drm/exynos: Stop using drm_framebuffer_unregister_private
[linux/fpc-iii.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
blob75b708b36890591caaa0b2612d9c8617f942d82f
1 /*
2 * Copyright (C) 2015 Broadcom
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
9 /**
10 * DOC: VC4 CRTC module
12 * In VC4, the Pixel Valve is what most closely corresponds to the
13 * DRM's concept of a CRTC. The PV generates video timings from the
14 * output's clock plus its configuration. It pulls scaled pixels from
15 * the HVS at that timing, and feeds it to the encoder.
17 * However, the DRM CRTC also collects the configuration of all the
18 * DRM planes attached to it. As a result, this file also manages
19 * setup of the VC4 HVS's display elements on the CRTC.
21 * The 2835 has 3 different pixel valves. pv0 in the audio power
22 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
23 * image domain can feed either HDMI or the SDTV controller. The
24 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25 * SDTV, etc.) according to which output type is chosen in the mux.
27 * For power management, the pixel valve's registers are all clocked
28 * by the AXI clock, while the timings and FIFOs make use of the
29 * output-specific clock. Since the encoders also directly consume
30 * the CPRMAN clocks, and know what timings they need, they are the
31 * ones that set the clock.
34 #include "drm_atomic.h"
35 #include "drm_atomic_helper.h"
36 #include "drm_crtc_helper.h"
37 #include "linux/clk.h"
38 #include "drm_fb_cma_helper.h"
39 #include "linux/component.h"
40 #include "linux/of_device.h"
41 #include "vc4_drv.h"
42 #include "vc4_regs.h"
44 struct vc4_crtc {
45 struct drm_crtc base;
46 const struct vc4_crtc_data *data;
47 void __iomem *regs;
49 /* Timestamp at start of vblank irq - unaffected by lock delays. */
50 ktime_t t_vblank;
52 /* Which HVS channel we're using for our CRTC. */
53 int channel;
55 u8 lut_r[256];
56 u8 lut_g[256];
57 u8 lut_b[256];
58 /* Size in pixels of the COB memory allocated to this CRTC. */
59 u32 cob_size;
61 struct drm_pending_vblank_event *event;
64 struct vc4_crtc_state {
65 struct drm_crtc_state base;
66 /* Dlist area for this CRTC configuration. */
67 struct drm_mm_node mm;
70 static inline struct vc4_crtc *
71 to_vc4_crtc(struct drm_crtc *crtc)
73 return (struct vc4_crtc *)crtc;
76 static inline struct vc4_crtc_state *
77 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
79 return (struct vc4_crtc_state *)crtc_state;
82 struct vc4_crtc_data {
83 /* Which channel of the HVS this pixelvalve sources from. */
84 int hvs_channel;
86 enum vc4_encoder_type encoder_types[4];
89 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
90 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
92 #define CRTC_REG(reg) { reg, #reg }
93 static const struct {
94 u32 reg;
95 const char *name;
96 } crtc_regs[] = {
97 CRTC_REG(PV_CONTROL),
98 CRTC_REG(PV_V_CONTROL),
99 CRTC_REG(PV_VSYNCD_EVEN),
100 CRTC_REG(PV_HORZA),
101 CRTC_REG(PV_HORZB),
102 CRTC_REG(PV_VERTA),
103 CRTC_REG(PV_VERTB),
104 CRTC_REG(PV_VERTA_EVEN),
105 CRTC_REG(PV_VERTB_EVEN),
106 CRTC_REG(PV_INTEN),
107 CRTC_REG(PV_INTSTAT),
108 CRTC_REG(PV_STAT),
109 CRTC_REG(PV_HACT_ACT),
112 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
114 int i;
116 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
117 DRM_INFO("0x%04x (%s): 0x%08x\n",
118 crtc_regs[i].reg, crtc_regs[i].name,
119 CRTC_READ(crtc_regs[i].reg));
123 #ifdef CONFIG_DEBUG_FS
124 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
126 struct drm_info_node *node = (struct drm_info_node *)m->private;
127 struct drm_device *dev = node->minor->dev;
128 int crtc_index = (uintptr_t)node->info_ent->data;
129 struct drm_crtc *crtc;
130 struct vc4_crtc *vc4_crtc;
131 int i;
133 i = 0;
134 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
135 if (i == crtc_index)
136 break;
137 i++;
139 if (!crtc)
140 return 0;
141 vc4_crtc = to_vc4_crtc(crtc);
143 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
144 seq_printf(m, "%s (0x%04x): 0x%08x\n",
145 crtc_regs[i].name, crtc_regs[i].reg,
146 CRTC_READ(crtc_regs[i].reg));
149 return 0;
151 #endif
153 int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
154 unsigned int flags, int *vpos, int *hpos,
155 ktime_t *stime, ktime_t *etime,
156 const struct drm_display_mode *mode)
158 struct vc4_dev *vc4 = to_vc4_dev(dev);
159 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
160 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
161 u32 val;
162 int fifo_lines;
163 int vblank_lines;
164 int ret = 0;
166 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
168 /* Get optional system timestamp before query. */
169 if (stime)
170 *stime = ktime_get();
173 * Read vertical scanline which is currently composed for our
174 * pixelvalve by the HVS, and also the scaler status.
