_REF_INPUT_SPREADSPECTRUMIN
;
8246 dpll
|= PLL_REF_INPUT_DREFCLK
;
8248 dpll
|= DPLL_VCO_ENABLE
;
8249 crtc_state
->dpll_hw_state
.dpll
= dpll
;
8252 static void intel_set_pipe_timings(struct intel_crtc
*intel_crtc
)
8254 struct drm_i915_private
*dev_priv
= to_i915(intel_crtc
->base
.dev
);
8255 enum pipe pipe
= intel_crtc
->pipe
;
8256 enum transcoder cpu_transcoder
= intel_crtc
->config
->cpu_transcoder
;
8257 const struct drm_display_mode
*adjusted_mode
= &intel_crtc
->config
->base
.adjusted_mode
;
8258 uint32_t crtc_vtotal
, crtc_vblank_end
;
8261 /* We need to be careful not to changed the adjusted mode, for otherwise
8262 * the hw state checker will get angry at the mismatch. */
8263 crtc_vtotal
= adjusted_mode
->crtc_vtotal
;
8264 crtc_vblank_end
= adjusted_mode
->crtc_vblank_end
;
8266 if (adjusted_mode
->flags
& DRM_MODE_FLAG_INTERLACE
) {
8267 /* the chip adds 2 halflines automatically */
8269 crtc_vblank_end
-= 1;
8271 if (intel_crtc_has_type(intel_crtc
->config
, INTEL_OUTPUT_SDVO
))
8272 vsyncshift
= (adjusted_mode
->crtc_htotal
- 1) / 2;
8274 vsyncshift
= adjusted_mode
->crtc_hsync_start
-
8275 adjusted_mode
->crtc_htotal
/ 2;
8277 vsyncshift
+= adjusted_mode
->crtc_htotal
;
8280 if (INTEL_GEN(dev_priv
) > 3)
8281 I915_WRITE(VSYNCSHIFT(cpu_transcoder
), vsyncshift
);
8283 I915_WRITE(HTOTAL(cpu_transcoder
),
8284 (adjusted_mode
->crtc_hdisplay
- 1) |
8285 ((adjusted_mode
->crtc_htotal
- 1) << 16));
8286 I915_WRITE(HBLANK(cpu_transcoder
),
8287 (adjusted_mode
->crtc_hblank_start
- 1) |
8288 ((adjusted_mode
->crtc_hblank_end
- 1) << 16));
8289 I915_WRITE(HSYNC(cpu_transcoder
),
8290 (adjusted_mode
->crtc_hsync_start
- 1) |
8291 ((adjusted_mode
->crtc_hsync_end
- 1) << 16));
8293 I915_WRITE(VTOTAL(cpu_transcoder
),
8294 (adjusted_mode
->crtc_vdisplay
- 1) |
8295 ((crtc_vtotal
- 1) << 16));
8296 I915_WRITE(VBLANK(cpu_transcoder
),
8297 (adjusted_mode
->crtc_vblank_start
- 1) |
8298 ((crtc_vblank_end
- 1) << 16));
8299 I915_WRITE(VSYNC(cpu_transcoder
),
8300 (adjusted_mode
->crtc_vsync_start
- 1) |
8301 ((adjusted_mode
->crtc_vsync_end
- 1) << 16));
8303 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8304 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8305 * documented on the DDI_FUNC_CTL register description, EDP Input Select
8307 if (IS_HASWELL(dev_priv
) && cpu_transcoder
== TRANSCODER_EDP
&&
8308 (pipe
== PIPE_B
|| pipe
== PIPE_C
))
8309 I915_WRITE(VTOTAL(pipe
), I915_READ(VTOTAL(cpu_transcoder
)));
8313 static void intel_set_pipe_src_size(struct intel_crtc
*intel_crtc
)
8315 struct drm_device
*dev
= intel_crtc
->base
.dev
;
8316 struct drm_i915_private
*dev_priv
= to_i915(dev
);
8317 enum pipe pipe
= intel_crtc
->pipe
;
8319 /* pipesrc controls the size that is scaled from, which should
8320 * always be the user's requested size.
8322 I915_WRITE(PIPESRC(pipe
),
8323 ((intel_crtc
->config
->pipe_src_w
- 1) << 16) |
8324 (intel_crtc
->config
->pipe_src_h
- 1));
8327 static void intel_get_pipe_timings(struct intel_crtc
*crtc
,
8328 struct intel_crtc_state
*pipe_config
)
8330 struct drm_device
*dev
= crtc
->base
.dev
;
8331 struct drm_i915_private
*dev_priv
= to_i915(dev
);
8332 enum transcoder cpu_transcoder
= pipe_config
->cpu_transcoder
;
8335 tmp
= I915_READ(HTOTAL(cpu_transcoder
));
8336 pipe_config
->base
.adjusted_mode
.crtc_hdisplay
= (tmp
& 0xffff) + 1;
8337 pipe_config
->base
.adjusted_mode
.crtc_htotal
= ((tmp
>> 16) & 0xffff) + 1;
8338 tmp
= I915_READ(HBLANK(cpu_transcoder
));
8339 pipe_config
->base
.adjusted_mode
.crtc_hblank_start
= (tmp
& 0xffff) + 1;
8340 pipe_config
->base
.adjusted_mode
.crtc_hblank_end
= ((tmp
>> 16) & 0xffff) + 1;
8341 tmp
= I915_READ(HSYNC(cpu_transcoder
));
8342 pipe_config
->base
.adjusted_mode
.crtc_hsync_start
= (tmp
& 0xffff) + 1;
8343 pipe_config
->base
.adjusted_mode
.crtc_hsync_end
= ((tmp
>> 16) & 0xffff) + 1;
8345 tmp
= I915_READ(VTOTAL(cpu_transcoder
));
8346 pipe_config
->base
.adjusted_mode
.crtc_vdisplay
= (tmp
& 0xffff) + 1;
8347 pipe_config
->base
.adjusted_mode
.crtc_vtotal
= ((tmp
>> 16) & 0xffff) + 1;
8348 tmp
= I915_READ(VBLANK(cpu_transcoder
));
8349 pipe_config
->base
.adjusted_mode
.crtc_vblank_start
= (tmp
& 0xffff) + 1;
8350 pipe_config
->base
.adjusted_mode
.crtc_vblank_end
= ((tmp
>> 16) & 0xffff) + 1;
8351 tmp
= I915_READ(VSYNC(cpu_transcoder
));
8352 pipe_config
->base
.adjusted_mode
.crtc_vsync_start
= (tmp
& 0xffff) + 1;
8353 pipe_config
->base
.adjusted_mode
.crtc_vsync_end
= ((tmp
>> 16) & 0xffff) + 1;
8355 if (I915_READ(PIPECONF(cpu_transcoder
)) & PIPECONF_INTERLACE_MASK
) {
8356 pipe_config
->base
.adjusted_mode
.flags
|= DRM_MODE_FLAG_INTERLACE
;
8357 pipe_config
->base
.adjusted_mode
.crtc_vtotal
+= 1;
8358 pipe_config
->base
.adjusted_mode
.crtc_vblank_end
+= 1;
8362 static void intel_get_pipe_src_size(struct intel_crtc
*crtc
,
8363 struct intel_crtc_state
*pipe_config
)
8365 struct drm_device
*dev
= crtc
->base
.dev
;
8366 struct drm_i915_private
*dev_priv
= to_i915(dev
);
8369 tmp
= I915_READ(PIPESRC(crtc
->pipe
));
8370 pipe_config
->pipe_src_h
= (tmp
& 0xffff) + 1;
8371 pipe_config
->pipe_src_w
= ((tmp
>> 16) & 0xffff) + 1;
8373 pipe_config
->base
.mode
.vdisplay
= pipe_config
->pipe_src_h
;
8374 pipe_config
->base
.mode
.hdisplay
= pipe_config
->pipe_src_w
;
8377 void intel_mode_from_pipe_config(struct drm_display_mode
*mode
,
8378 struct intel_crtc_state
*pipe_config
)
8380 mode
->hdisplay
= pipe_config
->base
.adjusted_mode
.crtc_hdisplay
;
8381 mode
->htotal
= pipe_config
->base
.adjusted_mode
.crtc_htotal
;
8382 mode
->hsync_start
= pipe_config
->base
.adjusted_mode
.crtc_hsync_start
;
8383 mode
->hsync_end
= pipe_config
->base
.adjusted_mode
.crtc_hsync_end
;
8385 mode
->vdisplay
= pipe_config
->base
.adjusted_mode
.crtc_vdisplay
;
8386 mode
->vtotal
= pipe_config
->base
.adjusted_mode
.crtc_vtotal
;
8387 mode
->vsync_start
= pipe_config
->base
.adjusted_mode
.crtc_vsync_start
;
8388 mode
->vsync_end
= pipe_config
->base
.adjusted_mode
.crtc_vsync_end
;
8390 mode
->flags
= pipe_config
->base
.adjusted_mode
.flags
;
8391 mode
->type
= DRM_MODE_TYPE_DRIVER
;
8393 mode
->clock
= pipe_config
->base
.adjusted_mode
.crtc_clock
;
8395 mode
->hsync
= drm_mode_hsync(mode
);
8396 mode
->vrefresh
= drm_mode_vrefresh(mode
);
8397 drm_mode_set_name(mode
);
8400 static void i9xx_set_pipeconf(struct intel_crtc
*intel_crtc
)
8402 struct drm_i915_private
*dev_priv
= to_i915(intel_crtc
->base
.dev
);
8407 if ((intel_crtc
->pipe
== PIPE_A
&& dev_priv
->quirks
& QUIRK_PIPEA_FORCE
) ||
8408 (intel_crtc
->pipe
== PIPE_B
&& dev_priv
->quirks
& QUIRK_PIPEB_FORCE
))
8409 pipeconf
|= I915_READ(PIPECONF(intel_crtc
->pipe
)) & PIPECONF_ENABLE
;
8411 if (intel_crtc
->config
->double_wide
)
8412 pipeconf
|= PIPECONF_DOUBLE_WIDE
;
8414 /* only g4x and later have fancy bpc/dither controls */
8415 if (IS_G4X(dev_priv
) || IS_VALLEYVIEW(dev_priv
) ||
8416 IS_CHERRYVIEW(dev_priv
)) {
8417 /* Bspec claims that we can't use dithering for 30bpp pipes. */
8418 if (intel_crtc
->config
->dither
&& intel_crtc
->config
->pipe_bpp
!= 30)
8419 pipeconf
|= PIPECONF_DITHER_EN
|
8420 PIPECONF_DITHER_TYPE_SP
;
8422 switch (intel_crtc
->config
->pipe_bpp
) {
8424 pipeconf
|= PIPECONF_6BPC
;
8427 pipeconf
|= PIPECONF_8BPC
;
8430 pipeconf
|= PIPECONF_10BPC
;
8433 /* Case prevented by intel_choose_pipe_bpp_dither. */
8438 if (HAS_PIPE_CXSR(dev_priv
)) {
8439 if (intel_crtc
->lowfreq_avail
) {
8440 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
8441 pipeconf
|= PIPECONF_CXSR_DOWNCLOCK
;
8443 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
8447 if (intel_crtc
->config
->base
.adjusted_mode
.flags
& DRM_MODE_FLAG_INTERLACE
) {
8448 if (INTEL_GEN(dev_priv
) < 4 ||
8449 intel_crtc_has_type(intel_crtc
->config
, INTEL_OUTPUT_SDVO
))
8450 pipeconf
|= PIPECONF_INTERLACE_W_FIELD_INDICATION
;
8452 pipeconf
|= PIPECONF_INTERLACE_W_SYNC_SHIFT
;
8454 pipeconf
|= PIPECONF_PROGRESSIVE
;
8456 if ((IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
)) &&
8457 intel_crtc
->config
->limited_color_range
)
8458 pipeconf
|= PIPECONF_COLOR_RANGE_SELECT
;
8460 I915_WRITE(PIPECONF(intel_crtc
->pipe
), pipeconf
);
8461 POSTING_READ(PIPECONF(intel_crtc
->pipe
));
8464 static int i8xx_crtc_compute_clock(struct intel_crtc
*crtc
,
8465 struct intel_crtc_state
*crtc_state
)
8467 struct drm_device
*dev
= crtc
->base
.dev
;
8468 struct drm_i915_private
*dev_priv
= to_i915(dev
);
8469 const struct intel_limit
*limit
;
8472 memset(&crtc_state
->dpll_hw_state
, 0,
8473 sizeof(crtc_state
->dpll_hw_state
));
8475 if (intel_crtc_has_type(crtc_state
, INTEL_OUTPUT_LVDS
)) {
8476 if (intel_panel_use_ssc(dev_priv
)) {
8477 refclk
= dev_priv
->vbt
.lvds_ssc_freq
;
8478 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk
);
8481 limit
= &intel_limits_i8xx_lvds
;
8482 } else if (intel_crtc_has_type(crtc_state
, INTEL_OUTPUT_DVO
)) {
8483 limit
= &intel_limits_i8xx_dvo
;
8485 limit
= &intel_limits_i8xx_dac
;
8488 if (!crtc_state
->clock_set
&&
8489 !i9xx_find_best_dpll(limit
, crtc_state
, crtc_state
->port_clock
,
8490 refclk
, NULL
, &crtc_state
->dpll
)) {
8491 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8495 i8xx_compute_dpll(crtc
, crtc_state
, NULL
);
8500 static int g4x_crtc_compute_clock(struct intel_crtc
*crtc
,
8501 struct intel_crtc_state
*crtc_state
)
8503 struct drm_device
*dev
= crtc
->base
.dev
;
8504 struct drm_i915_private
*dev_priv
= to_i915(dev
);
8505 const struct intel_limit
*limit
;
8508 memset(&crtc_state
->dpll_hw_state
, 0,
8509 sizeof(crtc_state
->dpll_hw_state
));
8511 if (intel_crtc_has_type(crtc_state
, INTEL_OUTPUT_LVDS
)) {
8512 if (intel_panel_use_ssc(dev_priv
)) {
8513 refclk
= dev_priv
->vbt
.lvds_ssc_freq
;
8514 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk
);
8517 if (intel_is_dual_link_lvds(dev
))
8518 limit
= &intel_limits_g4x_dual_channel_lvds
;
8520 limit
= &intel_limits_g4x_single_channel_lvds
;
8521 } else if (intel_crtc_has_type(crtc_state
, INTEL_OUTPUT_HDMI
) ||
8522 intel_crtc_has_type(crtc_state
, INTEL_OUTPUT_ANALOG
)) {
8523 limit
= &intel_limits_g4x_hdmi
;
8524 } else if (intel_crtc_has_type(crtc_state
, INTEL_OUTPUT_SDVO
)) {
8525 limit
= &intel_limits_g4x_sdvo
;
8527 /* The option is for other outputs */
8528 limit
= &intel_limits_i9xx_sdvo
;
8531 if (!crtc_state
->clock_set
&&
8532 !g4x_find_best_dpll(limit
, crtc_state
, crtc_state
->port_clock
,
8533 refclk
, NULL
, &crtc_state
->dpll
)) {
8534 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8538 i9xx_compute_dpll(crtc
, crtc_state
, NULL
);
8543 static int pnv_crtc_compute_clock(struct intel_crtc
*crtc
,
8544 struct intel_crtc_state
*crtc_state
)
8546 struct drm_device
*dev
= crtc
->base
.dev
;
8547 struct drm_i915_private
*dev_priv
= to_i915(dev
);
8548 const struct intel_limit
*limit
;
8551 memset(&crtc_state
->dpll_hw_state
, 0,
8552 sizeof(crtc_state
->dpll_hw_state
));
8554 if (intel_crtc_has_type(crtc_state
, INTEL_OUTPUT_LVDS
)) {
8555 if (intel_panel_use_ssc(dev_priv
)) {
8556 refclk
= dev_priv
->vbt
.lvds_ssc_freq
;
8557 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk
);
8560 limit
= &intel_limits_pineview_lvds
;
8562 limit
= &intel_limits_pineview_sdvo
;
8565 if (!crtc_state
->clock_set
&&
8566 !pnv_find_best_dpll(limit
, crtc_state
, crtc_state
->port_clock
,
8567 refclk
, NULL
, &crtc_state
->dpll
)) {
8568 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8572 i9xx_compute_dpll(crtc
, crtc_state
, NULL
);
8577 static int i9xx_crtc_compute_clock(struct intel_crtc
*crtc
,
8578 struct intel_crtc_state
*crtc_state
)
8580 struct drm_device
*dev
= crtc
->base
.dev
;
8581 struct drm_i915_private
*dev_priv
= to_i915(dev
);
8582 const struct intel_limit
*limit
;
8585 memset(&crtc_state
->dpll_hw_state
, 0,
8586 sizeof(crtc_state
->dpll_hw_state
));
8588 if (intel_crtc_has_type(crtc_state
, INTEL_OUTPUT_LVDS
)) {
8589 if (intel_panel_use_ssc(dev_priv
)) {
8590 refclk
= dev_priv
->vbt
.lvds_ssc_freq
;
8591 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk
);
8594 limit
= &intel_limits_i9xx_lvds
;
8596 limit
= &intel_limits_i9xx_sdvo
;
8599 if (!crtc_state
->clock_set
&&
8600 !i9xx_find_best_dpll(limit
, crtc_state
, crtc_state
->port_clock
,
8601 refclk
, NULL
, &crtc_state
->dpll
)) {
8602 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8606 i9xx_compute_dpll(crtc
, crtc_state
, NULL
);
8611 static int chv_crtc_compute_clock(struct intel_crtc
*crtc
,
8612 struct intel_crtc_state
*crtc_state
)
8614 int refclk
= 100000;
8615 const struct intel_limit
*limit
= &intel_limits_chv
;
8617 memset(&crtc_state
->dpll_hw_state
, 0,
8618 sizeof(crtc_state
->dpll_hw_state
));
8620 if (!crtc_state
->clock_set
&&
8621 !chv_find_best_dpll(limit
, crtc_state
, crtc_state
->port_clock
,
8622 refclk
, NULL
, &crtc_state
->dpll
)) {
8623 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8627 chv_compute_dpll(crtc
, crtc_state
);
8632 static int vlv_crtc_compute_clock(struct intel_crtc
*crtc
,
8633 struct intel_crtc_state
*crtc_state
)
8635 int refclk
= 100000;
8636 const struct intel_limit
*limit
= &intel_limits_vlv
;
8638 memset(&crtc_state
->dpll_hw_state
, 0,
8639 sizeof(crtc_state
->dpll_hw_state
));
8641 if (!crtc_state
->clock_set
&&
8642 !vlv_find_best_dpll(limit
, crtc_state
, crtc_state
->port_clock
,
8643 refclk
, NULL
, &crtc_state
->dpll
)) {
8644 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8648 vlv_compute_dpll(crtc
, crtc_state
);
8653 static void i9xx_get_pfit_config(struct intel_crtc
*crtc
,
8654 struct intel_crtc_state
*pipe_config
)
8656 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
8659 if (INTEL_GEN(dev_priv
) <= 3 &&
8660 (IS_I830(dev_priv
) || !IS_MOBILE(dev_priv
)))
8663 tmp
= I915_READ(PFIT_CONTROL
);
8664 if (!(tmp
& PFIT_ENABLE
))
8667 /* Check whether the pfit is attached to our pipe. */
8668 if (INTEL_GEN(dev_priv
) < 4) {
8669 if (crtc
->pipe
!= PIPE_B
)
8672 if ((tmp
& PFIT_PIPE_MASK
) != (crtc
->pipe
<< PFIT_PIPE_SHIFT
))
8676 pipe_config
->gmch_pfit
.control
= tmp
;
8677 pipe_config
->gmch_pfit
.pgm_ratios
= I915_READ(PFIT_PGM_RATIOS
);
8680 static void vlv_crtc_clock_get(struct intel_crtc
*crtc
,
8681 struct intel_crtc_state
*pipe_config
)
8683 struct drm_device
*dev
= crtc
->base
.dev
;
8684 struct drm_i915_private
*dev_priv
= to_i915(dev
);
8685 int pipe
= pipe_config
->cpu_transcoder
;
8688 int refclk
= 100000;
8690 /* In case of DSI, DPLL will not be used */
8691 if ((pipe_config
->dpll_hw_state
.dpll
& DPLL_VCO_ENABLE
) == 0)
8694 mutex_lock(&dev_priv
->sb_lock
);
8695 mdiv
= vlv_dpio_read(dev_priv
, pipe
, VLV_PLL_DW3(pipe
));
8696 mutex_unlock(&dev_priv
->sb_lock
);
8698 clock
.m1
= (mdiv
>> DPIO_M1DIV_SHIFT
) & 7;
8699 clock
.m2
= mdiv
& DPIO_M2DIV_MASK
;
8700 clock
.n
= (mdiv
>> DPIO_N_SHIFT
) & 0xf;
8701 clock
.p1
= (mdiv
>> DPIO_P1_SHIFT
) & 7;
8702 clock
.p2
= (mdiv
>> DPIO_P2_SHIFT
) & 0x1f;
8704 pipe_config
->port_clock
= vlv_calc_dpll_params(refclk
, &clock
);
8708 i9xx_get_initial_plane_config(struct intel_crtc
*crtc
,
8709 struct intel_initial_plane_config
*plane_config
)
8711 struct drm_device
*dev
= crtc
->base
.dev
;
8712 struct drm_i915_private
*dev_priv
= to_i915(dev
);
8713 u32 val
, base
, offset
;
8714 int pipe
= crtc
->pipe
, plane
= crtc
->plane
;
8715 int fourcc
, pixel_format
;
8716 unsigned int aligned_height
;
8717 struct drm_framebuffer
*fb
;
8718 struct intel_framebuffer
*intel_fb
;
8720 val
= I915_READ(DSPCNTR(plane
));
8721 if (!(val
& DISPLAY_PLANE_ENABLE
))
8724 intel_fb
= kzalloc(sizeof(*intel_fb
), GFP_KERNEL
);
8726 DRM_DEBUG_KMS("failed to alloc fb\n");
8730 fb
= &intel_fb
->base
;
8734 if (INTEL_GEN(dev_priv
) >= 4) {
8735 if (val
& DISPPLANE_TILED
) {
8736 plane_config
->tiling
= I915_TILING_X
;
8737 fb
->modifier
= I915_FORMAT_MOD_X_TILED
;
8741 pixel_format
= val
& DISPPLANE_PIXFORMAT_MASK
;
8742 fourcc
= i9xx_format_to_fourcc(pixel_format
);
8743 fb
->format
= drm_format_info(fourcc
);
8745 if (INTEL_GEN(dev_priv
) >= 4) {
8746 if (plane_config
->tiling
)
8747 offset
= I915_READ(DSPTILEOFF(plane
));
8749 offset
= I915_READ(DSPLINOFF(plane
));
8750 base
= I915_READ(DSPSURF(plane
)) & 0xfffff000;
8752 base
= I915_READ(DSPADDR(plane
));
8754 plane_config
->base
= base
;
8756 val
= I915_READ(PIPESRC(pipe
));
8757 fb
->width
= ((val
>> 16) & 0xfff) + 1;
8758 fb
->height
= ((val
>> 0) & 0xfff) + 1;
8760 val
= I915_READ(DSPSTRIDE(pipe
));
8761 fb
->pitches
[0] = val
& 0xffffffc0;
8763 aligned_height
= intel_fb_align_height(dev
, fb
->height
,
8767 plane_config
->size
= fb
->pitches
[0] * aligned_height
;
8769 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8770 pipe_name(pipe
), plane
, fb
->width
, fb
->height
,
8771 fb
->format
->cpp
[0] * 8, base
, fb
->pitches
[0],
8772 plane_config
->size
);
8774 plane_config
->fb
= intel_fb
;
8777 static void chv_crtc_clock_get(struct intel_crtc
*crtc
,
8778 struct intel_crtc_state
*pipe_config
)
8780 struct drm_device
*dev
= crtc
->base
.dev
;
8781 struct drm_i915_private
*dev_priv
= to_i915(dev
);
8782 int pipe
= pipe_config
->cpu_transcoder
;
8783 enum dpio_channel port
= vlv_pipe_to_channel(pipe
);
8785 u32 cmn_dw13
, pll_dw0
, pll_dw1
, pll_dw2
, pll_dw3
;
8786 int refclk
= 100000;
8788 /* In case of DSI, DPLL will not be used */
8789 if ((pipe_config
->dpll_hw_state
.dpll
& DPLL_VCO_ENABLE
) == 0)
8792 mutex_lock(&dev_priv
->sb_lock
);
8793 cmn_dw13
= vlv_dpio_read(dev_priv
, pipe
, CHV_CMN_DW13(port
));
8794 pll_dw0
= vlv_dpio_read(dev_priv
, pipe
, CHV_PLL_DW0(port
));
8795 pll_dw1
= vlv_dpio_read(dev_priv
, pipe
, CHV_PLL_DW1(port
));
8796 pll_dw2
= vlv_dpio_read(dev_priv
, pipe
, CHV_PLL_DW2(port
));
8797 pll_dw3
= vlv_dpio_read(dev_priv
, pipe
, CHV_PLL_DW3(port
));
8798 mutex_unlock(&dev_priv
->sb_lock
);
8800 clock
.m1
= (pll_dw1
& 0x7) == DPIO_CHV_M1_DIV_BY_2
? 2 : 0;
8801 clock
.m2
= (pll_dw0
& 0xff) << 22;
8802 if (pll_dw3
& DPIO_CHV_FRAC_DIV_EN
)
8803 clock
.m2
|= pll_dw2
& 0x3fffff;
8804 clock
.n
= (pll_dw1
>> DPIO_CHV_N_DIV_SHIFT
) & 0xf;
8805 clock
.p1
= (cmn_dw13
>> DPIO_CHV_P1_DIV_SHIFT
) & 0x7;
8806 clock
.p2
= (cmn_dw13
>> DPIO_CHV_P2_DIV_SHIFT
) & 0x1f;
8808 pipe_config
->port_clock
= chv_calc_dpll_params(refclk
, &clock
);
8811 static bool i9xx_get_pipe_config(struct intel_crtc
*crtc
,
8812 struct intel_crtc_state
*pipe_config
)
8814 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
8815 enum intel_display_power_domain power_domain
;
8819 power_domain
= POWER_DOMAIN_PIPE(crtc
->pipe
);
8820 if (!intel_display_power_get_if_enabled(dev_priv
, power_domain
))
8823 pipe_config
->cpu_transcoder
= (enum transcoder
) crtc
->pipe
;
8824 pipe_config
->shared_dpll
= NULL
;
8828 tmp
= I915_READ(PIPECONF(crtc
->pipe
));
8829 if (!(tmp
& PIPECONF_ENABLE
))
8832 if (IS_G4X(dev_priv
) || IS_VALLEYVIEW(dev_priv
) ||
8833 IS_CHERRYVIEW(dev_priv
)) {
8834 switch (tmp
& PIPECONF_BPC_MASK
) {
8836 pipe_config
->pipe_bpp
= 18;
8839 pipe_config
->pipe_bpp
= 24;
8841 case PIPECONF_10BPC
:
8842 pipe_config
->pipe_bpp
= 30;
8849 if ((IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
)) &&
8850 (tmp
& PIPECONF_COLOR_RANGE_SELECT
))
8851 pipe_config
->limited_color_range
= true;
8853 if (INTEL_GEN(dev_priv
) < 4)
8854 pipe_config
->double_wide
= tmp
& PIPECONF_DOUBLE_WIDE
;
8856 intel_get_pipe_timings(crtc
, pipe_config
);
8857 intel_get_pipe_src_size(crtc
, pipe_config
);
8859 i9xx_get_pfit_config(crtc
, pipe_config
);
8861 if (INTEL_GEN(dev_priv
) >= 4) {
8862 /* No way to read it out on pipes B and C */
8863 if (IS_CHERRYVIEW(dev_priv
) && crtc
->pipe
!= PIPE_A
)
8864 tmp
= dev_priv
->chv_dpll_md
[crtc
->pipe
];
8866 tmp
= I915_READ(DPLL_MD(crtc
->pipe
));
8867 pipe_config
->pixel_multiplier
=
8868 ((tmp
& DPLL_MD_UDI_MULTIPLIER_MASK
)
8869 >> DPLL_MD_UDI_MULTIPLIER_SHIFT
) + 1;
8870 pipe_config
->dpll_hw_state
.dpll_md
= tmp
;
8871 } else if (IS_I945G(dev_priv
) || IS_I945GM(dev_priv
) ||
8872 IS_G33(dev_priv
) || IS_PINEVIEW(dev_priv
)) {
8873 tmp
= I915_READ(DPLL(crtc
->pipe
));
8874 pipe_config
->pixel_multiplier
=
8875 ((tmp
& SDVO_MULTIPLIER_MASK
)
8876 >> SDVO_MULTIPLIER_SHIFT_HIRES
) + 1;
8878 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8879 * port and will be fixed up in the encoder->get_config
8881 pipe_config
->pixel_multiplier
= 1;
8883 pipe_config
->dpll_hw_state
.dpll
= I915_READ(DPLL(crtc
->pipe
));
8884 if (!IS_VALLEYVIEW(dev_priv
) && !IS_CHERRYVIEW(dev_priv
)) {
8886 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8887 * on 830. Filter it out here so that we don't
8888 * report errors due to that.
8890 if (IS_I830(dev_priv
))
8891 pipe_config
->dpll_hw_state
.dpll
&= ~DPLL_DVO_2X_MODE
;
8893 pipe_config
->dpll_hw_state
.fp0
= I915_READ(FP0(crtc
->pipe
));
8894 pipe_config
->dpll_hw_state
.fp1
= I915_READ(FP1(crtc
->pipe
));
8896 /* Mask out read-only status bits. */
8897 pipe_config
->dpll_hw_state
.dpll
&= ~(DPLL_LOCK_VLV
|
8898 DPLL_PORTC_READY_MASK
|
8899 DPLL_PORTB_READY_MASK
);
8902 if (IS_CHERRYVIEW(dev_priv
))
8903 chv_crtc_clock_get(crtc
, pipe_config
);
8904 else if (IS_VALLEYVIEW(dev_priv
))
8905 vlv_crtc_clock_get(crtc
, pipe_config
);
8907 i9xx_crtc_clock_get(crtc
, pipe_config
);
8910 * Normally the dotclock is filled in by the encoder .get_config()
8911 * but in case the pipe is enabled w/o any ports we need a sane
8914 pipe_config
->base
.adjusted_mode
.crtc_clock
=
8915 pipe_config
->port_clock
/ pipe_config
->pixel_multiplier
;
8920 intel_display_power_put(dev_priv
, power_domain
);
8925 static void ironlake_init_pch_refclk(struct drm_i915_private
*dev_priv
)
8927 struct intel_encoder
*encoder
;
8930 bool has_lvds
= false;
8931 bool has_cpu_edp
= false;
8932 bool has_panel
= false;
8933 bool has_ck505
= false;
8934 bool can_ssc
= false;
8935 bool using_ssc_source
= false;
8937 /* We need to take the global config into account */
8938 for_each_intel_encoder(&dev_priv
->drm
, encoder
) {
8939 switch (encoder
->type
) {
8940 case INTEL_OUTPUT_LVDS
:
8944 case INTEL_OUTPUT_EDP
:
8946 if (enc_to_dig_port(&encoder
->base
)->port
== PORT_A
)
8954 if (HAS_PCH_IBX(dev_priv
)) {
8955 has_ck505
= dev_priv
->vbt
.display_clock_mode
;
8956 can_ssc
= has_ck505
;
8962 /* Check if any DPLLs are using the SSC source */
8963 for (i
= 0; i
< dev_priv
->num_shared_dpll
; i
++) {
8964 u32 temp
= I915_READ(PCH_DPLL(i
));
8966 if (!(temp
& DPLL_VCO_ENABLE
))
8969 if ((temp
& PLL_REF_INPUT_MASK
) ==
8970 PLLB_REF_INPUT_SPREADSPECTRUMIN
) {
8971 using_ssc_source
= true;
8976 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8977 has_panel
, has_lvds
, has_ck505
, using_ssc_source
);
8979 /* Ironlake: try to setup display ref clock before DPLL
8980 * enabling. This is only under driver's control after
8981 * PCH B stepping, previous chipset stepping should be
8982 * ignoring this setting.
8984 val
= I915_READ(PCH_DREF_CONTROL
);
8986 /* As we must carefully and slowly disable/enable each source in turn,
8987 * compute the final state we want first and check if we need to
8988 * make any changes at all.
8991 final
&= ~DREF_NONSPREAD_SOURCE_MASK
;
8993 final
|= DREF_NONSPREAD_CK505_ENABLE
;
8995 final
|= DREF_NONSPREAD_SOURCE_ENABLE
;
8997 final
&= ~DREF_SSC_SOURCE_MASK
;
8998 final
&= ~DREF_CPU_SOURCE_OUTPUT_MASK
;
8999 final
&= ~DREF_SSC1_ENABLE
;
9002 final
|= DREF_SSC_SOURCE_ENABLE
;
9004 if (intel_panel_use_ssc(dev_priv
) && can_ssc
)
9005 final
|= DREF_SSC1_ENABLE
;
9008 if (intel_panel_use_ssc(dev_priv
) && can_ssc
)
9009 final
|= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD
;
9011 final
|= DREF_CPU_SOURCE_OUTPUT_NONSPREAD
;
9013 final
|= DREF_CPU_SOURCE_OUTPUT_DISABLE
;
9014 } else if (using_ssc_source
) {
9015 final
|= DREF_SSC_SOURCE_ENABLE
;
9016 final
|= DREF_SSC1_ENABLE
;
9022 /* Always enable nonspread source */
9023 val
&= ~DREF_NONSPREAD_SOURCE_MASK
;
9026 val
|= DREF_NONSPREAD_CK505_ENABLE
;
9028 val
|= DREF_NONSPREAD_SOURCE_ENABLE
;
9031 val
&= ~DREF_SSC_SOURCE_MASK
;
9032 val
|= DREF_SSC_SOURCE_ENABLE
;
9034 /* SSC must be turned on before enabling the CPU output */
9035 if (intel_panel_use_ssc(dev_priv
) && can_ssc
) {
9036 DRM_DEBUG_KMS("Using SSC on panel\n");
9037 val
|= DREF_SSC1_ENABLE
;
9039 val
&= ~DREF_SSC1_ENABLE
;
9041 /* Get SSC going before enabling the outputs */
9042 I915_WRITE(PCH_DREF_CONTROL
, val
);
9043 POSTING_READ(PCH_DREF_CONTROL
);
9046 val
&= ~DREF_CPU_SOURCE_OUTPUT_MASK
;
9048 /* Enable CPU source on CPU attached eDP */
9050 if (intel_panel_use_ssc(dev_priv
) && can_ssc
) {
9051 DRM_DEBUG_KMS("Using SSC on eDP\n");
9052 val
|= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD
;
9054 val
|= DREF_CPU_SOURCE_OUTPUT_NONSPREAD
;
9056 val
|= DREF_CPU_SOURCE_OUTPUT_DISABLE
;
9058 I915_WRITE(PCH_DREF_CONTROL
, val
);
9059 POSTING_READ(PCH_DREF_CONTROL
);
9062 DRM_DEBUG_KMS("Disabling CPU source output\n");
9064 val
&= ~DREF_CPU_SOURCE_OUTPUT_MASK
;
9066 /* Turn off CPU output */
9067 val
|= DREF_CPU_SOURCE_OUTPUT_DISABLE
;
9069 I915_WRITE(PCH_DREF_CONTROL
, val
);
9070 POSTING_READ(PCH_DREF_CONTROL
);
9073 if (!using_ssc_source
) {
9074 DRM_DEBUG_KMS("Disabling SSC source\n");
9076 /* Turn off the SSC source */
9077 val
&= ~DREF_SSC_SOURCE_MASK
;
9078 val
|= DREF_SSC_SOURCE_DISABLE
;
9081 val
&= ~DREF_SSC1_ENABLE
;
9083 I915_WRITE(PCH_DREF_CONTROL
, val
);
9084 POSTING_READ(PCH_DREF_CONTROL
);
9089 BUG_ON(val
!= final
);
9092 static void lpt_reset_fdi_mphy(struct drm_i915_private
*dev_priv
)
9096 tmp
= I915_READ(SOUTH_CHICKEN2
);
9097 tmp
|= FDI_MPHY_IOSFSB_RESET_CTL
;
9098 I915_WRITE(SOUTH_CHICKEN2
, tmp
);
9100 if (wait_for_us(I915_READ(SOUTH_CHICKEN2
) &
9101 FDI_MPHY_IOSFSB_RESET_STATUS
, 100))
9102 DRM_ERROR("FDI mPHY reset assert timeout\n");
9104 tmp
= I915_READ(SOUTH_CHICKEN2
);
9105 tmp
&= ~FDI_MPHY_IOSFSB_RESET_CTL
;
9106 I915_WRITE(SOUTH_CHICKEN2
, tmp
);
9108 if (wait_for_us((I915_READ(SOUTH_CHICKEN2
) &
9109 FDI_MPHY_IOSFSB_RESET_STATUS
) == 0, 100))
9110 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
9113 /* WaMPhyProgramming:hsw */
9114 static void lpt_program_fdi_mphy(struct drm_i915_private
*dev_priv
)
9118 tmp
= intel_sbi_read(dev_priv
, 0x8008, SBI_MPHY
);
9119 tmp
&= ~(0xFF << 24);
9120 tmp
|= (0x12 << 24);
9121 intel_sbi_write(dev_priv
, 0x8008, tmp
, SBI_MPHY
);
9123 tmp
= intel_sbi_read(dev_priv
, 0x2008, SBI_MPHY
);
9125 intel_sbi_write(dev_priv
, 0x2008, tmp
, SBI_MPHY
);
9127 tmp
= intel_sbi_read(dev_priv
, 0x2108, SBI_MPHY
);
9129 intel_sbi_write(dev_priv
, 0x2108, tmp
, SBI_MPHY
);
9131 tmp
= intel_sbi_read(dev_priv
, 0x206C, SBI_MPHY
);
9132 tmp
|= (1 << 24) | (1 << 21) | (1 << 18);
9133 intel_sbi_write(dev_priv
, 0x206C, tmp
, SBI_MPHY
);
9135 tmp
= intel_sbi_read(dev_priv
, 0x216C, SBI_MPHY
);
9136 tmp
|= (1 << 24) | (1 << 21) | (1 << 18);
9137 intel_sbi_write(dev_priv
, 0x216C, tmp
, SBI_MPHY
);
9139 tmp
= intel_sbi_read(dev_priv
, 0x2080, SBI_MPHY
);
9142 intel_sbi_write(dev_priv
, 0x2080, tmp
, SBI_MPHY
);
9144 tmp
= intel_sbi_read(dev_priv
, 0x2180, SBI_MPHY
);
9147 intel_sbi_write(dev_priv
, 0x2180, tmp
, SBI_MPHY
);
9149 tmp
= intel_sbi_read(dev_priv
, 0x208C, SBI_MPHY
);
9152 intel_sbi_write(dev_priv
, 0x208C, tmp
, SBI_MPHY
);
9154 tmp
= intel_sbi_read(dev_priv
, 0x218C, SBI_MPHY
);
9157 intel_sbi_write(dev_priv
, 0x218C, tmp
, SBI_MPHY
);
9159 tmp
= intel_sbi_read(dev_priv
, 0x2098, SBI_MPHY
);
9160 tmp
&= ~(0xFF << 16);
9161 tmp
|= (0x1C << 16);
9162 intel_sbi_write(dev_priv
, 0x2098, tmp
, SBI_MPHY
);
9164 tmp
= intel_sbi_read(dev_priv
, 0x2198, SBI_MPHY
);
9165 tmp
&= ~(0xFF << 16);
9166 tmp
|= (0x1C << 16);
9167 intel_sbi_write(dev_priv
, 0x2198, tmp
, SBI_MPHY
);
9169 tmp
= intel_sbi_read(dev_priv
, 0x20C4, SBI_MPHY
);
9171 intel_sbi_write(dev_priv
, 0x20C4, tmp
, SBI_MPHY
);
9173 tmp
= intel_sbi_read(dev_priv
, 0x21C4, SBI_MPHY
);
9175 intel_sbi_write(dev_priv
, 0x21C4, tmp
, SBI_MPHY
);
9177 tmp
= intel_sbi_read(dev_priv
, 0x20EC, SBI_MPHY
);
9178 tmp
&= ~(0xF << 28);
9180 intel_sbi_write(dev_priv
, 0x20EC, tmp
, SBI_MPHY
);
9182 tmp
= intel_sbi_read(dev_priv
, 0x21EC, SBI_MPHY
);
9183 tmp
&= ~(0xF << 28);
9185 intel_sbi_write(dev_priv
, 0x21EC, tmp
, SBI_MPHY
);
9188 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9189 * Programming" based on the parameters passed:
9190 * - Sequence to enable CLKOUT_DP
9191 * - Sequence to enable CLKOUT_DP without spread
9192 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9194 static void lpt_enable_clkout_dp(struct drm_i915_private
*dev_priv
,
9195 bool with_spread
, bool with_fdi
)
9199 if (WARN(with_fdi
&& !with_spread
, "FDI requires downspread\n"))
9201 if (WARN(HAS_PCH_LPT_LP(dev_priv
) &&
9202 with_fdi
, "LP PCH doesn't have FDI\n"))
9205 mutex_lock(&dev_priv
->sb_lock
);
9207 tmp
= intel_sbi_read(dev_priv
, SBI_SSCCTL
, SBI_ICLK
);
9208 tmp
&= ~SBI_SSCCTL_DISABLE
;
9209 tmp
|= SBI_SSCCTL_PATHALT
;
9210 intel_sbi_write(dev_priv
, SBI_SSCCTL
, tmp
, SBI_ICLK
);
9215 tmp
= intel_sbi_read(dev_priv
, SBI_SSCCTL
, SBI_ICLK
);
9216 tmp
&= ~SBI_SSCCTL_PATHALT
;
9217 intel_sbi_write(dev_priv
, SBI_SSCCTL
, tmp
, SBI_ICLK
);
9220 lpt_reset_fdi_mphy(dev_priv
);
9221 lpt_program_fdi_mphy(dev_priv
);
9225 reg
= HAS_PCH_LPT_LP(dev_priv
) ? SBI_GEN0
: SBI_DBUFF0
;
9226 tmp
= intel_sbi_read(dev_priv
, reg
, SBI_ICLK
);
9227 tmp
|= SBI_GEN0_CFG_BUFFENABLE_DISABLE
;
9228 intel_sbi_write(dev_priv
, reg
, tmp
, SBI_ICLK
);
9230 mutex_unlock(&dev_priv
->sb_lock
);
9233 /* Sequence to disable CLKOUT_DP */
9234 static void lpt_disable_clkout_dp(struct drm_i915_private
*dev_priv
)
9238 mutex_lock(&dev_priv
->sb_lock
);
9240 reg
= HAS_PCH_LPT_LP(dev_priv
) ? SBI_GEN0
: SBI_DBUFF0
;
9241 tmp
= intel_sbi_read(dev_priv
, reg
, SBI_ICLK
);
9242 tmp
&= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE
;
9243 intel_sbi_write(dev_priv
, reg
, tmp
, SBI_ICLK
);
9245 tmp
= intel_sbi_read(dev_priv
, SBI_SSCCTL
, SBI_ICLK
);
9246 if (!(tmp
& SBI_SSCCTL_DISABLE
)) {
9247 if (!(tmp
& SBI_SSCCTL_PATHALT
)) {
9248 tmp
|= SBI_SSCCTL_PATHALT
;
9249 intel_sbi_write(dev_priv
, SBI_SSCCTL
, tmp
, SBI_ICLK
);
9252 tmp
|= SBI_SSCCTL_DISABLE
;
9253 intel_sbi_write(dev_priv
, SBI_SSCCTL
, tmp
, SBI_ICLK
);
9256 mutex_unlock(&dev_priv
->sb_lock
);
9259 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9261 static const uint16_t sscdivintphase
[] = {
9262 [BEND_IDX( 50)] = 0x3B23,
9263 [BEND_IDX( 45)] = 0x3B23,
9264 [BEND_IDX( 40)] = 0x3C23,
9265 [BEND_IDX( 35)] = 0x3C23,
9266 [BEND_IDX( 30)] = 0x3D23,
9267 [BEND_IDX( 25)] = 0x3D23,
9268 [BEND_IDX( 20)] = 0x3E23,
9269 [BEND_IDX( 15)] = 0x3E23,
9270 [BEND_IDX( 10)] = 0x3F23,
9271 [BEND_IDX( 5)] = 0x3F23,
9272 [BEND_IDX( 0)] = 0x0025,
9273 [BEND_IDX( -5)] = 0x0025,
9274 [BEND_IDX(-10)] = 0x0125,
9275 [BEND_IDX(-15)] = 0x0125,
9276 [BEND_IDX(-20)] = 0x0225,
9277 [BEND_IDX(-25)] = 0x0225,
9278 [BEND_IDX(-30)] = 0x0325,
9279 [BEND_IDX(-35)] = 0x0325,
9280 [BEND_IDX(-40)] = 0x0425,
9281 [BEND_IDX(-45)] = 0x0425,
9282 [BEND_IDX(-50)] = 0x0525,
9287 * steps -50 to 50 inclusive, in steps of 5
9288 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9289 * change in clock period = -(steps / 10) * 5.787 ps
9291 static void lpt_bend_clkout_dp(struct drm_i915_private
*dev_priv
, int steps
)
9294 int idx
= BEND_IDX(steps
);
9296 if (WARN_ON(steps
% 5 != 0))
9299 if (WARN_ON(idx
>= ARRAY_SIZE(sscdivintphase
)))
9302 mutex_lock(&dev_priv
->sb_lock
);
9304 if (steps
% 10 != 0)
9308 intel_sbi_write(dev_priv
, SBI_SSCDITHPHASE
, tmp
, SBI_ICLK
);
9310 tmp
= intel_sbi_read(dev_priv
, SBI_SSCDIVINTPHASE
, SBI_ICLK
);
9312 tmp
|= sscdivintphase
[idx
];
9313 intel_sbi_write(dev_priv
, SBI_SSCDIVINTPHASE
, tmp
, SBI_ICLK
);
9315 mutex_unlock(&dev_priv
->sb_lock
);
9320 static void lpt_init_pch_refclk(struct drm_i915_private
*dev_priv
)
9322 struct intel_encoder
*encoder
;
9323 bool has_vga
= false;
9325 for_each_intel_encoder(&dev_priv
->drm
, encoder
) {
9326 switch (encoder
->type
) {
9327 case INTEL_OUTPUT_ANALOG
:
9336 lpt_bend_clkout_dp(dev_priv
, 0);
9337 lpt_enable_clkout_dp(dev_priv
, true, true);
9339 lpt_disable_clkout_dp(dev_priv
);
9344 * Initialize reference clocks when the driver loads
9346 void intel_init_pch_refclk(struct drm_i915_private
*dev_priv
)
9348 if (HAS_PCH_IBX(dev_priv
) || HAS_PCH_CPT(dev_priv
))
9349 ironlake_init_pch_refclk(dev_priv
);
9350 else if (HAS_PCH_LPT(dev_priv
))
9351 lpt_init_pch_refclk(dev_priv
);
9354 static void ironlake_set_pipeconf(struct drm_crtc
*crtc
)
9356 struct drm_i915_private
*dev_priv
= to_i915(crtc
->dev
);
9357 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
9358 int pipe
= intel_crtc
->pipe
;
9363 switch (intel_crtc
->config
->pipe_bpp
) {
9365 val
|= PIPECONF_6BPC
;
9368 val
|= PIPECONF_8BPC
;
9371 val
|= PIPECONF_10BPC
;
9374 val
|= PIPECONF_12BPC
;
9377 /* Case prevented by intel_choose_pipe_bpp_dither. */
9381 if (intel_crtc
->config
->dither
)
9382 val
|= (PIPECONF_DITHER_EN
| PIPECONF_DITHER_TYPE_SP
);
9384 if (intel_crtc
->config
->base
.adjusted_mode
.flags
& DRM_MODE_FLAG_INTERLACE
)
9385 val
|= PIPECONF_INTERLACED_ILK
;
9387 val
|= PIPECONF_PROGRESSIVE
;
9389 if (intel_crtc
->config
->limited_color_range
)
9390 val
|= PIPECONF_COLOR_RANGE_SELECT
;
9392 I915_WRITE(PIPECONF(pipe
), val
);
9393 POSTING_READ(PIPECONF(pipe
));
9396 static void haswell_set_pipeconf(struct drm_crtc
*crtc
)
9398 struct drm_i915_private
*dev_priv
= to_i915(crtc
->dev
);
9399 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
9400 enum transcoder cpu_transcoder
= intel_crtc
->config
->cpu_transcoder
;
9403 if (IS_HASWELL(dev_priv
) && intel_crtc
->config
->dither
)
9404 val
|= (PIPECONF_DITHER_EN
| PIPECONF_DITHER_TYPE_SP
);
9406 if (intel_crtc
->config
->base
.adjusted_mode
.flags
& DRM_MODE_FLAG_INTERLACE
)
9407 val
|= PIPECONF_INTERLACED_ILK
;
9409 val
|= PIPECONF_PROGRESSIVE
;
9411 I915_WRITE(PIPECONF(cpu_transcoder
), val
);
9412 POSTING_READ(PIPECONF(cpu_transcoder
));
9415 static void haswell_set_pipemisc(struct drm_crtc
*crtc
)
9417 struct drm_i915_private
*dev_priv
= to_i915(crtc
->dev
);
9418 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
9420 if (IS_BROADWELL(dev_priv
) || INTEL_INFO(dev_priv
)->gen
>= 9) {
9423 switch (intel_crtc
->config
->pipe_bpp
) {
9425 val
|= PIPEMISC_DITHER_6_BPC
;
9428 val
|= PIPEMISC_DITHER_8_BPC
;
9431 val
|= PIPEMISC_DITHER_10_BPC
;
9434 val
|= PIPEMISC_DITHER_12_BPC
;
9437 /* Case prevented by pipe_config_set_bpp. */
9441 if (intel_crtc
->config
->dither
)
9442 val
|= PIPEMISC_DITHER_ENABLE
| PIPEMISC_DITHER_TYPE_SP
;
9444 I915_WRITE(PIPEMISC(intel_crtc
->pipe
), val
);
9448 int ironlake_get_lanes_required(int target_clock
, int link_bw
, int bpp
)
9451 * Account for spread spectrum to avoid
9452 * oversubscribing the link. Max center spread
9453 * is 2.5%; use 5% for safety's sake.