176 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
178 /* Get optional system timestamp after query. */
179 if (etime)
180 *etime = ktime_get();
182 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
184 /* Vertical position of hvs composed scanline. */
185 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
186 *hpos = 0;
188 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
189 *vpos /= 2;
191 /* Use hpos to correct for field offset in interlaced mode. */
192 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
193 *hpos += mode->crtc_htotal / 2;
196 /* This is the offset we need for translating hvs -> pv scanout pos. */
197 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
199 if (fifo_lines > 0)
200 ret |= DRM_SCANOUTPOS_VALID;
202 /* HVS more than fifo_lines into frame for compositing? */
203 if (*vpos > fifo_lines) {
205 * We are in active scanout and can get some meaningful results
206 * from HVS. The actual PV scanout can not trail behind more
207 * than fifo_lines as that is the fifo's capacity. Assume that
208 * in active scanout the HVS and PV work in lockstep wrt. HVS
209 * refilling the fifo and PV consuming from the fifo, ie.
210 * whenever the PV consumes and frees up a scanline in the
211 * fifo, the HVS will immediately refill it, therefore
212 * incrementing vpos. Therefore we choose HVS read position -
213 * fifo size in scanlines as a estimate of the real scanout
214 * position of the PV.
216 *vpos -= fifo_lines + 1;
218 ret |= DRM_SCANOUTPOS_ACCURATE;
219 return ret;
223 * Less: This happens when we are in vblank and the HVS, after getting
224 * the VSTART restart signal from the PV, just started refilling its
225 * fifo with new lines from the top-most lines of the new framebuffers.
226 * The PV does not scan out in vblank, so does not remove lines from
227 * the fifo, so the fifo will be full quickly and the HVS has to pause.
228 * We can't get meaningful readings wrt. scanline position of the PV
229 * and need to make things up in a approximative but consistent way.
231 ret |= DRM_SCANOUTPOS_IN_VBLANK;
232 vblank_lines = mode->vtotal - mode->vdisplay;
234 if (flags & DRM_CALLED_FROM_VBLIRQ) {
236 * Assume the irq handler got called close to first
237 * line of vblank, so PV has about a full vblank
238 * scanlines to go, and as a base timestamp use the
239 * one taken at entry into vblank irq handler, so it
240 * is not affected by random delays due to lock
241 * contention on event_lock or vblank_time lock in
242 * the core.
244 *vpos = -vblank_lines;
246 if (stime)
247 *stime = vc4_crtc->t_vblank;
248 if (etime)
249 *etime = vc4_crtc->t_vblank;
252 * If the HVS fifo is not yet full then we know for certain
253 * we are at the very beginning of vblank, as the hvs just
254 * started refilling, and the stime and etime timestamps
255 * truly correspond to start of vblank.
257 if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
258 ret |= DRM_SCANOUTPOS_ACCURATE;
259 } else {
261 * No clue where we are inside vblank. Return a vpos of zero,
262 * which will cause calling code to just return the etime
263 * timestamp uncorrected. At least this is no worse than the
264 * standard fallback.