9455 u32 bps
= target_clock
* bpp
* 21 / 20;
9456 return DIV_ROUND_UP(bps
, link_bw
* 8);
9459 static bool ironlake_needs_fb_cb_tune(struct dpll
*dpll
, int factor
)
9461 return i9xx_dpll_compute_m(dpll
) < factor
* dpll
->n
;
9464 static void ironlake_compute_dpll(struct intel_crtc
*intel_crtc
,
9465 struct intel_crtc_state
*crtc_state
,
9466 struct dpll
*reduced_clock
)
9468 struct drm_crtc
*crtc
= &intel_crtc
->base
;
9469 struct drm_device
*dev
= crtc
->dev
;
9470 struct drm_i915_private
*dev_priv
= to_i915(dev
);
9474 /* Enable autotuning of the PLL clock (if permissible) */
9476 if (intel_crtc_has_type(crtc_state
, INTEL_OUTPUT_LVDS
)) {
9477 if ((intel_panel_use_ssc(dev_priv
) &&
9478 dev_priv
->vbt
.lvds_ssc_freq
== 100000) ||
9479 (HAS_PCH_IBX(dev_priv
) && intel_is_dual_link_lvds(dev
)))
9481 } else if (crtc_state
->sdvo_tv_clock
)
9484 fp
= i9xx_dpll_compute_fp(&crtc_state
->dpll
);
9486 if (ironlake_needs_fb_cb_tune(&crtc_state
->dpll
, factor
))
9489 if (reduced_clock
) {
9490 fp2
= i9xx_dpll_compute_fp(reduced_clock
);
9492 if (reduced_clock
->m
< factor
* reduced_clock
->n
)
9500 if (intel_crtc_has_type(crtc_state
, INTEL_OUTPUT_LVDS
))
9501 dpll
|= DPLLB_MODE_LVDS
;
9503 dpll
|= DPLLB_MODE_DAC_SERIAL
;
9505 dpll
|= (crtc_state
->pixel_multiplier
- 1)
9506 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT
;
9508 if (intel_crtc_has_type(crtc_state
, INTEL_OUTPUT_SDVO
) ||
9509 intel_crtc_has_type(crtc_state
, INTEL_OUTPUT_HDMI
))
9510 dpll
|= DPLL_SDVO_HIGH_SPEED
;
9512 if (intel_crtc_has_dp_encoder(crtc_state
))
9513 dpll
|= DPLL_SDVO_HIGH_SPEED
;
9516 * The high speed IO clock is only really required for
9517 * SDVO/HDMI/DP, but we also enable it for CRT to make it
9518 * possible to share the DPLL between CRT and HDMI. Enabling
9519 * the clock needlessly does no real harm, except use up a
9520 * bit of power potentially.
9522 * We'll limit this to IVB with 3 pipes, since it has only two
9523 * DPLLs and so DPLL sharing is the only way to get three pipes
9524 * driving PCH ports at the same time. On SNB we could do this,
9525 * and potentially avoid enabling the second DPLL, but it's not
9526 * clear if it''s a win or loss power wise. No point in doing
9527 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
9529 if (INTEL_INFO(dev_priv
)->num_pipes
== 3 &&
9530 intel_crtc_has_type(crtc_state
, INTEL_OUTPUT_ANALOG
))
9531 dpll
|= DPLL_SDVO_HIGH_SPEED
;
9533 /* compute bitmask from p1 value */
9534 dpll
|= (1 << (crtc_state
->dpll
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
9536 dpll
|= (1 << (crtc_state
->dpll
.p1
- 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT
;
9538 switch (crtc_state
->dpll
.p2
) {
9540 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
;
9543 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_7
;
9546 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10
;
9549 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_14
;
9553 if (intel_crtc_has_type(crtc_state
, INTEL_OUTPUT_LVDS
) &&
9554 intel_panel_use_ssc(dev_priv
))
9555 dpll
|= PLLB_REF_INPUT_SPREADSPECTRUMIN
;
9557 dpll
|= PLL_REF_INPUT_DREFCLK
;
9559 dpll
|= DPLL_VCO_ENABLE
;
9561 crtc_state
->dpll_hw_state
.dpll
= dpll
;
9562 crtc_state
->dpll_hw_state
.fp0
= fp
;
9563 crtc_state
->dpll_hw_state
.fp1
= fp2
;
9566 static int ironlake_crtc_compute_clock(struct intel_crtc
*crtc
,
9567 struct intel_crtc_state
*crtc_state
)
9569 struct drm_device
*dev
= crtc
->base
.dev
;
9570 struct drm_i915_private
*dev_priv
= to_i915(dev
);
9571 struct dpll reduced_clock
;
9572 bool has_reduced_clock
= false;
9573 struct intel_shared_dpll
*pll
;
9574 const struct intel_limit
*limit
;
9575 int refclk
= 120000;
9577 memset(&crtc_state
->dpll_hw_state
, 0,
9578 sizeof(crtc_state
->dpll_hw_state
));
9580 crtc
->lowfreq_avail
= false;
9582 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9583 if (!crtc_state
->has_pch_encoder
)
9586 if (intel_crtc_has_type(crtc_state
, INTEL_OUTPUT_LVDS
)) {
9587 if (intel_panel_use_ssc(dev_priv
)) {
9588 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9589 dev_priv
->vbt
.lvds_ssc_freq
);
9590 refclk
= dev_priv
->vbt
.lvds_ssc_freq
;
9593 if (intel_is_dual_link_lvds(dev
)) {
9594 if (refclk
== 100000)
9595 limit
= &intel_limits_ironlake_dual_lvds_100m
;
9597 limit
= &intel_limits_ironlake_dual_lvds
;
9599 if (refclk
== 100000)
9600 limit
= &intel_limits_ironlake_single_lvds_100m
;
9602 limit
= &intel_limits_ironlake_single_lvds
;
9605 limit
= &intel_limits_ironlake_dac
;
9608 if (!crtc_state
->clock_set
&&
9609 !g4x_find_best_dpll(limit
, crtc_state
, crtc_state
->port_clock
,
9610 refclk
, NULL
, &crtc_state
->dpll
)) {
9611 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9615 ironlake_compute_dpll(crtc
, crtc_state
,
9616 has_reduced_clock
? &reduced_clock
: NULL
);
9618 pll
= intel_get_shared_dpll(crtc
, crtc_state
, NULL
);
9620 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9621 pipe_name(crtc
->pipe
));
9625 if (intel_crtc_has_type(crtc_state
, INTEL_OUTPUT_LVDS
) &&
9627 crtc
->lowfreq_avail
= true;
9632 static void intel_pch_transcoder_get_m_n(struct intel_crtc
*crtc
,
9633 struct intel_link_m_n
*m_n
)
9635 struct drm_device
*dev
= crtc
->base
.dev
;
9636 struct drm_i915_private
*dev_priv
= to_i915(dev
);
9637 enum pipe pipe
= crtc
->pipe
;
9639 m_n
->link_m
= I915_READ(PCH_TRANS_LINK_M1(pipe
));
9640 m_n
->link_n
= I915_READ(PCH_TRANS_LINK_N1(pipe
));
9641 m_n
->gmch_m
= I915_READ(PCH_TRANS_DATA_M1(pipe
))
9643 m_n
->gmch_n
= I915_READ(PCH_TRANS_DATA_N1(pipe
));
9644 m_n
->tu
= ((I915_READ(PCH_TRANS_DATA_M1(pipe
))
9645 & TU_SIZE_MASK
) >> TU_SIZE_SHIFT
) + 1;
9648 static void intel_cpu_transcoder_get_m_n(struct intel_crtc
*crtc
,
9649 enum transcoder transcoder
,
9650 struct intel_link_m_n
*m_n
,
9651 struct intel_link_m_n
*m2_n2
)
9653 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
9654 enum pipe pipe
= crtc
->pipe
;
9656 if (INTEL_GEN(dev_priv
) >= 5) {
9657 m_n
->link_m
= I915_READ(PIPE_LINK_M1(transcoder
));
9658 m_n
->link_n
= I915_READ(PIPE_LINK_N1(transcoder
));
9659 m_n
->gmch_m
= I915_READ(PIPE_DATA_M1(transcoder
))
9661 m_n
->gmch_n
= I915_READ(PIPE_DATA_N1(transcoder
));
9662 m_n
->tu
= ((I915_READ(PIPE_DATA_M1(transcoder
))
9663 & TU_SIZE_MASK
) >> TU_SIZE_SHIFT
) + 1;
9664 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9665 * gen < 8) and if DRRS is supported (to make sure the
9666 * registers are not unnecessarily read).
9668 if (m2_n2
&& INTEL_GEN(dev_priv
) < 8 &&
9669 crtc
->config
->has_drrs
) {
9670 m2_n2
->link_m
= I915_READ(PIPE_LINK_M2(transcoder
));
9671 m2_n2
->link_n
= I915_READ(PIPE_LINK_N2(transcoder
));
9672 m2_n2
->gmch_m
= I915_READ(PIPE_DATA_M2(transcoder
))
9674 m2_n2
->gmch_n
= I915_READ(PIPE_DATA_N2(transcoder
));
9675 m2_n2
->tu
= ((I915_READ(PIPE_DATA_M2(transcoder
))
9676 & TU_SIZE_MASK
) >> TU_SIZE_SHIFT
) + 1;
9679 m_n
->link_m
= I915_READ(PIPE_LINK_M_G4X(pipe
));
9680 m_n
->link_n
= I915_READ(PIPE_LINK_N_G4X(pipe
));
9681 m_n
->gmch_m
= I915_READ(PIPE_DATA_M_G4X(pipe
))
9683 m_n
->gmch_n
= I915_READ(PIPE_DATA_N_G4X(pipe
));
9684 m_n
->tu
= ((I915_READ(PIPE_DATA_M_G4X(pipe
))
9685 & TU_SIZE_MASK
) >> TU_SIZE_SHIFT
) + 1;
9689 void intel_dp_get_m_n(struct intel_crtc
*crtc
,
9690 struct intel_crtc_state
*pipe_config
)
9692 if (pipe_config
->has_pch_encoder
)
9693 intel_pch_transcoder_get_m_n(crtc
, &pipe_config
->dp_m_n
);
9695 intel_cpu_transcoder_get_m_n(crtc
, pipe_config
->cpu_transcoder
,
9696 &pipe_config
->dp_m_n
,
9697 &pipe_config
->dp_m2_n2
);
9700 static void ironlake_get_fdi_m_n_config(struct intel_crtc
*crtc
,
9701 struct intel_crtc_state
*pipe_config
)
9703 intel_cpu_transcoder_get_m_n(crtc
, pipe_config
->cpu_transcoder
,
9704 &pipe_config
->fdi_m_n
, NULL
);
9707 static void skylake_get_pfit_config(struct intel_crtc
*crtc
,
9708 struct intel_crtc_state
*pipe_config
)
9710 struct drm_device
*dev
= crtc
->base
.dev
;
9711 struct drm_i915_private
*dev_priv
= to_i915(dev
);
9712 struct intel_crtc_scaler_state
*scaler_state
= &pipe_config
->scaler_state
;
9713 uint32_t ps_ctrl
= 0;
9717 /* find scaler attached to this pipe */
9718 for (i
= 0; i
< crtc
->num_scalers
; i
++) {
9719 ps_ctrl
= I915_READ(SKL_PS_CTRL(crtc
->pipe
, i
));
9720 if (ps_ctrl
& PS_SCALER_EN
&& !(ps_ctrl
& PS_PLANE_SEL_MASK
)) {
9722 pipe_config
->pch_pfit
.enabled
= true;
9723 pipe_config
->pch_pfit
.pos
= I915_READ(SKL_PS_WIN_POS(crtc
->pipe
, i
));
9724 pipe_config
->pch_pfit
.size
= I915_READ(SKL_PS_WIN_SZ(crtc
->pipe
, i
));
9729 scaler_state
->scaler_id
= id
;
9731 scaler_state
->scaler_users
|= (1 << SKL_CRTC_INDEX
);
9733 scaler_state
->scaler_users
&= ~(1 << SKL_CRTC_INDEX
);
9738 skylake_get_initial_plane_config(struct intel_crtc
*crtc
,
9739 struct intel_initial_plane_config
*plane_config
)
9741 struct drm_device
*dev
= crtc
->base
.dev
;
9742 struct drm_i915_private
*dev_priv
= to_i915(dev
);
9743 u32 val
, base
, offset
, stride_mult
, tiling
;
9744 int pipe
= crtc
->pipe
;
9745 int fourcc
, pixel_format
;
9746 unsigned int aligned_height
;
9747 struct drm_framebuffer
*fb
;
9748 struct intel_framebuffer
*intel_fb
;
9750 intel_fb
= kzalloc(sizeof(*intel_fb
), GFP_KERNEL
);
9752 DRM_DEBUG_KMS("failed to alloc fb\n");
9756 fb
= &intel_fb
->base
;
9760 val
= I915_READ(PLANE_CTL(pipe
, 0));
9761 if (!(val
& PLANE_CTL_ENABLE
))
9764 pixel_format
= val
& PLANE_CTL_FORMAT_MASK
;
9765 fourcc
= skl_format_to_fourcc(pixel_format
,
9766 val
& PLANE_CTL_ORDER_RGBX
,
9767 val
& PLANE_CTL_ALPHA_MASK
);
9768 fb
->format
= drm_format_info(fourcc
);
9770 tiling
= val
& PLANE_CTL_TILED_MASK
;
9772 case PLANE_CTL_TILED_LINEAR
:
9773 fb
->modifier
= DRM_FORMAT_MOD_NONE
;
9775 case PLANE_CTL_TILED_X
:
9776 plane_config
->tiling
= I915_TILING_X
;
9777 fb
->modifier
= I915_FORMAT_MOD_X_TILED
;
9779 case PLANE_CTL_TILED_Y
:
9780 fb
->modifier
= I915_FORMAT_MOD_Y_TILED
;
9782 case PLANE_CTL_TILED_YF
:
9783 fb
->modifier
= I915_FORMAT_MOD_Yf_TILED
;
9786 MISSING_CASE(tiling
);
9790 base
= I915_READ(PLANE_SURF(pipe
, 0)) & 0xfffff000;
9791 plane_config
->base
= base
;
9793 offset
= I915_READ(PLANE_OFFSET(pipe
, 0));
9795 val
= I915_READ(PLANE_SIZE(pipe
, 0));
9796 fb
->height
= ((val
>> 16) & 0xfff) + 1;
9797 fb
->width
= ((val
>> 0) & 0x1fff) + 1;
9799 val
= I915_READ(PLANE_STRIDE(pipe
, 0));
9800 stride_mult
= intel_fb_stride_alignment(dev_priv
, fb
->modifier
,
9801 fb
->format
->format
);
9802 fb
->pitches
[0] = (val
& 0x3ff) * stride_mult
;
9804 aligned_height
= intel_fb_align_height(dev
, fb
->height
,
9808 plane_config
->size
= fb
->pitches
[0] * aligned_height
;
9810 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9811 pipe_name(pipe
), fb
->width
, fb
->height
,
9812 fb
->format
->cpp
[0] * 8, base
, fb
->pitches
[0],
9813 plane_config
->size
);
9815 plane_config
->fb
= intel_fb
;
9822 static void ironlake_get_pfit_config(struct intel_crtc
*crtc
,
9823 struct intel_crtc_state
*pipe_config
)
9825 struct drm_device
*dev
= crtc
->base
.dev
;
9826 struct drm_i915_private
*dev_priv
= to_i915(dev
);
9829 tmp
= I915_READ(PF_CTL(crtc
->pipe
));
9831 if (tmp
& PF_ENABLE
) {
9832 pipe_config
->pch_pfit
.enabled
= true;
9833 pipe_config
->pch_pfit
.pos
= I915_READ(PF_WIN_POS(crtc
->pipe
));
9834 pipe_config
->pch_pfit
.size
= I915_READ(PF_WIN_SZ(crtc
->pipe
));
9836 /* We currently do not free assignements of panel fitters on
9837 * ivb/hsw (since we don't use the higher upscaling modes which
9838 * differentiates them) so just WARN about this case for now. */
9839 if (IS_GEN7(dev_priv
)) {
9840 WARN_ON((tmp
& PF_PIPE_SEL_MASK_IVB
) !=
9841 PF_PIPE_SEL_IVB(crtc
->pipe
));
9847 ironlake_get_initial_plane_config(struct intel_crtc
*crtc
,
9848 struct intel_initial_plane_config
*plane_config
)
9850 struct drm_device
*dev
= crtc
->base
.dev
;
9851 struct drm_i915_private
*dev_priv
= to_i915(dev
);
9852 u32 val
, base
, offset
;
9853 int pipe
= crtc
->pipe
;
9854 int fourcc
, pixel_format
;
9855 unsigned int aligned_height
;
9856 struct drm_framebuffer
*fb
;
9857 struct intel_framebuffer
*intel_fb
;
9859 val
= I915_READ(DSPCNTR(pipe
));
9860 if (!(val
& DISPLAY_PLANE_ENABLE
))
9863 intel_fb
= kzalloc(sizeof(*intel_fb
), GFP_KERNEL
);
9865 DRM_DEBUG_KMS("failed to alloc fb\n");
9869 fb
= &intel_fb
->base
;
9873 if (INTEL_GEN(dev_priv
) >= 4) {
9874 if (val
& DISPPLANE_TILED
) {
9875 plane_config
->tiling
= I915_TILING_X
;
9876 fb
->modifier
= I915_FORMAT_MOD_X_TILED
;
9880 pixel_format
= val
& DISPPLANE_PIXFORMAT_MASK
;
9881 fourcc
= i9xx_format_to_fourcc(pixel_format
);
9882 fb
->format
= drm_format_info(fourcc
);
9884 base
= I915_READ(DSPSURF(pipe
)) & 0xfffff000;
9885 if (IS_HASWELL(dev_priv
) || IS_BROADWELL(dev_priv
)) {
9886 offset
= I915_READ(DSPOFFSET(pipe
));
9888 if (plane_config
->tiling
)
9889 offset
= I915_READ(DSPTILEOFF(pipe
));
9891 offset
= I915_READ(DSPLINOFF(pipe
));
9893 plane_config
->base
= base
;
9895 val
= I915_READ(PIPESRC(pipe
));
9896 fb
->width
= ((val
>> 16) & 0xfff) + 1;
9897 fb
->height
= ((val
>> 0) & 0xfff) + 1;
9899 val
= I915_READ(DSPSTRIDE(pipe
));
9900 fb
->pitches
[0] = val
& 0xffffffc0;
9902 aligned_height
= intel_fb_align_height(dev
, fb
->height
,
9906 plane_config
->size
= fb
->pitches
[0] * aligned_height
;
9908 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9909 pipe_name(pipe
), fb
->width
, fb
->height
,
9910 fb
->format
->cpp
[0] * 8, base
, fb
->pitches
[0],
9911 plane_config
->size
);
9913 plane_config
->fb
= intel_fb
;
9916 static bool ironlake_get_pipe_config(struct intel_crtc
*crtc
,
9917 struct intel_crtc_state
*pipe_config
)
9919 struct drm_device
*dev
= crtc
->base
.dev
;
9920 struct drm_i915_private
*dev_priv
= to_i915(dev
);
9921 enum intel_display_power_domain power_domain
;
9925 power_domain
= POWER_DOMAIN_PIPE(crtc
->pipe
);
9926 if (!intel_display_power_get_if_enabled(dev_priv
, power_domain
))
9929 pipe_config
->cpu_transcoder
= (enum transcoder
) crtc
->pipe
;
9930 pipe_config
->shared_dpll
= NULL
;
9933 tmp
= I915_READ(PIPECONF(crtc
->pipe
));
9934 if (!(tmp
& PIPECONF_ENABLE
))
9937 switch (tmp
& PIPECONF_BPC_MASK
) {
9939 pipe_config
->pipe_bpp
= 18;
9942 pipe_config
->pipe_bpp
= 24;
9944 case PIPECONF_10BPC
:
9945 pipe_config
->pipe_bpp
= 30;
9947 case PIPECONF_12BPC
:
9948 pipe_config
->pipe_bpp
= 36;
9954 if (tmp
& PIPECONF_COLOR_RANGE_SELECT
)
9955 pipe_config
->limited_color_range
= true;
9957 if (I915_READ(PCH_TRANSCONF(crtc
->pipe
)) & TRANS_ENABLE
) {
9958 struct intel_shared_dpll
*pll
;
9959 enum intel_dpll_id pll_id
;
9961 pipe_config
->has_pch_encoder
= true;
9963 tmp
= I915_READ(FDI_RX_CTL(crtc
->pipe
));
9964 pipe_config
->fdi_lanes
= ((FDI_DP_PORT_WIDTH_MASK
& tmp
) >>
9965 FDI_DP_PORT_WIDTH_SHIFT
) + 1;
9967 ironlake_get_fdi_m_n_config(crtc
, pipe_config
);
9969 if (HAS_PCH_IBX(dev_priv
)) {
9971 * The pipe->pch transcoder and pch transcoder->pll
9974 pll_id
= (enum intel_dpll_id
) crtc
->pipe
;
9976 tmp
= I915_READ(PCH_DPLL_SEL
);
9977 if (tmp
& TRANS_DPLLB_SEL(crtc
->pipe
))
9978 pll_id
= DPLL_ID_PCH_PLL_B
;
9980 pll_id
= DPLL_ID_PCH_PLL_A
;
9983 pipe_config
->shared_dpll
=
9984 intel_get_shared_dpll_by_id(dev_priv
, pll_id
);
9985 pll
= pipe_config
->shared_dpll
;
9987 WARN_ON(!pll
->funcs
.get_hw_state(dev_priv
, pll
,
9988 &pipe_config
->dpll_hw_state
));
9990 tmp
= pipe_config
->dpll_hw_state
.dpll
;
9991 pipe_config
->pixel_multiplier
=
9992 ((tmp
& PLL_REF_SDVO_HDMI_MULTIPLIER_MASK
)
9993 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT
) + 1;
9995 ironlake_pch_clock_get(crtc
, pipe_config
);
9997 pipe_config
->pixel_multiplier
= 1;
10000 intel_get_pipe_timings(crtc
, pipe_config
);
10001 intel_get_pipe_src_size(crtc
, pipe_config
);
10003 ironlake_get_pfit_config(crtc
, pipe_config
);
10008 intel_display_power_put(dev_priv
, power_domain
);
10013 static void assert_can_disable_lcpll(struct drm_i915_private
*dev_priv
)
10015 struct drm_device
*dev
= &dev_priv
->drm
;
10016 struct intel_crtc
*crtc
;
10018 for_each_intel_crtc(dev
, crtc
)
10019 I915_STATE_WARN(crtc
->active
, "CRTC for pipe %c enabled\n",
10020 pipe_name(crtc
->pipe
));
10022 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER
), "Power well on\n");
10023 I915_STATE_WARN(I915_READ(SPLL_CTL
) & SPLL_PLL_ENABLE
, "SPLL enabled\n");
10024 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE
, "WRPLL1 enabled\n");
10025 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE
, "WRPLL2 enabled\n");
10026 I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON
, "Panel power on\n");
10027 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2
) & BLM_PWM_ENABLE
,
10028 "CPU PWM1 enabled\n");
10029 if (IS_HASWELL(dev_priv
))
10030 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL
) & BLM_PWM_ENABLE
,
10031 "CPU PWM2 enabled\n");
10032 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1
) & BLM_PCH_PWM_ENABLE
,
10033 "PCH PWM1 enabled\n");
10034 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL
) & UTIL_PIN_ENABLE
,
10035 "Utility pin enabled\n");
10036 I915_STATE_WARN(I915_READ(PCH_GTC_CTL
) & PCH_GTC_ENABLE
, "PCH GTC enabled\n");
10039 * In theory we can still leave IRQs enabled, as long as only the HPD
10040 * interrupts remain enabled. We used to check for that, but since it's
10041 * gen-specific and since we only disable LCPLL after we fully disable
10042 * the interrupts, the check below should be enough.
10044 I915_STATE_WARN(intel_irqs_enabled(dev_priv
), "IRQs enabled\n");
10047 static uint32_t hsw_read_dcomp(struct drm_i915_private
*dev_priv
)
10049 if (IS_HASWELL(dev_priv
))
10050 return I915_READ(D_COMP_HSW
);
10052 return I915_READ(D_COMP_BDW
);
10055 static void hsw_write_dcomp(struct drm_i915_private
*dev_priv
, uint32_t val
)
10057 if (IS_HASWELL(dev_priv
)) {
10058 mutex_lock(&dev_priv
->rps
.hw_lock
);
10059 if (sandybridge_pcode_write(dev_priv
, GEN6_PCODE_WRITE_D_COMP
,
10061 DRM_DEBUG_KMS("Failed to write to D_COMP\n");
10062 mutex_unlock(&dev_priv
->rps
.hw_lock
);
10064 I915_WRITE(D_COMP_BDW
, val
);
10065 POSTING_READ(D_COMP_BDW
);
10070 * This function implements pieces of two sequences from BSpec:
10071 * - Sequence for display software to disable LCPLL
10072 * - Sequence for display software to allow package C8+
10073 * The steps implemented here are just the steps that actually touch the LCPLL
10074 * register. Callers should take care of disabling all the display engine
10075 * functions, doing the mode unset, fixing interrupts, etc.
10077 static void hsw_disable_lcpll(struct drm_i915_private
*dev_priv
,
10078 bool switch_to_fclk
, bool allow_power_down
)
10082 assert_can_disable_lcpll(dev_priv
);
10084 val
= I915_READ(LCPLL_CTL
);
10086 if (switch_to_fclk
) {
10087 val
|= LCPLL_CD_SOURCE_FCLK
;
10088 I915_WRITE(LCPLL_CTL
, val
);
10090 if (wait_for_us(I915_READ(LCPLL_CTL
) &
10091 LCPLL_CD_SOURCE_FCLK_DONE
, 1))
10092 DRM_ERROR("Switching to FCLK failed\n");
10094 val
= I915_READ(LCPLL_CTL
);
10097 val
|= LCPLL_PLL_DISABLE
;
10098 I915_WRITE(LCPLL_CTL
, val
);
10099 POSTING_READ(LCPLL_CTL
);
10101 if (intel_wait_for_register(dev_priv
, LCPLL_CTL
, LCPLL_PLL_LOCK
, 0, 1))
10102 DRM_ERROR("LCPLL still locked\n");
10104 val
= hsw_read_dcomp(dev_priv
);
10105 val
|= D_COMP_COMP_DISABLE
;
10106 hsw_write_dcomp(dev_priv
, val
);
10109 if (wait_for((hsw_read_dcomp(dev_priv
) & D_COMP_RCOMP_IN_PROGRESS
) == 0,
10111 DRM_ERROR("D_COMP RCOMP still in progress\n");
10113 if (allow_power_down
) {
10114 val
= I915_READ(LCPLL_CTL
);
10115 val
|= LCPLL_POWER_DOWN_ALLOW
;
10116 I915_WRITE(LCPLL_CTL
, val
);
10117 POSTING_READ(LCPLL_CTL
);
10122 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
10125 static void hsw_restore_lcpll(struct drm_i915_private
*dev_priv
)
10129 val
= I915_READ(LCPLL_CTL
);
10131 if ((val
& (LCPLL_PLL_LOCK
| LCPLL_PLL_DISABLE
| LCPLL_CD_SOURCE_FCLK
|
10132 LCPLL_POWER_DOWN_ALLOW
)) == LCPLL_PLL_LOCK
)
10136 * Make sure we're not on PC8 state before disabling PC8, otherwise
10137 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
10139 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
10141 if (val
& LCPLL_POWER_DOWN_ALLOW
) {
10142 val
&= ~LCPLL_POWER_DOWN_ALLOW
;
10143 I915_WRITE(LCPLL_CTL
, val
);
10144 POSTING_READ(LCPLL_CTL
);
10147 val
= hsw_read_dcomp(dev_priv
);
10148 val
|= D_COMP_COMP_FORCE
;
10149 val
&= ~D_COMP_COMP_DISABLE
;
10150 hsw_write_dcomp(dev_priv
, val
);
10152 val
= I915_READ(LCPLL_CTL
);
10153 val
&= ~LCPLL_PLL_DISABLE
;
10154 I915_WRITE(LCPLL_CTL
, val
);
10156 if (intel_wait_for_register(dev_priv
,
10157 LCPLL_CTL
, LCPLL_PLL_LOCK
, LCPLL_PLL_LOCK
,
10159 DRM_ERROR("LCPLL not locked yet\n");
10161 if (val
& LCPLL_CD_SOURCE_FCLK
) {
10162 val
= I915_READ(LCPLL_CTL
);
10163 val
&= ~LCPLL_CD_SOURCE_FCLK
;
10164 I915_WRITE(LCPLL_CTL
, val
);
10166 if (wait_for_us((I915_READ(LCPLL_CTL
) &
10167 LCPLL_CD_SOURCE_FCLK_DONE
) == 0, 1))
10168 DRM_ERROR("Switching back to LCPLL failed\n");
10171 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
10172 intel_update_cdclk(dev_priv
);
10176 * Package states C8 and deeper are really deep PC states that can only be
10177 * reached when all the devices on the system allow it, so even if the graphics
10178 * device allows PC8+, it doesn't mean the system will actually get to these
10179 * states. Our driver only allows PC8+ when going into runtime PM.
10181 * The requirements for PC8+ are that all the outputs are disabled, the power
10182 * well is disabled and most interrupts are disabled, and these are also
10183 * requirements for runtime PM. When these conditions are met, we manually do
10184 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
10185 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
10186 * hang the machine.
10188 * When we really reach PC8 or deeper states (not just when we allow it) we lose
10189 * the state of some registers, so when we come back from PC8+ we need to
10190 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
10191 * need to take care of the registers kept by RC6. Notice that this happens even
10192 * if we don't put the device in PCI D3 state (which is what currently happens
10193 * because of the runtime PM support).
10195 * For more, read "Display Sequences for Package C8" on the hardware
10198 void hsw_enable_pc8(struct drm_i915_private
*dev_priv
)
10202 DRM_DEBUG_KMS("Enabling package C8+\n");
10204 if (HAS_PCH_LPT_LP(dev_priv
)) {
10205 val
= I915_READ(SOUTH_DSPCLK_GATE_D
);
10206 val
&= ~PCH_LP_PARTITION_LEVEL_DISABLE
;
10207 I915_WRITE(SOUTH_DSPCLK_GATE_D
, val
);
10210 lpt_disable_clkout_dp(dev_priv
);
10211 hsw_disable_lcpll(dev_priv
, true, true);
10214 void hsw_disable_pc8(struct drm_i915_private
*dev_priv
)
10218 DRM_DEBUG_KMS("Disabling package C8+\n");
10220 hsw_restore_lcpll(dev_priv
);
10221 lpt_init_pch_refclk(dev_priv
);
10223 if (HAS_PCH_LPT_LP(dev_priv
)) {
10224 val
= I915_READ(SOUTH_DSPCLK_GATE_D
);
10225 val
|= PCH_LP_PARTITION_LEVEL_DISABLE
;
10226 I915_WRITE(SOUTH_DSPCLK_GATE_D
, val
);
10230 static void bxt_modeset_commit_cdclk(struct drm_atomic_state
*old_state
)
10232 struct drm_device
*dev
= old_state
->dev
;
10233 struct intel_atomic_state
*old_intel_state
=
10234 to_intel_atomic_state(old_state
);
10235 unsigned int req_cdclk
= old_intel_state
->dev_cdclk
;
10237 bxt_set_cdclk(to_i915(dev
), req_cdclk
);
10240 static int bdw_adjust_min_pipe_pixel_rate(struct intel_crtc_state
*crtc_state
,
10243 struct drm_i915_private
*dev_priv
= to_i915(crtc_state
->base
.crtc
->dev
);
10245 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
10246 if (IS_BROADWELL(dev_priv
) && crtc_state
->ips_enabled
)
10247 pixel_rate
= DIV_ROUND_UP(pixel_rate
* 100, 95);
10249 /* BSpec says "Do not use DisplayPort with CDCLK less than
10250 * 432 MHz, audio enabled, port width x4, and link rate
10251 * HBR2 (5.4 GHz), or else there may be audio corruption or
10252 * screen corruption."
10254 if (intel_crtc_has_dp_encoder(crtc_state
) &&
10255 crtc_state
->has_audio
&&
10256 crtc_state
->port_clock
>= 540000 &&
10257 crtc_state
->lane_count
== 4)
10258 pixel_rate
= max(432000, pixel_rate
);
10263 /* compute the max rate for new configuration */
10264 static int ilk_max_pixel_rate(struct drm_atomic_state
*state
)
10266 struct intel_atomic_state
*intel_state
= to_intel_atomic_state(state
);
10267 struct drm_i915_private
*dev_priv
= to_i915(state
->dev
);
10268 struct drm_crtc
*crtc
;
10269 struct drm_crtc_state
*cstate
;
10270 struct intel_crtc_state
*crtc_state
;
10271 unsigned max_pixel_rate
= 0, i
;
10274 memcpy(intel_state
->min_pixclk
, dev_priv
->min_pixclk
,
10275 sizeof(intel_state
->min_pixclk
));
10277 for_each_crtc_in_state(state
, crtc
, cstate
, i
) {
10280 crtc_state
= to_intel_crtc_state(cstate
);
10281 if (!crtc_state
->base
.enable
) {
10282 intel_state
->min_pixclk
[i
] = 0;
10286 pixel_rate
= ilk_pipe_pixel_rate(crtc_state
);
10288 if (IS_BROADWELL(dev_priv
) || IS_GEN9(dev_priv
))
10289 pixel_rate
= bdw_adjust_min_pipe_pixel_rate(crtc_state
,
10292 intel_state
->min_pixclk
[i
] = pixel_rate
;
10295 for_each_pipe(dev_priv
, pipe
)
10296 max_pixel_rate
= max(intel_state
->min_pixclk
[pipe
], max_pixel_rate
);
10298 return max_pixel_rate
;
10301 static void broadwell_set_cdclk(struct drm_device
*dev
, int cdclk
)
10303 struct drm_i915_private
*dev_priv
= to_i915(dev
);
10304 uint32_t val
, data
;
10307 if (WARN((I915_READ(LCPLL_CTL
) &
10308 (LCPLL_PLL_DISABLE
| LCPLL_PLL_LOCK
|
10309 LCPLL_CD_CLOCK_DISABLE
| LCPLL_ROOT_CD_CLOCK_DISABLE
|
10310 LCPLL_CD2X_CLOCK_DISABLE
| LCPLL_POWER_DOWN_ALLOW
|
10311 LCPLL_CD_SOURCE_FCLK
)) != LCPLL_PLL_LOCK
,
10312 "trying to change cdclk frequency with cdclk not enabled\n"))
10315 mutex_lock(&dev_priv
->rps
.hw_lock
);
10316 ret
= sandybridge_pcode_write(dev_priv
,
10317 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ
, 0x0);
10318 mutex_unlock(&dev_priv
->rps
.hw_lock
);
10320 DRM_ERROR("failed to inform pcode about cdclk change\n");
10324 val
= I915_READ(LCPLL_CTL
);
10325 val
|= LCPLL_CD_SOURCE_FCLK
;
10326 I915_WRITE(LCPLL_CTL
, val
);
10328 if (wait_for_us(I915_READ(LCPLL_CTL
) &
10329 LCPLL_CD_SOURCE_FCLK_DONE
, 1))
10330 DRM_ERROR("Switching to FCLK failed\n");
10332 val
= I915_READ(LCPLL_CTL
);
10333 val
&= ~LCPLL_CLK_FREQ_MASK
;
10337 val
|= LCPLL_CLK_FREQ_450
;
10341 val
|= LCPLL_CLK_FREQ_54O_BDW
;
10345 val
|= LCPLL_CLK_FREQ_337_5_BDW
;
10349 val
|= LCPLL_CLK_FREQ_675_BDW
;
10353 WARN(1, "invalid cdclk frequency\n");
10357 I915_WRITE(LCPLL_CTL
, val
);
10359 val
= I915_READ(LCPLL_CTL
);
10360 val
&= ~LCPLL_CD_SOURCE_FCLK
;
10361 I915_WRITE(LCPLL_CTL
, val
);
10363 if (wait_for_us((I915_READ(LCPLL_CTL
) &
10364 LCPLL_CD_SOURCE_FCLK_DONE
) == 0, 1))
10365 DRM_ERROR("Switching back to LCPLL failed\n");
10367 mutex_lock(&dev_priv
->rps
.hw_lock
);
10368 sandybridge_pcode_write(dev_priv
, HSW_PCODE_DE_WRITE_FREQ_REQ
, data
);
10369 mutex_unlock(&dev_priv
->rps
.hw_lock
);
10371 I915_WRITE(CDCLK_FREQ
, DIV_ROUND_CLOSEST(cdclk
, 1000) - 1);
10373 intel_update_cdclk(dev_priv
);
10375 WARN(cdclk
!= dev_priv
->cdclk_freq
,
10376 "cdclk requested %d kHz but got %d kHz\n",
10377 cdclk
, dev_priv
->cdclk_freq
);
10380 static int broadwell_calc_cdclk(int max_pixclk
)
10382 if (max_pixclk
> 540000)
10384 else if (max_pixclk
> 450000)
10386 else if (max_pixclk
> 337500)
10392 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state
*state
)
10394 struct drm_i915_private
*dev_priv
= to_i915(state
->dev
);
10395 struct intel_atomic_state
*intel_state
= to_intel_atomic_state(state
);
10396 int max_pixclk
= ilk_max_pixel_rate(state
);
10400 * FIXME should also account for plane ratio
10401 * once 64bpp pixel formats are supported.