266 *vpos = 0;
269 return ret;
272 int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
273 int *max_error, struct timeval *vblank_time,
274 unsigned flags)
276 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
277 struct drm_crtc_state *state = crtc->state;
279 /* Helper routine in DRM core does all the work: */
280 return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
281 vblank_time, flags,
282 &state->adjusted_mode);
285 static void vc4_crtc_destroy(struct drm_crtc *crtc)
287 drm_crtc_cleanup(crtc);
290 static void
291 vc4_crtc_lut_load(struct drm_crtc *crtc)
293 struct drm_device *dev = crtc->dev;
294 struct vc4_dev *vc4 = to_vc4_dev(dev);
295 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
296 u32 i;
298 /* The LUT memory is laid out with each HVS channel in order,
299 * each of which takes 256 writes for R, 256 for G, then 256
300 * for B.
302 HVS_WRITE(SCALER_GAMADDR,
303 SCALER_GAMADDR_AUTOINC |
304 (vc4_crtc->channel * 3 * crtc->gamma_size));
306 for (i = 0; i < crtc->gamma_size; i++)
307 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
308 for (i = 0; i < crtc->gamma_size; i++)
309 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
310 for (i = 0; i < crtc->gamma_size; i++)
311 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
314 static int
315 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
316 uint32_t size)
318 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
319 u32 i;
321 for (i = 0; i < size; i++) {
322 vc4_crtc->lut_r[i] = r[i] >> 8;
323 vc4_crtc->lut_g[i] = g[i] >> 8;
324 vc4_crtc->lut_b[i] = b[i] >> 8;
327 vc4_crtc_lut_load(crtc);
329 return 0;
332 static u32 vc4_get_fifo_full_level(u32 format)
334 static const u32 fifo_len_bytes = 64;
335 static const u32 hvs_latency_pix = 6;
337 switch (format) {
338 case PV_CONTROL_FORMAT_DSIV_16:
339 case PV_CONTROL_FORMAT_DSIC_16:
340 return fifo_len_bytes - 2 * hvs_latency_pix;
341 case PV_CONTROL_FORMAT_DSIV_18:
342 return fifo_len_bytes - 14;
343 case PV_CONTROL_FORMAT_24:
344 case PV_CONTROL_FORMAT_DSIV_24:
345 default:
346 return fifo_len_bytes - 3 * hvs_latency_pix;
351 * Returns the clock select bit for the connector attached to the
352 * CRTC.
354 static int vc4_get_clock_select(struct drm_crtc *crtc)
356 struct drm_connector *connector;
358 drm_for_each_connector(connector, crtc->dev) {
359 if (connector->state->crtc == crtc) {
360 struct drm_encoder *encoder = connector->encoder;
361 struct vc4_encoder *vc4_encoder =
362 to_vc4_encoder(encoder);
364 return vc4_encoder->clock_select;
368 return -1;
371 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
373 struct drm_device *dev = crtc->dev;
374 struct vc4_dev *vc4 = to_vc4_dev(dev);
375 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
376 struct drm_crtc_state *state = crtc->state;
377 struct drm_display_mode *mode = &state->adjusted_mode;
378 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
379 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
380 u32 format = PV_CONTROL_FORMAT_24;
381 bool debug_dump_regs = false;
382 int clock_select = vc4_get_clock_select(crtc);
384 if (debug_dump_regs) {
385 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
386 vc4_crtc_dump_regs(vc4_crtc);
389 /* Reset the PV fifo. */
390 CRTC_WRITE(PV_CONTROL, 0);
391 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
392 CRTC_WRITE(PV_CONTROL, 0);
394 CRTC_WRITE(PV_HORZA,
395 VC4_SET_FIELD((mode->htotal -
396 mode->hsync_end) * pixel_rep,
397 PV_HORZA_HBP) |
398 VC4_SET_FIELD((mode->hsync_end -
399 mode->hsync_start) * pixel_rep,
400 PV_HORZA_HSYNC));
401 CRTC_WRITE(PV_HORZB,
402 VC4_SET_FIELD((mode->hsync_start -
403 mode->hdisplay) * pixel_rep,
404 PV_HORZB_HFP) |
405 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
407 CRTC_WRITE(PV_VERTA,
408 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
409 PV_VERTA_VBP) |
410 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
411 PV_VERTA_VSYNC));
412 CRTC_WRITE(PV_VERTB,
413 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
414 PV_VERTB_VFP) |
415 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
417 if (interlace) {
418 CRTC_WRITE(PV_VERTA_EVEN,
419 VC4_SET_FIELD(mode->crtc_vtotal -
420 mode->crtc_vsync_end - 1,
421 PV_VERTA_VBP) |
422 VC4_SET_FIELD(mode->crtc_vsync_end -
423 mode->crtc_vsync_start,
424 PV_VERTA_VSYNC));
425 CRTC_WRITE(PV_VERTB_EVEN,
426 VC4_SET_FIELD(mode->crtc_vsync_start -
427 mode->crtc_vdisplay,
428 PV_VERTB_VFP) |
429 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
431 /* We set up first field even mode for HDMI. VEC's
432 * NTSC mode would want first field odd instead, once
433 * we support it (to do so, set ODD_FIRST and put the
434 * delay in VSYNCD_EVEN instead).