10403 cdclk
= broadwell_calc_cdclk(max_pixclk
);
10405 if (cdclk
> dev_priv
->max_cdclk_freq
) {
10406 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10407 cdclk
, dev_priv
->max_cdclk_freq
);
10411 intel_state
->cdclk
= intel_state
->dev_cdclk
= cdclk
;
10412 if (!intel_state
->active_crtcs
)
10413 intel_state
->dev_cdclk
= broadwell_calc_cdclk(0);
10418 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state
*old_state
)
10420 struct drm_device
*dev
= old_state
->dev
;
10421 struct intel_atomic_state
*old_intel_state
=
10422 to_intel_atomic_state(old_state
);
10423 unsigned req_cdclk
= old_intel_state
->dev_cdclk
;
10425 broadwell_set_cdclk(dev
, req_cdclk
);
10428 static int skl_modeset_calc_cdclk(struct drm_atomic_state
*state
)
10430 struct intel_atomic_state
*intel_state
= to_intel_atomic_state(state
);
10431 struct drm_i915_private
*dev_priv
= to_i915(state
->dev
);
10432 const int max_pixclk
= ilk_max_pixel_rate(state
);
10433 int vco
= intel_state
->cdclk_pll_vco
;
10437 * FIXME should also account for plane ratio
10438 * once 64bpp pixel formats are supported.
10440 cdclk
= skl_calc_cdclk(max_pixclk
, vco
);
10443 * FIXME move the cdclk caclulation to
10444 * compute_config() so we can fail gracegully.
10446 if (cdclk
> dev_priv
->max_cdclk_freq
) {
10447 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10448 cdclk
, dev_priv
->max_cdclk_freq
);
10449 cdclk
= dev_priv
->max_cdclk_freq
;
10452 intel_state
->cdclk
= intel_state
->dev_cdclk
= cdclk
;
10453 if (!intel_state
->active_crtcs
)
10454 intel_state
->dev_cdclk
= skl_calc_cdclk(0, vco
);
10459 static void skl_modeset_commit_cdclk(struct drm_atomic_state
*old_state
)
10461 struct drm_i915_private
*dev_priv
= to_i915(old_state
->dev
);
10462 struct intel_atomic_state
*intel_state
= to_intel_atomic_state(old_state
);
10463 unsigned int req_cdclk
= intel_state
->dev_cdclk
;
10464 unsigned int req_vco
= intel_state
->cdclk_pll_vco
;
10466 skl_set_cdclk(dev_priv
, req_cdclk
, req_vco
);
10469 static int haswell_crtc_compute_clock(struct intel_crtc
*crtc
,
10470 struct intel_crtc_state
*crtc_state
)
10472 if (!intel_crtc_has_type(crtc_state
, INTEL_OUTPUT_DSI
)) {
10473 if (!intel_ddi_pll_select(crtc
, crtc_state
))
10477 crtc
->lowfreq_avail
= false;
10482 static void bxt_get_ddi_pll(struct drm_i915_private
*dev_priv
,
10484 struct intel_crtc_state
*pipe_config
)
10486 enum intel_dpll_id id
;
10490 id
= DPLL_ID_SKL_DPLL0
;
10493 id
= DPLL_ID_SKL_DPLL1
;
10496 id
= DPLL_ID_SKL_DPLL2
;
10499 DRM_ERROR("Incorrect port type\n");
10503 pipe_config
->shared_dpll
= intel_get_shared_dpll_by_id(dev_priv
, id
);
10506 static void skylake_get_ddi_pll(struct drm_i915_private
*dev_priv
,
10508 struct intel_crtc_state
*pipe_config
)
10510 enum intel_dpll_id id
;
10513 temp
= I915_READ(DPLL_CTRL2
) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port
);
10514 id
= temp
>> (port
* 3 + 1);
10516 if (WARN_ON(id
< SKL_DPLL0
|| id
> SKL_DPLL3
))
10519 pipe_config
->shared_dpll
= intel_get_shared_dpll_by_id(dev_priv
, id
);
10522 static void haswell_get_ddi_pll(struct drm_i915_private
*dev_priv
,
10524 struct intel_crtc_state
*pipe_config
)
10526 enum intel_dpll_id id
;
10527 uint32_t ddi_pll_sel
= I915_READ(PORT_CLK_SEL(port
));
10529 switch (ddi_pll_sel
) {
10530 case PORT_CLK_SEL_WRPLL1
:
10531 id
= DPLL_ID_WRPLL1
;
10533 case PORT_CLK_SEL_WRPLL2
:
10534 id
= DPLL_ID_WRPLL2
;
10536 case PORT_CLK_SEL_SPLL
:
10539 case PORT_CLK_SEL_LCPLL_810
:
10540 id
= DPLL_ID_LCPLL_810
;
10542 case PORT_CLK_SEL_LCPLL_1350
:
10543 id
= DPLL_ID_LCPLL_1350
;
10545 case PORT_CLK_SEL_LCPLL_2700
:
10546 id
= DPLL_ID_LCPLL_2700
;
10549 MISSING_CASE(ddi_pll_sel
);
10551 case PORT_CLK_SEL_NONE
:
10555 pipe_config
->shared_dpll
= intel_get_shared_dpll_by_id(dev_priv
, id
);
10558 static bool hsw_get_transcoder_state(struct intel_crtc
*crtc
,
10559 struct intel_crtc_state
*pipe_config
,
10560 unsigned long *power_domain_mask
)
10562 struct drm_device
*dev
= crtc
->base
.dev
;
10563 struct drm_i915_private
*dev_priv
= to_i915(dev
);
10564 enum intel_display_power_domain power_domain
;
10568 * The pipe->transcoder mapping is fixed with the exception of the eDP
10569 * transcoder handled below.
10571 pipe_config
->cpu_transcoder
= (enum transcoder
) crtc
->pipe
;
10574 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10575 * consistency and less surprising code; it's in always on power).
10577 tmp
= I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP
));
10578 if (tmp
& TRANS_DDI_FUNC_ENABLE
) {
10579 enum pipe trans_edp_pipe
;
10580 switch (tmp
& TRANS_DDI_EDP_INPUT_MASK
) {
10582 WARN(1, "unknown pipe linked to edp transcoder\n");
10583 case TRANS_DDI_EDP_INPUT_A_ONOFF
:
10584 case TRANS_DDI_EDP_INPUT_A_ON
:
10585 trans_edp_pipe
= PIPE_A
;
10587 case TRANS_DDI_EDP_INPUT_B_ONOFF
:
10588 trans_edp_pipe
= PIPE_B
;
10590 case TRANS_DDI_EDP_INPUT_C_ONOFF
:
10591 trans_edp_pipe
= PIPE_C
;
10595 if (trans_edp_pipe
== crtc
->pipe
)
10596 pipe_config
->cpu_transcoder
= TRANSCODER_EDP
;
10599 power_domain
= POWER_DOMAIN_TRANSCODER(pipe_config
->cpu_transcoder
);
10600 if (!intel_display_power_get_if_enabled(dev_priv
, power_domain
))
10602 *power_domain_mask
|= BIT(power_domain
);
10604 tmp
= I915_READ(PIPECONF(pipe_config
->cpu_transcoder
));
10606 return tmp
& PIPECONF_ENABLE
;
10609 static bool bxt_get_dsi_transcoder_state(struct intel_crtc
*crtc
,
10610 struct intel_crtc_state
*pipe_config
,
10611 unsigned long *power_domain_mask
)
10613 struct drm_device
*dev
= crtc
->base
.dev
;
10614 struct drm_i915_private
*dev_priv
= to_i915(dev
);
10615 enum intel_display_power_domain power_domain
;
10617 enum transcoder cpu_transcoder
;
10620 for_each_port_masked(port
, BIT(PORT_A
) | BIT(PORT_C
)) {
10621 if (port
== PORT_A
)
10622 cpu_transcoder
= TRANSCODER_DSI_A
;
10624 cpu_transcoder
= TRANSCODER_DSI_C
;
10626 power_domain
= POWER_DOMAIN_TRANSCODER(cpu_transcoder
);
10627 if (!intel_display_power_get_if_enabled(dev_priv
, power_domain
))
10629 *power_domain_mask
|= BIT(power_domain
);
10632 * The PLL needs to be enabled with a valid divider
10633 * configuration, otherwise accessing DSI registers will hang
10634 * the machine. See BSpec North Display Engine
10635 * registers/MIPI[BXT]. We can break out here early, since we
10636 * need the same DSI PLL to be enabled for both DSI ports.
10638 if (!intel_dsi_pll_is_enabled(dev_priv
))
10641 /* XXX: this works for video mode only */
10642 tmp
= I915_READ(BXT_MIPI_PORT_CTRL(port
));
10643 if (!(tmp
& DPI_ENABLE
))
10646 tmp
= I915_READ(MIPI_CTRL(port
));
10647 if ((tmp
& BXT_PIPE_SELECT_MASK
) != BXT_PIPE_SELECT(crtc
->pipe
))
10650 pipe_config
->cpu_transcoder
= cpu_transcoder
;
10654 return transcoder_is_dsi(pipe_config
->cpu_transcoder
);
10657 static void haswell_get_ddi_port_state(struct intel_crtc
*crtc
,
10658 struct intel_crtc_state
*pipe_config
)
10660 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
10661 struct intel_shared_dpll
*pll
;
10665 tmp
= I915_READ(TRANS_DDI_FUNC_CTL(pipe_config
->cpu_transcoder
));
10667 port
= (tmp
& TRANS_DDI_PORT_MASK
) >> TRANS_DDI_PORT_SHIFT
;
10669 if (IS_SKYLAKE(dev_priv
) || IS_KABYLAKE(dev_priv
))
10670 skylake_get_ddi_pll(dev_priv
, port
, pipe_config
);
10671 else if (IS_GEN9_LP(dev_priv
))
10672 bxt_get_ddi_pll(dev_priv
, port
, pipe_config
);
10674 haswell_get_ddi_pll(dev_priv
, port
, pipe_config
);
10676 pll
= pipe_config
->shared_dpll
;
10678 WARN_ON(!pll
->funcs
.get_hw_state(dev_priv
, pll
,
10679 &pipe_config
->dpll_hw_state
));
10683 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10684 * DDI E. So just check whether this pipe is wired to DDI E and whether
10685 * the PCH transcoder is on.
10687 if (INTEL_GEN(dev_priv
) < 9 &&
10688 (port
== PORT_E
) && I915_READ(LPT_TRANSCONF
) & TRANS_ENABLE
) {
10689 pipe_config
->has_pch_encoder
= true;
10691 tmp
= I915_READ(FDI_RX_CTL(PIPE_A
));
10692 pipe_config
->fdi_lanes
= ((FDI_DP_PORT_WIDTH_MASK
& tmp
) >>
10693 FDI_DP_PORT_WIDTH_SHIFT
) + 1;
10695 ironlake_get_fdi_m_n_config(crtc
, pipe_config
);
10699 static bool haswell_get_pipe_config(struct intel_crtc
*crtc
,
10700 struct intel_crtc_state
*pipe_config
)
10702 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
10703 enum intel_display_power_domain power_domain
;
10704 unsigned long power_domain_mask
;
10707 power_domain
= POWER_DOMAIN_PIPE(crtc
->pipe
);
10708 if (!intel_display_power_get_if_enabled(dev_priv
, power_domain
))
10710 power_domain_mask
= BIT(power_domain
);
10712 pipe_config
->shared_dpll
= NULL
;
10714 active
= hsw_get_transcoder_state(crtc
, pipe_config
, &power_domain_mask
);
10716 if (IS_GEN9_LP(dev_priv
) &&
10717 bxt_get_dsi_transcoder_state(crtc
, pipe_config
, &power_domain_mask
)) {
10725 if (!transcoder_is_dsi(pipe_config
->cpu_transcoder
)) {
10726 haswell_get_ddi_port_state(crtc
, pipe_config
);
10727 intel_get_pipe_timings(crtc
, pipe_config
);
10730 intel_get_pipe_src_size(crtc
, pipe_config
);
10732 pipe_config
->gamma_mode
=
10733 I915_READ(GAMMA_MODE(crtc
->pipe
)) & GAMMA_MODE_MODE_MASK
;
10735 if (INTEL_GEN(dev_priv
) >= 9) {
10736 intel_crtc_init_scalers(crtc
, pipe_config
);
10738 pipe_config
->scaler_state
.scaler_id
= -1;
10739 pipe_config
->scaler_state
.scaler_users
&= ~(1 << SKL_CRTC_INDEX
);
10742 power_domain
= POWER_DOMAIN_PIPE_PANEL_FITTER(crtc
->pipe
);
10743 if (intel_display_power_get_if_enabled(dev_priv
, power_domain
)) {
10744 power_domain_mask
|= BIT(power_domain
);
10745 if (INTEL_GEN(dev_priv
) >= 9)
10746 skylake_get_pfit_config(crtc
, pipe_config
);
10748 ironlake_get_pfit_config(crtc
, pipe_config
);
10751 if (IS_HASWELL(dev_priv
))
10752 pipe_config
->ips_enabled
= hsw_crtc_supports_ips(crtc
) &&
10753 (I915_READ(IPS_CTL
) & IPS_ENABLE
);
10755 if (pipe_config
->cpu_transcoder
!= TRANSCODER_EDP
&&
10756 !transcoder_is_dsi(pipe_config
->cpu_transcoder
)) {
10757 pipe_config
->pixel_multiplier
=
10758 I915_READ(PIPE_MULT(pipe_config
->cpu_transcoder
)) + 1;
10760 pipe_config
->pixel_multiplier
= 1;
10764 for_each_power_domain(power_domain
, power_domain_mask
)
10765 intel_display_power_put(dev_priv
, power_domain
);
10770 static void i845_update_cursor(struct drm_crtc
*crtc
, u32 base
,
10771 const struct intel_plane_state
*plane_state
)
10773 struct drm_device
*dev
= crtc
->dev
;
10774 struct drm_i915_private
*dev_priv
= to_i915(dev
);
10775 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
10776 uint32_t cntl
= 0, size
= 0;
10778 if (plane_state
&& plane_state
->base
.visible
) {
10779 unsigned int width
= plane_state
->base
.crtc_w
;
10780 unsigned int height
= plane_state
->base
.crtc_h
;
10781 unsigned int stride
= roundup_pow_of_two(width
) * 4;
10785 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10796 cntl
|= CURSOR_ENABLE
|
10797 CURSOR_GAMMA_ENABLE
|
10798 CURSOR_FORMAT_ARGB
|
10799 CURSOR_STRIDE(stride
);
10801 size
= (height
<< 12) | width
;
10804 if (intel_crtc
->cursor_cntl
!= 0 &&
10805 (intel_crtc
->cursor_base
!= base
||
10806 intel_crtc
->cursor_size
!= size
||
10807 intel_crtc
->cursor_cntl
!= cntl
)) {
10808 /* On these chipsets we can only modify the base/size/stride
10809 * whilst the cursor is disabled.
10811 I915_WRITE(CURCNTR(PIPE_A
), 0);
10812 POSTING_READ(CURCNTR(PIPE_A
));
10813 intel_crtc
->cursor_cntl
= 0;
10816 if (intel_crtc
->cursor_base
!= base
) {
10817 I915_WRITE(CURBASE(PIPE_A
), base
);
10818 intel_crtc
->cursor_base
= base
;
10821 if (intel_crtc
->cursor_size
!= size
) {
10822 I915_WRITE(CURSIZE
, size
);
10823 intel_crtc
->cursor_size
= size
;
10826 if (intel_crtc
->cursor_cntl
!= cntl
) {
10827 I915_WRITE(CURCNTR(PIPE_A
), cntl
);
10828 POSTING_READ(CURCNTR(PIPE_A
));
10829 intel_crtc
->cursor_cntl
= cntl
;
10833 static void i9xx_update_cursor(struct drm_crtc
*crtc
, u32 base
,
10834 const struct intel_plane_state
*plane_state
)
10836 struct drm_device
*dev
= crtc
->dev
;
10837 struct drm_i915_private
*dev_priv
= to_i915(dev
);
10838 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
10839 int pipe
= intel_crtc
->pipe
;
10842 if (plane_state
&& plane_state
->base
.visible
) {
10843 cntl
= MCURSOR_GAMMA_ENABLE
;
10844 switch (plane_state
->base
.crtc_w
) {
10846 cntl
|= CURSOR_MODE_64_ARGB_AX
;
10849 cntl
|= CURSOR_MODE_128_ARGB_AX
;
10852 cntl
|= CURSOR_MODE_256_ARGB_AX
;
10855 MISSING_CASE(plane_state
->base
.crtc_w
);
10858 cntl
|= pipe
<< 28; /* Connect to correct pipe */
10860 if (HAS_DDI(dev_priv
))
10861 cntl
|= CURSOR_PIPE_CSC_ENABLE
;
10863 if (plane_state
->base
.rotation
& DRM_ROTATE_180
)
10864 cntl
|= CURSOR_ROTATE_180
;
10867 if (intel_crtc
->cursor_cntl
!= cntl
) {
10868 I915_WRITE(CURCNTR(pipe
), cntl
);
10869 POSTING_READ(CURCNTR(pipe
));
10870 intel_crtc
->cursor_cntl
= cntl
;
10873 /* and commit changes on next vblank */
10874 I915_WRITE(CURBASE(pipe
), base
);
10875 POSTING_READ(CURBASE(pipe
));
10877 intel_crtc
->cursor_base
= base
;
10880 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10881 static void intel_crtc_update_cursor(struct drm_crtc
*crtc
,
10882 const struct intel_plane_state
*plane_state
)
10884 struct drm_device
*dev
= crtc
->dev
;
10885 struct drm_i915_private
*dev_priv
= to_i915(dev
);
10886 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
10887 int pipe
= intel_crtc
->pipe
;
10888 u32 base
= intel_crtc
->cursor_addr
;
10892 int x
= plane_state
->base
.crtc_x
;
10893 int y
= plane_state
->base
.crtc_y
;
10896 pos
|= CURSOR_POS_SIGN
<< CURSOR_X_SHIFT
;
10899 pos
|= x
<< CURSOR_X_SHIFT
;
10902 pos
|= CURSOR_POS_SIGN
<< CURSOR_Y_SHIFT
;
10905 pos
|= y
<< CURSOR_Y_SHIFT
;
10907 /* ILK+ do this automagically */
10908 if (HAS_GMCH_DISPLAY(dev_priv
) &&
10909 plane_state
->base
.rotation
& DRM_ROTATE_180
) {
10910 base
+= (plane_state
->base
.crtc_h
*
10911 plane_state
->base
.crtc_w
- 1) * 4;
10915 I915_WRITE(CURPOS(pipe
), pos
);
10917 if (IS_I845G(dev_priv
) || IS_I865G(dev_priv
))
10918 i845_update_cursor(crtc
, base
, plane_state
);
10920 i9xx_update_cursor(crtc
, base
, plane_state
);
10923 static bool cursor_size_ok(struct drm_i915_private
*dev_priv
,
10924 uint32_t width
, uint32_t height
)
10926 if (width
== 0 || height
== 0)
10930 * 845g/865g are special in that they are only limited by
10931 * the width of their cursors, the height is arbitrary up to
10932 * the precision of the register. Everything else requires
10933 * square cursors, limited to a few power-of-two sizes.
10935 if (IS_I845G(dev_priv
) || IS_I865G(dev_priv
)) {
10936 if ((width
& 63) != 0)
10939 if (width
> (IS_I845G(dev_priv
) ? 64 : 512))
10945 switch (width
| height
) {
10948 if (IS_GEN2(dev_priv
))
10960 /* VESA 640x480x72Hz mode to set on the pipe */
10961 static struct drm_display_mode load_detect_mode
= {
10962 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT
, 31500, 640, 664,
10963 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC
| DRM_MODE_FLAG_NVSYNC
),
10966 struct drm_framebuffer
*
10967 __intel_framebuffer_create(struct drm_device
*dev
,
10968 struct drm_mode_fb_cmd2
*mode_cmd
,
10969 struct drm_i915_gem_object
*obj
)
10971 struct intel_framebuffer
*intel_fb
;
10974 intel_fb
= kzalloc(sizeof(*intel_fb
), GFP_KERNEL
);
10976 return ERR_PTR(-ENOMEM
);
10978 ret
= intel_framebuffer_init(dev
, intel_fb
, mode_cmd
, obj
);
10982 return &intel_fb
->base
;
10986 return ERR_PTR(ret
);
10989 static struct drm_framebuffer
*
10990 intel_framebuffer_create(struct drm_device
*dev
,
10991 struct drm_mode_fb_cmd2
*mode_cmd
,
10992 struct drm_i915_gem_object
*obj
)
10994 struct drm_framebuffer
*fb
;
10997 ret
= i915_mutex_lock_interruptible(dev
);
10999 return ERR_PTR(ret
);
11000 fb
= __intel_framebuffer_create(dev
, mode_cmd
, obj
);
11001 mutex_unlock(&dev
->struct_mutex
);
11007 intel_framebuffer_pitch_for_width(int width
, int bpp
)
11009 u32 pitch
= DIV_ROUND_UP(width
* bpp
, 8);
11010 return ALIGN(pitch
, 64);
11014 intel_framebuffer_size_for_mode(struct drm_display_mode
*mode
, int bpp
)
11016 u32 pitch
= intel_framebuffer_pitch_for_width(mode
->hdisplay
, bpp
);
11017 return PAGE_ALIGN(pitch
* mode
->vdisplay
);
11020 static struct drm_framebuffer
*
11021 intel_framebuffer_create_for_mode(struct drm_device
*dev
,
11022 struct drm_display_mode
*mode
,
11023 int depth
, int bpp
)
11025 struct drm_framebuffer
*fb
;
11026 struct drm_i915_gem_object
*obj
;
11027 struct drm_mode_fb_cmd2 mode_cmd
= { 0 };
11029 obj
= i915_gem_object_create(to_i915(dev
),
11030 intel_framebuffer_size_for_mode(mode
, bpp
));
11032 return ERR_CAST(obj
);
11034 mode_cmd
.width
= mode
->hdisplay
;
11035 mode_cmd
.height
= mode
->vdisplay
;
11036 mode_cmd
.pitches
[0] = intel_framebuffer_pitch_for_width(mode_cmd
.width
,
11038 mode_cmd
.pixel_format
= drm_mode_legacy_fb_format(bpp
, depth
);
11040 fb
= intel_framebuffer_create(dev
, &mode_cmd
, obj
);
11042 i915_gem_object_put(obj
);
11047 static struct drm_framebuffer
*
11048 mode_fits_in_fbdev(struct drm_device
*dev
,
11049 struct drm_display_mode
*mode
)
11051 #ifdef CONFIG_DRM_FBDEV_EMULATION
11052 struct drm_i915_private
*dev_priv
= to_i915(dev
);
11053 struct drm_i915_gem_object
*obj
;
11054 struct drm_framebuffer
*fb
;
11056 if (!dev_priv
->fbdev
)
11059 if (!dev_priv
->fbdev
->fb
)
11062 obj
= dev_priv
->fbdev
->fb
->obj
;
11065 fb
= &dev_priv
->fbdev
->fb
->base
;
11066 if (fb
->pitches
[0] < intel_framebuffer_pitch_for_width(mode
->hdisplay
,
11067 fb
->format
->cpp
[0] * 8))
11070 if (obj
->base
.size
< mode
->vdisplay
* fb
->pitches
[0])
11073 drm_framebuffer_reference(fb
);
11080 static int intel_modeset_setup_plane_state(struct drm_atomic_state
*state
,
11081 struct drm_crtc
*crtc
,
11082 struct drm_display_mode
*mode
,
11083 struct drm_framebuffer
*fb
,
11086 struct drm_plane_state
*plane_state
;
11087 int hdisplay
, vdisplay
;
11090 plane_state
= drm_atomic_get_plane_state(state
, crtc
->primary
);
11091 if (IS_ERR(plane_state
))
11092 return PTR_ERR(plane_state
);
11095 drm_crtc_get_hv_timing(mode
, &hdisplay
, &vdisplay
);
11097 hdisplay
= vdisplay
= 0;
11099 ret
= drm_atomic_set_crtc_for_plane(plane_state
, fb
? crtc
: NULL
);
11102 drm_atomic_set_fb_for_plane(plane_state
, fb
);
11103 plane_state
->crtc_x
= 0;
11104 plane_state
->crtc_y
= 0;
11105 plane_state
->crtc_w
= hdisplay
;
11106 plane_state
->crtc_h
= vdisplay
;
11107 plane_state
->src_x
= x
<< 16;
11108 plane_state
->src_y
= y
<< 16;
11109 plane_state
->src_w
= hdisplay
<< 16;
11110 plane_state
->src_h
= vdisplay
<< 16;
11115 bool intel_get_load_detect_pipe(struct drm_connector
*connector
,
11116 struct drm_display_mode
*mode
,
11117 struct intel_load_detect_pipe
*old
,
11118 struct drm_modeset_acquire_ctx
*ctx
)
11120 struct intel_crtc
*intel_crtc
;
11121 struct intel_encoder
*intel_encoder
=
11122 intel_attached_encoder(connector
);
11123 struct drm_crtc
*possible_crtc
;
11124 struct drm_encoder
*encoder
= &intel_encoder
->base
;
11125 struct drm_crtc
*crtc
= NULL
;
11126 struct drm_device
*dev
= encoder
->dev
;
11127 struct drm_i915_private
*dev_priv
= to_i915(dev
);
11128 struct drm_framebuffer
*fb
;
11129 struct drm_mode_config
*config
= &dev
->mode_config
;
11130 struct drm_atomic_state
*state
= NULL
, *restore_state
= NULL
;
11131 struct drm_connector_state
*connector_state
;
11132 struct intel_crtc_state
*crtc_state
;
11135 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11136 connector
->base
.id
, connector
->name
,
11137 encoder
->base
.id
, encoder
->name
);
11139 old
->restore_state
= NULL
;
11142 ret
= drm_modeset_lock(&config
->connection_mutex
, ctx
);
11147 * Algorithm gets a little messy:
11149 * - if the connector already has an assigned crtc, use it (but make
11150 * sure it's on first)
11152 * - try to find the first unused crtc that can drive this connector,
11153 * and use that if we find one
11156 /* See if we already have a CRTC for this connector */
11157 if (connector
->state
->crtc
) {
11158 crtc
= connector
->state
->crtc
;
11160 ret
= drm_modeset_lock(&crtc
->mutex
, ctx
);
11164 /* Make sure the crtc and connector are running */
11168 /* Find an unused one (if possible) */
11169 for_each_crtc(dev
, possible_crtc
) {
11171 if (!(encoder
->possible_crtcs
& (1 << i
)))
11174 ret
= drm_modeset_lock(&possible_crtc
->mutex
, ctx
);
11178 if (possible_crtc
->state
->enable
) {
11179 drm_modeset_unlock(&possible_crtc
->mutex
);
11183 crtc
= possible_crtc
;
11188 * If we didn't find an unused CRTC, don't use any.
11191 DRM_DEBUG_KMS("no pipe available for load-detect\n");
11196 intel_crtc
= to_intel_crtc(crtc
);
11198 ret
= drm_modeset_lock(&crtc
->primary
->mutex
, ctx
);
11202 state
= drm_atomic_state_alloc(dev
);
11203 restore_state
= drm_atomic_state_alloc(dev
);
11204 if (!state
|| !restore_state
) {
11209 state
->acquire_ctx
= ctx
;
11210 restore_state
->acquire_ctx
= ctx
;
11212 connector_state
= drm_atomic_get_connector_state(state
, connector
);
11213 if (IS_ERR(connector_state
)) {
11214 ret
= PTR_ERR(connector_state
);
11218 ret
= drm_atomic_set_crtc_for_connector(connector_state
, crtc
);
11222 crtc_state
= intel_atomic_get_crtc_state(state
, intel_crtc
);
11223 if (IS_ERR(crtc_state
)) {
11224 ret
= PTR_ERR(crtc_state
);
11228 crtc_state
->base
.active
= crtc_state
->base
.enable
= true;
11231 mode
= &load_detect_mode
;
11233 /* We need a framebuffer large enough to accommodate all accesses
11234 * that the plane may generate whilst we perform load detection.
11235 * We can not rely on the fbcon either being present (we get called
11236 * during its initialisation to detect all boot displays, or it may
11237 * not even exist) or that it is large enough to satisfy the
11240 fb
= mode_fits_in_fbdev(dev
, mode
);
11242 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
11243 fb
= intel_framebuffer_create_for_mode(dev
, mode
, 24, 32);
11245 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
11247 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
11251 ret
= intel_modeset_setup_plane_state(state
, crtc
, mode
, fb
, 0, 0);
11255 drm_framebuffer_unreference(fb
);
11257 ret
= drm_atomic_set_mode_for_crtc(&crtc_state
->base
, mode
);
11261 ret
= PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state
, connector
));
11263 ret
= PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state
, crtc
));
11265 ret
= PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state
, crtc
->primary
));
11267 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret
);
11271 ret
= drm_atomic_commit(state
);
11273 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
11277 old
->restore_state
= restore_state
;
11278 drm_atomic_state_put(state
);
11280 /* let the connector get through one full cycle before testing */
11281 intel_wait_for_vblank(dev_priv
, intel_crtc
->pipe
);
11286 drm_atomic_state_put(state
);
11289 if (restore_state
) {
11290 drm_atomic_state_put(restore_state
);
11291 restore_state
= NULL
;
11294 if (ret
== -EDEADLK
) {
11295 drm_modeset_backoff(ctx
);
11302 void intel_release_load_detect_pipe(struct drm_connector
*connector
,
11303 struct intel_load_detect_pipe
*old
,
11304 struct drm_modeset_acquire_ctx
*ctx
)
11306 struct intel_encoder
*intel_encoder
=
11307 intel_attached_encoder(connector
);
11308 struct drm_encoder
*encoder
= &intel_encoder
->base
;
11309 struct drm_atomic_state
*state
= old
->restore_state
;
11312 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11313 connector
->base
.id
, connector
->name
,
11314 encoder
->base
.id
, encoder
->name
);
11319 ret
= drm_atomic_commit(state
);
11321 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret
);
11322 drm_atomic_state_put(state
);
11325 static int i9xx_pll_refclk(struct drm_device
*dev
,
11326 const struct intel_crtc_state
*pipe_config
)
11328 struct drm_i915_private
*dev_priv
= to_i915(dev
);
11329 u32 dpll
= pipe_config
->dpll_hw_state
.dpll
;
11331 if ((dpll
& PLL_REF_INPUT_MASK
) == PLLB_REF_INPUT_SPREADSPECTRUMIN
)
11332 return dev_priv
->vbt
.lvds_ssc_freq
;
11333 else if (HAS_PCH_SPLIT(dev_priv
))
11335 else if (!IS_GEN2(dev_priv
))
11341 /* Returns the clock of the currently programmed mode of the given pipe. */
11342 static void i9xx_crtc_clock_get(struct intel_crtc
*crtc
,
11343 struct intel_crtc_state
*pipe_config
)
11345 struct drm_device
*dev
= crtc
->base
.dev
;
11346 struct drm_i915_private
*dev_priv
= to_i915(dev
);
11347 int pipe
= pipe_config
->cpu_transcoder
;
11348 u32 dpll
= pipe_config
->dpll_hw_state
.dpll
;
11352 int refclk
= i9xx_pll_refclk(dev
, pipe_config
);
11354 if ((dpll
& DISPLAY_RATE_SELECT_FPA1
) == 0)
11355 fp
= pipe_config
->dpll_hw_state
.fp0
;
11357 fp
= pipe_config
->dpll_hw_state
.fp1
;
11359 clock
.m1
= (fp
& FP_M1_DIV_MASK
) >> FP_M1_DIV_SHIFT
;
11360 if (IS_PINEVIEW(dev_priv
)) {
11361 clock
.n
= ffs((fp
& FP_N_PINEVIEW_DIV_MASK
) >> FP_N_DIV_SHIFT
) - 1;
11362 clock
.m2
= (fp
& FP_M2_PINEVIEW_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
11364 clock
.n
= (fp
& FP_N_DIV_MASK
) >> FP_N_DIV_SHIFT
;
11365 clock
.m2
= (fp
& FP_M2_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
11368 if (!IS_GEN2(dev_priv
)) {
11369 if (IS_PINEVIEW(dev_priv
))
11370 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW
) >>
11371 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW
);
11373 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK
) >>
11374 DPLL_FPA01_P1_POST_DIV_SHIFT
);
11376 switch (dpll
& DPLL_MODE_MASK
) {
11377 case DPLLB_MODE_DAC_SERIAL
:
11378 clock
.p2
= dpll
& DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
?
11381 case DPLLB_MODE_LVDS
:
11382 clock
.p2
= dpll
& DPLLB_LVDS_P2_CLOCK_DIV_7
?
11386 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
11387 "mode\n", (int)(dpll
& DPLL_MODE_MASK
));
11391 if (IS_PINEVIEW(dev_priv
))
11392 port_clock
= pnv_calc_dpll_params(refclk
, &clock
);
11394 port_clock
= i9xx_calc_dpll_params(refclk
, &clock
);
11396 u32 lvds
= IS_I830(dev_priv
) ? 0 : I915_READ(LVDS
);
11397 bool is_lvds
= (pipe
== 1) && (lvds
& LVDS_PORT_EN
);
11400 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS
) >>
11401 DPLL_FPA01_P1_POST_DIV_SHIFT
);
11403 if (lvds
& LVDS_CLKB_POWER_UP
)
11408 if (dpll
& PLL_P1_DIVIDE_BY_TWO
)
11411 clock
.p1
= ((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_I830
) >>
11412 DPLL_FPA01_P1_POST_DIV_SHIFT
) + 2;
11414 if (dpll
& PLL_P2_DIVIDE_BY_4
)
11420 port_clock
= i9xx_calc_dpll_params(refclk
, &clock
);
11424 * This value includes pixel_multiplier. We will use
11425 * port_clock to compute adjusted_mode.crtc_clock in the
11426 * encoder's get_config() function.
11428 pipe_config
->port_clock
= port_clock
;
11431 int intel_dotclock_calculate(int link_freq
,
11432 const struct intel_link_m_n
*m_n
)
11435 * The calculation for the data clock is:
11436 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
11437 * But we want to avoid losing precison if possible, so:
11438 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
11440 * and the link clock is simpler:
11441 * link_clock = (m * link_clock) / n
11447 return div_u64((u64
)m_n
->link_m
* link_freq
, m_n
->link_n
);
11450 static void ironlake_pch_clock_get(struct intel_crtc
*crtc
,
11451 struct intel_crtc_state
*pipe_config
)
11453 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
11455 /* read out port_clock from the DPLL */
11456 i9xx_crtc_clock_get(crtc
, pipe_config
);
11459 * In case there is an active pipe without active ports,
11460 * we may need some idea for the dotclock anyway.
11461 * Calculate one based on the FDI configuration.
11463 pipe_config
->base
.adjusted_mode
.crtc_clock
=
11464 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv
, pipe_config
),
11465 &pipe_config
->fdi_m_n
);
11468 /** Returns the currently programmed mode of the given pipe. */
11469 struct drm_display_mode
*intel_crtc_mode_get(struct drm_device
*dev
,
11470 struct drm_crtc
*crtc
)
11472 struct drm_i915_private
*dev_priv
= to_i915(dev
);
11473 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
11474 enum transcoder cpu_transcoder
= intel_crtc
->config
->cpu_transcoder
;
11475 struct drm_display_mode
*mode
;
11476 struct intel_crtc_state
*pipe_config
;
11477 int htot
= I915_READ(HTOTAL(cpu_transcoder
));
11478 int hsync
= I915_READ(HSYNC(cpu_transcoder
));
11479 int vtot
= I915_READ(VTOTAL(cpu_transcoder
));
11480 int vsync
= I915_READ(VSYNC(cpu_transcoder
));
11481 enum pipe pipe
= intel_crtc
->pipe
;
11483 mode
= kzalloc(sizeof(*mode
), GFP_KERNEL
);
11487 pipe_config
= kzalloc(sizeof(*pipe_config
), GFP_KERNEL
);
11488 if (!pipe_config
) {
11494 * Construct a pipe_config sufficient for getting the clock info
11495 * back out of crtc_clock_get.
11497 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
11498 * to use a real value here instead.
11500 pipe_config
->cpu_transcoder
= (enum transcoder
) pipe
;
11501 pipe_config
->pixel_multiplier
= 1;
11502 pipe_config
->dpll_hw_state
.dpll
= I915_READ(DPLL(pipe
));
11503 pipe_config
->dpll_hw_state
.fp0
= I915_READ(FP0(pipe
));
11504 pipe_config
->dpll_hw_state
.fp1
= I915_READ(FP1(pipe
));
11505 i9xx_crtc_clock_get(intel_crtc
, pipe_config
);
11507 mode
->clock
= pipe_config
->port_clock
/ pipe_config
->pixel_multiplier
;
11508 mode
->hdisplay
= (htot
& 0xffff) + 1;
11509 mode
->htotal
= ((htot
& 0xffff0000) >> 16) + 1;
11510 mode
->hsync_start
= (hsync
& 0xffff) + 1;
11511 mode
->hsync_end
= ((hsync
& 0xffff0000) >> 16) + 1;
11512 mode
->vdisplay
= (vtot
& 0xffff) + 1;
11513 mode
->vtotal
= ((vtot
& 0xffff0000) >> 16) + 1;
11514 mode
->vsync_start
= (vsync
& 0xffff) + 1;
11515 mode
->vsync_end
= ((vsync
& 0xffff0000) >> 16) + 1;
11517 drm_mode_set_name(mode
);
11519 kfree(pipe_config
);
11524 static void intel_crtc_destroy(struct drm_crtc
*crtc
)
11526 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
11527 struct drm_device
*dev
= crtc
->dev
;
11528 struct intel_flip_work
*work
;
11530 spin_lock_irq(&dev
->event_lock
);
11531 work
= intel_crtc
->flip_work
;
11532 intel_crtc
->flip_work
= NULL
;
11533 spin_unlock_irq(&dev
->event_lock
);
11536 cancel_work_sync(&work
->mmio_work
);
11537 cancel_work_sync(&work
->unpin_work
);
11541 drm_crtc_cleanup(crtc
);
11546 static void intel_unpin_work_fn(struct work_struct
*__work
)
11548 struct intel_flip_work
*work
=
11549 container_of(__work
, struct intel_flip_work
, unpin_work
);
11550 struct intel_crtc
*crtc
= to_intel_crtc(work
->crtc
);
11551 struct drm_device
*dev
= crtc
->base
.dev
;
11552 struct drm_plane
*primary
= crtc
->base
.primary
;
11554 if (is_mmio_work(work
))
11555 flush_work(&work
->mmio_work
);
11557 mutex_lock(&dev
->struct_mutex
);
11558 intel_unpin_fb_vma(work
->old_vma
);
11559 i915_gem_object_put(work
->pending_flip_obj
);
11560 mutex_unlock(&dev
->struct_mutex
);
11562 i915_gem_request_put(work
->flip_queued_req
);
11564 intel_frontbuffer_flip_complete(to_i915(dev
),
11565 to_intel_plane(primary
)->frontbuffer_bit
);
11566 intel_fbc_post_update(crtc
);
11567 drm_framebuffer_unreference(work
->old_fb
);
11569 BUG_ON(atomic_read(&crtc
->unpin_work_count
) == 0);
11570 atomic_dec(&crtc
->unpin_work_count
);
11575 /* Is 'a' after or equal to 'b'? */
11576 static bool g4x_flip_count_after_eq(u32 a
, u32 b
)
11578 return !((a
- b
) & 0x80000000);
11581 static bool __pageflip_finished_cs(struct intel_crtc
*crtc
,
11582 struct intel_flip_work
*work
)
11584 struct drm_device
*dev
= crtc
->base
.dev
;
11585 struct drm_i915_private
*dev_priv
= to_i915(dev
);
11587 if (abort_flip_on_reset(crtc
))
11591 * The relevant registers doen't exist on pre-ctg.
11592 * As the flip done interrupt doesn't trigger for mmio
11593 * flips on gmch platforms, a flip count check isn't
11594 * really needed there. But since ctg has the registers,
11595 * include it in the check anyway.
11597 if (INTEL_GEN(dev_priv
) < 5 && !IS_G4X(dev_priv
))
11601 * BDW signals flip done immediately if the plane
11602 * is disabled, even if the plane enable is already
11603 * armed to occur at the next vblank :(
11607 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11608 * used the same base address. In that case the mmio flip might
11609 * have completed, but the CS hasn't even executed the flip yet.
11611 * A flip count check isn't enough as the CS might have updated
11612 * the base address just after start of vblank, but before we
11613 * managed to process the interrupt. This means we'd complete the
11614 * CS flip too soon.
11616 * Combining both checks should get us a good enough result. It may
11617 * still happen that the CS flip has been executed, but has not
11618 * yet actually completed. But in case the base address is the same
11619 * anyway, we don't really care.
11621 return (I915_READ(DSPSURFLIVE(crtc
->plane
)) & ~0xfff) ==
11622 crtc
->flip_work
->gtt_offset
&&
11623 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc
->pipe
)),
11624 crtc
->flip_work
->flip_count
);
11628 __pageflip_finished_mmio(struct intel_crtc
*crtc
,
11629 struct intel_flip_work
*work
)
11632 * MMIO work completes when vblank is different from
11633 * flip_queued_vblank.
11635 * Reset counter value doesn't matter, this is handled by
11636 * i915_wait_request finishing early, so no need to handle
11639 return intel_crtc_get_vblank_counter(crtc
) != work
->flip_queued_vblank
;
11643 static bool pageflip_finished(struct intel_crtc
*crtc
,
11644 struct intel_flip_work
*work
)
11646 if (!atomic_read(&work
->pending
))
11651 if (is_mmio_work(work
))
11652 return __pageflip_finished_mmio(crtc
, work
);
11654 return __pageflip_finished_cs(crtc
, work
);
11657 void intel_finish_page_flip_cs(struct drm_i915_private
*dev_priv
, int pipe
)
11659 struct drm_device
*dev
= &dev_priv
->drm
;
11660 struct intel_crtc
*crtc
= intel_get_crtc_for_pipe(dev_priv
, pipe
);
11661 struct intel_flip_work
*work
;
11662 unsigned long flags
;
11664 /* Ignore early vblank irqs */
11669 * This is called both by irq handlers and the reset code (to complete
11670 * lost pageflips) so needs the full irqsave spinlocks.
11672 spin_lock_irqsave(&dev
->event_lock
, flags
);
11673 work
= crtc
->flip_work
;
11675 if (work
!= NULL
&&
11676 !is_mmio_work(work
) &&
11677 pageflip_finished(crtc
, work
))
11678 page_flip_completed(crtc
);
11680 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
11683 void intel_finish_page_flip_mmio(struct drm_i915_private
*dev_priv
, int pipe
)
11685 struct drm_device
*dev
= &dev_priv
->drm
;
11686 struct intel_crtc
*crtc
= intel_get_crtc_for_pipe(dev_priv
, pipe
);
11687 struct intel_flip_work
*work
;
11688 unsigned long flags
;
11690 /* Ignore early vblank irqs */
11695 * This is called both by irq handlers and the reset code (to complete
11696 * lost pageflips) so needs the full irqsave spinlocks.
11698 spin_lock_irqsave(&dev
->event_lock
, flags
);
11699 work
= crtc
->flip_work
;
11701 if (work
!= NULL
&&
11702 is_mmio_work(work
) &&
11703 pageflip_finished(crtc
, work
))
11704 page_flip_completed(crtc
);
11706 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
11709 static inline void intel_mark_page_flip_active(struct intel_crtc
*crtc
,
11710 struct intel_flip_work
*work
)
11712 work
->flip_queued_vblank
= intel_crtc_get_vblank_counter(crtc
);
11714 /* Ensure that the work item is consistent when activating it ... */
11715 smp_mb__before_atomic();
11716 atomic_set(&work
->pending
, 1);
11719 static int intel_gen2_queue_flip(struct drm_device
*dev
,
11720 struct drm_crtc
*crtc
,
11721 struct drm_framebuffer
*fb
,
11722 struct drm_i915_gem_object
*obj
,
11723 struct drm_i915_gem_request
*req
,
11726 struct intel_ring
*ring
= req
->ring
;
11727 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
11731 ret
= intel_ring_begin(req
, 6);
11735 /* Can't queue multiple flips, so wait for the previous
11736 * one to finish before executing the next.
11738 if (intel_crtc
->plane
)
11739 flip_mask
= MI_WAIT_FOR_PLANE_B_FLIP
;
11741 flip_mask
= MI_WAIT_FOR_PLANE_A_FLIP
;
11742 intel_ring_emit(ring
, MI_WAIT_FOR_EVENT
| flip_mask
);
11743 intel_ring_emit(ring
, MI_NOOP
);
11744 intel_ring_emit(ring
, MI_DISPLAY_FLIP
|
11745 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
11746 intel_ring_emit(ring
, fb
->pitches
[0]);
11747 intel_ring_emit(ring
, intel_crtc
->flip_work
->gtt_offset
);
11748 intel_ring_emit(ring
, 0); /* aux display base address, unused */
11753 static int intel_gen3_queue_flip(struct drm_device
*dev
,
11754 struct drm_crtc
*crtc
,
11755 struct drm_framebuffer
*fb
,
11756 struct drm_i915_gem_object
*obj
,
11757 struct drm_i915_gem_request
*req
,
11760 struct intel_ring
*ring
= req
->ring
;
11761 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
11765 ret
= intel_ring_begin(req
, 6);
11769 if (intel_crtc
->plane
)
11770 flip_mask
= MI_WAIT_FOR_PLANE_B_FLIP
;
11772 flip_mask
= MI_WAIT_FOR_PLANE_A_FLIP
;
11773 intel_ring_emit(ring
, MI_WAIT_FOR_EVENT
| flip_mask
);
11774 intel_ring_emit(ring
, MI_NOOP
);
11775 intel_ring_emit(ring
, MI_DISPLAY_FLIP_I915
|
11776 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
11777 intel_ring_emit(ring
, fb
->pitches
[0]);
11778 intel_ring_emit(ring
, intel_crtc
->flip_work
->gtt_offset
);
11779 intel_ring_emit(ring
, MI_NOOP
);
11784 static int intel_gen4_queue_flip(struct drm_device
*dev
,
11785 struct drm_crtc
*crtc
,
11786 struct drm_framebuffer
*fb
,
11787 struct drm_i915_gem_object
*obj
,
11788 struct drm_i915_gem_request
*req
,
11791 struct intel_ring
*ring
= req
->ring
;
11792 struct drm_i915_private
*dev_priv
= to_i915(dev
);
11793 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
11794 uint32_t pf
, pipesrc
;
11797 ret
= intel_ring_begin(req
, 4);
11801 /* i965+ uses the linear or tiled offsets from the
11802 * Display Registers (which do not change across a page-flip)
11803 * so we need only reprogram the base address.
11805 intel_ring_emit(ring
, MI_DISPLAY_FLIP
|
11806 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
11807 intel_ring_emit(ring
, fb
->pitches
[0]);
11808 intel_ring_emit(ring
, intel_crtc
->flip_work
->gtt_offset
|
11809 intel_fb_modifier_to_tiling(fb
->modifier
));
11811 /* XXX Enabling the panel-fitter across page-flip is so far
11812 * untested on non-native modes, so ignore it for now.
11813 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11816 pipesrc
= I915_READ(PIPESRC(intel_crtc
->pipe
)) & 0x0fff0fff;
11817 intel_ring_emit(ring
, pf
| pipesrc
);
11822 static int intel_gen6_queue_flip(struct drm_device
*dev
,
11823 struct drm_crtc
*crtc
,
11824 struct drm_framebuffer
*fb
,
11825 struct drm_i915_gem_object
*obj
,
11826 struct drm_i915_gem_request
*req
,
11829 struct intel_ring
*ring
= req
->ring
;
11830 struct drm_i915_private
*dev_priv
= to_i915(dev
);
11831 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
11832 uint32_t pf
, pipesrc
;
11835 ret
= intel_ring_begin(req
, 4);
11839 intel_ring_emit(ring
, MI_DISPLAY_FLIP
|
11840 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
11841 intel_ring_emit(ring
, fb
->pitches
[0] |
11842 intel_fb_modifier_to_tiling(fb
->modifier
));
11843 intel_ring_emit(ring
, intel_crtc
->flip_work
->gtt_offset
);
11845 /* Contrary to the suggestions in the documentation,
11846 * "Enable Panel Fitter" does not seem to be required when page
11847 * flipping with a non-native mode, and worse causes a normal
11849 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11852 pipesrc
= I915_READ(PIPESRC(intel_crtc
->pipe
)) & 0x0fff0fff;
11853 intel_ring_emit(ring
, pf
| pipesrc
);
11858 static int intel_gen7_queue_flip(struct drm_device
*dev
,
11859 struct drm_crtc
*crtc
,
11860 struct drm_framebuffer
*fb
,
11861 struct drm_i915_gem_object
*obj
,
11862 struct drm_i915_gem_request
*req
,
11865 struct drm_i915_private
*dev_priv
= to_i915(dev
);
11866 struct intel_ring
*ring
= req
->ring
;
11867 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
11868 uint32_t plane_bit
= 0;
11871 switch (intel_crtc
->plane
) {
11873 plane_bit
= MI_DISPLAY_FLIP_IVB_PLANE_A
;
11876 plane_bit
= MI_DISPLAY_FLIP_IVB_PLANE_B
;
11879 plane_bit
= MI_DISPLAY_FLIP_IVB_PLANE_C
;
11882 WARN_ONCE(1, "unknown plane in flip command\n");
11887 if (req
->engine
->id
== RCS
) {
11890 * On Gen 8, SRM is now taking an extra dword to accommodate
11891 * 48bits addresses, and we need a NOOP for the batch size to
11894 if (IS_GEN8(dev_priv
))
11899 * BSpec MI_DISPLAY_FLIP for IVB:
11900 * "The full packet must be contained within the same cache line."
11902 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11903 * cacheline, if we ever start emitting more commands before
11904 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11905 * then do the cacheline alignment, and finally emit the
11908 ret
= intel_ring_cacheline_align(req
);
11912 ret
= intel_ring_begin(req
, len
);
11916 /* Unmask the flip-done completion message. Note that the bspec says that
11917 * we should do this for both the BCS and RCS, and that we must not unmask
11918 * more than one flip event at any time (or ensure that one flip message
11919 * can be sent by waiting for flip-done prior to queueing new flips).
11920 * Experimentation says that BCS works despite DERRMR masking all
11921 * flip-done completion events and that unmasking all planes at once
11922 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11923 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11925 if (req
->engine
->id
== RCS
) {
11926 intel_ring_emit(ring
, MI_LOAD_REGISTER_IMM(1));
11927 intel_ring_emit_reg(ring
, DERRMR
);
11928 intel_ring_emit(ring
, ~(DERRMR_PIPEA_PRI_FLIP_DONE
|
11929 DERRMR_PIPEB_PRI_FLIP_DONE
|
11930 DERRMR_PIPEC_PRI_FLIP_DONE
));
11931 if (IS_GEN8(dev_priv
))
11932 intel_ring_emit(ring
, MI_STORE_REGISTER_MEM_GEN8
|
11933 MI_SRM_LRM_GLOBAL_GTT
);
11935 intel_ring_emit(ring
, MI_STORE_REGISTER_MEM
|
11936 MI_SRM_LRM_GLOBAL_GTT
);
11937 intel_ring_emit_reg(ring
, DERRMR
);
11938 intel_ring_emit(ring
,
11939 i915_ggtt_offset(req
->engine
->scratch
) + 256);
11940 if (IS_GEN8(dev_priv
)) {
11941 intel_ring_emit(ring
, 0);
11942 intel_ring_emit(ring
, MI_NOOP
);
11946 intel_ring_emit(ring
, MI_DISPLAY_FLIP_I915
| plane_bit
);
11947 intel_ring_emit(ring
, fb
->pitches
[0] |
11948 intel_fb_modifier_to_tiling(fb
->modifier
));
11949 intel_ring_emit(ring
, intel_crtc
->flip_work
->gtt_offset
);
11950 intel_ring_emit(ring
, (MI_NOOP
));
11955 static bool use_mmio_flip(struct intel_engine_cs
*engine
,
11956 struct drm_i915_gem_object
*obj
)
11959 * This is not being used for older platforms, because
11960 * non-availability of flip done interrupt forces us to use
11961 * CS flips. Older platforms derive flip done using some clever
11962 * tricks involving the flip_pending status bits and vblank irqs.
11963 * So using MMIO flips there would disrupt this mechanism.
11966 if (engine
== NULL
)
11969 if (INTEL_GEN(engine
->i915
) < 5)
11972 if (i915
.use_mmio_flip
< 0)
11974 else if (i915
.use_mmio_flip
> 0)
11976 else if (i915
.enable_execlists
)
11979 return engine
!= i915_gem_object_last_write_engine(obj
);
11982 static void skl_do_mmio_flip(struct intel_crtc
*intel_crtc
,
11983 unsigned int rotation
,
11984 struct intel_flip_work
*work
)
11986 struct drm_device
*dev
= intel_crtc
->base
.dev
;
11987 struct drm_i915_private
*dev_priv
= to_i915(dev
);
11988 struct drm_framebuffer
*fb
= intel_crtc
->base
.primary
->fb
;
11989 const enum pipe pipe
= intel_crtc
->pipe
;
11990 u32 ctl
, stride
= skl_plane_stride(fb
, 0, rotation
);
11992 ctl
= I915_READ(PLANE_CTL(pipe
, 0));
11993 ctl
&= ~PLANE_CTL_TILED_MASK
;
11994 switch (fb
->modifier
) {
11995 case DRM_FORMAT_MOD_NONE
:
11997 case I915_FORMAT_MOD_X_TILED
:
11998 ctl
|= PLANE_CTL_TILED_X
;
12000 case I915_FORMAT_MOD_Y_TILED
:
12001 ctl
|= PLANE_CTL_TILED_Y
;
12003 case I915_FORMAT_MOD_Yf_TILED
:
12004 ctl
|= PLANE_CTL_TILED_YF
;
12007 MISSING_CASE(fb
->modifier
);
12011 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
12012 * PLANE_SURF updates, the update is then guaranteed to be atomic.
12014 I915_WRITE(PLANE_CTL(pipe
, 0), ctl
);
12015 I915_WRITE(PLANE_STRIDE(pipe
, 0), stride
);
12017 I915_WRITE(PLANE_SURF(pipe
, 0), work
->gtt_offset
);
12018 POSTING_READ(PLANE_SURF(pipe
, 0));
12021 static void ilk_do_mmio_flip(struct intel_crtc
*intel_crtc
,
12022 struct intel_flip_work
*work
)
12024 struct drm_device
*dev
= intel_crtc
->base
.dev
;
12025 struct drm_i915_private
*dev_priv
= to_i915(dev
);
12026 struct drm_framebuffer
*fb
= intel_crtc
->base
.primary
->fb
;
12027 i915_reg_t reg
= DSPCNTR(intel_crtc
->plane
);
12030 dspcntr
= I915_READ(reg
);
12032 if (fb
->modifier
== I915_FORMAT_MOD_X_TILED
)
12033 dspcntr
|= DISPPLANE_TILED
;
12035 dspcntr
&= ~DISPPLANE_TILED
;
12037 I915_WRITE(reg
, dspcntr
);
12039 I915_WRITE(DSPSURF(intel_crtc
->plane
), work
->gtt_offset
);
12040 POSTING_READ(DSPSURF(intel_crtc
->plane
));
12043 static void intel_mmio_flip_work_func(struct work_struct
*w
)
12045 struct intel_flip_work
*work
=
12046 container_of(w
, struct intel_flip_work
, mmio_work
);
12047 struct intel_crtc
*crtc
= to_intel_crtc(work
->crtc
);
12048 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
12049 struct intel_framebuffer
*intel_fb
=
12050 to_intel_framebuffer(crtc
->base
.primary
->fb
);
12051 struct drm_i915_gem_object
*obj
= intel_fb
->obj
;
12053 WARN_ON(i915_gem_object_wait(obj
, 0, MAX_SCHEDULE_TIMEOUT
, NULL
) < 0);
12055 intel_pipe_update_start(crtc
);
12057 if (INTEL_GEN(dev_priv
) >= 9)
12058 skl_do_mmio_flip(crtc
, work
->rotation
, work
);
12060 /* use_mmio_flip() retricts MMIO flips to ilk+ */
12061 ilk_do_mmio_flip(crtc
, work
);
12063 intel_pipe_update_end(crtc
, work
);
12066 static int intel_default_queue_flip(struct drm_device
*dev
,
12067 struct drm_crtc
*crtc
,
12068 struct drm_framebuffer
*fb
,
12069 struct drm_i915_gem_object
*obj
,
12070 struct drm_i915_gem_request
*req
,
12076 static bool __pageflip_stall_check_cs(struct drm_i915_private
*dev_priv
,
12077 struct intel_crtc
*intel_crtc
,
12078 struct intel_flip_work
*work
)
12082 if (!atomic_read(&work
->pending
))
12087 vblank
= intel_crtc_get_vblank_counter(intel_crtc
);
12088 if (work
->flip_ready_vblank
== 0) {
12089 if (work
->flip_queued_req
&&
12090 !i915_gem_request_completed(work
->flip_queued_req
))
12093 work
->flip_ready_vblank
= vblank
;
12096 if (vblank
- work
->flip_ready_vblank
< 3)
12099 /* Potential stall - if we see that the flip has happened,
12100 * assume a missed interrupt. */
12101 if (INTEL_GEN(dev_priv
) >= 4)
12102 addr
= I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc
->plane
)));
12104 addr
= I915_READ(DSPADDR(intel_crtc
->plane
));
12106 /* There is a potential issue here with a false positive after a flip
12107 * to the same address. We could address this by checking for a
12108 * non-incrementing frame counter.
12110 return addr
== work
->gtt_offset
;
12113 void intel_check_page_flip(struct drm_i915_private
*dev_priv
, int pipe
)
12115 struct drm_device
*dev
= &dev_priv
->drm
;
12116 struct intel_crtc
*crtc
= intel_get_crtc_for_pipe(dev_priv
, pipe
);
12117 struct intel_flip_work
*work
;
12119 WARN_ON(!in_interrupt());
12124 spin_lock(&dev
->event_lock
);
12125 work
= crtc
->flip_work
;
12127 if (work
!= NULL
&& !is_mmio_work(work
) &&
12128 __pageflip_stall_check_cs(dev_priv
, crtc
, work
)) {
12130 "Kicking stuck page flip: queued at %d, now %d\n",
12131 work
->flip_queued_vblank
, intel_crtc_get_vblank_counter(crtc
));
12132 page_flip_completed(crtc
);
12136 if (work
!= NULL
&& !is_mmio_work(work
) &&
12137 intel_crtc_get_vblank_counter(crtc
) - work
->flip_queued_vblank
> 1)
12138 intel_queue_rps_boost_for_request(work
->flip_queued_req
);
12139 spin_unlock(&dev
->event_lock
);
12142 static int intel_crtc_page_flip(struct drm_crtc
*crtc
,
12143 struct drm_framebuffer
*fb
,
12144 struct drm_pending_vblank_event
*event
,
12145 uint32_t page_flip_flags
)
12147 struct drm_device
*dev
= crtc
->dev
;
12148 struct drm_i915_private
*dev_priv
= to_i915(dev
);
12149 struct drm_framebuffer
*old_fb
= crtc
->primary
->fb
;
12150 struct drm_i915_gem_object
*obj
= intel_fb_obj(fb
);
12151 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
12152 struct drm_plane
*primary
= crtc
->primary
;
12153 enum pipe pipe
= intel_crtc
->pipe
;
12154 struct intel_flip_work
*work
;
12155 struct intel_engine_cs
*engine
;
12157 struct drm_i915_gem_request
*request
;
12158 struct i915_vma
*vma
;
12162 * drm_mode_page_flip_ioctl() should already catch this, but double
12163 * check to be safe. In the future we may enable pageflipping from
12164 * a disabled primary plane.
12166 if (WARN_ON(intel_fb_obj(old_fb
) == NULL
))
12169 /* Can't change pixel format via MI display flips. */
12170 if (fb
->format
!= crtc
->primary
->fb
->format
)
12174 * TILEOFF/LINOFF registers can't be changed via MI display flips.
12175 * Note that pitch changes could also affect these register.
12177 if (INTEL_GEN(dev_priv
) > 3 &&
12178 (fb
->offsets
[0] != crtc
->primary
->fb
->offsets
[0] ||
12179 fb
->pitches
[0] != crtc
->primary
->fb
->pitches
[0]))
12182 if (i915_terminally_wedged(&dev_priv
->gpu_error
))
12185 work
= kzalloc(sizeof(*work
), GFP_KERNEL
);
12189 work
->event
= event
;
12191 work
->old_fb
= old_fb
;
12192 INIT_WORK(&work
->unpin_work
, intel_unpin_work_fn
);
12194 ret
= drm_crtc_vblank_get(crtc
);
12198 /* We borrow the event spin lock for protecting flip_work */
12199 spin_lock_irq(&dev
->event_lock
);
12200 if (intel_crtc
->flip_work
) {
12201 /* Before declaring the flip queue wedged, check if
12202 * the hardware completed the operation behind our backs.
12204 if (pageflip_finished(intel_crtc
, intel_crtc
->flip_work
)) {
12205 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
12206 page_flip_completed(intel_crtc
);
12208 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
12209 spin_unlock_irq(&dev
->event_lock
);
12211 drm_crtc_vblank_put(crtc
);
12216 intel_crtc
->flip_work
= work
;
12217 spin_unlock_irq(&dev
->event_lock
);
12219 if (atomic_read(&intel_crtc
->unpin_work_count
) >= 2)
12220 flush_workqueue(dev_priv
->wq
);
12222 /* Reference the objects for the scheduled work. */
12223 drm_framebuffer_reference(work
->old_fb
);
12225 crtc
->primary
->fb
= fb
;
12226 update_state_fb(crtc
->primary
);
12228 work
->pending_flip_obj
= i915_gem_object_get(obj
);
12230 ret
= i915_mutex_lock_interruptible(dev
);
12234 intel_crtc
->reset_count
= i915_reset_count(&dev_priv
->gpu_error
);
12235 if (i915_reset_in_progress_or_wedged(&dev_priv
->gpu_error
)) {
12240 atomic_inc(&intel_crtc
->unpin_work_count
);
12242 if (INTEL_GEN(dev_priv
) >= 5 || IS_G4X(dev_priv
))
12243 work
->flip_count
= I915_READ(PIPE_FLIPCOUNT_G4X(pipe
)) + 1;
12245 if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
)) {
12246 engine
= dev_priv
->engine
[BCS
];
12247 if (fb
->modifier
!= old_fb
->modifier
)
12248 /* vlv: DISPLAY_FLIP fails to change tiling */
12250 } else if (IS_IVYBRIDGE(dev_priv
) || IS_HASWELL(dev_priv
)) {
12251 engine
= dev_priv
->engine
[BCS
];
12252 } else if (INTEL_GEN(dev_priv
) >= 7) {
12253 engine
= i915_gem_object_last_write_engine(obj
);
12254 if (engine
== NULL
|| engine
->id
!= RCS
)
12255 engine
= dev_priv
->engine
[BCS
];
12257 engine
= dev_priv
->engine
[RCS
];
12260 mmio_flip
= use_mmio_flip(engine
, obj
);
12262 vma
= intel_pin_and_fence_fb_obj(fb
, primary
->state
->rotation
);
12264 ret
= PTR_ERR(vma
);
12265 goto cleanup_pending
;
12268 work
->old_vma
= to_intel_plane_state(primary
->state
)->vma
;
12269 to_intel_plane_state(primary
->state
)->vma
= vma
;
12271 work
->gtt_offset
= i915_ggtt_offset(vma
) + intel_crtc
->dspaddr_offset
;
12272 work
->rotation
= crtc
->primary
->state
->rotation
;
12275 * There's the potential that the next frame will not be compatible with
12276 * FBC, so we want to call pre_update() before the actual page flip.
12277 * The problem is that pre_update() caches some information about the fb
12278 * object, so we want to do this only after the object is pinned. Let's
12279 * be on the safe side and do this immediately before scheduling the
12282 intel_fbc_pre_update(intel_crtc
, intel_crtc
->config
,
12283 to_intel_plane_state(primary
->state
));
12286 INIT_WORK(&work
->mmio_work
, intel_mmio_flip_work_func
);
12287 queue_work(system_unbound_wq
, &work
->mmio_work
);
12289 request
= i915_gem_request_alloc(engine
,
12290 dev_priv
->kernel_context
);
12291 if (IS_ERR(request
)) {
12292 ret
= PTR_ERR(request
);
12293 goto cleanup_unpin
;
12296 ret
= i915_gem_request_await_object(request
, obj
, false);
12298 goto cleanup_request
;
12300 ret
= dev_priv
->display
.queue_flip(dev
, crtc
, fb
, obj
, request
,
12303 goto cleanup_request
;
12305 intel_mark_page_flip_active(intel_crtc
, work
);
12307 work
->flip_queued_req
= i915_gem_request_get(request
);
12308 i915_add_request_no_flush(request
);
12311 i915_gem_object_wait_priority(obj
, 0, I915_PRIORITY_DISPLAY
);
12312 i915_gem_track_fb(intel_fb_obj(old_fb
), obj
,
12313 to_intel_plane(primary
)->frontbuffer_bit
);
12314 mutex_unlock(&dev
->struct_mutex
);
12316 intel_frontbuffer_flip_prepare(to_i915(dev
),
12317 to_intel_plane(primary
)->frontbuffer_bit
);
12319 trace_i915_flip_request(intel_crtc
->plane
, obj
);
12324 i915_add_request_no_flush(request
);
12326 to_intel_plane_state(primary
->state
)->vma
= work
->old_vma
;
12327 intel_unpin_fb_vma(vma
);
12329 atomic_dec(&intel_crtc
->unpin_work_count
);
12331 mutex_unlock(&dev
->struct_mutex
);
12333 crtc
->primary
->fb
= old_fb
;
12334 update_state_fb(crtc
->primary
);
12336 i915_gem_object_put(obj
);
12337 drm_framebuffer_unreference(work
->old_fb
);
12339 spin_lock_irq(&dev
->event_lock
);
12340 intel_crtc
->flip_work
= NULL
;
12341 spin_unlock_irq(&dev
->event_lock
);
12343 drm_crtc_vblank_put(crtc
);
12348 struct drm_atomic_state
*state
;
12349 struct drm_plane_state
*plane_state
;
12352 state
= drm_atomic_state_alloc(dev
);
12355 state
->acquire_ctx
= drm_modeset_legacy_acquire_ctx(crtc
);
12358 plane_state
= drm_atomic_get_plane_state(state
, primary
);
12359 ret
= PTR_ERR_OR_ZERO(plane_state
);
12361 drm_atomic_set_fb_for_plane(plane_state
, fb
);
12363 ret
= drm_atomic_set_crtc_for_plane(plane_state
, crtc
);
12365 ret
= drm_atomic_commit(state
);
12368 if (ret
== -EDEADLK
) {
12369 drm_modeset_backoff(state
->acquire_ctx
);
12370 drm_atomic_state_clear(state
);
12374 drm_atomic_state_put(state
);
12376 if (ret
== 0 && event
) {
12377 spin_lock_irq(&dev
->event_lock
);
12378 drm_crtc_send_vblank_event(crtc
, event
);
12379 spin_unlock_irq(&dev
->event_lock
);
12387 * intel_wm_need_update - Check whether watermarks need updating
12388 * @plane: drm plane
12389 * @state: new plane state
12391 * Check current plane state versus the new one to determine whether
12392 * watermarks need to be recalculated.
12394 * Returns true or false.
12396 static bool intel_wm_need_update(struct drm_plane
*plane
,
12397 struct drm_plane_state
*state
)
12399 struct intel_plane_state
*new = to_intel_plane_state(state
);
12400 struct intel_plane_state
*cur
= to_intel_plane_state(plane
->state
);
12402 /* Update watermarks on tiling or size changes. */
12403 if (new->base
.visible
!= cur
->base
.visible
)
12406 if (!cur
->base
.fb
|| !new->base
.fb
)
12409 if (cur
->base
.fb
->modifier
!= new->base
.fb
->modifier
||
12410 cur
->base
.rotation
!= new->base
.rotation
||
12411 drm_rect_width(&new->base
.src
) != drm_rect_width(&cur
->base
.src
) ||
12412 drm_rect_height(&new->base
.src
) != drm_rect_height(&cur
->base
.src
) ||
12413 drm_rect_width(&new->base
.dst
) != drm_rect_width(&cur
->base
.dst
) ||
12414 drm_rect_height(&new->base
.dst
) != drm_rect_height(&cur
->base
.dst
))
12420 static bool needs_scaling(struct intel_plane_state
*state
)
12422 int src_w
= drm_rect_width(&state
->base
.src
) >> 16;
12423 int src_h
= drm_rect_height(&state
->base
.src
) >> 16;
12424 int dst_w
= drm_rect_width(&state
->base
.dst
);
12425 int dst_h
= drm_rect_height(&state
->base
.dst
);
12427 return (src_w
!= dst_w
|| src_h
!= dst_h
);
12430 int intel_plane_atomic_calc_changes(struct drm_crtc_state
*crtc_state
,
12431 struct drm_plane_state
*plane_state
)
12433 struct intel_crtc_state
*pipe_config
= to_intel_crtc_state(crtc_state
);
12434 struct drm_crtc
*crtc
= crtc_state
->crtc
;
12435 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
12436 struct drm_plane
*plane
= plane_state
->plane
;
12437 struct drm_device
*dev
= crtc
->dev
;
12438 struct drm_i915_private
*dev_priv
= to_i915(dev
);
12439 struct intel_plane_state
*old_plane_state
=
12440 to_intel_plane_state(plane
->state
);
12441 bool mode_changed
= needs_modeset(crtc_state
);
12442 bool was_crtc_enabled
= crtc
->state
->active
;
12443 bool is_crtc_enabled
= crtc_state
->active
;
12444 bool turn_off
, turn_on
, visible
, was_visible
;
12445 struct drm_framebuffer
*fb
= plane_state
->fb
;
12448 if (INTEL_GEN(dev_priv
) >= 9 && plane
->type
!= DRM_PLANE_TYPE_CURSOR
) {
12449 ret
= skl_update_scaler_plane(
12450 to_intel_crtc_state(crtc_state
),
12451 to_intel_plane_state(plane_state
));
12456 was_visible
= old_plane_state
->base
.visible
;
12457 visible
= plane_state
->visible
;
12459 if (!was_crtc_enabled
&& WARN_ON(was_visible
))
12460 was_visible
= false;
12463 * Visibility is calculated as if the crtc was on, but
12464 * after scaler setup everything depends on it being off
12465 * when the crtc isn't active.
12467 * FIXME this is wrong for watermarks. Watermarks should also
12468 * be computed as if the pipe would be active. Perhaps move
12469 * per-plane wm computation to the .check_plane() hook, and
12470 * only combine the results from all planes in the current place?
12472 if (!is_crtc_enabled
)
12473 plane_state
->visible
= visible
= false;
12475 if (!was_visible
&& !visible
)
12478 if (fb
!= old_plane_state
->base
.fb
)
12479 pipe_config
->fb_changed
= true;
12481 turn_off
= was_visible
&& (!visible
|| mode_changed
);
12482 turn_on
= visible
&& (!was_visible
|| mode_changed
);
12484 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
12485 intel_crtc
->base
.base
.id
,
12486 intel_crtc
->base
.name
,
12487 plane
->base
.id
, plane
->name
,
12488 fb
? fb
->base
.id
: -1);
12490 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12491 plane
->base
.id
, plane
->name
,
12492 was_visible
, visible
,
12493 turn_off
, turn_on
, mode_changed
);
12496 pipe_config
->update_wm_pre
= true;
12498 /* must disable cxsr around plane enable/disable */
12499 if (plane
->type
!= DRM_PLANE_TYPE_CURSOR
)
12500 pipe_config
->disable_cxsr
= true;
12501 } else if (turn_off
) {
12502 pipe_config
->update_wm_post
= true;
12504 /* must disable cxsr around plane enable/disable */
12505 if (plane
->type
!= DRM_PLANE_TYPE_CURSOR
)
12506 pipe_config
->disable_cxsr
= true;
12507 } else if (intel_wm_need_update(plane
, plane_state
)) {
12508 /* FIXME bollocks */
12509 pipe_config
->update_wm_pre
= true;
12510 pipe_config
->update_wm_post
= true;
12513 /* Pre-gen9 platforms need two-step watermark updates */
12514 if ((pipe_config
->update_wm_pre
|| pipe_config
->update_wm_post
) &&
12515 INTEL_GEN(dev_priv
) < 9 && dev_priv
->display
.optimize_watermarks
)
12516 to_intel_crtc_state(crtc_state
)->wm
.need_postvbl_update
= true;
12518 if (visible
|| was_visible
)
12519 pipe_config
->fb_bits
|= to_intel_plane(plane
)->frontbuffer_bit
;
12522 * WaCxSRDisabledForSpriteScaling:ivb
12524 * cstate->update_wm was already set above, so this flag will
12525 * take effect when we commit and program watermarks.
12527 if (plane
->type
== DRM_PLANE_TYPE_OVERLAY
&& IS_IVYBRIDGE(dev_priv
) &&
12528 needs_scaling(to_intel_plane_state(plane_state
)) &&
12529 !needs_scaling(old_plane_state
))
12530 pipe_config
->disable_lp_wm
= true;
12535 static bool encoders_cloneable(const struct intel_encoder
*a
,
12536 const struct intel_encoder
*b
)
12538 /* masks could be asymmetric, so check both ways */
12539 return a
== b
|| (a
->cloneable
& (1 << b
->type
) &&
12540 b
->cloneable
& (1 << a
->type
));
12543 static bool check_single_encoder_cloning(struct drm_atomic_state
*state
,
12544 struct intel_crtc
*crtc
,
12545 struct intel_encoder
*encoder
)
12547 struct intel_encoder
*source_encoder
;
12548 struct drm_connector
*connector
;
12549 struct drm_connector_state
*connector_state
;
12552 for_each_connector_in_state(state
, connector
, connector_state
, i
) {
12553 if (connector_state
->crtc
!= &crtc
->base
)
12557 to_intel_encoder(connector_state
->best_encoder
);
12558 if (!encoders_cloneable(encoder
, source_encoder
))
12565 static int intel_crtc_atomic_check(struct drm_crtc
*crtc
,
12566 struct drm_crtc_state
*crtc_state
)
12568 struct drm_device
*dev
= crtc
->dev
;
12569 struct drm_i915_private
*dev_priv
= to_i915(dev
);
12570 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
12571 struct intel_crtc_state
*pipe_config
=
12572 to_intel_crtc_state(crtc_state
);
12573 struct drm_atomic_state
*state
= crtc_state
->state
;
12575 bool mode_changed
= needs_modeset(crtc_state
);
12577 if (mode_changed
&& !crtc_state
->active
)
12578 pipe_config
->update_wm_post
= true;
12580 if (mode_changed
&& crtc_state
->enable
&&
12581 dev_priv
->display
.crtc_compute_clock
&&
12582 !WARN_ON(pipe_config
->shared_dpll
)) {
12583 ret
= dev_priv
->display
.crtc_compute_clock(intel_crtc
,
12589 if (crtc_state
->color_mgmt_changed
) {
12590 ret
= intel_color_check(crtc
, crtc_state
);
12595 * Changing color management on Intel hardware is
12596 * handled as part of planes update.
12598 crtc_state
->planes_changed
= true;
12602 if (dev_priv
->display
.compute_pipe_wm
) {
12603 ret
= dev_priv
->display
.compute_pipe_wm(pipe_config
);
12605 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12610 if (dev_priv
->display
.compute_intermediate_wm
&&
12611 !to_intel_atomic_state(state
)->skip_intermediate_wm
) {
12612 if (WARN_ON(!dev_priv
->display
.compute_pipe_wm
))
12616 * Calculate 'intermediate' watermarks that satisfy both the
12617 * old state and the new state. We can program these
12620 ret
= dev_priv
->display
.compute_intermediate_wm(dev
,
12624 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12627 } else if (dev_priv
->display
.compute_intermediate_wm
) {
12628 if (HAS_PCH_SPLIT(dev_priv
) && INTEL_GEN(dev_priv
) < 9)
12629 pipe_config
->wm
.ilk
.intermediate
= pipe_config
->wm
.ilk
.optimal
;
12632 if (INTEL_GEN(dev_priv
) >= 9) {
12634 ret
= skl_update_scaler_crtc(pipe_config
);
12637 ret
= intel_atomic_setup_scalers(dev
, intel_crtc
,
12644 static const struct drm_crtc_helper_funcs intel_helper_funcs
= {
12645 .mode_set_base_atomic
= intel_pipe_set_base_atomic
,
12646 .atomic_begin
= intel_begin_crtc_commit
,
12647 .atomic_flush
= intel_finish_crtc_commit
,
12648 .atomic_check
= intel_crtc_atomic_check
,
12651 static void intel_modeset_update_connector_atomic_state(struct drm_device
*dev
)
12653 struct intel_connector
*connector
;
12655 for_each_intel_connector(dev
, connector
) {
12656 if (connector
->base
.state
->crtc
)
12657 drm_connector_unreference(&connector
->base
);
12659 if (connector
->base
.encoder
) {
12660 connector
->base
.state
->best_encoder
=
12661 connector
->base
.encoder
;
12662 connector
->base
.state
->crtc
=
12663 connector
->base
.encoder
->crtc
;
12665 drm_connector_reference(&connector
->base
);
12667 connector
->base
.state
->best_encoder
= NULL
;
12668 connector
->base
.state
->crtc
= NULL
;
12674 connected_sink_compute_bpp(struct intel_connector
*connector
,
12675 struct intel_crtc_state
*pipe_config
)
12677 const struct drm_display_info
*info
= &connector
->base
.display_info
;
12678 int bpp
= pipe_config
->pipe_bpp
;
12680 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12681 connector
->base
.base
.id
,
12682 connector
->base
.name
);
12684 /* Don't use an invalid EDID bpc value */
12685 if (info
->bpc
!= 0 && info
->bpc
* 3 < bpp
) {
12686 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12687 bpp
, info
->bpc
* 3);
12688 pipe_config
->pipe_bpp
= info
->bpc
* 3;
12691 /* Clamp bpp to 8 on screens without EDID 1.4 */
12692 if (info
->bpc
== 0 && bpp
> 24) {
12693 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
12695 pipe_config
->pipe_bpp
= 24;
12700 compute_baseline_pipe_bpp(struct intel_crtc
*crtc
,
12701 struct intel_crtc_state
*pipe_config
)
12703 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
12704 struct drm_atomic_state
*state
;
12705 struct drm_connector
*connector
;
12706 struct drm_connector_state
*connector_state
;
12709 if ((IS_G4X(dev_priv
) || IS_VALLEYVIEW(dev_priv
) ||
12710 IS_CHERRYVIEW(dev_priv
)))
12712 else if (INTEL_GEN(dev_priv
) >= 5)
12718 pipe_config
->pipe_bpp
= bpp
;
12720 state
= pipe_config
->base
.state
;
12722 /* Clamp display bpp to EDID value */
12723 for_each_connector_in_state(state
, connector
, connector_state
, i
) {
12724 if (connector_state
->crtc
!= &crtc
->base
)
12727 connected_sink_compute_bpp(to_intel_connector(connector
),
12734 static void intel_dump_crtc_timings(const struct drm_display_mode
*mode
)
12736 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12737 "type: 0x%x flags: 0x%x\n",
12739 mode
->crtc_hdisplay
, mode
->crtc_hsync_start
,
12740 mode
->crtc_hsync_end
, mode
->crtc_htotal
,
12741 mode
->crtc_vdisplay
, mode
->crtc_vsync_start
,
12742 mode
->crtc_vsync_end
, mode
->crtc_vtotal
, mode
->type
, mode
->flags
);
12746 intel_dump_m_n_config(struct intel_crtc_state
*pipe_config
, char *id
,
12747 unsigned int lane_count
, struct intel_link_m_n
*m_n
)
12749 DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12751 m_n
->gmch_m
, m_n
->gmch_n
,
12752 m_n
->link_m
, m_n
->link_n
, m_n
->tu
);
12755 static void intel_dump_pipe_config(struct intel_crtc
*crtc
,
12756 struct intel_crtc_state
*pipe_config
,
12757 const char *context
)
12759 struct drm_device
*dev
= crtc
->base
.dev
;
12760 struct drm_i915_private
*dev_priv
= to_i915(dev
);
12761 struct drm_plane
*plane
;
12762 struct intel_plane
*intel_plane
;
12763 struct intel_plane_state
*state
;
12764 struct drm_framebuffer
*fb
;
12766 DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
12767 crtc
->base
.base
.id
, crtc
->base
.name
, context
);
12769 DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
12770 transcoder_name(pipe_config
->cpu_transcoder
),
12771 pipe_config
->pipe_bpp
, pipe_config
->dither
);
12773 if (pipe_config
->has_pch_encoder
)
12774 intel_dump_m_n_config(pipe_config
, "fdi",
12775 pipe_config
->fdi_lanes
,
12776 &pipe_config
->fdi_m_n
);
12778 if (intel_crtc_has_dp_encoder(pipe_config
)) {
12779 intel_dump_m_n_config(pipe_config
, "dp m_n",
12780 pipe_config
->lane_count
, &pipe_config
->dp_m_n
);
12781 if (pipe_config
->has_drrs
)
12782 intel_dump_m_n_config(pipe_config
, "dp m2_n2",
12783 pipe_config
->lane_count
,
12784 &pipe_config
->dp_m2_n2
);
12787 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12788 pipe_config
->has_audio
, pipe_config
->has_infoframe
);
12790 DRM_DEBUG_KMS("requested mode:\n");
12791 drm_mode_debug_printmodeline(&pipe_config
->base
.mode
);
12792 DRM_DEBUG_KMS("adjusted mode:\n");
12793 drm_mode_debug_printmodeline(&pipe_config
->base
.adjusted_mode
);
12794 intel_dump_crtc_timings(&pipe_config
->base
.adjusted_mode
);
12795 DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d\n",
12796 pipe_config
->port_clock
,
12797 pipe_config
->pipe_src_w
, pipe_config
->pipe_src_h
);
12799 if (INTEL_GEN(dev_priv
) >= 9)
12800 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12802 pipe_config
->scaler_state
.scaler_users
,
12803 pipe_config
->scaler_state
.scaler_id
);
12805 if (HAS_GMCH_DISPLAY(dev_priv
))
12806 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12807 pipe_config
->gmch_pfit
.control
,
12808 pipe_config
->gmch_pfit
.pgm_ratios
,
12809 pipe_config
->gmch_pfit
.lvds_border_bits
);
12811 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12812 pipe_config
->pch_pfit
.pos
,
12813 pipe_config
->pch_pfit
.size
,
12814 enableddisabled(pipe_config
->pch_pfit
.enabled
));
12816 DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
12817 pipe_config
->ips_enabled
, pipe_config
->double_wide
);
12819 intel_dpll_dump_hw_state(dev_priv
, &pipe_config
->dpll_hw_state
);
12821 DRM_DEBUG_KMS("planes on this crtc\n");
12822 list_for_each_entry(plane
, &dev
->mode_config
.plane_list
, head
) {
12823 struct drm_format_name_buf format_name
;
12824 intel_plane
= to_intel_plane(plane
);
12825 if (intel_plane
->pipe
!= crtc
->pipe
)
12828 state
= to_intel_plane_state(plane
->state
);
12829 fb
= state
->base
.fb
;
12831 DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12832 plane
->base
.id
, plane
->name
, state
->scaler_id
);
12836 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
12837 plane
->base
.id
, plane
->name
,
12838 fb
->base
.id
, fb
->width
, fb
->height
,
12839 drm_get_format_name(fb
->format
->format
, &format_name
));
12840 if (INTEL_GEN(dev_priv
) >= 9)
12841 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12843 state
->base
.src
.x1
>> 16,
12844 state
->base
.src
.y1
>> 16,
12845 drm_rect_width(&state
->base
.src
) >> 16,
12846 drm_rect_height(&state
->base
.src
) >> 16,
12847 state
->base
.dst
.x1
, state
->base
.dst
.y1
,
12848 drm_rect_width(&state
->base
.dst
),
12849 drm_rect_height(&state
->base
.dst
));
12853 static bool check_digital_port_conflicts(struct drm_atomic_state
*state
)
12855 struct drm_device
*dev
= state
->dev
;
12856 struct drm_connector
*connector
;
12857 unsigned int used_ports
= 0;
12858 unsigned int used_mst_ports
= 0;
12861 * Walk the connector list instead of the encoder
12862 * list to detect the problem on ddi platforms
12863 * where there's just one encoder per digital port.