436 CRTC_WRITE(PV_V_CONTROL,
437 PV_VCONTROL_CONTINUOUS |
438 PV_VCONTROL_INTERLACE |
439 VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
440 PV_VCONTROL_ODD_DELAY));
441 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
442 } else {
443 CRTC_WRITE(PV_V_CONTROL, PV_VCONTROL_CONTINUOUS);
446 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
449 CRTC_WRITE(PV_CONTROL,
450 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
451 VC4_SET_FIELD(vc4_get_fifo_full_level(format),
452 PV_CONTROL_FIFO_LEVEL) |
453 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
454 PV_CONTROL_CLR_AT_START |
455 PV_CONTROL_TRIGGER_UNDERFLOW |
456 PV_CONTROL_WAIT_HSTART |
457 VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
458 PV_CONTROL_FIFO_CLR |
459 PV_CONTROL_EN);
461 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
462 SCALER_DISPBKGND_AUTOHS |
463 SCALER_DISPBKGND_GAMMA |
464 (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
466 /* Reload the LUT, since the SRAMs would have been disabled if
467 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
469 vc4_crtc_lut_load(crtc);
471 if (debug_dump_regs) {
472 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
473 vc4_crtc_dump_regs(vc4_crtc);
477 static void require_hvs_enabled(struct drm_device *dev)
479 struct vc4_dev *vc4 = to_vc4_dev(dev);
481 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
482 SCALER_DISPCTRL_ENABLE);
485 static void vc4_crtc_disable(struct drm_crtc *crtc)
487 struct drm_device *dev = crtc->dev;
488 struct vc4_dev *vc4 = to_vc4_dev(dev);
489 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
490 u32 chan = vc4_crtc->channel;
491 int ret;
492 require_hvs_enabled(dev);
494 /* Disable vblank irq handling before crtc is disabled. */
495 drm_crtc_vblank_off(crtc);
497 CRTC_WRITE(PV_V_CONTROL,
498 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
499 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
500 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
502 if (HVS_READ(SCALER_DISPCTRLX(chan)) &
503 SCALER_DISPCTRLX_ENABLE) {
504 HVS_WRITE(SCALER_DISPCTRLX(chan),
505 SCALER_DISPCTRLX_RESET);
507 /* While the docs say that reset is self-clearing, it
508 * seems it doesn't actually.
510 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
513 /* Once we leave, the scaler should be disabled and its fifo empty. */
515 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
517 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
518 SCALER_DISPSTATX_MODE) !=
519 SCALER_DISPSTATX_MODE_DISABLED);
521 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
522 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
523 SCALER_DISPSTATX_EMPTY);
526 static void vc4_crtc_enable(struct drm_crtc *crtc)
528 struct drm_device *dev = crtc->dev;
529 struct vc4_dev *vc4 = to_vc4_dev(dev);
530 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
531 struct drm_crtc_state *state = crtc->state;
532 struct drm_display_mode *mode = &state->adjusted_mode;
534 require_hvs_enabled(dev);
536 /* Turn on the scaler, which will wait for vstart to start
537 * compositing.
539 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
540 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
541 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
542 SCALER_DISPCTRLX_ENABLE);
544 /* Turn on the pixel valve, which will emit the vstart signal. */
545 CRTC_WRITE(PV_V_CONTROL,
546 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
548 /* Enable vblank irq handling after crtc is started. */
549 drm_crtc_vblank_on(crtc);
552 static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
553 const struct drm_display_mode *mode,
554 struct drm_display_mode *adjusted_mode)
556 /* Do not allow doublescan modes from user space */
557 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
558 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
559 crtc->base.id);
560 return false;
563 return true;
566 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
567 struct drm_crtc_state *state)
569 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
570 struct drm_device *dev = crtc->dev;
571 struct vc4_dev *vc4 = to_vc4_dev(dev);
572 struct drm_plane *plane;
573 unsigned long flags;
574 const struct drm_plane_state *plane_state;
575 u32 dlist_count = 0;
576 int ret;
578 /* The pixelvalve can only feed one encoder (and encoders are
579 * 1:1 with connectors.)