12865 drm_for_each_connector(connector
, dev
) {
12866 struct drm_connector_state
*connector_state
;
12867 struct intel_encoder
*encoder
;
12869 connector_state
= drm_atomic_get_existing_connector_state(state
, connector
);
12870 if (!connector_state
)
12871 connector_state
= connector
->state
;
12873 if (!connector_state
->best_encoder
)
12876 encoder
= to_intel_encoder(connector_state
->best_encoder
);
12878 WARN_ON(!connector_state
->crtc
);
12880 switch (encoder
->type
) {
12881 unsigned int port_mask
;
12882 case INTEL_OUTPUT_UNKNOWN
:
12883 if (WARN_ON(!HAS_DDI(to_i915(dev
))))
12885 case INTEL_OUTPUT_DP
:
12886 case INTEL_OUTPUT_HDMI
:
12887 case INTEL_OUTPUT_EDP
:
12888 port_mask
= 1 << enc_to_dig_port(&encoder
->base
)->port
;
12890 /* the same port mustn't appear more than once */
12891 if (used_ports
& port_mask
)
12894 used_ports
|= port_mask
;
12896 case INTEL_OUTPUT_DP_MST
:
12898 1 << enc_to_mst(&encoder
->base
)->primary
->port
;
12905 /* can't mix MST and SST/HDMI on the same port */
12906 if (used_ports
& used_mst_ports
)
12913 clear_intel_crtc_state(struct intel_crtc_state
*crtc_state
)
12915 struct drm_crtc_state tmp_state
;
12916 struct intel_crtc_scaler_state scaler_state
;
12917 struct intel_dpll_hw_state dpll_hw_state
;
12918 struct intel_shared_dpll
*shared_dpll
;
12921 /* FIXME: before the switch to atomic started, a new pipe_config was
12922 * kzalloc'd. Code that depends on any field being zero should be
12923 * fixed, so that the crtc_state can be safely duplicated. For now,
12924 * only fields that are know to not cause problems are preserved. */
12926 tmp_state
= crtc_state
->base
;
12927 scaler_state
= crtc_state
->scaler_state
;
12928 shared_dpll
= crtc_state
->shared_dpll
;
12929 dpll_hw_state
= crtc_state
->dpll_hw_state
;
12930 force_thru
= crtc_state
->pch_pfit
.force_thru
;
12932 memset(crtc_state
, 0, sizeof *crtc_state
);
12934 crtc_state
->base
= tmp_state
;
12935 crtc_state
->scaler_state
= scaler_state
;
12936 crtc_state
->shared_dpll
= shared_dpll
;
12937 crtc_state
->dpll_hw_state
= dpll_hw_state
;
12938 crtc_state
->pch_pfit
.force_thru
= force_thru
;
12942 intel_modeset_pipe_config(struct drm_crtc
*crtc
,
12943 struct intel_crtc_state
*pipe_config
)
12945 struct drm_atomic_state
*state
= pipe_config
->base
.state
;
12946 struct intel_encoder
*encoder
;
12947 struct drm_connector
*connector
;
12948 struct drm_connector_state
*connector_state
;
12949 int base_bpp
, ret
= -EINVAL
;
12953 clear_intel_crtc_state(pipe_config
);
12955 pipe_config
->cpu_transcoder
=
12956 (enum transcoder
) to_intel_crtc(crtc
)->pipe
;
12959 * Sanitize sync polarity flags based on requested ones. If neither
12960 * positive or negative polarity is requested, treat this as meaning
12961 * negative polarity.
12963 if (!(pipe_config
->base
.adjusted_mode
.flags
&
12964 (DRM_MODE_FLAG_PHSYNC
| DRM_MODE_FLAG_NHSYNC
)))
12965 pipe_config
->base
.adjusted_mode
.flags
|= DRM_MODE_FLAG_NHSYNC
;
12967 if (!(pipe_config
->base
.adjusted_mode
.flags
&
12968 (DRM_MODE_FLAG_PVSYNC
| DRM_MODE_FLAG_NVSYNC
)))
12969 pipe_config
->base
.adjusted_mode
.flags
|= DRM_MODE_FLAG_NVSYNC
;
12971 base_bpp
= compute_baseline_pipe_bpp(to_intel_crtc(crtc
),
12977 * Determine the real pipe dimensions. Note that stereo modes can
12978 * increase the actual pipe size due to the frame doubling and
12979 * insertion of additional space for blanks between the frame. This
12980 * is stored in the crtc timings. We use the requested mode to do this
12981 * computation to clearly distinguish it from the adjusted mode, which
12982 * can be changed by the connectors in the below retry loop.
12984 drm_crtc_get_hv_timing(&pipe_config
->base
.mode
,
12985 &pipe_config
->pipe_src_w
,
12986 &pipe_config
->pipe_src_h
);
12988 for_each_connector_in_state(state
, connector
, connector_state
, i
) {
12989 if (connector_state
->crtc
!= crtc
)
12992 encoder
= to_intel_encoder(connector_state
->best_encoder
);
12994 if (!check_single_encoder_cloning(state
, to_intel_crtc(crtc
), encoder
)) {
12995 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
13000 * Determine output_types before calling the .compute_config()
13001 * hooks so that the hooks can use this information safely.
13003 pipe_config
->output_types
|= 1 << encoder
->type
;
13007 /* Ensure the port clock defaults are reset when retrying. */
13008 pipe_config
->port_clock
= 0;
13009 pipe_config
->pixel_multiplier
= 1;
13011 /* Fill in default crtc timings, allow encoders to overwrite them. */
13012 drm_mode_set_crtcinfo(&pipe_config
->base
.adjusted_mode
,
13013 CRTC_STEREO_DOUBLE
);
13015 /* Pass our mode to the connectors and the CRTC to give them a chance to
13016 * adjust it according to limitations or connector properties, and also
13017 * a chance to reject the mode entirely.
13019 for_each_connector_in_state(state
, connector
, connector_state
, i
) {
13020 if (connector_state
->crtc
!= crtc
)
13023 encoder
= to_intel_encoder(connector_state
->best_encoder
);
13025 if (!(encoder
->compute_config(encoder
, pipe_config
, connector_state
))) {
13026 DRM_DEBUG_KMS("Encoder config failure\n");
13031 /* Set default port clock if not overwritten by the encoder. Needs to be
13032 * done afterwards in case the encoder adjusts the mode. */
13033 if (!pipe_config
->port_clock
)
13034 pipe_config
->port_clock
= pipe_config
->base
.adjusted_mode
.crtc_clock
13035 * pipe_config
->pixel_multiplier
;
13037 ret
= intel_crtc_compute_config(to_intel_crtc(crtc
), pipe_config
);
13039 DRM_DEBUG_KMS("CRTC fixup failed\n");
13043 if (ret
== RETRY
) {
13044 if (WARN(!retry
, "loop in pipe configuration computation\n")) {
13049 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
13051 goto encoder_retry
;
13054 /* Dithering seems to not pass-through bits correctly when it should, so
13055 * only enable it on 6bpc panels. */
13056 pipe_config
->dither
= pipe_config
->pipe_bpp
== 6*3;
13057 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13058 base_bpp
, pipe_config
->pipe_bpp
, pipe_config
->dither
);
13065 intel_modeset_update_crtc_state(struct drm_atomic_state
*state
)
13067 struct drm_crtc
*crtc
;
13068 struct drm_crtc_state
*crtc_state
;
13071 /* Double check state. */
13072 for_each_crtc_in_state(state
, crtc
, crtc_state
, i
) {
13073 to_intel_crtc(crtc
)->config
= to_intel_crtc_state(crtc
->state
);
13075 /* Update hwmode for vblank functions */
13076 if (crtc
->state
->active
)
13077 crtc
->hwmode
= crtc
->state
->adjusted_mode
;
13079 crtc
->hwmode
.crtc_clock
= 0;
13082 * Update legacy state to satisfy fbc code. This can
13083 * be removed when fbc uses the atomic state.
13085 if (drm_atomic_get_existing_plane_state(state
, crtc
->primary
)) {
13086 struct drm_plane_state
*plane_state
= crtc
->primary
->state
;
13088 crtc
->primary
->fb
= plane_state
->fb
;
13089 crtc
->x
= plane_state
->src_x
>> 16;
13090 crtc
->y
= plane_state
->src_y
>> 16;
13095 static bool intel_fuzzy_clock_check(int clock1
, int clock2
)
13099 if (clock1
== clock2
)
13102 if (!clock1
|| !clock2
)
13105 diff
= abs(clock1
- clock2
);
13107 if (((((diff
+ clock1
+ clock2
) * 100)) / (clock1
+ clock2
)) < 105)
13114 intel_compare_m_n(unsigned int m
, unsigned int n
,
13115 unsigned int m2
, unsigned int n2
,
13118 if (m
== m2
&& n
== n2
)
13121 if (exact
|| !m
|| !n
|| !m2
|| !n2
)
13124 BUILD_BUG_ON(DATA_LINK_M_N_MASK
> INT_MAX
);
13131 } else if (n
< n2
) {
13141 return intel_fuzzy_clock_check(m
, m2
);
13145 intel_compare_link_m_n(const struct intel_link_m_n
*m_n
,
13146 struct intel_link_m_n
*m2_n2
,
13149 if (m_n
->tu
== m2_n2
->tu
&&
13150 intel_compare_m_n(m_n
->gmch_m
, m_n
->gmch_n
,
13151 m2_n2
->gmch_m
, m2_n2
->gmch_n
, !adjust
) &&
13152 intel_compare_m_n(m_n
->link_m
, m_n
->link_n
,
13153 m2_n2
->link_m
, m2_n2
->link_n
, !adjust
)) {
13163 static void __printf(3, 4)
13164 pipe_config_err(bool adjust
, const char *name
, const char *format
, ...)
13167 unsigned int category
;
13168 struct va_format vaf
;
13172 level
= KERN_DEBUG
;
13173 category
= DRM_UT_KMS
;
13176 category
= DRM_UT_NONE
;
13179 va_start(args
, format
);
13183 drm_printk(level
, category
, "mismatch in %s %pV", name
, &vaf
);
13189 intel_pipe_config_compare(struct drm_i915_private
*dev_priv
,
13190 struct intel_crtc_state
*current_config
,
13191 struct intel_crtc_state
*pipe_config
,
13196 #define PIPE_CONF_CHECK_X(name) \
13197 if (current_config->name != pipe_config->name) { \
13198 pipe_config_err(adjust, __stringify(name), \
13199 "(expected 0x%08x, found 0x%08x)\n", \
13200 current_config->name, \
13201 pipe_config->name); \
13205 #define PIPE_CONF_CHECK_I(name) \
13206 if (current_config->name != pipe_config->name) { \
13207 pipe_config_err(adjust, __stringify(name), \
13208 "(expected %i, found %i)\n", \
13209 current_config->name, \
13210 pipe_config->name); \
13214 #define PIPE_CONF_CHECK_P(name) \
13215 if (current_config->name != pipe_config->name) { \
13216 pipe_config_err(adjust, __stringify(name), \
13217 "(expected %p, found %p)\n", \
13218 current_config->name, \
13219 pipe_config->name); \
13223 #define PIPE_CONF_CHECK_M_N(name) \
13224 if (!intel_compare_link_m_n(¤t_config->name, \
13225 &pipe_config->name,\
13227 pipe_config_err(adjust, __stringify(name), \
13228 "(expected tu %i gmch %i/%i link %i/%i, " \
13229 "found tu %i, gmch %i/%i link %i/%i)\n", \
13230 current_config->name.tu, \
13231 current_config->name.gmch_m, \
13232 current_config->name.gmch_n, \
13233 current_config->name.link_m, \
13234 current_config->name.link_n, \
13235 pipe_config->name.tu, \
13236 pipe_config->name.gmch_m, \
13237 pipe_config->name.gmch_n, \
13238 pipe_config->name.link_m, \
13239 pipe_config->name.link_n); \
13243 /* This is required for BDW+ where there is only one set of registers for
13244 * switching between high and low RR.
13245 * This macro can be used whenever a comparison has to be made between one
13246 * hw state and multiple sw state variables.
13248 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
13249 if (!intel_compare_link_m_n(¤t_config->name, \
13250 &pipe_config->name, adjust) && \
13251 !intel_compare_link_m_n(¤t_config->alt_name, \
13252 &pipe_config->name, adjust)) { \
13253 pipe_config_err(adjust, __stringify(name), \
13254 "(expected tu %i gmch %i/%i link %i/%i, " \
13255 "or tu %i gmch %i/%i link %i/%i, " \
13256 "found tu %i, gmch %i/%i link %i/%i)\n", \
13257 current_config->name.tu, \
13258 current_config->name.gmch_m, \
13259 current_config->name.gmch_n, \
13260 current_config->name.link_m, \
13261 current_config->name.link_n, \
13262 current_config->alt_name.tu, \
13263 current_config->alt_name.gmch_m, \
13264 current_config->alt_name.gmch_n, \
13265 current_config->alt_name.link_m, \
13266 current_config->alt_name.link_n, \
13267 pipe_config->name.tu, \
13268 pipe_config->name.gmch_m, \
13269 pipe_config->name.gmch_n, \
13270 pipe_config->name.link_m, \
13271 pipe_config->name.link_n); \
13275 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
13276 if ((current_config->name ^ pipe_config->name) & (mask)) { \
13277 pipe_config_err(adjust, __stringify(name), \
13278 "(%x) (expected %i, found %i)\n", \
13280 current_config->name & (mask), \
13281 pipe_config->name & (mask)); \
13285 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
13286 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13287 pipe_config_err(adjust, __stringify(name), \
13288 "(expected %i, found %i)\n", \
13289 current_config->name, \
13290 pipe_config->name); \
13294 #define PIPE_CONF_QUIRK(quirk) \
13295 ((current_config->quirks | pipe_config->quirks) & (quirk))
13297 PIPE_CONF_CHECK_I(cpu_transcoder
);
13299 PIPE_CONF_CHECK_I(has_pch_encoder
);
13300 PIPE_CONF_CHECK_I(fdi_lanes
);
13301 PIPE_CONF_CHECK_M_N(fdi_m_n
);
13303 PIPE_CONF_CHECK_I(lane_count
);
13304 PIPE_CONF_CHECK_X(lane_lat_optim_mask
);
13306 if (INTEL_GEN(dev_priv
) < 8) {
13307 PIPE_CONF_CHECK_M_N(dp_m_n
);
13309 if (current_config
->has_drrs
)
13310 PIPE_CONF_CHECK_M_N(dp_m2_n2
);
13312 PIPE_CONF_CHECK_M_N_ALT(dp_m_n
, dp_m2_n2
);
13314 PIPE_CONF_CHECK_X(output_types
);
13316 PIPE_CONF_CHECK_I(base
.adjusted_mode
.crtc_hdisplay
);
13317 PIPE_CONF_CHECK_I(base
.adjusted_mode
.crtc_htotal
);
13318 PIPE_CONF_CHECK_I(base
.adjusted_mode
.crtc_hblank_start
);
13319 PIPE_CONF_CHECK_I(base
.adjusted_mode
.crtc_hblank_end
);
13320 PIPE_CONF_CHECK_I(base
.adjusted_mode
.crtc_hsync_start
);
13321 PIPE_CONF_CHECK_I(base
.adjusted_mode
.crtc_hsync_end
);
13323 PIPE_CONF_CHECK_I(base
.adjusted_mode
.crtc_vdisplay
);
13324 PIPE_CONF_CHECK_I(base
.adjusted_mode
.crtc_vtotal
);
13325 PIPE_CONF_CHECK_I(base
.adjusted_mode
.crtc_vblank_start
);
13326 PIPE_CONF_CHECK_I(base
.adjusted_mode
.crtc_vblank_end
);
13327 PIPE_CONF_CHECK_I(base
.adjusted_mode
.crtc_vsync_start
);
13328 PIPE_CONF_CHECK_I(base
.adjusted_mode
.crtc_vsync_end
);
13330 PIPE_CONF_CHECK_I(pixel_multiplier
);
13331 PIPE_CONF_CHECK_I(has_hdmi_sink
);
13332 if ((INTEL_GEN(dev_priv
) < 8 && !IS_HASWELL(dev_priv
)) ||
13333 IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
))
13334 PIPE_CONF_CHECK_I(limited_color_range
);
13335 PIPE_CONF_CHECK_I(has_infoframe
);
13337 PIPE_CONF_CHECK_I(has_audio
);
13339 PIPE_CONF_CHECK_FLAGS(base
.adjusted_mode
.flags
,
13340 DRM_MODE_FLAG_INTERLACE
);
13342 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS
)) {
13343 PIPE_CONF_CHECK_FLAGS(base
.adjusted_mode
.flags
,
13344 DRM_MODE_FLAG_PHSYNC
);
13345 PIPE_CONF_CHECK_FLAGS(base
.adjusted_mode
.flags
,
13346 DRM_MODE_FLAG_NHSYNC
);
13347 PIPE_CONF_CHECK_FLAGS(base
.adjusted_mode
.flags
,
13348 DRM_MODE_FLAG_PVSYNC
);
13349 PIPE_CONF_CHECK_FLAGS(base
.adjusted_mode
.flags
,
13350 DRM_MODE_FLAG_NVSYNC
);
13353 PIPE_CONF_CHECK_X(gmch_pfit
.control
);
13354 /* pfit ratios are autocomputed by the hw on gen4+ */
13355 if (INTEL_GEN(dev_priv
) < 4)
13356 PIPE_CONF_CHECK_X(gmch_pfit
.pgm_ratios
);
13357 PIPE_CONF_CHECK_X(gmch_pfit
.lvds_border_bits
);
13360 PIPE_CONF_CHECK_I(pipe_src_w
);
13361 PIPE_CONF_CHECK_I(pipe_src_h
);
13363 PIPE_CONF_CHECK_I(pch_pfit
.enabled
);
13364 if (current_config
->pch_pfit
.enabled
) {
13365 PIPE_CONF_CHECK_X(pch_pfit
.pos
);
13366 PIPE_CONF_CHECK_X(pch_pfit
.size
);
13369 PIPE_CONF_CHECK_I(scaler_state
.scaler_id
);
13372 /* BDW+ don't expose a synchronous way to read the state */
13373 if (IS_HASWELL(dev_priv
))
13374 PIPE_CONF_CHECK_I(ips_enabled
);
13376 PIPE_CONF_CHECK_I(double_wide
);
13378 PIPE_CONF_CHECK_P(shared_dpll
);
13379 PIPE_CONF_CHECK_X(dpll_hw_state
.dpll
);
13380 PIPE_CONF_CHECK_X(dpll_hw_state
.dpll_md
);
13381 PIPE_CONF_CHECK_X(dpll_hw_state
.fp0
);
13382 PIPE_CONF_CHECK_X(dpll_hw_state
.fp1
);
13383 PIPE_CONF_CHECK_X(dpll_hw_state
.wrpll
);
13384 PIPE_CONF_CHECK_X(dpll_hw_state
.spll
);
13385 PIPE_CONF_CHECK_X(dpll_hw_state
.ctrl1
);
13386 PIPE_CONF_CHECK_X(dpll_hw_state
.cfgcr1
);
13387 PIPE_CONF_CHECK_X(dpll_hw_state
.cfgcr2
);
13389 PIPE_CONF_CHECK_X(dsi_pll
.ctrl
);
13390 PIPE_CONF_CHECK_X(dsi_pll
.div
);
13392 if (IS_G4X(dev_priv
) || INTEL_GEN(dev_priv
) >= 5)
13393 PIPE_CONF_CHECK_I(pipe_bpp
);
13395 PIPE_CONF_CHECK_CLOCK_FUZZY(base
.adjusted_mode
.crtc_clock
);
13396 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock
);
13398 #undef PIPE_CONF_CHECK_X
13399 #undef PIPE_CONF_CHECK_I
13400 #undef PIPE_CONF_CHECK_P
13401 #undef PIPE_CONF_CHECK_FLAGS
13402 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
13403 #undef PIPE_CONF_QUIRK
13408 static void intel_pipe_config_sanity_check(struct drm_i915_private
*dev_priv
,
13409 const struct intel_crtc_state
*pipe_config
)
13411 if (pipe_config
->has_pch_encoder
) {
13412 int fdi_dotclock
= intel_dotclock_calculate(intel_fdi_link_freq(dev_priv
, pipe_config
),
13413 &pipe_config
->fdi_m_n
);
13414 int dotclock
= pipe_config
->base
.adjusted_mode
.crtc_clock
;
13417 * FDI already provided one idea for the dotclock.
13418 * Yell if the encoder disagrees.
13420 WARN(!intel_fuzzy_clock_check(fdi_dotclock
, dotclock
),
13421 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13422 fdi_dotclock
, dotclock
);
13426 static void verify_wm_state(struct drm_crtc
*crtc
,
13427 struct drm_crtc_state
*new_state
)
13429 struct drm_i915_private
*dev_priv
= to_i915(crtc
->dev
);
13430 struct skl_ddb_allocation hw_ddb
, *sw_ddb
;
13431 struct skl_pipe_wm hw_wm
, *sw_wm
;
13432 struct skl_plane_wm
*hw_plane_wm
, *sw_plane_wm
;
13433 struct skl_ddb_entry
*hw_ddb_entry
, *sw_ddb_entry
;
13434 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
13435 const enum pipe pipe
= intel_crtc
->pipe
;
13436 int plane
, level
, max_level
= ilk_wm_max_level(dev_priv
);
13438 if (INTEL_GEN(dev_priv
) < 9 || !new_state
->active
)
13441 skl_pipe_wm_get_hw_state(crtc
, &hw_wm
);
13442 sw_wm
= &to_intel_crtc_state(new_state
)->wm
.skl
.optimal
;
13444 skl_ddb_get_hw_state(dev_priv
, &hw_ddb
);
13445 sw_ddb
= &dev_priv
->wm
.skl_hw
.ddb
;
13448 for_each_universal_plane(dev_priv
, pipe
, plane
) {
13449 hw_plane_wm
= &hw_wm
.planes
[plane
];
13450 sw_plane_wm
= &sw_wm
->planes
[plane
];
13453 for (level
= 0; level
<= max_level
; level
++) {
13454 if (skl_wm_level_equals(&hw_plane_wm
->wm
[level
],
13455 &sw_plane_wm
->wm
[level
]))
13458 DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13459 pipe_name(pipe
), plane
+ 1, level
,
13460 sw_plane_wm
->wm
[level
].plane_en
,
13461 sw_plane_wm
->wm
[level
].plane_res_b
,
13462 sw_plane_wm
->wm
[level
].plane_res_l
,
13463 hw_plane_wm
->wm
[level
].plane_en
,
13464 hw_plane_wm
->wm
[level
].plane_res_b
,
13465 hw_plane_wm
->wm
[level
].plane_res_l
);
13468 if (!skl_wm_level_equals(&hw_plane_wm
->trans_wm
,
13469 &sw_plane_wm
->trans_wm
)) {
13470 DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13471 pipe_name(pipe
), plane
+ 1,
13472 sw_plane_wm
->trans_wm
.plane_en
,
13473 sw_plane_wm
->trans_wm
.plane_res_b
,
13474 sw_plane_wm
->trans_wm
.plane_res_l
,
13475 hw_plane_wm
->trans_wm
.plane_en
,
13476 hw_plane_wm
->trans_wm
.plane_res_b
,
13477 hw_plane_wm
->trans_wm
.plane_res_l
);
13481 hw_ddb_entry
= &hw_ddb
.plane
[pipe
][plane
];
13482 sw_ddb_entry
= &sw_ddb
->plane
[pipe
][plane
];
13484 if (!skl_ddb_entry_equal(hw_ddb_entry
, sw_ddb_entry
)) {
13485 DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
13486 pipe_name(pipe
), plane
+ 1,
13487 sw_ddb_entry
->start
, sw_ddb_entry
->end
,
13488 hw_ddb_entry
->start
, hw_ddb_entry
->end
);
13494 * If the cursor plane isn't active, we may not have updated it's ddb
13495 * allocation. In that case since the ddb allocation will be updated
13496 * once the plane becomes visible, we can skip this check
13498 if (intel_crtc
->cursor_addr
) {
13499 hw_plane_wm
= &hw_wm
.planes
[PLANE_CURSOR
];
13500 sw_plane_wm
= &sw_wm
->planes
[PLANE_CURSOR
];
13503 for (level
= 0; level
<= max_level
; level
++) {
13504 if (skl_wm_level_equals(&hw_plane_wm
->wm
[level
],
13505 &sw_plane_wm
->wm
[level
]))
13508 DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13509 pipe_name(pipe
), level
,
13510 sw_plane_wm
->wm
[level
].plane_en
,
13511 sw_plane_wm
->wm
[level
].plane_res_b
,
13512 sw_plane_wm
->wm
[level
].plane_res_l
,
13513 hw_plane_wm
->wm
[level
].plane_en
,
13514 hw_plane_wm
->wm
[level
].plane_res_b
,
13515 hw_plane_wm
->wm
[level
].plane_res_l
);
13518 if (!skl_wm_level_equals(&hw_plane_wm
->trans_wm
,
13519 &sw_plane_wm
->trans_wm
)) {
13520 DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13522 sw_plane_wm
->trans_wm
.plane_en
,
13523 sw_plane_wm
->trans_wm
.plane_res_b
,
13524 sw_plane_wm
->trans_wm
.plane_res_l
,
13525 hw_plane_wm
->trans_wm
.plane_en
,
13526 hw_plane_wm
->trans_wm
.plane_res_b
,
13527 hw_plane_wm
->trans_wm
.plane_res_l
);
13531 hw_ddb_entry
= &hw_ddb
.plane
[pipe
][PLANE_CURSOR
];
13532 sw_ddb_entry
= &sw_ddb
->plane
[pipe
][PLANE_CURSOR
];
13534 if (!skl_ddb_entry_equal(hw_ddb_entry
, sw_ddb_entry
)) {
13535 DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
13537 sw_ddb_entry
->start
, sw_ddb_entry
->end
,
13538 hw_ddb_entry
->start
, hw_ddb_entry
->end
);
13544 verify_connector_state(struct drm_device
*dev
,
13545 struct drm_atomic_state
*state
,
13546 struct drm_crtc
*crtc
)
13548 struct drm_connector
*connector
;
13549 struct drm_connector_state
*old_conn_state
;
13552 for_each_connector_in_state(state
, connector
, old_conn_state
, i
) {
13553 struct drm_encoder
*encoder
= connector
->encoder
;
13554 struct drm_connector_state
*state
= connector
->state
;
13556 if (state
->crtc
!= crtc
)
13559 intel_connector_verify_state(to_intel_connector(connector
));
13561 I915_STATE_WARN(state
->best_encoder
!= encoder
,
13562 "connector's atomic encoder doesn't match legacy encoder\n");
13567 verify_encoder_state(struct drm_device
*dev
)
13569 struct intel_encoder
*encoder
;
13570 struct intel_connector
*connector
;
13572 for_each_intel_encoder(dev
, encoder
) {
13573 bool enabled
= false;
13576 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13577 encoder
->base
.base
.id
,
13578 encoder
->base
.name
);
13580 for_each_intel_connector(dev
, connector
) {
13581 if (connector
->base
.state
->best_encoder
!= &encoder
->base
)
13585 I915_STATE_WARN(connector
->base
.state
->crtc
!=
13586 encoder
->base
.crtc
,
13587 "connector's crtc doesn't match encoder crtc\n");
13590 I915_STATE_WARN(!!encoder
->base
.crtc
!= enabled
,
13591 "encoder's enabled state mismatch "
13592 "(expected %i, found %i)\n",
13593 !!encoder
->base
.crtc
, enabled
);
13595 if (!encoder
->base
.crtc
) {
13598 active
= encoder
->get_hw_state(encoder
, &pipe
);
13599 I915_STATE_WARN(active
,
13600 "encoder detached but still enabled on pipe %c.\n",
13607 verify_crtc_state(struct drm_crtc
*crtc
,
13608 struct drm_crtc_state
*old_crtc_state
,
13609 struct drm_crtc_state
*new_crtc_state
)
13611 struct drm_device
*dev
= crtc
->dev
;
13612 struct drm_i915_private
*dev_priv
= to_i915(dev
);
13613 struct intel_encoder
*encoder
;
13614 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
13615 struct intel_crtc_state
*pipe_config
, *sw_config
;
13616 struct drm_atomic_state
*old_state
;
13619 old_state
= old_crtc_state
->state
;
13620 __drm_atomic_helper_crtc_destroy_state(old_crtc_state
);
13621 pipe_config
= to_intel_crtc_state(old_crtc_state
);
13622 memset(pipe_config
, 0, sizeof(*pipe_config
));
13623 pipe_config
->base
.crtc
= crtc
;
13624 pipe_config
->base
.state
= old_state
;
13626 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc
->base
.id
, crtc
->name
);
13628 active
= dev_priv
->display
.get_pipe_config(intel_crtc
, pipe_config
);
13630 /* hw state is inconsistent with the pipe quirk */
13631 if ((intel_crtc
->pipe
== PIPE_A
&& dev_priv
->quirks
& QUIRK_PIPEA_FORCE
) ||
13632 (intel_crtc
->pipe
== PIPE_B
&& dev_priv
->quirks
& QUIRK_PIPEB_FORCE
))
13633 active
= new_crtc_state
->active
;
13635 I915_STATE_WARN(new_crtc_state
->active
!= active
,
13636 "crtc active state doesn't match with hw state "
13637 "(expected %i, found %i)\n", new_crtc_state
->active
, active
);
13639 I915_STATE_WARN(intel_crtc
->active
!= new_crtc_state
->active
,
13640 "transitional active state does not match atomic hw state "
13641 "(expected %i, found %i)\n", new_crtc_state
->active
, intel_crtc
->active
);
13643 for_each_encoder_on_crtc(dev
, crtc
, encoder
) {
13646 active
= encoder
->get_hw_state(encoder
, &pipe
);
13647 I915_STATE_WARN(active
!= new_crtc_state
->active
,
13648 "[ENCODER:%i] active %i with crtc active %i\n",
13649 encoder
->base
.base
.id
, active
, new_crtc_state
->active
);
13651 I915_STATE_WARN(active
&& intel_crtc
->pipe
!= pipe
,
13652 "Encoder connected to wrong pipe %c\n",
13656 pipe_config
->output_types
|= 1 << encoder
->type
;
13657 encoder
->get_config(encoder
, pipe_config
);
13661 if (!new_crtc_state
->active
)
13664 intel_pipe_config_sanity_check(dev_priv
, pipe_config
);
13666 sw_config
= to_intel_crtc_state(crtc
->state
);
13667 if (!intel_pipe_config_compare(dev_priv
, sw_config
,
13668 pipe_config
, false)) {
13669 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13670 intel_dump_pipe_config(intel_crtc
, pipe_config
,
13672 intel_dump_pipe_config(intel_crtc
, sw_config
,
13678 verify_single_dpll_state(struct drm_i915_private
*dev_priv
,
13679 struct intel_shared_dpll
*pll
,
13680 struct drm_crtc
*crtc
,
13681 struct drm_crtc_state
*new_state
)
13683 struct intel_dpll_hw_state dpll_hw_state
;
13684 unsigned crtc_mask
;
13687 memset(&dpll_hw_state
, 0, sizeof(dpll_hw_state
));
13689 DRM_DEBUG_KMS("%s\n", pll
->name
);
13691 active
= pll
->funcs
.get_hw_state(dev_priv
, pll
, &dpll_hw_state
);
13693 if (!(pll
->flags
& INTEL_DPLL_ALWAYS_ON
)) {
13694 I915_STATE_WARN(!pll
->on
&& pll
->active_mask
,
13695 "pll in active use but not on in sw tracking\n");
13696 I915_STATE_WARN(pll
->on
&& !pll
->active_mask
,
13697 "pll is on but not used by any active crtc\n");
13698 I915_STATE_WARN(pll
->on
!= active
,
13699 "pll on state mismatch (expected %i, found %i)\n",
13704 I915_STATE_WARN(pll
->active_mask
& ~pll
->state
.crtc_mask
,
13705 "more active pll users than references: %x vs %x\n",
13706 pll
->active_mask
, pll
->state
.crtc_mask
);
13711 crtc_mask
= 1 << drm_crtc_index(crtc
);
13713 if (new_state
->active
)
13714 I915_STATE_WARN(!(pll
->active_mask
& crtc_mask
),
13715 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13716 pipe_name(drm_crtc_index(crtc
)), pll
->active_mask
);
13718 I915_STATE_WARN(pll
->active_mask
& crtc_mask
,
13719 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13720 pipe_name(drm_crtc_index(crtc
)), pll
->active_mask
);
13722 I915_STATE_WARN(!(pll
->state
.crtc_mask
& crtc_mask
),
13723 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13724 crtc_mask
, pll
->state
.crtc_mask
);
13726 I915_STATE_WARN(pll
->on
&& memcmp(&pll
->state
.hw_state
,
13728 sizeof(dpll_hw_state
)),
13729 "pll hw state mismatch\n");
13733 verify_shared_dpll_state(struct drm_device
*dev
, struct drm_crtc
*crtc
,
13734 struct drm_crtc_state
*old_crtc_state
,
13735 struct drm_crtc_state
*new_crtc_state
)
13737 struct drm_i915_private
*dev_priv
= to_i915(dev
);
13738 struct intel_crtc_state
*old_state
= to_intel_crtc_state(old_crtc_state
);
13739 struct intel_crtc_state
*new_state
= to_intel_crtc_state(new_crtc_state
);
13741 if (new_state
->shared_dpll
)
13742 verify_single_dpll_state(dev_priv
, new_state
->shared_dpll
, crtc
, new_crtc_state
);
13744 if (old_state
->shared_dpll
&&
13745 old_state
->shared_dpll
!= new_state
->shared_dpll
) {
13746 unsigned crtc_mask
= 1 << drm_crtc_index(crtc
);
13747 struct intel_shared_dpll
*pll
= old_state
->shared_dpll
;
13749 I915_STATE_WARN(pll
->active_mask
& crtc_mask
,
13750 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13751 pipe_name(drm_crtc_index(crtc
)));
13752 I915_STATE_WARN(pll
->state
.crtc_mask
& crtc_mask
,
13753 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13754 pipe_name(drm_crtc_index(crtc
)));
13759 intel_modeset_verify_crtc(struct drm_crtc
*crtc
,
13760 struct drm_atomic_state
*state
,
13761 struct drm_crtc_state
*old_state
,
13762 struct drm_crtc_state
*new_state
)
13764 if (!needs_modeset(new_state
) &&
13765 !to_intel_crtc_state(new_state
)->update_pipe
)
13768 verify_wm_state(crtc
, new_state
);
13769 verify_connector_state(crtc
->dev
, state
, crtc
);
13770 verify_crtc_state(crtc
, old_state
, new_state
);
13771 verify_shared_dpll_state(crtc
->dev
, crtc
, old_state
, new_state
);
13775 verify_disabled_dpll_state(struct drm_device
*dev
)
13777 struct drm_i915_private
*dev_priv
= to_i915(dev
);
13780 for (i
= 0; i
< dev_priv
->num_shared_dpll
; i
++)
13781 verify_single_dpll_state(dev_priv
, &dev_priv
->shared_dplls
[i
], NULL
, NULL
);
13785 intel_modeset_verify_disabled(struct drm_device
*dev
,
13786 struct drm_atomic_state
*state
)
13788 verify_encoder_state(dev
);
13789 verify_connector_state(dev
, state
, NULL
);
13790 verify_disabled_dpll_state(dev
);
13793 static void update_scanline_offset(struct intel_crtc
*crtc
)
13795 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
13798 * The scanline counter increments at the leading edge of hsync.
13800 * On most platforms it starts counting from vtotal-1 on the
13801 * first active line. That means the scanline counter value is
13802 * always one less than what we would expect. Ie. just after
13803 * start of vblank, which also occurs at start of hsync (on the
13804 * last active line), the scanline counter will read vblank_start-1.
13806 * On gen2 the scanline counter starts counting from 1 instead
13807 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13808 * to keep the value positive), instead of adding one.
13810 * On HSW+ the behaviour of the scanline counter depends on the output
13811 * type. For DP ports it behaves like most other platforms, but on HDMI
13812 * there's an extra 1 line difference. So we need to add two instead of
13813 * one to the value.
13815 if (IS_GEN2(dev_priv
)) {
13816 const struct drm_display_mode
*adjusted_mode
= &crtc
->config
->base
.adjusted_mode
;
13819 vtotal
= adjusted_mode
->crtc_vtotal
;
13820 if (adjusted_mode
->flags
& DRM_MODE_FLAG_INTERLACE
)
13823 crtc
->scanline_offset
= vtotal
- 1;
13824 } else if (HAS_DDI(dev_priv
) &&
13825 intel_crtc_has_type(crtc
->config
, INTEL_OUTPUT_HDMI
)) {
13826 crtc
->scanline_offset
= 2;
13828 crtc
->scanline_offset
= 1;
13831 static void intel_modeset_clear_plls(struct drm_atomic_state
*state
)
13833 struct drm_device
*dev
= state
->dev
;
13834 struct drm_i915_private
*dev_priv
= to_i915(dev
);
13835 struct drm_crtc
*crtc
;
13836 struct drm_crtc_state
*crtc_state
;
13839 if (!dev_priv
->display
.crtc_compute_clock
)
13842 for_each_crtc_in_state(state
, crtc
, crtc_state
, i
) {
13843 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
13844 struct intel_shared_dpll
*old_dpll
=
13845 to_intel_crtc_state(crtc
->state
)->shared_dpll
;
13847 if (!needs_modeset(crtc_state
))
13850 to_intel_crtc_state(crtc_state
)->shared_dpll
= NULL
;
13855 intel_release_shared_dpll(old_dpll
, intel_crtc
, state
);
13860 * This implements the workaround described in the "notes" section of the mode
13861 * set sequence documentation. When going from no pipes or single pipe to
13862 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13863 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13865 static int haswell_mode_set_planes_workaround(struct drm_atomic_state
*state
)
13867 struct drm_crtc_state
*crtc_state
;
13868 struct intel_crtc
*intel_crtc
;
13869 struct drm_crtc
*crtc
;
13870 struct intel_crtc_state
*first_crtc_state
= NULL
;
13871 struct intel_crtc_state
*other_crtc_state
= NULL
;
13872 enum pipe first_pipe
= INVALID_PIPE
, enabled_pipe
= INVALID_PIPE
;
13875 /* look at all crtc's that are going to be enabled in during modeset */
13876 for_each_crtc_in_state(state
, crtc
, crtc_state
, i
) {
13877 intel_crtc
= to_intel_crtc(crtc
);
13879 if (!crtc_state
->active
|| !needs_modeset(crtc_state
))
13882 if (first_crtc_state
) {
13883 other_crtc_state
= to_intel_crtc_state(crtc_state
);
13886 first_crtc_state
= to_intel_crtc_state(crtc_state
);
13887 first_pipe
= intel_crtc
->pipe
;
13891 /* No workaround needed? */
13892 if (!first_crtc_state
)
13895 /* w/a possibly needed, check how many crtc's are already enabled. */
13896 for_each_intel_crtc(state
->dev
, intel_crtc
) {
13897 struct intel_crtc_state
*pipe_config
;
13899 pipe_config
= intel_atomic_get_crtc_state(state
, intel_crtc
);
13900 if (IS_ERR(pipe_config
))
13901 return PTR_ERR(pipe_config
);
13903 pipe_config
->hsw_workaround_pipe
= INVALID_PIPE
;
13905 if (!pipe_config
->base
.active
||
13906 needs_modeset(&pipe_config
->base
))
13909 /* 2 or more enabled crtcs means no need for w/a */
13910 if (enabled_pipe
!= INVALID_PIPE
)
13913 enabled_pipe
= intel_crtc
->pipe
;
13916 if (enabled_pipe
!= INVALID_PIPE
)
13917 first_crtc_state
->hsw_workaround_pipe
= enabled_pipe
;
13918 else if (other_crtc_state
)
13919 other_crtc_state
->hsw_workaround_pipe
= first_pipe
;
13924 static int intel_lock_all_pipes(struct drm_atomic_state
*state
)
13926 struct drm_crtc
*crtc
;
13928 /* Add all pipes to the state */
13929 for_each_crtc(state
->dev
, crtc
) {
13930 struct drm_crtc_state
*crtc_state
;
13932 crtc_state
= drm_atomic_get_crtc_state(state
, crtc
);
13933 if (IS_ERR(crtc_state
))
13934 return PTR_ERR(crtc_state
);
13940 static int intel_modeset_all_pipes(struct drm_atomic_state
*state
)
13942 struct drm_crtc
*crtc
;
13945 * Add all pipes to the state, and force
13946 * a modeset on all the active ones.
13948 for_each_crtc(state
->dev
, crtc
) {
13949 struct drm_crtc_state
*crtc_state
;
13952 crtc_state
= drm_atomic_get_crtc_state(state
, crtc
);
13953 if (IS_ERR(crtc_state
))
13954 return PTR_ERR(crtc_state
);
13956 if (!crtc_state
->active
|| needs_modeset(crtc_state
))
13959 crtc_state
->mode_changed
= true;
13961 ret
= drm_atomic_add_affected_connectors(state
, crtc
);
13965 ret
= drm_atomic_add_affected_planes(state
, crtc
);
13973 static int intel_modeset_checks(struct drm_atomic_state
*state
)
13975 struct intel_atomic_state
*intel_state
= to_intel_atomic_state(state
);
13976 struct drm_i915_private
*dev_priv
= to_i915(state
->dev
);
13977 struct drm_crtc
*crtc
;
13978 struct drm_crtc_state
*crtc_state
;
13981 if (!check_digital_port_conflicts(state
)) {
13982 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13986 intel_state
->modeset
= true;
13987 intel_state
->active_crtcs
= dev_priv
->active_crtcs
;
13989 for_each_crtc_in_state(state
, crtc
, crtc_state
, i
) {
13990 if (crtc_state
->active
)
13991 intel_state
->active_crtcs
|= 1 << i
;
13993 intel_state
->active_crtcs
&= ~(1 << i
);
13995 if (crtc_state
->active
!= crtc
->state
->active
)
13996 intel_state
->active_pipe_changes
|= drm_crtc_mask(crtc
);
14000 * See if the config requires any additional preparation, e.g.
14001 * to adjust global state with pipes off. We need to do this
14002 * here so we can get the modeset_pipe updated config for the new
14003 * mode set on this crtc. For other crtcs we need to use the
14004 * adjusted_mode bits in the crtc directly.
14006 if (dev_priv
->display
.modeset_calc_cdclk
) {
14007 if (!intel_state
->cdclk_pll_vco
)
14008 intel_state
->cdclk_pll_vco
= dev_priv
->cdclk_pll
.vco
;
14009 if (!intel_state
->cdclk_pll_vco
)
14010 intel_state
->cdclk_pll_vco
= dev_priv
->skl_preferred_vco_freq
;
14012 ret
= dev_priv
->display
.modeset_calc_cdclk(state
);
14017 * Writes to dev_priv->atomic_cdclk_freq must protected by
14018 * holding all the crtc locks, even if we don't end up
14019 * touching the hardware
14021 if (intel_state
->cdclk
!= dev_priv
->atomic_cdclk_freq
) {
14022 ret
= intel_lock_all_pipes(state
);
14027 /* All pipes must be switched off while we change the cdclk. */
14028 if (intel_state
->dev_cdclk
!= dev_priv
->cdclk_freq
||
14029 intel_state
->cdclk_pll_vco
!= dev_priv
->cdclk_pll
.vco
) {
14030 ret
= intel_modeset_all_pipes(state
);
14035 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
14036 intel_state
->cdclk
, intel_state
->dev_cdclk
);
14038 to_intel_atomic_state(state
)->cdclk
= dev_priv
->atomic_cdclk_freq
;
14041 intel_modeset_clear_plls(state
);
14043 if (IS_HASWELL(dev_priv
))
14044 return haswell_mode_set_planes_workaround(state
);
14050 * Handle calculation of various watermark data at the end of the atomic check
14051 * phase. The code here should be run after the per-crtc and per-plane 'check'
14052 * handlers to ensure that all derived state has been updated.
14054 static int calc_watermark_data(struct drm_atomic_state
*state
)
14056 struct drm_device
*dev
= state
->dev
;
14057 struct drm_i915_private
*dev_priv
= to_i915(dev
);
14059 /* Is there platform-specific watermark information to calculate? */
14060 if (dev_priv
->display
.compute_global_watermarks
)
14061 return dev_priv
->display
.compute_global_watermarks(state
);
14067 * intel_atomic_check - validate state object
14069 * @state: state to validate
14071 static int intel_atomic_check(struct drm_device
*dev
,
14072 struct drm_atomic_state
*state
)
14074 struct drm_i915_private
*dev_priv
= to_i915(dev
);
14075 struct intel_atomic_state
*intel_state
= to_intel_atomic_state(state
);
14076 struct drm_crtc
*crtc
;
14077 struct drm_crtc_state
*crtc_state
;
14079 bool any_ms
= false;
14081 ret
= drm_atomic_helper_check_modeset(dev
, state
);
14085 for_each_crtc_in_state(state
, crtc
, crtc_state
, i
) {
14086 struct intel_crtc_state
*pipe_config
=
14087 to_intel_crtc_state(crtc_state
);
14089 /* Catch I915_MODE_FLAG_INHERITED */
14090 if (crtc_state
->mode
.private_flags
!= crtc
->state
->mode
.private_flags
)
14091 crtc_state
->mode_changed
= true;
14093 if (!needs_modeset(crtc_state
))
14096 if (!crtc_state
->enable
) {
14101 /* FIXME: For only active_changed we shouldn't need to do any
14102 * state recomputation at all. */
14104 ret
= drm_atomic_add_affected_connectors(state
, crtc
);
14108 ret
= intel_modeset_pipe_config(crtc
, pipe_config
);
14110 intel_dump_pipe_config(to_intel_crtc(crtc
),
14111 pipe_config
, "[failed]");
14115 if (i915
.fastboot
&&
14116 intel_pipe_config_compare(dev_priv
,
14117 to_intel_crtc_state(crtc
->state
),
14118 pipe_config
, true)) {
14119 crtc_state
->mode_changed
= false;
14120 to_intel_crtc_state(crtc_state
)->update_pipe
= true;
14123 if (needs_modeset(crtc_state
))
14126 ret
= drm_atomic_add_affected_planes(state
, crtc
);
14130 intel_dump_pipe_config(to_intel_crtc(crtc
), pipe_config
,
14131 needs_modeset(crtc_state
) ?
14132 "[modeset]" : "[fastset]");
14136 ret
= intel_modeset_checks(state
);
14141 intel_state
->cdclk
= dev_priv
->atomic_cdclk_freq
;
14144 ret
= drm_atomic_helper_check_planes(dev
, state
);
14148 intel_fbc_choose_crtc(dev_priv
, state
);
14149 return calc_watermark_data(state
);
14152 static int intel_atomic_prepare_commit(struct drm_device
*dev
,
14153 struct drm_atomic_state
*state
)
14155 struct drm_i915_private
*dev_priv
= to_i915(dev
);
14156 struct drm_crtc_state
*crtc_state
;
14157 struct drm_crtc
*crtc
;
14160 for_each_crtc_in_state(state
, crtc
, crtc_state
, i
) {
14161 if (state
->legacy_cursor_update
)
14164 ret
= intel_crtc_wait_for_pending_flips(crtc
);
14168 if (atomic_read(&to_intel_crtc(crtc
)->unpin_work_count
) >= 2)
14169 flush_workqueue(dev_priv
->wq
);
14172 ret
= mutex_lock_interruptible(&dev
->struct_mutex
);
14176 ret
= drm_atomic_helper_prepare_planes(dev
, state
);
14177 mutex_unlock(&dev
->struct_mutex
);
14182 u32
intel_crtc_get_vblank_counter(struct intel_crtc
*crtc
)
14184 struct drm_device
*dev
= crtc
->base
.dev
;
14186 if (!dev
->max_vblank_count
)
14187 return drm_accurate_vblank_count(&crtc
->base
);
14189 return dev
->driver
->get_vblank_counter(dev
, crtc
->pipe
);
14192 static void intel_atomic_wait_for_vblanks(struct drm_device
*dev
,
14193 struct drm_i915_private
*dev_priv
,
14194 unsigned crtc_mask
)
14196 unsigned last_vblank_count
[I915_MAX_PIPES
];
14203 for_each_pipe(dev_priv
, pipe
) {
14204 struct intel_crtc
*crtc
= intel_get_crtc_for_pipe(dev_priv
,
14207 if (!((1 << pipe
) & crtc_mask
))
14210 ret
= drm_crtc_vblank_get(&crtc
->base
);
14211 if (WARN_ON(ret
!= 0)) {
14212 crtc_mask
&= ~(1 << pipe
);
14216 last_vblank_count
[pipe
] = drm_crtc_vblank_count(&crtc
->base
);
14219 for_each_pipe(dev_priv
, pipe
) {
14220 struct intel_crtc
*crtc
= intel_get_crtc_for_pipe(dev_priv
,
14224 if (!((1 << pipe
) & crtc_mask
))
14227 lret
= wait_event_timeout(dev
->vblank
[pipe
].queue
,
14228 last_vblank_count
[pipe
] !=
14229 drm_crtc_vblank_count(&crtc
->base
),
14230 msecs_to_jiffies(50));
14232 WARN(!lret
, "pipe %c vblank wait timed out\n", pipe_name(pipe
));
14234 drm_crtc_vblank_put(&crtc
->base
);
14238 static bool needs_vblank_wait(struct intel_crtc_state
*crtc_state
)
14240 /* fb updated, need to unpin old fb */
14241 if (crtc_state
->fb_changed
)
14244 /* wm changes, need vblank before final wm's */
14245 if (crtc_state
->update_wm_post
)
14249 * cxsr is re-enabled after vblank.
14250 * This is already handled by crtc_state->update_wm_post,
14251 * but added for clarity.
14253 if (crtc_state
->disable_cxsr
)
14259 static void intel_update_crtc(struct drm_crtc
*crtc
,
14260 struct drm_atomic_state
*state
,
14261 struct drm_crtc_state
*old_crtc_state
,
14262 unsigned int *crtc_vblank_mask
)
14264 struct drm_device
*dev
= crtc
->dev
;
14265 struct drm_i915_private
*dev_priv
= to_i915(dev
);
14266 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
14267 struct intel_crtc_state
*pipe_config
= to_intel_crtc_state(crtc
->state
);
14268 bool modeset
= needs_modeset(crtc
->state
);
14271 update_scanline_offset(intel_crtc
);
14272 dev_priv
->display
.crtc_enable(pipe_config
, state
);
14274 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state
));
14277 if (drm_atomic_get_existing_plane_state(state
, crtc
->primary
)) {
14279 intel_crtc
, pipe_config
,
14280 to_intel_plane_state(crtc
->primary
->state
));
14283 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state
);
14285 if (needs_vblank_wait(pipe_config
))
14286 *crtc_vblank_mask
|= drm_crtc_mask(crtc
);
14289 static void intel_update_crtcs(struct drm_atomic_state
*state
,
14290 unsigned int *crtc_vblank_mask
)
14292 struct drm_crtc
*crtc
;
14293 struct drm_crtc_state
*old_crtc_state
;
14296 for_each_crtc_in_state(state
, crtc
, old_crtc_state
, i
) {
14297 if (!crtc
->state
->active
)
14300 intel_update_crtc(crtc
, state
, old_crtc_state
,
14305 static void skl_update_crtcs(struct drm_atomic_state
*state
,
14306 unsigned int *crtc_vblank_mask
)
14308 struct drm_i915_private
*dev_priv
= to_i915(state
->dev
);
14309 struct intel_atomic_state
*intel_state
= to_intel_atomic_state(state
);
14310 struct drm_crtc
*crtc
;
14311 struct intel_crtc
*intel_crtc
;
14312 struct drm_crtc_state
*old_crtc_state
;
14313 struct intel_crtc_state
*cstate
;
14314 unsigned int updated
= 0;
14319 const struct skl_ddb_entry
*entries
[I915_MAX_PIPES
] = {};
14321 for_each_crtc_in_state(state
, crtc
, old_crtc_state
, i
)
14322 /* ignore allocations for crtc's that have been turned off. */
14323 if (crtc
->state
->active
)
14324 entries
[i
] = &to_intel_crtc_state(old_crtc_state
)->wm
.skl
.ddb
;
14327 * Whenever the number of active pipes changes, we need to make sure we
14328 * update the pipes in the right order so that their ddb allocations
14329 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
14330 * cause pipe underruns and other bad stuff.
14335 for_each_crtc_in_state(state
, crtc
, old_crtc_state
, i
) {
14336 bool vbl_wait
= false;
14337 unsigned int cmask
= drm_crtc_mask(crtc
);
14339 intel_crtc
= to_intel_crtc(crtc
);
14340 cstate
= to_intel_crtc_state(crtc
->state
);
14341 pipe
= intel_crtc
->pipe
;
14343 if (updated
& cmask
|| !cstate
->base
.active
)
14346 if (skl_ddb_allocation_overlaps(entries
, &cstate
->wm
.skl
.ddb
, i
))
14350 entries
[i
] = &cstate
->wm
.skl
.ddb
;
14353 * If this is an already active pipe, it's DDB changed,
14354 * and this isn't the last pipe that needs updating
14355 * then we need to wait for a vblank to pass for the
14356 * new ddb allocation to take effect.
14358 if (!skl_ddb_entry_equal(&cstate
->wm
.skl
.ddb
,
14359 &to_intel_crtc_state(old_crtc_state
)->wm
.skl
.ddb
) &&
14360 !crtc
->state
->active_changed
&&
14361 intel_state
->wm_results
.dirty_pipes
!= updated
)
14364 intel_update_crtc(crtc
, state
, old_crtc_state
,
14368 intel_wait_for_vblank(dev_priv
, pipe
);
14372 } while (progress
);
14375 static void intel_atomic_commit_tail(struct drm_atomic_state
*state
)
14377 struct drm_device
*dev
= state
->dev
;
14378 struct intel_atomic_state
*intel_state
= to_intel_atomic_state(state
);
14379 struct drm_i915_private
*dev_priv
= to_i915(dev
);
14380 struct drm_crtc_state
*old_crtc_state
;
14381 struct drm_crtc
*crtc
;
14382 struct intel_crtc_state
*intel_cstate
;
14383 bool hw_check
= intel_state
->modeset
;
14384 unsigned long put_domains
[I915_MAX_PIPES
] = {};
14385 unsigned crtc_vblank_mask
= 0;
14388 drm_atomic_helper_wait_for_dependencies(state
);
14390 if (intel_state
->modeset
)
14391 intel_display_power_get(dev_priv
, POWER_DOMAIN_MODESET
);
14393 for_each_crtc_in_state(state
, crtc
, old_crtc_state
, i
) {
14394 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
14396 if (needs_modeset(crtc
->state
) ||
14397 to_intel_crtc_state(crtc
->state
)->update_pipe
) {
14400 put_domains
[to_intel_crtc(crtc
)->pipe
] =
14401 modeset_get_crtc_power_domains(crtc
,
14402 to_intel_crtc_state(crtc
->state
));
14405 if (!needs_modeset(crtc
->state
))
14408 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state
));
14410 if (old_crtc_state
->active
) {
14411 intel_crtc_disable_planes(crtc
, old_crtc_state
->plane_mask
);
14412 dev_priv
->display
.crtc_disable(to_intel_crtc_state(old_crtc_state
), state
);
14413 intel_crtc
->active
= false;
14414 intel_fbc_disable(intel_crtc
);
14415 intel_disable_shared_dpll(intel_crtc
);
14418 * Underruns don't always raise
14419 * interrupts, so check manually.
14421 intel_check_cpu_fifo_underruns(dev_priv
);
14422 intel_check_pch_fifo_underruns(dev_priv
);
14424 if (!crtc
->state
->active
) {
14426 * Make sure we don't call initial_watermarks
14427 * for ILK-style watermark updates.
14429 if (dev_priv
->display
.atomic_update_watermarks
)
14430 dev_priv
->display
.initial_watermarks(intel_state
,
14431 to_intel_crtc_state(crtc
->state
));
14433 intel_update_watermarks(intel_crtc
);
14438 /* Only after disabling all output pipelines that will be changed can we
14439 * update the the output configuration. */
14440 intel_modeset_update_crtc_state(state
);
14442 if (intel_state
->modeset
) {
14443 drm_atomic_helper_update_legacy_modeset_state(state
->dev
, state
);
14445 if (dev_priv
->display
.modeset_commit_cdclk
&&
14446 (intel_state
->dev_cdclk
!= dev_priv
->cdclk_freq
||
14447 intel_state
->cdclk_pll_vco
!= dev_priv
->cdclk_pll
.vco
))
14448 dev_priv
->display
.modeset_commit_cdclk(state
);
14451 * SKL workaround: bspec recommends we disable the SAGV when we
14452 * have more then one pipe enabled
14454 if (!intel_can_enable_sagv(state
))
14455 intel_disable_sagv(dev_priv
);
14457 intel_modeset_verify_disabled(dev
, state
);
14460 /* Complete the events for pipes that have now been disabled */
14461 for_each_crtc_in_state(state
, crtc
, old_crtc_state
, i
) {
14462 bool modeset
= needs_modeset(crtc
->state
);
14464 /* Complete events for now disable pipes here. */
14465 if (modeset
&& !crtc
->state
->active
&& crtc
->state
->event
) {
14466 spin_lock_irq(&dev
->event_lock
);
14467 drm_crtc_send_vblank_event(crtc
, crtc
->state
->event
);
14468 spin_unlock_irq(&dev
->event_lock
);
14470 crtc
->state
->event
= NULL
;
14474 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
14475 dev_priv
->display
.update_crtcs(state
, &crtc_vblank_mask
);
14477 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
14478 * already, but still need the state for the delayed optimization. To
14480 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
14481 * - schedule that vblank worker _before_ calling hw_done
14482 * - at the start of commit_tail, cancel it _synchrously
14483 * - switch over to the vblank wait helper in the core after that since
14484 * we don't need out special handling any more.
14486 if (!state
->legacy_cursor_update
)
14487 intel_atomic_wait_for_vblanks(dev
, dev_priv
, crtc_vblank_mask
);
14490 * Now that the vblank has passed, we can go ahead and program the
14491 * optimal watermarks on platforms that need two-step watermark
14494 * TODO: Move this (and other cleanup) to an async worker eventually.
14496 for_each_crtc_in_state(state
, crtc
, old_crtc_state
, i
) {
14497 intel_cstate
= to_intel_crtc_state(crtc
->state
);
14499 if (dev_priv
->display
.optimize_watermarks
)
14500 dev_priv
->display
.optimize_watermarks(intel_state
,
14504 for_each_crtc_in_state(state
, crtc
, old_crtc_state
, i
) {
14505 intel_post_plane_update(to_intel_crtc_state(old_crtc_state
));
14507 if (put_domains
[i
])
14508 modeset_put_power_domains(dev_priv
, put_domains
[i
]);
14510 intel_modeset_verify_crtc(crtc
, state
, old_crtc_state
, crtc
->state
);
14513 if (intel_state
->modeset
&& intel_can_enable_sagv(state
))
14514 intel_enable_sagv(dev_priv
);
14516 drm_atomic_helper_commit_hw_done(state
);
14518 if (intel_state
->modeset
)
14519 intel_display_power_put(dev_priv
, POWER_DOMAIN_MODESET
);
14521 mutex_lock(&dev
->struct_mutex
);
14522 drm_atomic_helper_cleanup_planes(dev
, state
);
14523 mutex_unlock(&dev
->struct_mutex
);
14525 drm_atomic_helper_commit_cleanup_done(state
);
14527 drm_atomic_state_put(state
);
14529 /* As one of the primary mmio accessors, KMS has a high likelihood
14530 * of triggering bugs in unclaimed access. After we finish
14531 * modesetting, see if an error has been flagged, and if so
14532 * enable debugging for the next modeset - and hope we catch
14535 * XXX note that we assume display power is on at this point.
14536 * This might hold true now but we need to add pm helper to check
14537 * unclaimed only when the hardware is on, as atomic commits
14538 * can happen also when the device is completely off.
14540 intel_uncore_arm_unclaimed_mmio_detection(dev_priv
);
14543 static void intel_atomic_commit_work(struct work_struct
*work
)
14545 struct drm_atomic_state
*state
=
14546 container_of(work
, struct drm_atomic_state
, commit_work
);
14548 intel_atomic_commit_tail(state
);
14551 static int __i915_sw_fence_call
14552 intel_atomic_commit_ready(struct i915_sw_fence
*fence
,
14553 enum i915_sw_fence_notify notify
)
14555 struct intel_atomic_state
*state
=
14556 container_of(fence
, struct intel_atomic_state
, commit_ready
);
14559 case FENCE_COMPLETE
:
14560 if (state
->base
.commit_work
.func
)
14561 queue_work(system_unbound_wq
, &state
->base
.commit_work
);
14565 drm_atomic_state_put(&state
->base
);
14569 return NOTIFY_DONE
;
14572 static void intel_atomic_track_fbs(struct drm_atomic_state
*state
)
14574 struct drm_plane_state
*old_plane_state
;
14575 struct drm_plane
*plane
;
14578 for_each_plane_in_state(state
, plane
, old_plane_state
, i
)
14579 i915_gem_track_fb(intel_fb_obj(old_plane_state
->fb
),
14580 intel_fb_obj(plane
->state
->fb
),
14581 to_intel_plane(plane
)->frontbuffer_bit
);
14585 * intel_atomic_commit - commit validated state object
14587 * @state: the top-level driver state object
14588 * @nonblock: nonblocking commit
14590 * This function commits a top-level state object that has been validated
14591 * with drm_atomic_helper_check().
14594 * Zero for success or -errno.
14596 static int intel_atomic_commit(struct drm_device
*dev
,
14597 struct drm_atomic_state
*state
,
14600 struct intel_atomic_state
*intel_state
= to_intel_atomic_state(state
);
14601 struct drm_i915_private
*dev_priv
= to_i915(dev
);
14604 ret
= drm_atomic_helper_setup_commit(state
, nonblock
);
14608 drm_atomic_state_get(state
);
14609 i915_sw_fence_init(&intel_state
->commit_ready
,
14610 intel_atomic_commit_ready
);
14612 ret
= intel_atomic_prepare_commit(dev
, state
);
14614 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret
);
14615 i915_sw_fence_commit(&intel_state
->commit_ready
);
14619 drm_atomic_helper_swap_state(state
, true);
14620 dev_priv
->wm
.distrust_bios_wm
= false;
14621 intel_shared_dpll_swap_state(state
);
14622 intel_atomic_track_fbs(state
);
14624 if (intel_state
->modeset
) {
14625 memcpy(dev_priv
->min_pixclk
, intel_state
->min_pixclk
,
14626 sizeof(intel_state
->min_pixclk
));
14627 dev_priv
->active_crtcs
= intel_state
->active_crtcs
;
14628 dev_priv
->atomic_cdclk_freq
= intel_state
->cdclk
;
14631 drm_atomic_state_get(state
);
14632 INIT_WORK(&state
->commit_work
,
14633 nonblock
? intel_atomic_commit_work
: NULL
);
14635 i915_sw_fence_commit(&intel_state
->commit_ready
);
14637 i915_sw_fence_wait(&intel_state
->commit_ready
);
14638 intel_atomic_commit_tail(state
);
14644 void intel_crtc_restore_mode(struct drm_crtc
*crtc
)
14646 struct drm_device
*dev
= crtc
->dev
;
14647 struct drm_atomic_state
*state
;
14648 struct drm_crtc_state
*crtc_state
;
14651 state
= drm_atomic_state_alloc(dev
);
14653 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
14654 crtc
->base
.id
, crtc
->name
);
14658 state
->acquire_ctx
= drm_modeset_legacy_acquire_ctx(crtc
);
14661 crtc_state
= drm_atomic_get_crtc_state(state
, crtc
);
14662 ret
= PTR_ERR_OR_ZERO(crtc_state
);
14664 if (!crtc_state
->active
)
14667 crtc_state
->mode_changed
= true;
14668 ret
= drm_atomic_commit(state
);
14671 if (ret
== -EDEADLK
) {
14672 drm_atomic_state_clear(state
);
14673 drm_modeset_backoff(state
->acquire_ctx
);
14678 drm_atomic_state_put(state
);
14682 * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
14683 * drm_atomic_helper_legacy_gamma_set() directly.
14685 static int intel_atomic_legacy_gamma_set(struct drm_crtc
*crtc
,
14686 u16
*red
, u16
*green
, u16
*blue
,
14689 struct drm_device
*dev
= crtc
->dev
;
14690 struct drm_mode_config
*config
= &dev
->mode_config
;
14691 struct drm_crtc_state
*state
;
14694 ret
= drm_atomic_helper_legacy_gamma_set(crtc
, red
, green
, blue
, size
);
14699 * Make sure we update the legacy properties so this works when
14700 * atomic is not enabled.
14703 state
= crtc
->state
;
14705 drm_object_property_set_value(&crtc
->base
,
14706 config
->degamma_lut_property
,
14707 (state
->degamma_lut
) ?
14708 state
->degamma_lut
->base
.id
: 0);
14710 drm_object_property_set_value(&crtc
->base
,
14711 config
->ctm_property
,
14713 state
->ctm
->base
.id
: 0);
14715 drm_object_property_set_value(&crtc
->base
,
14716 config
->gamma_lut_property
,
14717 (state
->gamma_lut
) ?
14718 state
->gamma_lut
->base
.id
: 0);
14723 static const struct drm_crtc_funcs intel_crtc_funcs
= {
14724 .gamma_set
= intel_atomic_legacy_gamma_set
,
14725 .set_config
= drm_atomic_helper_set_config
,
14726 .set_property
= drm_atomic_helper_crtc_set_property
,
14727 .destroy
= intel_crtc_destroy
,
14728 .page_flip
= intel_crtc_page_flip
,
14729 .atomic_duplicate_state
= intel_crtc_duplicate_state
,
14730 .atomic_destroy_state
= intel_crtc_destroy_state
,
14731 .set_crc_source
= intel_crtc_set_crc_source
,
14735 * intel_prepare_plane_fb - Prepare fb for usage on plane
14736 * @plane: drm plane to prepare for
14737 * @fb: framebuffer to prepare for presentation
14739 * Prepares a framebuffer for usage on a display plane. Generally this
14740 * involves pinning the underlying object and updating the frontbuffer tracking
14741 * bits. Some older platforms need special physical address handling for
14744 * Must be called with struct_mutex held.
14746 * Returns 0 on success, negative error code on failure.
14749 intel_prepare_plane_fb(struct drm_plane
*plane
,
14750 struct drm_plane_state
*new_state
)
14752 struct intel_atomic_state
*intel_state
=
14753 to_intel_atomic_state(new_state
->state
);
14754 struct drm_i915_private
*dev_priv
= to_i915(plane
->dev
);
14755 struct drm_framebuffer
*fb
= new_state
->fb
;
14756 struct drm_i915_gem_object
*obj
= intel_fb_obj(fb
);
14757 struct drm_i915_gem_object
*old_obj
= intel_fb_obj(plane
->state
->fb
);
14760 if (!obj
&& !old_obj
)
14764 struct drm_crtc_state
*crtc_state
=
14765 drm_atomic_get_existing_crtc_state(new_state
->state
,
14766 plane
->state
->crtc
);
14768 /* Big Hammer, we also need to ensure that any pending
14769 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14770 * current scanout is retired before unpinning the old
14771 * framebuffer. Note that we rely on userspace rendering
14772 * into the buffer attached to the pipe they are waiting
14773 * on. If not, userspace generates a GPU hang with IPEHR
14774 * point to the MI_WAIT_FOR_EVENT.
14776 * This should only fail upon a hung GPU, in which case we
14777 * can safely continue.
14779 if (needs_modeset(crtc_state
)) {
14780 ret
= i915_sw_fence_await_reservation(&intel_state
->commit_ready
,
14781 old_obj
->resv
, NULL
,
14789 if (new_state
->fence
) { /* explicit fencing */
14790 ret
= i915_sw_fence_await_dma_fence(&intel_state
->commit_ready
,
14792 I915_FENCE_TIMEOUT
,
14801 if (!new_state
->fence
) { /* implicit fencing */
14802 ret
= i915_sw_fence_await_reservation(&intel_state
->commit_ready
,
14804 false, I915_FENCE_TIMEOUT
,
14809 i915_gem_object_wait_priority(obj
, 0, I915_PRIORITY_DISPLAY
);
14812 if (plane
->type
== DRM_PLANE_TYPE_CURSOR
&&
14813 INTEL_INFO(dev_priv
)->cursor_needs_physical
) {
14814 int align
= IS_I830(dev_priv
) ? 16 * 1024 : 256;
14815 ret
= i915_gem_object_attach_phys(obj
, align
);
14817 DRM_DEBUG_KMS("failed to attach phys object\n");
14821 struct i915_vma
*vma
;
14823 vma
= intel_pin_and_fence_fb_obj(fb
, new_state
->rotation
);
14825 DRM_DEBUG_KMS("failed to pin object\n");
14826 return PTR_ERR(vma
);
14829 to_intel_plane_state(new_state
)->vma
= vma
;
14836 * intel_cleanup_plane_fb - Cleans up an fb after plane use
14837 * @plane: drm plane to clean up for
14838 * @fb: old framebuffer that was on plane
14840 * Cleans up a framebuffer that has just been removed from a plane.
14842 * Must be called with struct_mutex held.
14845 intel_cleanup_plane_fb(struct drm_plane
*plane
,
14846 struct drm_plane_state
*old_state
)
14848 struct i915_vma
*vma
;
14850 /* Should only be called after a successful intel_prepare_plane_fb()! */
14851 vma
= fetch_and_zero(&to_intel_plane_state(old_state
)->vma
);
14853 intel_unpin_fb_vma(vma
);
14857 skl_max_scale(struct intel_crtc
*intel_crtc
, struct intel_crtc_state
*crtc_state
)
14860 int crtc_clock
, cdclk
;
14862 if (!intel_crtc
|| !crtc_state
->base
.enable
)
14863 return DRM_PLANE_HELPER_NO_SCALING
;
14865 crtc_clock
= crtc_state
->base
.adjusted_mode
.crtc_clock
;
14866 cdclk
= to_intel_atomic_state(crtc_state
->base
.state
)->cdclk
;
14868 if (WARN_ON_ONCE(!crtc_clock
|| cdclk
< crtc_clock
))
14869 return DRM_PLANE_HELPER_NO_SCALING
;
14872 * skl max scale is lower of:
14873 * close to 3 but not 3, -1 is for that purpose
14877 max_scale
= min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk
<< 8) / crtc_clock
));
14883 intel_check_primary_plane(struct drm_plane
*plane
,
14884 struct intel_crtc_state
*crtc_state
,
14885 struct intel_plane_state
*state
)
14887 struct drm_i915_private
*dev_priv
= to_i915(plane
->dev
);
14888 struct drm_crtc
*crtc
= state
->base
.crtc
;
14889 int min_scale
= DRM_PLANE_HELPER_NO_SCALING
;
14890 int max_scale
= DRM_PLANE_HELPER_NO_SCALING
;
14891 bool can_position
= false;
14894 if (INTEL_GEN(dev_priv
) >= 9) {
14895 /* use scaler when colorkey is not required */
14896 if (state
->ckey
.flags
== I915_SET_COLORKEY_NONE
) {
14898 max_scale
= skl_max_scale(to_intel_crtc(crtc
), crtc_state
);
14900 can_position
= true;
14903 ret
= drm_plane_helper_check_state(&state
->base
,
14905 min_scale
, max_scale
,
14906 can_position
, true);
14910 if (!state
->base
.fb
)
14913 if (INTEL_GEN(dev_priv
) >= 9) {
14914 ret
= skl_check_plane_surface(state
);
14922 static void intel_begin_crtc_commit(struct drm_crtc
*crtc
,
14923 struct drm_crtc_state
*old_crtc_state
)
14925 struct drm_device
*dev
= crtc
->dev
;
14926 struct drm_i915_private
*dev_priv
= to_i915(dev
);
14927 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
14928 struct intel_crtc_state
*intel_cstate
=
14929 to_intel_crtc_state(crtc
->state
);
14930 struct intel_crtc_state
*old_intel_cstate
=
14931 to_intel_crtc_state(old_crtc_state
);
14932 struct intel_atomic_state
*old_intel_state
=
14933 to_intel_atomic_state(old_crtc_state
->state
);
14934 bool modeset
= needs_modeset(crtc
->state
);
14936 /* Perform vblank evasion around commit operation */
14937 intel_pipe_update_start(intel_crtc
);
14942 if (crtc
->state
->color_mgmt_changed
|| to_intel_crtc_state(crtc
->state
)->update_pipe
) {
14943 intel_color_set_csc(crtc
->state
);
14944 intel_color_load_luts(crtc
->state
);
14947 if (intel_cstate
->update_pipe
)
14948 intel_update_pipe_config(intel_crtc
, old_intel_cstate
);
14949 else if (INTEL_GEN(dev_priv
) >= 9)
14950 skl_detach_scalers(intel_crtc
);
14953 if (dev_priv
->display
.atomic_update_watermarks
)
14954 dev_priv
->display
.atomic_update_watermarks(old_intel_state
,
14958 static void intel_finish_crtc_commit(struct drm_crtc
*crtc
,
14959 struct drm_crtc_state
*old_crtc_state
)
14961 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
14963 intel_pipe_update_end(intel_crtc
, NULL
);
14967 * intel_plane_destroy - destroy a plane
14968 * @plane: plane to destroy
14970 * Common destruction function for all types of planes (primary, cursor,
14973 void intel_plane_destroy(struct drm_plane
*plane
)
14975 drm_plane_cleanup(plane
);
14976 kfree(to_intel_plane(plane
));
14979 const struct drm_plane_funcs intel_plane_funcs
= {
14980 .update_plane
= drm_atomic_helper_update_plane
,
14981 .disable_plane
= drm_atomic_helper_disable_plane
,
14982 .destroy
= intel_plane_destroy
,
14983 .set_property
= drm_atomic_helper_plane_set_property
,
14984 .atomic_get_property
= intel_plane_atomic_get_property
,
14985 .atomic_set_property
= intel_plane_atomic_set_property
,
14986 .atomic_duplicate_state
= intel_plane_duplicate_state
,
14987 .atomic_destroy_state
= intel_plane_destroy_state
,
14991 intel_legacy_cursor_update(struct drm_plane
*plane
,
14992 struct drm_crtc
*crtc
,
14993 struct drm_framebuffer
*fb
,
14994 int crtc_x
, int crtc_y
,
14995 unsigned int crtc_w
, unsigned int crtc_h
,
14996 uint32_t src_x
, uint32_t src_y
,
14997 uint32_t src_w
, uint32_t src_h
)
14999 struct drm_i915_private
*dev_priv
= to_i915(crtc
->dev
);
15001 struct drm_plane_state
*old_plane_state
, *new_plane_state
;
15002 struct intel_plane
*intel_plane
= to_intel_plane(plane
);
15003 struct drm_framebuffer
*old_fb
;
15004 struct drm_crtc_state
*crtc_state
= crtc
->state
;
15005 struct i915_vma
*old_vma
;
15008 * When crtc is inactive or there is a modeset pending,
15009 * wait for it to complete in the slowpath
15011 if (!crtc_state
->active
|| needs_modeset(crtc_state
) ||
15012 to_intel_crtc_state(crtc_state
)->update_pipe
)
15015 old_plane_state
= plane
->state
;
15018 * If any parameters change that may affect watermarks,
15019 * take the slowpath. Only changing fb or position should be
15022 if (old_plane_state
->crtc
!= crtc
||
15023 old_plane_state
->src_w
!= src_w
||
15024 old_plane_state
->src_h
!= src_h
||
15025 old_plane_state
->crtc_w
!= crtc_w
||
15026 old_plane_state
->crtc_h
!= crtc_h
||
15027 !old_plane_state
->visible
||
15028 old_plane_state
->fb
->modifier
!= fb
->modifier
)
15031 new_plane_state
= intel_plane_duplicate_state(plane
);
15032 if (!new_plane_state
)
15035 drm_atomic_set_fb_for_plane(new_plane_state
, fb
);
15037 new_plane_state
->src_x
= src_x
;
15038 new_plane_state
->src_y
= src_y
;
15039 new_plane_state
->src_w
= src_w
;
15040 new_plane_state
->src_h
= src_h
;
15041 new_plane_state
->crtc_x
= crtc_x
;
15042 new_plane_state
->crtc_y
= crtc_y
;
15043 new_plane_state
->crtc_w
= crtc_w
;
15044 new_plane_state
->crtc_h
= crtc_h
;
15046 ret
= intel_plane_atomic_check_with_state(to_intel_crtc_state(crtc
->state
),
15047 to_intel_plane_state(new_plane_state
));
15051 /* Visibility changed, must take slowpath. */
15052 if (!new_plane_state
->visible
)
15055 ret
= mutex_lock_interruptible(&dev_priv
->drm
.struct_mutex
);
15059 if (INTEL_INFO(dev_priv
)->cursor_needs_physical
) {
15060 int align
= IS_I830(dev_priv
) ? 16 * 1024 : 256;
15062 ret
= i915_gem_object_attach_phys(intel_fb_obj(fb
), align
);
15064 DRM_DEBUG_KMS("failed to attach phys object\n");
15068 struct i915_vma
*vma
;
15070 vma
= intel_pin_and_fence_fb_obj(fb
, new_plane_state
->rotation
);
15072 DRM_DEBUG_KMS("failed to pin object\n");
15074 ret
= PTR_ERR(vma
);
15078 to_intel_plane_state(new_plane_state
)->vma
= vma
;
15081 old_fb
= old_plane_state
->fb
;
15082 old_vma
= to_intel_plane_state(old_plane_state
)->vma
;
15084 i915_gem_track_fb(intel_fb_obj(old_fb
), intel_fb_obj(fb
),
15085 intel_plane
->frontbuffer_bit
);
15087 /* Swap plane state */
15088 new_plane_state
->fence
= old_plane_state
->fence
;
15089 *to_intel_plane_state(old_plane_state
) = *to_intel_plane_state(new_plane_state
);
15090 new_plane_state
->fence
= NULL
;
15091 new_plane_state
->fb
= old_fb
;
15092 to_intel_plane_state(new_plane_state
)->vma
= old_vma
;
15094 intel_plane
->update_plane(plane
,
15095 to_intel_crtc_state(crtc
->state
),
15096 to_intel_plane_state(plane
->state
));
15098 intel_cleanup_plane_fb(plane
, new_plane_state
);
15101 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
15103 intel_plane_destroy_state(plane
, new_plane_state
);
15107 intel_plane_destroy_state(plane
, new_plane_state
);
15109 return drm_atomic_helper_update_plane(plane
, crtc
, fb
,
15110 crtc_x
, crtc_y
, crtc_w
, crtc_h
,
15111 src_x
, src_y
, src_w
, src_h
);
15114 static const struct drm_plane_funcs intel_cursor_plane_funcs
= {
15115 .update_plane
= intel_legacy_cursor_update
,
15116 .disable_plane
= drm_atomic_helper_disable_plane
,
15117 .destroy
= intel_plane_destroy
,
15118 .set_property
= drm_atomic_helper_plane_set_property
,
15119 .atomic_get_property
= intel_plane_atomic_get_property
,
15120 .atomic_set_property
= intel_plane_atomic_set_property
,
15121 .atomic_duplicate_state
= intel_plane_duplicate_state
,
15122 .atomic_destroy_state
= intel_plane_destroy_state
,
15125 static struct intel_plane
*
15126 intel_primary_plane_create(struct drm_i915_private
*dev_priv
, enum pipe pipe
)
15128 struct intel_plane
*primary
= NULL
;
15129 struct intel_plane_state
*state
= NULL
;
15130 const uint32_t *intel_primary_formats
;
15131 unsigned int supported_rotations
;
15132 unsigned int num_formats
;
15135 primary
= kzalloc(sizeof(*primary
), GFP_KERNEL
);
15141 state
= intel_create_plane_state(&primary
->base
);
15147 primary
->base
.state
= &state
->base
;
15149 primary
->can_scale
= false;
15150 primary
->max_downscale
= 1;
15151 if (INTEL_GEN(dev_priv
) >= 9) {
15152 primary
->can_scale
= true;
15153 state
->scaler_id
= -1;
15155 primary
->pipe
= pipe
;
15157 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
15158 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
15160 if (HAS_FBC(dev_priv
) && INTEL_GEN(dev_priv
) < 4)
15161 primary
->plane
= (enum plane
) !pipe
;
15163 primary
->plane
= (enum plane
) pipe
;
15164 primary
->id
= PLANE_PRIMARY
;
15165 primary
->frontbuffer_bit
= INTEL_FRONTBUFFER_PRIMARY(pipe
);
15166 primary
->check_plane
= intel_check_primary_plane
;
15168 if (INTEL_GEN(dev_priv
) >= 9) {
15169 intel_primary_formats
= skl_primary_formats
;
15170 num_formats
= ARRAY_SIZE(skl_primary_formats
);
15172 primary
->update_plane
= skylake_update_primary_plane
;
15173 primary
->disable_plane
= skylake_disable_primary_plane
;
15174 } else if (HAS_PCH_SPLIT(dev_priv
)) {
15175 intel_primary_formats
= i965_primary_formats
;
15176 num_formats
= ARRAY_SIZE(i965_primary_formats
);
15178 primary
->update_plane
= ironlake_update_primary_plane
;
15179 primary
->disable_plane
= i9xx_disable_primary_plane
;
15180 } else if (INTEL_GEN(dev_priv
) >= 4) {
15181 intel_primary_formats
= i965_primary_formats
;
15182 num_formats
= ARRAY_SIZE(i965_primary_formats
);
15184 primary
->update_plane
= i9xx_update_primary_plane
;
15185 primary
->disable_plane
= i9xx_disable_primary_plane
;
15187 intel_primary_formats
= i8xx_primary_formats
;
15188 num_formats
= ARRAY_SIZE(i8xx_primary_formats
);
15190 primary
->update_plane
= i9xx_update_primary_plane
;
15191 primary
->disable_plane
= i9xx_disable_primary_plane
;
15194 if (INTEL_GEN(dev_priv
) >= 9)
15195 ret
= drm_universal_plane_init(&dev_priv
->drm
, &primary
->base
,
15196 0, &intel_plane_funcs
,
15197 intel_primary_formats
, num_formats
,
15198 DRM_PLANE_TYPE_PRIMARY
,
15199 "plane 1%c", pipe_name(pipe
));
15200 else if (INTEL_GEN(dev_priv
) >= 5 || IS_G4X(dev_priv
))
15201 ret
= drm_universal_plane_init(&dev_priv
->drm
, &primary
->base
,
15202 0, &intel_plane_funcs
,
15203 intel_primary_formats
, num_formats
,
15204 DRM_PLANE_TYPE_PRIMARY
,
15205 "primary %c", pipe_name(pipe
));
15207 ret
= drm_universal_plane_init(&dev_priv
->drm
, &primary
->base
,
15208 0, &intel_plane_funcs
,
15209 intel_primary_formats
, num_formats
,
15210 DRM_PLANE_TYPE_PRIMARY
,
15211 "plane %c", plane_name(primary
->plane
));
15215 if (INTEL_GEN(dev_priv
) >= 9) {
15216 supported_rotations
=
15217 DRM_ROTATE_0
| DRM_ROTATE_90
|
15218 DRM_ROTATE_180
| DRM_ROTATE_270
;
15219 } else if (IS_CHERRYVIEW(dev_priv
) && pipe
== PIPE_B
) {
15220 supported_rotations
=
15221 DRM_ROTATE_0
| DRM_ROTATE_180
|
15223 } else if (INTEL_GEN(dev_priv
) >= 4) {
15224 supported_rotations
=
15225 DRM_ROTATE_0
| DRM_ROTATE_180
;
15227 supported_rotations
= DRM_ROTATE_0
;
15230 if (INTEL_GEN(dev_priv
) >= 4)
15231 drm_plane_create_rotation_property(&primary
->base
,
15233 supported_rotations
);
15235 drm_plane_helper_add(&primary
->base
, &intel_plane_helper_funcs
);
15243 return ERR_PTR(ret
);
15247 intel_check_cursor_plane(struct drm_plane
*plane
,
15248 struct intel_crtc_state
*crtc_state
,
15249 struct intel_plane_state
*state
)
15251 struct drm_framebuffer
*fb
= state
->base
.fb
;
15252 struct drm_i915_gem_object
*obj
= intel_fb_obj(fb
);
15253 enum pipe pipe
= to_intel_plane(plane
)->pipe
;
15257 ret
= drm_plane_helper_check_state(&state
->base
,
15259 DRM_PLANE_HELPER_NO_SCALING
,
15260 DRM_PLANE_HELPER_NO_SCALING
,
15265 /* if we want to turn off the cursor ignore width and height */
15269 /* Check for which cursor types we support */
15270 if (!cursor_size_ok(to_i915(plane
->dev
), state
->base
.crtc_w
,
15271 state
->base
.crtc_h
)) {
15272 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
15273 state
->base
.crtc_w
, state
->base
.crtc_h
);
15277 stride
= roundup_pow_of_two(state
->base
.crtc_w
) * 4;
15278 if (obj
->base
.size
< stride
* state
->base
.crtc_h
) {
15279 DRM_DEBUG_KMS("buffer is too small\n");
15283 if (fb
->modifier
!= DRM_FORMAT_MOD_NONE
) {
15284 DRM_DEBUG_KMS("cursor cannot be tiled\n");
15289 * There's something wrong with the cursor on CHV pipe C.