581 if (hweight32(state->connector_mask) > 1)
582 return -EINVAL;
584 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
585 dlist_count += vc4_plane_dlist_size(plane_state);
587 dlist_count++; /* Account for SCALER_CTL0_END. */
589 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
590 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
591 dlist_count, 1, 0);
592 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
593 if (ret)
594 return ret;
596 return 0;
599 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
600 struct drm_crtc_state *old_state)
602 struct drm_device *dev = crtc->dev;
603 struct vc4_dev *vc4 = to_vc4_dev(dev);
604 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
605 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
606 struct drm_plane *plane;
607 bool debug_dump_regs = false;
608 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
609 u32 __iomem *dlist_next = dlist_start;
611 if (debug_dump_regs) {
612 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
613 vc4_hvs_dump_state(dev);
616 /* Copy all the active planes' dlist contents to the hardware dlist. */
617 drm_atomic_crtc_for_each_plane(plane, crtc) {
618 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
621 writel(SCALER_CTL0_END, dlist_next);
622 dlist_next++;
624 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
626 if (crtc->state->event) {
627 unsigned long flags;
629 crtc->state->event->pipe = drm_crtc_index(crtc);
631 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
633 spin_lock_irqsave(&dev->event_lock, flags);
634 vc4_crtc->event = crtc->state->event;
635 crtc->state->event = NULL;
637 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
638 vc4_state->mm.start);
640 spin_unlock_irqrestore(&dev->event_lock, flags);
641 } else {
642 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
643 vc4_state->mm.start);
646 if (debug_dump_regs) {
647 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
648 vc4_hvs_dump_state(dev);
652 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
654 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
655 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
657 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
659 return 0;
662 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
664 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
665 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
667 CRTC_WRITE(PV_INTEN, 0);
670 /* Must be called with the event lock held */
671 bool vc4_event_pending(struct drm_crtc *crtc)
673 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
675 return !!vc4_crtc->event;
678 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
680 struct drm_crtc *crtc = &vc4_crtc->base;
681 struct drm_device *dev = crtc->dev;
682 struct vc4_dev *vc4 = to_vc4_dev(dev);
683 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
684 u32 chan = vc4_crtc->channel;
685 unsigned long flags;
687 spin_lock_irqsave(&dev->event_lock, flags);
688 if (vc4_crtc->event &&
689 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
690 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
691 vc4_crtc->event = NULL;
692 drm_crtc_vblank_put(crtc);
694 spin_unlock_irqrestore(&dev->event_lock, flags);
697 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
699 struct vc4_crtc *vc4_crtc = data;
700 u32 stat = CRTC_READ(PV_INTSTAT);
701 irqreturn_t ret = IRQ_NONE;
703 if (stat & PV_INT_VFP_START) {
704 vc4_crtc->t_vblank = ktime_get();
705 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
706 drm_crtc_handle_vblank(&vc4_crtc->base);
707 vc4_crtc_handle_page_flip(vc4_crtc);
708 ret = IRQ_HANDLED;
711 return ret;
714 struct vc4_async_flip_state {
715 struct drm_crtc *crtc;
716 struct drm_framebuffer *fb;
717 struct drm_pending_vblank_event *event;
719 struct vc4_seqno_cb cb;
722 /* Called when the V3D execution for the BO being flipped to is done, so that
723 * we can actually update the plane's address to point to it.
725 static void
726 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
728 struct vc4_async_flip_state *flip_state =
729 container_of(cb, struct vc4_async_flip_state, cb);
730 struct drm_crtc *crtc = flip_state->crtc;
731 struct drm_device *dev = crtc->dev;
732 struct vc4_dev *vc4 = to_vc4_dev(dev);
733 struct drm_plane *plane = crtc->primary;
735 vc4_plane_async_set_fb(plane, flip_state->fb);
736 if (flip_state->event) {
737 unsigned long flags;
739 spin_lock_irqsave(&dev->event_lock, flags);
740 drm_crtc_send_vblank_event(crtc, flip_state->event);
741 spin_unlock_irqrestore(&dev->event_lock, flags);
744 drm_crtc_vblank_put(crtc);
745 drm_framebuffer_unreference(flip_state->fb);
746 kfree(flip_state);
748 up(&vc4->async_modeset);
751 /* Implements async (non-vblank-synced) page flips.