15290 * If it straddles the left edge of the screen then
15291 * moving it away from the edge or disabling it often
15292 * results in a pipe underrun, and often that can lead to
15293 * dead pipe (constant underrun reported, and it scans
15294 * out just a solid color). To recover from that, the
15295 * display power well must be turned off and on again.
15296 * Refuse the put the cursor into that compromised position.
15298 if (IS_CHERRYVIEW(to_i915(plane
->dev
)) && pipe
== PIPE_C
&&
15299 state
->base
.visible
&& state
->base
.crtc_x
< 0) {
15300 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
15308 intel_disable_cursor_plane(struct drm_plane
*plane
,
15309 struct drm_crtc
*crtc
)
15311 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
15313 intel_crtc
->cursor_addr
= 0;
15314 intel_crtc_update_cursor(crtc
, NULL
);
15318 intel_update_cursor_plane(struct drm_plane
*plane
,
15319 const struct intel_crtc_state
*crtc_state
,
15320 const struct intel_plane_state
*state
)
15322 struct drm_crtc
*crtc
= crtc_state
->base
.crtc
;
15323 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
15324 struct drm_i915_private
*dev_priv
= to_i915(plane
->dev
);
15325 struct drm_i915_gem_object
*obj
= intel_fb_obj(state
->base
.fb
);
15330 else if (!INTEL_INFO(dev_priv
)->cursor_needs_physical
)
15331 addr
= intel_plane_ggtt_offset(state
);
15333 addr
= obj
->phys_handle
->busaddr
;
15335 intel_crtc
->cursor_addr
= addr
;
15336 intel_crtc_update_cursor(crtc
, state
);
15339 static struct intel_plane
*
15340 intel_cursor_plane_create(struct drm_i915_private
*dev_priv
, enum pipe pipe
)
15342 struct intel_plane
*cursor
= NULL
;
15343 struct intel_plane_state
*state
= NULL
;
15346 cursor
= kzalloc(sizeof(*cursor
), GFP_KERNEL
);
15352 state
= intel_create_plane_state(&cursor
->base
);
15358 cursor
->base
.state
= &state
->base
;
15360 cursor
->can_scale
= false;
15361 cursor
->max_downscale
= 1;
15362 cursor
->pipe
= pipe
;
15363 cursor
->plane
= pipe
;
15364 cursor
->id
= PLANE_CURSOR
;
15365 cursor
->frontbuffer_bit
= INTEL_FRONTBUFFER_CURSOR(pipe
);
15366 cursor
->check_plane
= intel_check_cursor_plane
;
15367 cursor
->update_plane
= intel_update_cursor_plane
;
15368 cursor
->disable_plane
= intel_disable_cursor_plane
;
15370 ret
= drm_universal_plane_init(&dev_priv
->drm
, &cursor
->base
,
15371 0, &intel_cursor_plane_funcs
,
15372 intel_cursor_formats
,
15373 ARRAY_SIZE(intel_cursor_formats
),
15374 DRM_PLANE_TYPE_CURSOR
,
15375 "cursor %c", pipe_name(pipe
));
15379 if (INTEL_GEN(dev_priv
) >= 4)
15380 drm_plane_create_rotation_property(&cursor
->base
,
15385 if (INTEL_GEN(dev_priv
) >= 9)
15386 state
->scaler_id
= -1;
15388 drm_plane_helper_add(&cursor
->base
, &intel_plane_helper_funcs
);
15396 return ERR_PTR(ret
);
15399 static void intel_crtc_init_scalers(struct intel_crtc
*crtc
,
15400 struct intel_crtc_state
*crtc_state
)
15402 struct intel_crtc_scaler_state
*scaler_state
=
15403 &crtc_state
->scaler_state
;
15404 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
15407 crtc
->num_scalers
= dev_priv
->info
.num_scalers
[crtc
->pipe
];
15408 if (!crtc
->num_scalers
)
15411 for (i
= 0; i
< crtc
->num_scalers
; i
++) {
15412 struct intel_scaler
*scaler
= &scaler_state
->scalers
[i
];
15414 scaler
->in_use
= 0;
15415 scaler
->mode
= PS_SCALER_MODE_DYN
;
15418 scaler_state
->scaler_id
= -1;
15421 static int intel_crtc_init(struct drm_i915_private
*dev_priv
, enum pipe pipe
)
15423 struct intel_crtc
*intel_crtc
;
15424 struct intel_crtc_state
*crtc_state
= NULL
;
15425 struct intel_plane
*primary
= NULL
;
15426 struct intel_plane
*cursor
= NULL
;
15429 intel_crtc
= kzalloc(sizeof(*intel_crtc
), GFP_KERNEL
);
15433 crtc_state
= kzalloc(sizeof(*crtc_state
), GFP_KERNEL
);
15438 intel_crtc
->config
= crtc_state
;
15439 intel_crtc
->base
.state
= &crtc_state
->base
;
15440 crtc_state
->base
.crtc
= &intel_crtc
->base
;
15442 primary
= intel_primary_plane_create(dev_priv
, pipe
);
15443 if (IS_ERR(primary
)) {
15444 ret
= PTR_ERR(primary
);
15447 intel_crtc
->plane_ids_mask
|= BIT(primary
->id
);
15449 for_each_sprite(dev_priv
, pipe
, sprite
) {
15450 struct intel_plane
*plane
;
15452 plane
= intel_sprite_plane_create(dev_priv
, pipe
, sprite
);
15453 if (IS_ERR(plane
)) {
15454 ret
= PTR_ERR(plane
);
15457 intel_crtc
->plane_ids_mask
|= BIT(plane
->id
);
15460 cursor
= intel_cursor_plane_create(dev_priv
, pipe
);
15461 if (IS_ERR(cursor
)) {
15462 ret
= PTR_ERR(cursor
);
15465 intel_crtc
->plane_ids_mask
|= BIT(cursor
->id
);
15467 ret
= drm_crtc_init_with_planes(&dev_priv
->drm
, &intel_crtc
->base
,
15468 &primary
->base
, &cursor
->base
,
15470 "pipe %c", pipe_name(pipe
));
15474 intel_crtc
->pipe
= pipe
;
15475 intel_crtc
->plane
= primary
->plane
;
15477 intel_crtc
->cursor_base
= ~0;
15478 intel_crtc
->cursor_cntl
= ~0;
15479 intel_crtc
->cursor_size
= ~0;
15481 intel_crtc
->wm
.cxsr_allowed
= true;
15483 /* initialize shared scalers */
15484 intel_crtc_init_scalers(intel_crtc
, crtc_state
);
15486 BUG_ON(pipe
>= ARRAY_SIZE(dev_priv
->plane_to_crtc_mapping
) ||
15487 dev_priv
->plane_to_crtc_mapping
[intel_crtc
->plane
] != NULL
);
15488 dev_priv
->plane_to_crtc_mapping
[intel_crtc
->plane
] = intel_crtc
;
15489 dev_priv
->pipe_to_crtc_mapping
[intel_crtc
->pipe
] = intel_crtc
;
15491 drm_crtc_helper_add(&intel_crtc
->base
, &intel_helper_funcs
);
15493 intel_color_init(&intel_crtc
->base
);
15495 WARN_ON(drm_crtc_index(&intel_crtc
->base
) != intel_crtc
->pipe
);
15501 * drm_mode_config_cleanup() will free up any
15502 * crtcs/planes already initialized.
15510 enum pipe
intel_get_pipe_from_connector(struct intel_connector
*connector
)
15512 struct drm_encoder
*encoder
= connector
->base
.encoder
;
15513 struct drm_device
*dev
= connector
->base
.dev
;
15515 WARN_ON(!drm_modeset_is_locked(&dev
->mode_config
.connection_mutex
));
15517 if (!encoder
|| WARN_ON(!encoder
->crtc
))
15518 return INVALID_PIPE
;
15520 return to_intel_crtc(encoder
->crtc
)->pipe
;
15523 int intel_get_pipe_from_crtc_id(struct drm_device
*dev
, void *data
,
15524 struct drm_file
*file
)
15526 struct drm_i915_get_pipe_from_crtc_id
*pipe_from_crtc_id
= data
;
15527 struct drm_crtc
*drmmode_crtc
;
15528 struct intel_crtc
*crtc
;
15530 drmmode_crtc
= drm_crtc_find(dev
, pipe_from_crtc_id
->crtc_id
);
15534 crtc
= to_intel_crtc(drmmode_crtc
);
15535 pipe_from_crtc_id
->pipe
= crtc
->pipe
;
15540 static int intel_encoder_clones(struct intel_encoder
*encoder
)
15542 struct drm_device
*dev
= encoder
->base
.dev
;
15543 struct intel_encoder
*source_encoder
;
15544 int index_mask
= 0;
15547 for_each_intel_encoder(dev
, source_encoder
) {
15548 if (encoders_cloneable(encoder
, source_encoder
))
15549 index_mask
|= (1 << entry
);
15557 static bool has_edp_a(struct drm_i915_private
*dev_priv
)
15559 if (!IS_MOBILE(dev_priv
))
15562 if ((I915_READ(DP_A
) & DP_DETECTED
) == 0)
15565 if (IS_GEN5(dev_priv
) && (I915_READ(FUSE_STRAP
) & ILK_eDP_A_DISABLE
))
15571 static bool intel_crt_present(struct drm_i915_private
*dev_priv
)
15573 if (INTEL_GEN(dev_priv
) >= 9)
15576 if (IS_HSW_ULT(dev_priv
) || IS_BDW_ULT(dev_priv
))
15579 if (IS_CHERRYVIEW(dev_priv
))
15582 if (HAS_PCH_LPT_H(dev_priv
) &&
15583 I915_READ(SFUSE_STRAP
) & SFUSE_STRAP_CRT_DISABLED
)
15586 /* DDI E can't be used if DDI A requires 4 lanes */
15587 if (HAS_DDI(dev_priv
) && I915_READ(DDI_BUF_CTL(PORT_A
)) & DDI_A_4_LANES
)
15590 if (!dev_priv
->vbt
.int_crt_support
)
15596 void intel_pps_unlock_regs_wa(struct drm_i915_private
*dev_priv
)
15601 if (HAS_DDI(dev_priv
))
15604 * This w/a is needed at least on CPT/PPT, but to be sure apply it
15605 * everywhere where registers can be write protected.
15607 if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
))
15612 for (pps_idx
= 0; pps_idx
< pps_num
; pps_idx
++) {
15613 u32 val
= I915_READ(PP_CONTROL(pps_idx
));
15615 val
= (val
& ~PANEL_UNLOCK_MASK
) | PANEL_UNLOCK_REGS
;
15616 I915_WRITE(PP_CONTROL(pps_idx
), val
);
15620 static void intel_pps_init(struct drm_i915_private
*dev_priv
)
15622 if (HAS_PCH_SPLIT(dev_priv
) || IS_GEN9_LP(dev_priv
))
15623 dev_priv
->pps_mmio_base
= PCH_PPS_BASE
;
15624 else if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
))
15625 dev_priv
->pps_mmio_base
= VLV_PPS_BASE
;
15627 dev_priv
->pps_mmio_base
= PPS_BASE
;
15629 intel_pps_unlock_regs_wa(dev_priv
);
15632 static void intel_setup_outputs(struct drm_i915_private
*dev_priv
)
15634 struct intel_encoder
*encoder
;
15635 bool dpd_is_edp
= false;
15637 intel_pps_init(dev_priv
);
15640 * intel_edp_init_connector() depends on this completing first, to
15641 * prevent the registeration of both eDP and LVDS and the incorrect
15642 * sharing of the PPS.
15644 intel_lvds_init(dev_priv
);
15646 if (intel_crt_present(dev_priv
))
15647 intel_crt_init(dev_priv
);
15649 if (IS_GEN9_LP(dev_priv
)) {
15651 * FIXME: Broxton doesn't support port detection via the
15652 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
15653 * detect the ports.
15655 intel_ddi_init(dev_priv
, PORT_A
);
15656 intel_ddi_init(dev_priv
, PORT_B
);
15657 intel_ddi_init(dev_priv
, PORT_C
);
15659 intel_dsi_init(dev_priv
);
15660 } else if (HAS_DDI(dev_priv
)) {
15664 * Haswell uses DDI functions to detect digital outputs.
15665 * On SKL pre-D0 the strap isn't connected, so we assume
15668 found
= I915_READ(DDI_BUF_CTL(PORT_A
)) & DDI_INIT_DISPLAY_DETECTED
;
15669 /* WaIgnoreDDIAStrap: skl */
15670 if (found
|| IS_SKYLAKE(dev_priv
) || IS_KABYLAKE(dev_priv
))
15671 intel_ddi_init(dev_priv
, PORT_A
);
15673 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
15675 found
= I915_READ(SFUSE_STRAP
);
15677 if (found
& SFUSE_STRAP_DDIB_DETECTED
)
15678 intel_ddi_init(dev_priv
, PORT_B
);
15679 if (found
& SFUSE_STRAP_DDIC_DETECTED
)
15680 intel_ddi_init(dev_priv
, PORT_C
);
15681 if (found
& SFUSE_STRAP_DDID_DETECTED
)
15682 intel_ddi_init(dev_priv
, PORT_D
);
15684 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
15686 if ((IS_SKYLAKE(dev_priv
) || IS_KABYLAKE(dev_priv
)) &&
15687 (dev_priv
->vbt
.ddi_port_info
[PORT_E
].supports_dp
||
15688 dev_priv
->vbt
.ddi_port_info
[PORT_E
].supports_dvi
||
15689 dev_priv
->vbt
.ddi_port_info
[PORT_E
].supports_hdmi
))
15690 intel_ddi_init(dev_priv
, PORT_E
);
15692 } else if (HAS_PCH_SPLIT(dev_priv
)) {
15694 dpd_is_edp
= intel_dp_is_edp(dev_priv
, PORT_D
);
15696 if (has_edp_a(dev_priv
))
15697 intel_dp_init(dev_priv
, DP_A
, PORT_A
);
15699 if (I915_READ(PCH_HDMIB
) & SDVO_DETECTED
) {
15700 /* PCH SDVOB multiplex with HDMIB */
15701 found
= intel_sdvo_init(dev_priv
, PCH_SDVOB
, PORT_B
);
15703 intel_hdmi_init(dev_priv
, PCH_HDMIB
, PORT_B
);
15704 if (!found
&& (I915_READ(PCH_DP_B
) & DP_DETECTED
))
15705 intel_dp_init(dev_priv
, PCH_DP_B
, PORT_B
);
15708 if (I915_READ(PCH_HDMIC
) & SDVO_DETECTED
)
15709 intel_hdmi_init(dev_priv
, PCH_HDMIC
, PORT_C
);
15711 if (!dpd_is_edp
&& I915_READ(PCH_HDMID
) & SDVO_DETECTED
)
15712 intel_hdmi_init(dev_priv
, PCH_HDMID
, PORT_D
);
15714 if (I915_READ(PCH_DP_C
) & DP_DETECTED
)
15715 intel_dp_init(dev_priv
, PCH_DP_C
, PORT_C
);
15717 if (I915_READ(PCH_DP_D
) & DP_DETECTED
)
15718 intel_dp_init(dev_priv
, PCH_DP_D
, PORT_D
);
15719 } else if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
)) {
15720 bool has_edp
, has_port
;
15723 * The DP_DETECTED bit is the latched state of the DDC
15724 * SDA pin at boot. However since eDP doesn't require DDC
15725 * (no way to plug in a DP->HDMI dongle) the DDC pins for
15726 * eDP ports may have been muxed to an alternate function.
15727 * Thus we can't rely on the DP_DETECTED bit alone to detect
15728 * eDP ports. Consult the VBT as well as DP_DETECTED to
15729 * detect eDP ports.
15731 * Sadly the straps seem to be missing sometimes even for HDMI
15732 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
15733 * and VBT for the presence of the port. Additionally we can't
15734 * trust the port type the VBT declares as we've seen at least
15735 * HDMI ports that the VBT claim are DP or eDP.
15737 has_edp
= intel_dp_is_edp(dev_priv
, PORT_B
);
15738 has_port
= intel_bios_is_port_present(dev_priv
, PORT_B
);
15739 if (I915_READ(VLV_DP_B
) & DP_DETECTED
|| has_port
)
15740 has_edp
&= intel_dp_init(dev_priv
, VLV_DP_B
, PORT_B
);
15741 if ((I915_READ(VLV_HDMIB
) & SDVO_DETECTED
|| has_port
) && !has_edp
)
15742 intel_hdmi_init(dev_priv
, VLV_HDMIB
, PORT_B
);
15744 has_edp
= intel_dp_is_edp(dev_priv
, PORT_C
);
15745 has_port
= intel_bios_is_port_present(dev_priv
, PORT_C
);
15746 if (I915_READ(VLV_DP_C
) & DP_DETECTED
|| has_port
)
15747 has_edp
&= intel_dp_init(dev_priv
, VLV_DP_C
, PORT_C
);
15748 if ((I915_READ(VLV_HDMIC
) & SDVO_DETECTED
|| has_port
) && !has_edp
)
15749 intel_hdmi_init(dev_priv
, VLV_HDMIC
, PORT_C
);
15751 if (IS_CHERRYVIEW(dev_priv
)) {
15753 * eDP not supported on port D,
15754 * so no need to worry about it
15756 has_port
= intel_bios_is_port_present(dev_priv
, PORT_D
);
15757 if (I915_READ(CHV_DP_D
) & DP_DETECTED
|| has_port
)
15758 intel_dp_init(dev_priv
, CHV_DP_D
, PORT_D
);
15759 if (I915_READ(CHV_HDMID
) & SDVO_DETECTED
|| has_port
)
15760 intel_hdmi_init(dev_priv
, CHV_HDMID
, PORT_D
);
15763 intel_dsi_init(dev_priv
);
15764 } else if (!IS_GEN2(dev_priv
) && !IS_PINEVIEW(dev_priv
)) {
15765 bool found
= false;
15767 if (I915_READ(GEN3_SDVOB
) & SDVO_DETECTED
) {
15768 DRM_DEBUG_KMS("probing SDVOB\n");
15769 found
= intel_sdvo_init(dev_priv
, GEN3_SDVOB
, PORT_B
);
15770 if (!found
&& IS_G4X(dev_priv
)) {
15771 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
15772 intel_hdmi_init(dev_priv
, GEN4_HDMIB
, PORT_B
);
15775 if (!found
&& IS_G4X(dev_priv
))
15776 intel_dp_init(dev_priv
, DP_B
, PORT_B
);
15779 /* Before G4X SDVOC doesn't have its own detect register */
15781 if (I915_READ(GEN3_SDVOB
) & SDVO_DETECTED
) {
15782 DRM_DEBUG_KMS("probing SDVOC\n");
15783 found
= intel_sdvo_init(dev_priv
, GEN3_SDVOC
, PORT_C
);
15786 if (!found
&& (I915_READ(GEN3_SDVOC
) & SDVO_DETECTED
)) {
15788 if (IS_G4X(dev_priv
)) {
15789 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
15790 intel_hdmi_init(dev_priv
, GEN4_HDMIC
, PORT_C
);
15792 if (IS_G4X(dev_priv
))
15793 intel_dp_init(dev_priv
, DP_C
, PORT_C
);
15796 if (IS_G4X(dev_priv
) && (I915_READ(DP_D
) & DP_DETECTED
))
15797 intel_dp_init(dev_priv
, DP_D
, PORT_D
);
15798 } else if (IS_GEN2(dev_priv
))
15799 intel_dvo_init(dev_priv
);
15801 if (SUPPORTS_TV(dev_priv
))
15802 intel_tv_init(dev_priv
);
15804 intel_psr_init(dev_priv
);
15806 for_each_intel_encoder(&dev_priv
->drm
, encoder
) {
15807 encoder
->base
.possible_crtcs
= encoder
->crtc_mask
;
15808 encoder
->base
.possible_clones
=
15809 intel_encoder_clones(encoder
);
15812 intel_init_pch_refclk(dev_priv
);
15814 drm_helper_move_panel_connectors_to_head(&dev_priv
->drm
);
15817 static void intel_user_framebuffer_destroy(struct drm_framebuffer
*fb
)
15819 struct drm_device
*dev
= fb
->dev
;
15820 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
15822 drm_framebuffer_cleanup(fb
);
15823 mutex_lock(&dev
->struct_mutex
);
15824 WARN_ON(!intel_fb
->obj
->framebuffer_references
--);
15825 i915_gem_object_put(intel_fb
->obj
);
15826 mutex_unlock(&dev
->struct_mutex
);
15830 static int intel_user_framebuffer_create_handle(struct drm_framebuffer
*fb
,
15831 struct drm_file
*file
,
15832 unsigned int *handle
)
15834 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
15835 struct drm_i915_gem_object
*obj
= intel_fb
->obj
;
15837 if (obj
->userptr
.mm
) {
15838 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
15842 return drm_gem_handle_create(file
, &obj
->base
, handle
);
15845 static int intel_user_framebuffer_dirty(struct drm_framebuffer
*fb
,
15846 struct drm_file
*file
,
15847 unsigned flags
, unsigned color
,
15848 struct drm_clip_rect
*clips
,
15849 unsigned num_clips
)
15851 struct drm_device
*dev
= fb
->dev
;
15852 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
15853 struct drm_i915_gem_object
*obj
= intel_fb
->obj
;
15855 mutex_lock(&dev
->struct_mutex
);
15856 if (obj
->pin_display
&& obj
->cache_dirty
)
15857 i915_gem_clflush_object(obj
, true);
15858 intel_fb_obj_flush(obj
, false, ORIGIN_DIRTYFB
);
15859 mutex_unlock(&dev
->struct_mutex
);
15864 static const struct drm_framebuffer_funcs intel_fb_funcs
= {
15865 .destroy
= intel_user_framebuffer_destroy
,
15866 .create_handle
= intel_user_framebuffer_create_handle
,
15867 .dirty
= intel_user_framebuffer_dirty
,
15871 u32
intel_fb_pitch_limit(struct drm_i915_private
*dev_priv
,
15872 uint64_t fb_modifier
, uint32_t pixel_format
)
15874 u32 gen
= INTEL_INFO(dev_priv
)->gen
;
15877 int cpp
= drm_format_plane_cpp(pixel_format
, 0);
15879 /* "The stride in bytes must not exceed the of the size of 8K
15880 * pixels and 32K bytes."
15882 return min(8192 * cpp
, 32768);
15883 } else if (gen
>= 5 && !IS_VALLEYVIEW(dev_priv
) &&
15884 !IS_CHERRYVIEW(dev_priv
)) {
15886 } else if (gen
>= 4) {
15887 if (fb_modifier
== I915_FORMAT_MOD_X_TILED
)
15891 } else if (gen
>= 3) {
15892 if (fb_modifier
== I915_FORMAT_MOD_X_TILED
)
15897 /* XXX DSPC is limited to 4k tiled */
15902 static int intel_framebuffer_init(struct drm_device
*dev
,
15903 struct intel_framebuffer
*intel_fb
,
15904 struct drm_mode_fb_cmd2
*mode_cmd
,
15905 struct drm_i915_gem_object
*obj
)
15907 struct drm_i915_private
*dev_priv
= to_i915(dev
);
15908 unsigned int tiling
= i915_gem_object_get_tiling(obj
);
15910 u32 pitch_limit
, stride_alignment
;
15911 struct drm_format_name_buf format_name
;
15913 WARN_ON(!mutex_is_locked(&dev
->struct_mutex
));
15915 if (mode_cmd
->flags
& DRM_MODE_FB_MODIFIERS
) {
15917 * If there's a fence, enforce that
15918 * the fb modifier and tiling mode match.
15920 if (tiling
!= I915_TILING_NONE
&&
15921 tiling
!= intel_fb_modifier_to_tiling(mode_cmd
->modifier
[0])) {
15922 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
15926 if (tiling
== I915_TILING_X
) {
15927 mode_cmd
->modifier
[0] = I915_FORMAT_MOD_X_TILED
;
15928 } else if (tiling
== I915_TILING_Y
) {
15929 DRM_DEBUG("No Y tiling for legacy addfb\n");
15934 /* Passed in modifier sanity checking. */
15935 switch (mode_cmd
->modifier
[0]) {
15936 case I915_FORMAT_MOD_Y_TILED
:
15937 case I915_FORMAT_MOD_Yf_TILED
:
15938 if (INTEL_GEN(dev_priv
) < 9) {
15939 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
15940 mode_cmd
->modifier
[0]);
15943 case DRM_FORMAT_MOD_NONE
:
15944 case I915_FORMAT_MOD_X_TILED
:
15947 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
15948 mode_cmd
->modifier
[0]);
15953 * gen2/3 display engine uses the fence if present,
15954 * so the tiling mode must match the fb modifier exactly.
15956 if (INTEL_INFO(dev_priv
)->gen
< 4 &&
15957 tiling
!= intel_fb_modifier_to_tiling(mode_cmd
->modifier
[0])) {
15958 DRM_DEBUG("tiling_mode must match fb modifier exactly on gen2/3\n");
15962 stride_alignment
= intel_fb_stride_alignment(dev_priv
,
15963 mode_cmd
->modifier
[0],
15964 mode_cmd
->pixel_format
);
15965 if (mode_cmd
->pitches
[0] & (stride_alignment
- 1)) {
15966 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
15967 mode_cmd
->pitches
[0], stride_alignment
);
15971 pitch_limit
= intel_fb_pitch_limit(dev_priv
, mode_cmd
->modifier
[0],
15972 mode_cmd
->pixel_format
);
15973 if (mode_cmd
->pitches
[0] > pitch_limit
) {
15974 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
15975 mode_cmd
->modifier
[0] != DRM_FORMAT_MOD_NONE
?
15976 "tiled" : "linear",
15977 mode_cmd
->pitches
[0], pitch_limit
);
15982 * If there's a fence, enforce that
15983 * the fb pitch and fence stride match.
15985 if (tiling
!= I915_TILING_NONE
&&
15986 mode_cmd
->pitches
[0] != i915_gem_object_get_stride(obj
)) {
15987 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
15988 mode_cmd
->pitches
[0],
15989 i915_gem_object_get_stride(obj
));
15993 /* Reject formats not supported by any plane early. */
15994 switch (mode_cmd
->pixel_format
) {
15995 case DRM_FORMAT_C8
:
15996 case DRM_FORMAT_RGB565
:
15997 case DRM_FORMAT_XRGB8888
:
15998 case DRM_FORMAT_ARGB8888
:
16000 case DRM_FORMAT_XRGB1555
:
16001 if (INTEL_GEN(dev_priv
) > 3) {
16002 DRM_DEBUG("unsupported pixel format: %s\n",
16003 drm_get_format_name(mode_cmd
->pixel_format
, &format_name
));
16007 case DRM_FORMAT_ABGR8888
:
16008 if (!IS_VALLEYVIEW(dev_priv
) && !IS_CHERRYVIEW(dev_priv
) &&
16009 INTEL_GEN(dev_priv
) < 9) {
16010 DRM_DEBUG("unsupported pixel format: %s\n",
16011 drm_get_format_name(mode_cmd
->pixel_format
, &format_name
));
16015 case DRM_FORMAT_XBGR8888
:
16016 case DRM_FORMAT_XRGB2101010
:
16017 case DRM_FORMAT_XBGR2101010
:
16018 if (INTEL_GEN(dev_priv
) < 4) {
16019 DRM_DEBUG("unsupported pixel format: %s\n",
16020 drm_get_format_name(mode_cmd
->pixel_format
, &format_name
));
16024 case DRM_FORMAT_ABGR2101010
:
16025 if (!IS_VALLEYVIEW(dev_priv
) && !IS_CHERRYVIEW(dev_priv
)) {
16026 DRM_DEBUG("unsupported pixel format: %s\n",
16027 drm_get_format_name(mode_cmd
->pixel_format
, &format_name
));
16031 case DRM_FORMAT_YUYV
:
16032 case DRM_FORMAT_UYVY
:
16033 case DRM_FORMAT_YVYU
:
16034 case DRM_FORMAT_VYUY
:
16035 if (INTEL_GEN(dev_priv
) < 5) {
16036 DRM_DEBUG("unsupported pixel format: %s\n",
16037 drm_get_format_name(mode_cmd
->pixel_format
, &format_name
));
16042 DRM_DEBUG("unsupported pixel format: %s\n",
16043 drm_get_format_name(mode_cmd
->pixel_format
, &format_name
));
16047 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
16048 if (mode_cmd
->offsets
[0] != 0)
16051 drm_helper_mode_fill_fb_struct(dev
, &intel_fb
->base
, mode_cmd
);
16052 intel_fb
->obj
= obj
;
16054 ret
= intel_fill_fb_info(dev_priv
, &intel_fb
->base
);
16058 ret
= drm_framebuffer_init(dev
, &intel_fb
->base
, &intel_fb_funcs
);
16060 DRM_ERROR("framebuffer init failed %d\n", ret
);
16064 intel_fb
->obj
->framebuffer_references
++;
16069 static struct drm_framebuffer
*
16070 intel_user_framebuffer_create(struct drm_device
*dev
,
16071 struct drm_file
*filp
,
16072 const struct drm_mode_fb_cmd2
*user_mode_cmd
)
16074 struct drm_framebuffer
*fb
;
16075 struct drm_i915_gem_object
*obj
;
16076 struct drm_mode_fb_cmd2 mode_cmd
= *user_mode_cmd
;
16078 obj
= i915_gem_object_lookup(filp
, mode_cmd
.handles
[0]);
16080 return ERR_PTR(-ENOENT
);
16082 fb
= intel_framebuffer_create(dev
, &mode_cmd
, obj
);
16084 i915_gem_object_put(obj
);
16089 static void intel_atomic_state_free(struct drm_atomic_state
*state
)
16091 struct intel_atomic_state
*intel_state
= to_intel_atomic_state(state
);
16093 drm_atomic_state_default_release(state
);
16095 i915_sw_fence_fini(&intel_state
->commit_ready
);
16100 static const struct drm_mode_config_funcs intel_mode_funcs
= {
16101 .fb_create
= intel_user_framebuffer_create
,
16102 .output_poll_changed
= intel_fbdev_output_poll_changed
,
16103 .atomic_check
= intel_atomic_check
,
16104 .atomic_commit
= intel_atomic_commit
,
16105 .atomic_state_alloc
= intel_atomic_state_alloc
,
16106 .atomic_state_clear
= intel_atomic_state_clear
,
16107 .atomic_state_free
= intel_atomic_state_free
,
16111 * intel_init_display_hooks - initialize the display modesetting hooks
16112 * @dev_priv: device private
16114 void intel_init_display_hooks(struct drm_i915_private
*dev_priv
)
16116 if (INTEL_INFO(dev_priv
)->gen
>= 9) {
16117 dev_priv
->display
.get_pipe_config
= haswell_get_pipe_config
;
16118 dev_priv
->display
.get_initial_plane_config
=
16119 skylake_get_initial_plane_config
;
16120 dev_priv
->display
.crtc_compute_clock
=
16121 haswell_crtc_compute_clock
;
16122 dev_priv
->display
.crtc_enable
= haswell_crtc_enable
;
16123 dev_priv
->display
.crtc_disable
= haswell_crtc_disable
;
16124 } else if (HAS_DDI(dev_priv
)) {
16125 dev_priv
->display
.get_pipe_config
= haswell_get_pipe_config
;
16126 dev_priv
->display
.get_initial_plane_config
=
16127 ironlake_get_initial_plane_config
;
16128 dev_priv
->display
.crtc_compute_clock
=
16129 haswell_crtc_compute_clock
;
16130 dev_priv
->display
.crtc_enable
= haswell_crtc_enable
;
16131 dev_priv
->display
.crtc_disable
= haswell_crtc_disable
;
16132 } else if (HAS_PCH_SPLIT(dev_priv
)) {
16133 dev_priv
->display
.get_pipe_config
= ironlake_get_pipe_config
;
16134 dev_priv
->display
.get_initial_plane_config
=
16135 ironlake_get_initial_plane_config
;
16136 dev_priv
->display
.crtc_compute_clock
=
16137 ironlake_crtc_compute_clock
;
16138 dev_priv
->display
.crtc_enable
= ironlake_crtc_enable
;
16139 dev_priv
->display
.crtc_disable
= ironlake_crtc_disable
;
16140 } else if (IS_CHERRYVIEW(dev_priv
)) {
16141 dev_priv
->display
.get_pipe_config
= i9xx_get_pipe_config
;
16142 dev_priv
->display
.get_initial_plane_config
=
16143 i9xx_get_initial_plane_config
;
16144 dev_priv
->display
.crtc_compute_clock
= chv_crtc_compute_clock
;
16145 dev_priv
->display
.crtc_enable
= valleyview_crtc_enable
;
16146 dev_priv
->display
.crtc_disable
= i9xx_crtc_disable
;
16147 } else if (IS_VALLEYVIEW(dev_priv
)) {
16148 dev_priv
->display
.get_pipe_config
= i9xx_get_pipe_config
;
16149 dev_priv
->display
.get_initial_plane_config
=
16150 i9xx_get_initial_plane_config
;
16151 dev_priv
->display
.crtc_compute_clock
= vlv_crtc_compute_clock
;
16152 dev_priv
->display
.crtc_enable
= valleyview_crtc_enable
;
16153 dev_priv
->display
.crtc_disable
= i9xx_crtc_disable
;
16154 } else if (IS_G4X(dev_priv
)) {
16155 dev_priv
->display
.get_pipe_config
= i9xx_get_pipe_config
;
16156 dev_priv
->display
.get_initial_plane_config
=
16157 i9xx_get_initial_plane_config
;
16158 dev_priv
->display
.crtc_compute_clock
= g4x_crtc_compute_clock
;
16159 dev_priv
->display
.crtc_enable
= i9xx_crtc_enable
;
16160 dev_priv
->display
.crtc_disable
= i9xx_crtc_disable
;
16161 } else if (IS_PINEVIEW(dev_priv
)) {
16162 dev_priv
->display
.get_pipe_config
= i9xx_get_pipe_config
;
16163 dev_priv
->display
.get_initial_plane_config
=
16164 i9xx_get_initial_plane_config
;
16165 dev_priv
->display
.crtc_compute_clock
= pnv_crtc_compute_clock
;
16166 dev_priv
->display
.crtc_enable
= i9xx_crtc_enable
;
16167 dev_priv
->display
.crtc_disable
= i9xx_crtc_disable
;
16168 } else if (!IS_GEN2(dev_priv
)) {
16169 dev_priv
->display
.get_pipe_config
= i9xx_get_pipe_config
;
16170 dev_priv
->display
.get_initial_plane_config
=
16171 i9xx_get_initial_plane_config
;
16172 dev_priv
->display
.crtc_compute_clock
= i9xx_crtc_compute_clock
;
16173 dev_priv
->display
.crtc_enable
= i9xx_crtc_enable
;
16174 dev_priv
->display
.crtc_disable
= i9xx_crtc_disable
;
16176 dev_priv
->display
.get_pipe_config
= i9xx_get_pipe_config
;
16177 dev_priv
->display
.get_initial_plane_config
=
16178 i9xx_get_initial_plane_config
;
16179 dev_priv
->display
.crtc_compute_clock
= i8xx_crtc_compute_clock
;
16180 dev_priv
->display
.crtc_enable
= i9xx_crtc_enable
;
16181 dev_priv
->display
.crtc_disable
= i9xx_crtc_disable
;
16184 /* Returns the core display clock speed */
16185 if (IS_SKYLAKE(dev_priv
) || IS_KABYLAKE(dev_priv
))
16186 dev_priv
->display
.get_display_clock_speed
=
16187 skylake_get_display_clock_speed
;
16188 else if (IS_GEN9_LP(dev_priv
))
16189 dev_priv
->display
.get_display_clock_speed
=
16190 broxton_get_display_clock_speed
;
16191 else if (IS_BROADWELL(dev_priv
))
16192 dev_priv
->display
.get_display_clock_speed
=
16193 broadwell_get_display_clock_speed
;
16194 else if (IS_HASWELL(dev_priv
))
16195 dev_priv
->display
.get_display_clock_speed
=
16196 haswell_get_display_clock_speed
;
16197 else if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
))
16198 dev_priv
->display
.get_display_clock_speed
=
16199 valleyview_get_display_clock_speed
;
16200 else if (IS_GEN5(dev_priv
))
16201 dev_priv
->display
.get_display_clock_speed
=
16202 ilk_get_display_clock_speed
;
16203 else if (IS_I945G(dev_priv
) || IS_I965G(dev_priv
) ||
16204 IS_GEN6(dev_priv
) || IS_IVYBRIDGE(dev_priv
))
16205 dev_priv
->display
.get_display_clock_speed
=
16206 i945_get_display_clock_speed
;
16207 else if (IS_GM45(dev_priv
))
16208 dev_priv
->display
.get_display_clock_speed
=
16209 gm45_get_display_clock_speed
;
16210 else if (IS_I965GM(dev_priv
))
16211 dev_priv
->display
.get_display_clock_speed
=
16212 i965gm_get_display_clock_speed
;
16213 else if (IS_PINEVIEW(dev_priv
))
16214 dev_priv
->display
.get_display_clock_speed
=
16215 pnv_get_display_clock_speed
;
16216 else if (IS_G33(dev_priv
) || IS_G4X(dev_priv
))
16217 dev_priv
->display
.get_display_clock_speed
=
16218 g33_get_display_clock_speed
;
16219 else if (IS_I915G(dev_priv
))
16220 dev_priv
->display
.get_display_clock_speed
=
16221 i915_get_display_clock_speed
;
16222 else if (IS_I945GM(dev_priv
) || IS_I845G(dev_priv
))
16223 dev_priv
->display
.get_display_clock_speed
=
16224 i9xx_misc_get_display_clock_speed
;
16225 else if (IS_I915GM(dev_priv
))
16226 dev_priv
->display
.get_display_clock_speed
=
16227 i915gm_get_display_clock_speed
;
16228 else if (IS_I865G(dev_priv
))
16229 dev_priv
->display
.get_display_clock_speed
=
16230 i865_get_display_clock_speed
;
16231 else if (IS_I85X(dev_priv
))
16232 dev_priv
->display
.get_display_clock_speed
=
16233 i85x_get_display_clock_speed
;
16235 WARN(!IS_I830(dev_priv
), "Unknown platform. Assuming 133 MHz CDCLK\n");
16236 dev_priv
->display
.get_display_clock_speed
=
16237 i830_get_display_clock_speed
;
16240 if (IS_GEN5(dev_priv
)) {
16241 dev_priv
->display
.fdi_link_train
= ironlake_fdi_link_train
;
16242 } else if (IS_GEN6(dev_priv
)) {
16243 dev_priv
->display
.fdi_link_train
= gen6_fdi_link_train
;
16244 } else if (IS_IVYBRIDGE(dev_priv
)) {
16245 /* FIXME: detect B0+ stepping and use auto training */
16246 dev_priv
->display
.fdi_link_train
= ivb_manual_fdi_link_train
;
16247 } else if (IS_HASWELL(dev_priv
) || IS_BROADWELL(dev_priv
)) {
16248 dev_priv
->display
.fdi_link_train
= hsw_fdi_link_train
;
16251 if (IS_BROADWELL(dev_priv
)) {
16252 dev_priv
->display
.modeset_commit_cdclk
=
16253 broadwell_modeset_commit_cdclk
;
16254 dev_priv
->display
.modeset_calc_cdclk
=
16255 broadwell_modeset_calc_cdclk
;
16256 } else if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
)) {
16257 dev_priv
->display
.modeset_commit_cdclk
=
16258 valleyview_modeset_commit_cdclk
;
16259 dev_priv
->display
.modeset_calc_cdclk
=
16260 valleyview_modeset_calc_cdclk
;
16261 } else if (IS_GEN9_LP(dev_priv
)) {
16262 dev_priv
->display
.modeset_commit_cdclk
=
16263 bxt_modeset_commit_cdclk
;
16264 dev_priv
->display
.modeset_calc_cdclk
=
16265 bxt_modeset_calc_cdclk
;
16266 } else if (IS_SKYLAKE(dev_priv
) || IS_KABYLAKE(dev_priv
)) {
16267 dev_priv
->display
.modeset_commit_cdclk
=
16268 skl_modeset_commit_cdclk
;
16269 dev_priv
->display
.modeset_calc_cdclk
=
16270 skl_modeset_calc_cdclk
;
16273 if (dev_priv
->info
.gen
>= 9)
16274 dev_priv
->display
.update_crtcs
= skl_update_crtcs
;
16276 dev_priv
->display
.update_crtcs
= intel_update_crtcs
;
16278 switch (INTEL_INFO(dev_priv
)->gen
) {
16280 dev_priv
->display
.queue_flip
= intel_gen2_queue_flip
;
16284 dev_priv
->display
.queue_flip
= intel_gen3_queue_flip
;
16289 dev_priv
->display
.queue_flip
= intel_gen4_queue_flip
;
16293 dev_priv
->display
.queue_flip
= intel_gen6_queue_flip
;
16296 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
16297 dev_priv
->display
.queue_flip
= intel_gen7_queue_flip
;
16300 /* Drop through - unsupported since execlist only. */
16302 /* Default just returns -ENODEV to indicate unsupported */
16303 dev_priv
->display
.queue_flip
= intel_default_queue_flip
;
16308 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
16309 * resume, or other times. This quirk makes sure that's the case for
16310 * affected systems.
16312 static void quirk_pipea_force(struct drm_device
*dev
)
16314 struct drm_i915_private
*dev_priv
= to_i915(dev
);
16316 dev_priv
->quirks
|= QUIRK_PIPEA_FORCE
;
16317 DRM_INFO("applying pipe a force quirk\n");
16320 static void quirk_pipeb_force(struct drm_device
*dev
)
16322 struct drm_i915_private
*dev_priv
= to_i915(dev
);
16324 dev_priv
->quirks
|= QUIRK_PIPEB_FORCE
;
16325 DRM_INFO("applying pipe b force quirk\n");
16329 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
16331 static void quirk_ssc_force_disable(struct drm_device
*dev
)
16333 struct drm_i915_private
*dev_priv
= to_i915(dev
);
16334 dev_priv
->quirks
|= QUIRK_LVDS_SSC_DISABLE
;
16335 DRM_INFO("applying lvds SSC disable quirk\n");
16339 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
16342 static void quirk_invert_brightness(struct drm_device
*dev
)
16344 struct drm_i915_private
*dev_priv
= to_i915(dev
);
16345 dev_priv
->quirks
|= QUIRK_INVERT_BRIGHTNESS
;
16346 DRM_INFO("applying inverted panel brightness quirk\n");
16349 /* Some VBT's incorrectly indicate no backlight is present */
16350 static void quirk_backlight_present(struct drm_device
*dev
)
16352 struct drm_i915_private
*dev_priv
= to_i915(dev
);
16353 dev_priv
->quirks
|= QUIRK_BACKLIGHT_PRESENT
;
16354 DRM_INFO("applying backlight present quirk\n");
16357 struct intel_quirk
{
16359 int subsystem_vendor
;
16360 int subsystem_device
;
16361 void (*hook
)(struct drm_device
*dev
);
16364 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
16365 struct intel_dmi_quirk
{
16366 void (*hook
)(struct drm_device
*dev
);
16367 const struct dmi_system_id (*dmi_id_list
)[];
16370 static int intel_dmi_reverse_brightness(const struct dmi_system_id
*id
)
16372 DRM_INFO("Backlight polarity reversed on %s\n", id
->ident
);
16376 static const struct intel_dmi_quirk intel_dmi_quirks
[] = {
16378 .dmi_id_list
= &(const struct dmi_system_id
[]) {
16380 .callback
= intel_dmi_reverse_brightness
,
16381 .ident
= "NCR Corporation",
16382 .matches
= {DMI_MATCH(DMI_SYS_VENDOR
, "NCR Corporation"),
16383 DMI_MATCH(DMI_PRODUCT_NAME
, ""),
16386 { } /* terminating entry */
16388 .hook
= quirk_invert_brightness
,
16392 static struct intel_quirk intel_quirks
[] = {
16393 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
16394 { 0x2592, 0x1179, 0x0001, quirk_pipea_force
},
16396 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
16397 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force
},
16399 /* 830 needs to leave pipe A & dpll A up */
16400 { 0x3577, PCI_ANY_ID
, PCI_ANY_ID
, quirk_pipea_force
},
16402 /* 830 needs to leave pipe B & dpll B up */
16403 { 0x3577, PCI_ANY_ID
, PCI_ANY_ID
, quirk_pipeb_force
},
16405 /* Lenovo U160 cannot use SSC on LVDS */
16406 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable
},
16408 /* Sony Vaio Y cannot use SSC on LVDS */
16409 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable
},
16411 /* Acer Aspire 5734Z must invert backlight brightness */
16412 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness
},
16414 /* Acer/eMachines G725 */
16415 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness
},
16417 /* Acer/eMachines e725 */
16418 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness
},
16420 /* Acer/Packard Bell NCL20 */
16421 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness
},
16423 /* Acer Aspire 4736Z */
16424 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness
},
16426 /* Acer Aspire 5336 */
16427 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness
},
16429 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
16430 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present
},
16432 /* Acer C720 Chromebook (Core i3 4005U) */
16433 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present
},
16435 /* Apple Macbook 2,1 (Core 2 T7400) */
16436 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present
},
16438 /* Apple Macbook 4,1 */
16439 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present
},
16441 /* Toshiba CB35 Chromebook (Celeron 2955U) */
16442 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present
},
16444 /* HP Chromebook 14 (Celeron 2955U) */
16445 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present
},
16447 /* Dell Chromebook 11 */
16448 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present
},
16450 /* Dell Chromebook 11 (2015 version) */
16451 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present
},
16454 static void intel_init_quirks(struct drm_device
*dev
)
16456 struct pci_dev
*d
= dev
->pdev
;
16459 for (i
= 0; i
< ARRAY_SIZE(intel_quirks
); i
++) {
16460 struct intel_quirk
*q
= &intel_quirks
[i
];
16462 if (d
->device
== q
->device
&&
16463 (d
->subsystem_vendor
== q
->subsystem_vendor
||
16464 q
->subsystem_vendor
== PCI_ANY_ID
) &&
16465 (d
->subsystem_device
== q
->subsystem_device
||
16466 q
->subsystem_device
== PCI_ANY_ID
))
16469 for (i
= 0; i
< ARRAY_SIZE(intel_dmi_quirks
); i
++) {
16470 if (dmi_check_system(*intel_dmi_quirks
[i
].dmi_id_list
) != 0)
16471 intel_dmi_quirks
[i
].hook(dev
);
16475 /* Disable the VGA plane that we never use */
16476 static void i915_disable_vga(struct drm_i915_private
*dev_priv
)
16478 struct pci_dev
*pdev
= dev_priv
->drm
.pdev
;
16480 i915_reg_t vga_reg
= i915_vgacntrl_reg(dev_priv
);
16482 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
16483 vga_get_uninterruptible(pdev
, VGA_RSRC_LEGACY_IO
);
16484 outb(SR01
, VGA_SR_INDEX
);
16485 sr1
= inb(VGA_SR_DATA
);
16486 outb(sr1
| 1<<5, VGA_SR_DATA
);
16487 vga_put(pdev
, VGA_RSRC_LEGACY_IO
);
16490 I915_WRITE(vga_reg
, VGA_DISP_DISABLE
);
16491 POSTING_READ(vga_reg
);
16494 void intel_modeset_init_hw(struct drm_device
*dev
)
16496 struct drm_i915_private
*dev_priv
= to_i915(dev
);
16498 intel_update_cdclk(dev_priv
);
16500 dev_priv
->atomic_cdclk_freq
= dev_priv
->cdclk_freq
;
16502 intel_init_clock_gating(dev_priv
);
16506 * Calculate what we think the watermarks should be for the state we've read
16507 * out of the hardware and then immediately program those watermarks so that
16508 * we ensure the hardware settings match our internal state.
16510 * We can calculate what we think WM's should be by creating a duplicate of the
16511 * current state (which was constructed during hardware readout) and running it
16512 * through the atomic check code to calculate new watermark values in the
16515 static void sanitize_watermarks(struct drm_device
*dev
)
16517 struct drm_i915_private
*dev_priv
= to_i915(dev
);
16518 struct drm_atomic_state
*state
;
16519 struct intel_atomic_state
*intel_state
;
16520 struct drm_crtc
*crtc
;
16521 struct drm_crtc_state
*cstate
;
16522 struct drm_modeset_acquire_ctx ctx
;
16526 /* Only supported on platforms that use atomic watermark design */
16527 if (!dev_priv
->display
.optimize_watermarks
)
16531 * We need to hold connection_mutex before calling duplicate_state so
16532 * that the connector loop is protected.
16534 drm_modeset_acquire_init(&ctx
, 0);
16536 ret
= drm_modeset_lock_all_ctx(dev
, &ctx
);
16537 if (ret
== -EDEADLK
) {
16538 drm_modeset_backoff(&ctx
);
16540 } else if (WARN_ON(ret
)) {
16544 state
= drm_atomic_helper_duplicate_state(dev
, &ctx
);
16545 if (WARN_ON(IS_ERR(state
)))
16548 intel_state
= to_intel_atomic_state(state
);
16551 * Hardware readout is the only time we don't want to calculate
16552 * intermediate watermarks (since we don't trust the current
16555 intel_state
->skip_intermediate_wm
= true;
16557 ret
= intel_atomic_check(dev
, state
);
16560 * If we fail here, it means that the hardware appears to be
16561 * programmed in a way that shouldn't be possible, given our
16562 * understanding of watermark requirements. This might mean a
16563 * mistake in the hardware readout code or a mistake in the
16564 * watermark calculations for a given platform. Raise a WARN
16565 * so that this is noticeable.
16567 * If this actually happens, we'll have to just leave the
16568 * BIOS-programmed watermarks untouched and hope for the best.
16570 WARN(true, "Could not determine valid watermarks for inherited state\n");
16574 /* Write calculated watermark values back */
16575 for_each_crtc_in_state(state
, crtc
, cstate
, i
) {
16576 struct intel_crtc_state
*cs
= to_intel_crtc_state(cstate
);
16578 cs
->wm
.need_postvbl_update
= true;
16579 dev_priv
->display
.optimize_watermarks(intel_state
, cs
);
16583 drm_atomic_state_put(state
);
16585 drm_modeset_drop_locks(&ctx
);
16586 drm_modeset_acquire_fini(&ctx
);
16589 int intel_modeset_init(struct drm_device
*dev
)
16591 struct drm_i915_private
*dev_priv
= to_i915(dev
);
16592 struct i915_ggtt
*ggtt
= &dev_priv
->ggtt
;
16594 struct intel_crtc
*crtc
;
16596 drm_mode_config_init(dev
);
16598 dev
->mode_config
.min_width
= 0;
16599 dev
->mode_config
.min_height
= 0;
16601 dev
->mode_config
.preferred_depth
= 24;
16602 dev
->mode_config
.prefer_shadow
= 1;
16604 dev
->mode_config
.allow_fb_modifiers
= true;
16606 dev
->mode_config
.funcs
= &intel_mode_funcs
;
16608 intel_init_quirks(dev
);
16610 intel_init_pm(dev_priv
);
16612 if (INTEL_INFO(dev_priv
)->num_pipes
== 0)
16616 * There may be no VBT; and if the BIOS enabled SSC we can
16617 * just keep using it to avoid unnecessary flicker. Whereas if the
16618 * BIOS isn't using it, don't assume it will work even if the VBT
16619 * indicates as much.
16621 if (HAS_PCH_IBX(dev_priv
) || HAS_PCH_CPT(dev_priv
)) {
16622 bool bios_lvds_use_ssc
= !!(I915_READ(PCH_DREF_CONTROL
) &
16625 if (dev_priv
->vbt
.lvds_use_ssc
!= bios_lvds_use_ssc
) {
16626 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
16627 bios_lvds_use_ssc
? "en" : "dis",
16628 dev_priv
->vbt
.lvds_use_ssc
? "en" : "dis");
16629 dev_priv
->vbt
.lvds_use_ssc
= bios_lvds_use_ssc
;
16633 if (IS_GEN2(dev_priv
)) {
16634 dev
->mode_config
.max_width
= 2048;
16635 dev
->mode_config
.max_height
= 2048;
16636 } else if (IS_GEN3(dev_priv
)) {
16637 dev
->mode_config
.max_width
= 4096;
16638 dev
->mode_config
.max_height
= 4096;
16640 dev
->mode_config
.max_width
= 8192;
16641 dev
->mode_config
.max_height
= 8192;
16644 if (IS_I845G(dev_priv
) || IS_I865G(dev_priv
)) {
16645 dev
->mode_config
.cursor_width
= IS_I845G(dev_priv
) ? 64 : 512;
16646 dev
->mode_config
.cursor_height
= 1023;
16647 } else if (IS_GEN2(dev_priv
)) {
16648 dev
->mode_config
.cursor_width
= GEN2_CURSOR_WIDTH
;
16649 dev
->mode_config
.cursor_height
= GEN2_CURSOR_HEIGHT
;
16651 dev
->mode_config
.cursor_width
= MAX_CURSOR_WIDTH
;
16652 dev
->mode_config
.cursor_height
= MAX_CURSOR_HEIGHT
;
16655 dev
->mode_config
.fb_base
= ggtt
->mappable_base
;
16657 DRM_DEBUG_KMS("%d display pipe%s available.\n",
16658 INTEL_INFO(dev_priv
)->num_pipes
,
16659 INTEL_INFO(dev_priv
)->num_pipes
> 1 ? "s" : "");
16661 for_each_pipe(dev_priv
, pipe
) {
16664 ret
= intel_crtc_init(dev_priv
, pipe
);
16666 drm_mode_config_cleanup(dev
);
16671 intel_update_czclk(dev_priv
);
16672 intel_update_cdclk(dev_priv
);
16673 dev_priv
->atomic_cdclk_freq
= dev_priv
->cdclk_freq
;
16675 intel_shared_dpll_init(dev
);
16677 if (dev_priv
->max_cdclk_freq
== 0)
16678 intel_update_max_cdclk(dev_priv
);
16680 /* Just disable it once at startup */
16681 i915_disable_vga(dev_priv
);
16682 intel_setup_outputs(dev_priv
);
16684 drm_modeset_lock_all(dev
);
16685 intel_modeset_setup_hw_state(dev
);
16686 drm_modeset_unlock_all(dev
);
16688 for_each_intel_crtc(dev
, crtc
) {
16689 struct intel_initial_plane_config plane_config
= {};
16695 * Note that reserving the BIOS fb up front prevents us
16696 * from stuffing other stolen allocations like the ring
16697 * on top. This prevents some ugliness at boot time, and
16698 * can even allow for smooth boot transitions if the BIOS
16699 * fb is large enough for the active pipe configuration.
16701 dev_priv
->display
.get_initial_plane_config(crtc
,
16705 * If the fb is shared between multiple heads, we'll
16706 * just get the first one.
16708 intel_find_initial_plane_obj(crtc
, &plane_config
);
16712 * Make sure hardware watermarks really match the state we read out.
16713 * Note that we need to do this after reconstructing the BIOS fb's
16714 * since the watermark calculation done here will use pstate->fb.
16716 sanitize_watermarks(dev
);
16721 static void intel_enable_pipe_a(struct drm_device
*dev
)
16723 struct intel_connector
*connector
;
16724 struct drm_connector
*crt
= NULL
;
16725 struct intel_load_detect_pipe load_detect_temp
;
16726 struct drm_modeset_acquire_ctx
*ctx
= dev
->mode_config
.acquire_ctx
;
16728 /* We can't just switch on the pipe A, we need to set things up with a
16729 * proper mode and output configuration. As a gross hack, enable pipe A
16730 * by enabling the load detect pipe once. */
16731 for_each_intel_connector(dev
, connector
) {
16732 if (connector
->encoder
->type
== INTEL_OUTPUT_ANALOG
) {
16733 crt
= &connector
->base
;
16741 if (intel_get_load_detect_pipe(crt
, NULL
, &load_detect_temp
, ctx
))
16742 intel_release_load_detect_pipe(crt
, &load_detect_temp
, ctx
);
16746 intel_check_plane_mapping(struct intel_crtc
*crtc
)
16748 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
16751 if (INTEL_INFO(dev_priv
)->num_pipes
== 1)
16754 val
= I915_READ(DSPCNTR(!crtc
->plane
));
16756 if ((val
& DISPLAY_PLANE_ENABLE
) &&
16757 (!!(val
& DISPPLANE_SEL_PIPE_MASK
) == crtc
->pipe
))
16763 static bool intel_crtc_has_encoders(struct intel_crtc
*crtc
)
16765 struct drm_device
*dev
= crtc
->base
.dev
;
16766 struct intel_encoder
*encoder
;
16768 for_each_encoder_on_crtc(dev
, &crtc
->base
, encoder
)
16774 static struct intel_connector
*intel_encoder_find_connector(struct intel_encoder
*encoder
)
16776 struct drm_device
*dev
= encoder
->base
.dev
;
16777 struct intel_connector
*connector
;
16779 for_each_connector_on_encoder(dev
, &encoder
->base
, connector
)
16785 static bool has_pch_trancoder(struct drm_i915_private
*dev_priv
,
16786 enum transcoder pch_transcoder
)
16788 return HAS_PCH_IBX(dev_priv
) || HAS_PCH_CPT(dev_priv
) ||
16789 (HAS_PCH_LPT_H(dev_priv
) && pch_transcoder
== TRANSCODER_A
);
16792 static void intel_sanitize_crtc(struct intel_crtc
*crtc
)
16794 struct drm_device
*dev
= crtc
->base
.dev
;
16795 struct drm_i915_private
*dev_priv
= to_i915(dev
);
16796 enum transcoder cpu_transcoder
= crtc
->config
->cpu_transcoder
;
16798 /* Clear any frame start delays used for debugging left by the BIOS */
16799 if (!transcoder_is_dsi(cpu_transcoder
)) {
16800 i915_reg_t reg
= PIPECONF(cpu_transcoder
);
16803 I915_READ(reg
) & ~PIPECONF_FRAME_START_DELAY_MASK
);
16806 /* restore vblank interrupts to correct state */
16807 drm_crtc_vblank_reset(&crtc
->base
);
16808 if (crtc
->active
) {
16809 struct intel_plane
*plane
;
16811 drm_crtc_vblank_on(&crtc
->base
);
16813 /* Disable everything but the primary plane */
16814 for_each_intel_plane_on_crtc(dev
, crtc
, plane
) {
16815 if (plane
->base
.type
== DRM_PLANE_TYPE_PRIMARY
)
16818 plane
->disable_plane(&plane
->base
, &crtc
->base
);
16822 /* We need to sanitize the plane -> pipe mapping first because this will
16823 * disable the crtc (and hence change the state) if it is wrong. Note
16824 * that gen4+ has a fixed plane -> pipe mapping. */
16825 if (INTEL_GEN(dev_priv
) < 4 && !intel_check_plane_mapping(crtc
)) {
16828 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
16829 crtc
->base
.base
.id
, crtc
->base
.name
);
16831 /* Pipe has the wrong plane attached and the plane is active.
16832 * Temporarily change the plane mapping and disable everything
16834 plane
= crtc
->plane
;
16835 crtc
->base
.primary
->state
->visible
= true;
16836 crtc
->plane
= !plane
;
16837 intel_crtc_disable_noatomic(&crtc
->base
);
16838 crtc
->plane
= plane
;
16841 if (dev_priv
->quirks
& QUIRK_PIPEA_FORCE
&&
16842 crtc
->pipe
== PIPE_A
&& !crtc
->active
) {
16843 /* BIOS forgot to enable pipe A, this mostly happens after
16844 * resume. Force-enable the pipe to fix this, the update_dpms
16845 * call below we restore the pipe to the right state, but leave
16846 * the required bits on. */
16847 intel_enable_pipe_a(dev
);
16850 /* Adjust the state of the output pipe according to whether we
16851 * have active connectors/encoders. */
16852 if (crtc
->active
&& !intel_crtc_has_encoders(crtc
))
16853 intel_crtc_disable_noatomic(&crtc
->base
);
16855 if (crtc
->active
|| HAS_GMCH_DISPLAY(dev_priv
)) {
16857 * We start out with underrun reporting disabled to avoid races.
16858 * For correct bookkeeping mark this on active crtcs.
16860 * Also on gmch platforms we dont have any hardware bits to
16861 * disable the underrun reporting. Which means we need to start
16862 * out with underrun reporting disabled also on inactive pipes,
16863 * since otherwise we'll complain about the garbage we read when
16864 * e.g. coming up after runtime pm.
16866 * No protection against concurrent access is required - at
16867 * worst a fifo underrun happens which also sets this to false.
16869 crtc
->cpu_fifo_underrun_disabled
= true;
16871 * We track the PCH trancoder underrun reporting state
16872 * within the crtc. With crtc for pipe A housing the underrun
16873 * reporting state for PCH transcoder A, crtc for pipe B housing
16874 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
16875 * and marking underrun reporting as disabled for the non-existing
16876 * PCH transcoders B and C would prevent enabling the south
16877 * error interrupt (see cpt_can_enable_serr_int()).
16879 if (has_pch_trancoder(dev_priv
, (enum transcoder
)crtc
->pipe
))
16880 crtc
->pch_fifo_underrun_disabled
= true;
16884 static void intel_sanitize_encoder(struct intel_encoder
*encoder
)
16886 struct intel_connector
*connector
;
16888 /* We need to check both for a crtc link (meaning that the
16889 * encoder is active and trying to read from a pipe) and the
16890 * pipe itself being active. */
16891 bool has_active_crtc
= encoder
->base
.crtc
&&
16892 to_intel_crtc(encoder
->base
.crtc
)->active
;
16894 connector
= intel_encoder_find_connector(encoder
);
16895 if (connector
&& !has_active_crtc
) {
16896 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
16897 encoder
->base
.base
.id
,
16898 encoder
->base
.name
);
16900 /* Connector is active, but has no active pipe. This is
16901 * fallout from our resume register restoring. Disable
16902 * the encoder manually again. */
16903 if (encoder
->base
.crtc
) {
16904 struct drm_crtc_state
*crtc_state
= encoder
->base
.crtc
->state
;
16906 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
16907 encoder
->base
.base
.id
,
16908 encoder
->base
.name
);
16909 encoder
->disable(encoder
, to_intel_crtc_state(crtc_state
), connector
->base
.state
);
16910 if (encoder
->post_disable
)
16911 encoder
->post_disable(encoder
, to_intel_crtc_state(crtc_state
), connector
->base
.state
);
16913 encoder
->base
.crtc
= NULL
;
16915 /* Inconsistent output/port/pipe state happens presumably due to
16916 * a bug in one of the get_hw_state functions. Or someplace else
16917 * in our code, like the register restore mess on resume. Clamp
16918 * things to off as a safer default. */
16920 connector
->base
.dpms
= DRM_MODE_DPMS_OFF
;
16921 connector
->base
.encoder
= NULL
;
16923 /* Enabled encoders without active connectors will be fixed in
16924 * the crtc fixup. */
16927 void i915_redisable_vga_power_on(struct drm_i915_private
*dev_priv
)
16929 i915_reg_t vga_reg
= i915_vgacntrl_reg(dev_priv
);
16931 if (!(I915_READ(vga_reg
) & VGA_DISP_DISABLE
)) {
16932 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
16933 i915_disable_vga(dev_priv
);
16937 void i915_redisable_vga(struct drm_i915_private
*dev_priv
)
16939 /* This function can be called both from intel_modeset_setup_hw_state or
16940 * at a very early point in our resume sequence, where the power well
16941 * structures are not yet restored. Since this function is at a very
16942 * paranoid "someone might have enabled VGA while we were not looking"
16943 * level, just check if the power well is enabled instead of trying to
16944 * follow the "don't touch the power well if we don't need it" policy
16945 * the rest of the driver uses. */
16946 if (!intel_display_power_get_if_enabled(dev_priv
, POWER_DOMAIN_VGA
))
16949 i915_redisable_vga_power_on(dev_priv
);
16951 intel_display_power_put(dev_priv
, POWER_DOMAIN_VGA
);
16954 static bool primary_get_hw_state(struct intel_plane
*plane
)
16956 struct drm_i915_private
*dev_priv
= to_i915(plane
->base
.dev
);
16958 return I915_READ(DSPCNTR(plane
->plane
)) & DISPLAY_PLANE_ENABLE
;
16961 /* FIXME read out full plane state for all planes */
16962 static void readout_plane_state(struct intel_crtc
*crtc
)
16964 struct drm_plane
*primary
= crtc
->base
.primary
;
16965 struct intel_plane_state
*plane_state
=
16966 to_intel_plane_state(primary
->state
);
16968 plane_state
->base
.visible
= crtc
->active
&&
16969 primary_get_hw_state(to_intel_plane(primary
));
16971 if (plane_state
->base
.visible
)
16972 crtc
->base
.state
->plane_mask
|= 1 << drm_plane_index(primary
);
16975 static void intel_modeset_readout_hw_state(struct drm_device
*dev
)
16977 struct drm_i915_private
*dev_priv
= to_i915(dev
);
16979 struct intel_crtc
*crtc
;
16980 struct intel_encoder
*encoder
;
16981 struct intel_connector
*connector
;
16984 dev_priv
->active_crtcs
= 0;
16986 for_each_intel_crtc(dev
, crtc
) {
16987 struct intel_crtc_state
*crtc_state
=
16988 to_intel_crtc_state(crtc
->base
.state
);
16990 __drm_atomic_helper_crtc_destroy_state(&crtc_state
->base
);
16991 memset(crtc_state
, 0, sizeof(*crtc_state
));
16992 crtc_state
->base
.crtc
= &crtc
->base
;
16994 crtc_state
->base
.active
= crtc_state
->base
.enable
=
16995 dev_priv
->display
.get_pipe_config(crtc
, crtc_state
);
16997 crtc
->base
.enabled
= crtc_state
->base
.enable
;
16998 crtc
->active
= crtc_state
->base
.active
;
17000 if (crtc_state
->base
.active
)
17001 dev_priv
->active_crtcs
|= 1 << crtc
->pipe
;
17003 readout_plane_state(crtc
);
17005 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
17006 crtc
->base
.base
.id
, crtc
->base
.name
,
17007 enableddisabled(crtc_state
->base
.active
));
17010 for (i
= 0; i
< dev_priv
->num_shared_dpll
; i
++) {
17011 struct intel_shared_dpll
*pll
= &dev_priv
->shared_dplls
[i
];
17013 pll
->on
= pll
->funcs
.get_hw_state(dev_priv
, pll
,
17014 &pll
->state
.hw_state
);
17015 pll
->state
.crtc_mask
= 0;
17016 for_each_intel_crtc(dev
, crtc
) {
17017 struct intel_crtc_state
*crtc_state
=
17018 to_intel_crtc_state(crtc
->base
.state
);
17020 if (crtc_state
->base
.active
&&
17021 crtc_state
->shared_dpll
== pll
)
17022 pll
->state
.crtc_mask
|= 1 << crtc
->pipe
;
17024 pll
->active_mask
= pll
->state
.crtc_mask
;
17026 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
17027 pll
->name
, pll
->state
.crtc_mask
, pll
->on
);
17030 for_each_intel_encoder(dev
, encoder
) {
17033 if (encoder
->get_hw_state(encoder
, &pipe
)) {
17034 struct intel_crtc_state
*crtc_state
;
17036 crtc
= intel_get_crtc_for_pipe(dev_priv
, pipe
);
17037 crtc_state
= to_intel_crtc_state(crtc
->base
.state
);
17039 encoder
->base
.crtc
= &crtc
->base
;
17040 crtc_state
->output_types
|= 1 << encoder
->type
;
17041 encoder
->get_config(encoder
, crtc_state
);
17043 encoder
->base
.crtc
= NULL
;
17046 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
17047 encoder
->base
.base
.id
, encoder
->base
.name
,
17048 enableddisabled(encoder
->base
.crtc
),
17052 for_each_intel_connector(dev
, connector
) {
17053 if (connector
->get_hw_state(connector
)) {
17054 connector
->base
.dpms
= DRM_MODE_DPMS_ON
;
17056 encoder
= connector
->encoder
;
17057 connector
->base
.encoder
= &encoder
->base
;
17059 if (encoder
->base
.crtc
&&
17060 encoder
->base
.crtc
->state
->active
) {
17062 * This has to be done during hardware readout
17063 * because anything calling .crtc_disable may
17064 * rely on the connector_mask being accurate.
17066 encoder
->base
.crtc
->state
->connector_mask
|=
17067 1 << drm_connector_index(&connector
->base
);
17068 encoder
->base
.crtc
->state
->encoder_mask
|=
17069 1 << drm_encoder_index(&encoder
->base
);
17073 connector
->base
.dpms
= DRM_MODE_DPMS_OFF
;
17074 connector
->base
.encoder
= NULL
;
17076 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
17077 connector
->base
.base
.id
, connector
->base
.name
,
17078 enableddisabled(connector
->base
.encoder
));
17081 for_each_intel_crtc(dev
, crtc
) {
17082 struct intel_crtc_state
*crtc_state
=
17083 to_intel_crtc_state(crtc
->base
.state
);
17086 crtc
->base
.hwmode
= crtc_state
->base
.adjusted_mode
;
17088 memset(&crtc
->base
.mode
, 0, sizeof(crtc
->base
.mode
));
17089 if (crtc_state
->base
.active
) {
17090 intel_mode_from_pipe_config(&crtc
->base
.mode
, crtc_state
);
17091 intel_mode_from_pipe_config(&crtc_state
->base
.adjusted_mode
, crtc_state
);
17092 WARN_ON(drm_atomic_set_mode_for_crtc(crtc
->base
.state
, &crtc
->base
.mode
));
17095 * The initial mode needs to be set in order to keep
17096 * the atomic core happy. It wants a valid mode if the
17097 * crtc's enabled, so we do the above call.
17099 * But we don't set all the derived state fully, hence
17100 * set a flag to indicate that a full recalculation is
17101 * needed on the next commit.
17103 crtc_state
->base
.mode
.private_flags
= I915_MODE_FLAG_INHERITED
;
17105 if (INTEL_GEN(dev_priv
) >= 9 || IS_BROADWELL(dev_priv
))
17106 pixclk
= ilk_pipe_pixel_rate(crtc_state
);
17107 else if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
))
17108 pixclk
= crtc_state
->base
.adjusted_mode
.crtc_clock
;
17110 WARN_ON(dev_priv
->display
.modeset_calc_cdclk
);
17112 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
17113 if (IS_BROADWELL(dev_priv
) && crtc_state
->ips_enabled
)
17114 pixclk
= DIV_ROUND_UP(pixclk
* 100, 95);
17116 drm_calc_timestamping_constants(&crtc
->base
, &crtc
->base
.hwmode
);
17117 update_scanline_offset(crtc
);
17120 dev_priv
->min_pixclk
[crtc
->pipe
] = pixclk
;
17122 intel_pipe_config_sanity_check(dev_priv
, crtc_state
);
17126 /* Scan out the current hw modeset state,
17127 * and sanitizes it to the current state
17130 intel_modeset_setup_hw_state(struct drm_device
*dev
)
17132 struct drm_i915_private
*dev_priv
= to_i915(dev
);
17134 struct intel_crtc
*crtc
;
17135 struct intel_encoder
*encoder
;
17138 intel_modeset_readout_hw_state(dev
);
17140 /* HW state is read out, now we need to sanitize this mess. */
17141 for_each_intel_encoder(dev
, encoder
) {
17142 intel_sanitize_encoder(encoder
);
17145 for_each_pipe(dev_priv
, pipe
) {
17146 crtc
= intel_get_crtc_for_pipe(dev_priv
, pipe
);
17148 intel_sanitize_crtc(crtc
);
17149 intel_dump_pipe_config(crtc
, crtc
->config
,
17150 "[setup_hw_state]");
17153 intel_modeset_update_connector_atomic_state(dev
);
17155 for (i
= 0; i
< dev_priv
->num_shared_dpll
; i
++) {
17156 struct intel_shared_dpll
*pll
= &dev_priv
->shared_dplls
[i
];
17158 if (!pll
->on
|| pll
->active_mask
)
17161 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll
->name
);
17163 pll
->funcs
.disable(dev_priv
, pll
);
17167 if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
))
17168 vlv_wm_get_hw_state(dev
);
17169 else if (IS_GEN9(dev_priv
))
17170 skl_wm_get_hw_state(dev
);
17171 else if (HAS_PCH_SPLIT(dev_priv
))
17172 ilk_wm_get_hw_state(dev
);
17174 for_each_intel_crtc(dev
, crtc
) {
17175 unsigned long put_domains
;
17177 put_domains
= modeset_get_crtc_power_domains(&crtc
->base
, crtc
->config
);
17178 if (WARN_ON(put_domains
))
17179 modeset_put_power_domains(dev_priv
, put_domains
);
17181 intel_display_set_init_power(dev_priv
, false);
17183 intel_fbc_init_pipe_state(dev_priv
);
17186 void intel_display_resume(struct drm_device
*dev
)
17188 struct drm_i915_private
*dev_priv
= to_i915(dev
);
17189 struct drm_atomic_state
*state
= dev_priv
->modeset_restore_state
;
17190 struct drm_modeset_acquire_ctx ctx
;
17193 dev_priv
->modeset_restore_state
= NULL
;
17195 state
->acquire_ctx
= &ctx
;
17198 * This is a cludge because with real atomic modeset mode_config.mutex
17199 * won't be taken. Unfortunately some probed state like
17200 * audio_codec_enable is still protected by mode_config.mutex, so lock
17203 mutex_lock(&dev
->mode_config
.mutex
);
17204 drm_modeset_acquire_init(&ctx
, 0);
17207 ret
= drm_modeset_lock_all_ctx(dev
, &ctx
);
17208 if (ret
!= -EDEADLK
)
17211 drm_modeset_backoff(&ctx
);
17215 ret
= __intel_display_resume(dev
, state
);
17217 drm_modeset_drop_locks(&ctx
);
17218 drm_modeset_acquire_fini(&ctx
);
17219 mutex_unlock(&dev
->mode_config
.mutex
);
17222 DRM_ERROR("Restoring old state failed with %i\n", ret
);
17224 drm_atomic_state_put(state
);
17227 void intel_modeset_gem_init(struct drm_device
*dev
)
17229 struct drm_i915_private
*dev_priv
= to_i915(dev
);
17231 intel_init_gt_powersave(dev_priv
);
17233 intel_modeset_init_hw(dev
);
17235 intel_setup_overlay(dev_priv
);
17238 int intel_connector_register(struct drm_connector
*connector
)
17240 struct intel_connector
*intel_connector
= to_intel_connector(connector
);
17243 ret
= intel_backlight_device_register(intel_connector
);
17253 void intel_connector_unregister(struct drm_connector
*connector
)
17255 struct intel_connector
*intel_connector
= to_intel_connector(connector
);
17257 intel_backlight_device_unregister(intel_connector
);
17258 intel_panel_destroy_backlight(connector
);
17261 void intel_modeset_cleanup(struct drm_device
*dev
)
17263 struct drm_i915_private
*dev_priv
= to_i915(dev
);
17265 intel_disable_gt_powersave(dev_priv
);
17268 * Interrupts and polling as the first thing to avoid creating havoc.
17269 * Too much stuff here (turning of connectors, ...) would
17270 * experience fancy races otherwise.
17272 intel_irq_uninstall(dev_priv
);
17275 * Due to the hpd irq storm handling the hotplug work can re-arm the
17276 * poll handlers. Hence disable polling after hpd handling is shut down.
17278 drm_kms_helper_poll_fini(dev
);
17280 intel_unregister_dsm_handler();
17282 intel_fbc_global_disable(dev_priv
);
17284 /* flush any delayed tasks or pending work */
17285 flush_scheduled_work();
17287 drm_mode_config_cleanup(dev
);
17289 intel_cleanup_overlay(dev_priv
);
17291 intel_cleanup_gt_powersave(dev_priv
);
17293 intel_teardown_gmbus(dev_priv
);
17296 void intel_connector_attach_encoder(struct intel_connector
*connector
,
17297 struct intel_encoder
*encoder
)
17299 connector
->encoder
= encoder
;
17300 drm_mode_connector_attach_encoder(&connector
->base
,
17305 * set vga decode state - true == enable VGA decode
17307 int intel_modeset_vga_set_state(struct drm_i915_private
*dev_priv
, bool state
)
17309 unsigned reg
= INTEL_GEN(dev_priv
) >= 6 ? SNB_GMCH_CTRL
: INTEL_GMCH_CTRL
;
17312 if (pci_read_config_word(dev_priv
->bridge_dev
, reg
, &gmch_ctrl
)) {
17313 DRM_ERROR("failed to read control word\n");
17317 if (!!(gmch_ctrl
& INTEL_GMCH_VGA_DISABLE
) == !state
)
17321 gmch_ctrl
&= ~INTEL_GMCH_VGA_DISABLE
;
17323 gmch_ctrl
|= INTEL_GMCH_VGA_DISABLE
;
17325 if (pci_write_config_word(dev_priv
->bridge_dev
, reg
, gmch_ctrl
)) {
17326 DRM_ERROR("failed to write control word\n");
17333 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
17335 struct intel_display_error_state
{
17337 u32 power_well_driver
;
17339 int num_transcoders
;
17341 struct intel_cursor_error_state
{
17346 } cursor
[I915_MAX_PIPES
];
17348 struct intel_pipe_error_state
{
17349 bool power_domain_on
;
17352 } pipe
[I915_MAX_PIPES
];
17354 struct intel_plane_error_state
{
17362 } plane
[I915_MAX_PIPES
];
17364 struct intel_transcoder_error_state
{
17365 bool power_domain_on
;
17366 enum transcoder cpu_transcoder
;
17379 struct intel_display_error_state
*
17380 intel_display_capture_error_state(struct drm_i915_private
*dev_priv
)
17382 struct intel_display_error_state
*error
;
17383 int transcoders
[] = {
17391 if (INTEL_INFO(dev_priv
)->num_pipes
== 0)
17394 error
= kzalloc(sizeof(*error
), GFP_ATOMIC
);
17398 if (IS_HASWELL(dev_priv
) || IS_BROADWELL(dev_priv
))
17399 error
->power_well_driver
= I915_READ(HSW_PWR_WELL_DRIVER
);
17401 for_each_pipe(dev_priv
, i
) {
17402 error
->pipe
[i
].power_domain_on
=
17403 __intel_display_power_is_enabled(dev_priv
,
17404 POWER_DOMAIN_PIPE(i
));
17405 if (!error
->pipe
[i
].power_domain_on
)
17408 error
->cursor
[i
].control
= I915_READ(CURCNTR(i
));
17409 error
->cursor
[i
].position
= I915_READ(CURPOS(i
));
17410 error
->cursor
[i
].base
= I915_READ(CURBASE(i
));
17412 error
->plane
[i
].control
= I915_READ(DSPCNTR(i
));
17413 error
->plane
[i
].stride
= I915_READ(DSPSTRIDE(i
));
17414 if (INTEL_GEN(dev_priv
) <= 3) {
17415 error
->plane
[i
].size
= I915_READ(DSPSIZE(i
));
17416 error
->plane
[i
].pos
= I915_READ(DSPPOS(i
));
17418 if (INTEL_GEN(dev_priv
) <= 7 && !IS_HASWELL(dev_priv
))
17419 error
->plane
[i
].addr
= I915_READ(DSPADDR(i
));
17420 if (INTEL_GEN(dev_priv
) >= 4) {
17421 error
->plane
[i
].surface
= I915_READ(DSPSURF(i
));
17422 error
->plane
[i
].tile_offset
= I915_READ(DSPTILEOFF(i
));
17425 error
->pipe
[i
].source
= I915_READ(PIPESRC(i
));
17427 if (HAS_GMCH_DISPLAY(dev_priv
))
17428 error
->pipe
[i
].stat
= I915_READ(PIPESTAT(i
));
17431 /* Note: this does not include DSI transcoders. */
17432 error
->num_transcoders
= INTEL_INFO(dev_priv
)->num_pipes
;
17433 if (HAS_DDI(dev_priv
))
17434 error
->num_transcoders
++; /* Account for eDP. */
17436 for (i
= 0; i
< error
->num_transcoders
; i
++) {
17437 enum transcoder cpu_transcoder
= transcoders
[i
];
17439 error
->transcoder
[i
].power_domain_on
=
17440 __intel_display_power_is_enabled(dev_priv
,
17441 POWER_DOMAIN_TRANSCODER(cpu_transcoder
));
17442 if (!error
->transcoder
[i
].power_domain_on
)
17445 error
->transcoder
[i
].cpu_transcoder
= cpu_transcoder
;
17447 error
->transcoder
[i
].conf
= I915_READ(PIPECONF(cpu_transcoder
));
17448 error
->transcoder
[i
].htotal
= I915_READ(HTOTAL(cpu_transcoder
));
17449 error
->transcoder
[i
].hblank
= I915_READ(HBLANK(cpu_transcoder
));
17450 error
->transcoder
[i
].hsync
= I915_READ(HSYNC(cpu_transcoder
));
17451 error
->transcoder
[i
].vtotal
= I915_READ(VTOTAL(cpu_transcoder
));
17452 error
->transcoder
[i
].vblank
= I915_READ(VBLANK(cpu_transcoder
));
17453 error
->transcoder
[i
].vsync
= I915_READ(VSYNC(cpu_transcoder
));
17459 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
17462 intel_display_print_error_state(struct drm_i915_error_state_buf
*m
,
17463 struct drm_i915_private
*dev_priv
,
17464 struct intel_display_error_state
*error
)
17471 err_printf(m
, "Num Pipes: %d\n", INTEL_INFO(dev_priv
)->num_pipes
);
17472 if (IS_HASWELL(dev_priv
) || IS_BROADWELL(dev_priv
))
17473 err_printf(m
, "PWR_WELL_CTL2: %08x\n",
17474 error
->power_well_driver
);
17475 for_each_pipe(dev_priv
, i
) {
17476 err_printf(m
, "Pipe [%d]:\n", i
);
17477 err_printf(m
, " Power: %s\n",
17478 onoff(error
->pipe
[i
].power_domain_on
));
17479 err_printf(m
, " SRC: %08x\n", error
->pipe
[i
].source
);
17480 err_printf(m
, " STAT: %08x\n", error
->pipe
[i
].stat
);
17482 err_printf(m
, "Plane [%d]:\n", i
);
17483 err_printf(m
, " CNTR: %08x\n", error
->plane
[i
].control
);
17484 err_printf(m
, " STRIDE: %08x\n", error
->plane
[i
].stride
);
17485 if (INTEL_GEN(dev_priv
) <= 3) {
17486 err_printf(m
, " SIZE: %08x\n", error
->plane
[i
].size
);
17487 err_printf(m
, " POS: %08x\n", error
->plane
[i
].pos
);
17489 if (INTEL_GEN(dev_priv
) <= 7 && !IS_HASWELL(dev_priv
))
17490 err_printf(m
, " ADDR: %08x\n", error
->plane
[i
].addr
);
17491 if (INTEL_GEN(dev_priv
) >= 4) {
17492 err_printf(m
, " SURF: %08x\n", error
->plane
[i
].surface
);
17493 err_printf(m
, " TILEOFF: %08x\n", error
->plane
[i
].tile_offset
);
17496 err_printf(m
, "Cursor [%d]:\n", i
);
17497 err_printf(m
, " CNTR: %08x\n", error
->cursor
[i
].control
);
17498 err_printf(m
, " POS: %08x\n", error
->cursor
[i
].position
);
17499 err_printf(m
, " BASE: %08x\n", error
->cursor
[i
].base
);
17502 for (i
= 0; i
< error
->num_transcoders
; i
++) {
17503 err_printf(m
, "CPU transcoder: %s\n",
17504 transcoder_name(error
->transcoder
[i
].cpu_transcoder
));
17505 err_printf(m
, " Power: %s\n",
17506 onoff(error
->transcoder
[i
].power_domain_on
));
17507 err_printf(m
, " CONF: %08x\n", error
->transcoder
[i
].conf
);
17508 err_printf(m
, " HTOTAL: %08x\n", error
->transcoder
[i
].htotal
);
17509 err_printf(m
, " HBLANK: %08x\n", error
->transcoder
[i
].hblank
);
17510 err_printf(m
, " HSYNC: %08x\n", error
->transcoder
[i
].hsync
);
17511 err_printf(m
, " VTOTAL: %08x\n", error
->transcoder
[i
].vtotal
);
17512 err_printf(m
, " VBLANK: %08x\n", error
->transcoder
[i
].vblank
);
17513 err_printf(m
, " VSYNC: %08x\n", error
->transcoder
[i
].vsync
);