753 * The page flip ioctl needs to return immediately, so we grab the
754 * modeset semaphore on the pipe, and queue the address update for
755 * when V3D is done with the BO being flipped to.
757 static int vc4_async_page_flip(struct drm_crtc *crtc,
758 struct drm_framebuffer *fb,
759 struct drm_pending_vblank_event *event,
760 uint32_t flags)
762 struct drm_device *dev = crtc->dev;
763 struct vc4_dev *vc4 = to_vc4_dev(dev);
764 struct drm_plane *plane = crtc->primary;
765 int ret = 0;
766 struct vc4_async_flip_state *flip_state;
767 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
768 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
770 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
771 if (!flip_state)
772 return -ENOMEM;
774 drm_framebuffer_reference(fb);
775 flip_state->fb = fb;
776 flip_state->crtc = crtc;
777 flip_state->event = event;
779 /* Make sure all other async modesetes have landed. */
780 ret = down_interruptible(&vc4->async_modeset);
781 if (ret) {
782 drm_framebuffer_unreference(fb);
783 kfree(flip_state);
784 return ret;
787 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
789 /* Immediately update the plane's legacy fb pointer, so that later
790 * modeset prep sees the state that will be present when the semaphore
791 * is released.
793 drm_atomic_set_fb_for_plane(plane->state, fb);
794 plane->fb = fb;
796 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
797 vc4_async_page_flip_complete);
799 /* Driver takes ownership of state on successful async commit. */
800 return 0;
803 static int vc4_page_flip(struct drm_crtc *crtc,
804 struct drm_framebuffer *fb,
805 struct drm_pending_vblank_event *event,
806 uint32_t flags)
808 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
809 return vc4_async_page_flip(crtc, fb, event, flags);
810 else
811 return drm_atomic_helper_page_flip(crtc, fb, event, flags);
814 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
816 struct vc4_crtc_state *vc4_state;
818 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
819 if (!vc4_state)
820 return NULL;
822 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
823 return &vc4_state->base;
826 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
827 struct drm_crtc_state *state)
829 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
830 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
832 if (vc4_state->mm.allocated) {
833 unsigned long flags;
835 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
836 drm_mm_remove_node(&vc4_state->mm);
837 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
841 __drm_atomic_helper_crtc_destroy_state(state);
844 static const struct drm_crtc_funcs vc4_crtc_funcs = {
845 .set_config = drm_atomic_helper_set_config,
846 .destroy = vc4_crtc_destroy,
847 .page_flip = vc4_page_flip,
848 .set_property = NULL,
849 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
850 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
851 .reset = drm_atomic_helper_crtc_reset,
852 .atomic_duplicate_state = vc4_crtc_duplicate_state,
853 .atomic_destroy_state = vc4_crtc_destroy_state,
854 .gamma_set = vc4_crtc_gamma_set,
857 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
858 .mode_set_nofb = vc4_crtc_mode_set_nofb,
859 .disable = vc4_crtc_disable,
860 .enable = vc4_crtc_enable,
861 .mode_fixup = vc4_crtc_mode_fixup,
862 .atomic_check = vc4_crtc_atomic_check,
863 .atomic_flush = vc4_crtc_atomic_flush,
866 static const struct vc4_crtc_data pv0_data = {
867 .hvs_channel = 0,
868 .encoder_types = {
869 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
870 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
874 static const struct vc4_crtc_data pv1_data = {
875 .hvs_channel = 2,
876 .encoder_types = {
877 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
878 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
882 static const struct vc4_crtc_data pv2_data = {
883 .hvs_channel = 1,
884 .encoder_types = {
885 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
886 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
890 static const struct of_device_id vc4_crtc_dt_match[] = {
891 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
892 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
893 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
897 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
898 struct drm_crtc *crtc)
900 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
901 const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
902 const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
903 struct drm_encoder *encoder;
905 drm_for_each_encoder(encoder, drm) {
906 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
907 int i;
909 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
910 if (vc4_encoder->type == encoder_types[i]) {
911 vc4_encoder->clock_select = i;
912 encoder->possible_crtcs |= drm_crtc_mask(crtc);
913 break;
919 static void
920 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
922 struct drm_device *drm = vc4_crtc->base.dev;
923 struct vc4_dev *vc4 = to_vc4_dev(drm);
924 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
925 /* Top/base are supposed to be 4-pixel aligned, but the
926 * Raspberry Pi firmware fills the low bits (which are
927 * presumably ignored).
929 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
930 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
932 vc4_crtc->cob_size = top - base + 4;
935 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
937 struct platform_device *pdev = to_platform_device(dev);
938 struct drm_device *drm = dev_get_drvdata(master);
939 struct vc4_crtc *vc4_crtc;
940 struct drm_crtc *crtc;
941 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
942 const struct of_device_id *match;
943 int ret, i;
945 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
946 if (!vc4_crtc)
947 return -ENOMEM;
948 crtc = &vc4_crtc->base;
950 match = of_match_device(vc4_crtc_dt_match, dev);
951 if (!match)
952 return -ENODEV;
953 vc4_crtc->data = match->data;
955 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
956 if (IS_ERR(vc4_crtc->regs))
957 return PTR_ERR(vc4_crtc->regs);
959 /* For now, we create just the primary and the legacy cursor
960 * planes. We should be able to stack more planes on easily,
961 * but to do that we would need to compute the bandwidth
962 * requirement of the plane configuration, and reject ones
963 * that will take too much.
965 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
966 if (IS_ERR(primary_plane)) {
967 dev_err(dev, "failed to construct primary plane\n");
968 ret = PTR_ERR(primary_plane);
969 goto err;
972 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
973 &vc4_crtc_funcs, NULL);
974 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
975 primary_plane->crtc = crtc;
976 vc4_crtc->channel = vc4_crtc->data->hvs_channel;
977 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
979 /* Set up some arbitrary number of planes. We're not limited
980 * by a set number of physical registers, just the space in
981 * the HVS (16k) and how small an plane can be (28 bytes).
982 * However, each plane we set up takes up some memory, and
983 * increases the cost of looping over planes, which atomic
984 * modesetting does quite a bit. As a result, we pick a
985 * modest number of planes to expose, that should hopefully
986 * still cover any sane usecase.
988 for (i = 0; i < 8; i++) {
989 struct drm_plane *plane =
990 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
992 if (IS_ERR(plane))
993 continue;
995 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
998 /* Set up the legacy cursor after overlay initialization,
999 * since we overlay planes on the CRTC in the order they were
1000 * initialized.
1002 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1003 if (!IS_ERR(cursor_plane)) {
1004 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1005 cursor_plane->crtc = crtc;
1006 crtc->cursor = cursor_plane;
1009 vc4_crtc_get_cob_allocation(vc4_crtc);
1011 CRTC_WRITE(PV_INTEN, 0);
1012 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1013 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1014 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1015 if (ret)
1016 goto err_destroy_planes;
1018 vc4_set_crtc_possible_masks(drm, crtc);
1020 for (i = 0; i < crtc->gamma_size; i++) {
1021 vc4_crtc->lut_r[i] = i;
1022 vc4_crtc->lut_g[i] = i;
1023 vc4_crtc->lut_b[i] = i;
1026 platform_set_drvdata(pdev, vc4_crtc);
1028 return 0;
1030 err_destroy_planes:
1031 list_for_each_entry_safe(destroy_plane, temp,
1032 &drm->mode_config.plane_list, head) {
1033 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1034 destroy_plane->funcs->destroy(destroy_plane);
1036 err:
1037 return ret;
1040 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1041 void *data)
1043 struct platform_device *pdev = to_platform_device(dev);
1044 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1046 vc4_crtc_destroy(&vc4_crtc->base);
1048 CRTC_WRITE(PV_INTEN, 0);
1050 platform_set_drvdata(pdev, NULL);
1053 static const struct component_ops vc4_crtc_ops = {
1054 .bind = vc4_crtc_bind,
1055 .unbind = vc4_crtc_unbind,
1058 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1060 return component_add(&pdev->dev, &vc4_crtc_ops);
1063 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1065 component_del(&pdev->dev, &vc4_crtc_ops);
1066 return 0;
1069 struct platform_driver vc4_crtc_driver = {
1070 .probe = vc4_crtc_dev_probe,
1071 .remove = vc4_crtc_dev_remove,
1072 .driver = {
1073 .name = "vc4_crtc",
1074 .of_match_table = vc4_crtc_dt_match,