2 * Copyright (C) 2015 Broadcom
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
10 * DOC: VC4 CRTC module
12 * In VC4, the Pixel Valve is what most closely corresponds to the
13 * DRM's concept of a CRTC. The PV generates video timings from the
14 * output's clock plus its configuration. It pulls scaled pixels from
15 * the HVS at that timing, and feeds it to the encoder.
17 * However, the DRM CRTC also collects the configuration of all the
18 * DRM planes attached to it. As a result, this file also manages
19 * setup of the VC4 HVS's display elements on the CRTC.
21 * The 2835 has 3 different pixel valves. pv0 in the audio power
22 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
23 * image domain can feed either HDMI or the SDTV controller. The
24 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25 * SDTV, etc.) according to which output type is chosen in the mux.
27 * For power management, the pixel valve's registers are all clocked
28 * by the AXI clock, while the timings and FIFOs make use of the
29 * output-specific clock. Since the encoders also directly consume
30 * the CPRMAN clocks, and know what timings they need, they are the
31 * ones that set the clock.
34 #include "drm_atomic.h"
35 #include "drm_atomic_helper.h"
36 #include "drm_crtc_helper.h"
37 #include "linux/clk.h"
38 #include "drm_fb_cma_helper.h"
39 #include "linux/component.h"
40 #include "linux/of_device.h"
46 const struct vc4_crtc_data
*data
;
49 /* Timestamp at start of vblank irq - unaffected by lock delays. */
52 /* Which HVS channel we're using for our CRTC. */
58 /* Size in pixels of the COB memory allocated to this CRTC. */
61 struct drm_pending_vblank_event
*event
;
64 struct vc4_crtc_state
{
65 struct drm_crtc_state base
;
66 /* Dlist area for this CRTC configuration. */
67 struct drm_mm_node mm
;
70 static inline struct vc4_crtc
*
71 to_vc4_crtc(struct drm_crtc
*crtc
)
73 return (struct vc4_crtc
*)crtc
;
76 static inline struct vc4_crtc_state
*
77 to_vc4_crtc_state(struct drm_crtc_state
*crtc_state
)
79 return (struct vc4_crtc_state
*)crtc_state
;
82 struct vc4_crtc_data
{
83 /* Which channel of the HVS this pixelvalve sources from. */
86 enum vc4_encoder_type encoder_types
[4];
89 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
90 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
92 #define CRTC_REG(reg) { reg, #reg }
98 CRTC_REG(PV_V_CONTROL
),
99 CRTC_REG(PV_VSYNCD_EVEN
),
104 CRTC_REG(PV_VERTA_EVEN
),
105 CRTC_REG(PV_VERTB_EVEN
),
107 CRTC_REG(PV_INTSTAT
),
109 CRTC_REG(PV_HACT_ACT
),
112 static void vc4_crtc_dump_regs(struct vc4_crtc
*vc4_crtc
)
116 for (i
= 0; i
< ARRAY_SIZE(crtc_regs
); i
++) {
117 DRM_INFO("0x%04x (%s): 0x%08x\n",
118 crtc_regs
[i
].reg
, crtc_regs
[i
].name
,
119 CRTC_READ(crtc_regs
[i
].reg
));
123 #ifdef CONFIG_DEBUG_FS
124 int vc4_crtc_debugfs_regs(struct seq_file
*m
, void *unused
)
126 struct drm_info_node
*node
= (struct drm_info_node
*)m
->private;
127 struct drm_device
*dev
= node
->minor
->dev
;
128 int crtc_index
= (uintptr_t)node
->info_ent
->data
;
129 struct drm_crtc
*crtc
;
130 struct vc4_crtc
*vc4_crtc
;
134 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
141 vc4_crtc
= to_vc4_crtc(crtc
);
143 for (i
= 0; i
< ARRAY_SIZE(crtc_regs
); i
++) {
144 seq_printf(m
, "%s (0x%04x): 0x%08x\n",
145 crtc_regs
[i
].name
, crtc_regs
[i
].reg
,
146 CRTC_READ(crtc_regs
[i
].reg
));
153 int vc4_crtc_get_scanoutpos(struct drm_device
*dev
, unsigned int crtc_id
,
154 unsigned int flags
, int *vpos
, int *hpos
,
155 ktime_t
*stime
, ktime_t
*etime
,
156 const struct drm_display_mode
*mode
)
158 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
159 struct drm_crtc
*crtc
= drm_crtc_from_index(dev
, crtc_id
);
160 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
166 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
168 /* Get optional system timestamp before query. */
170 *stime
= ktime_get();
173 * Read vertical scanline which is currently composed for our
174 * pixelvalve by the HVS, and also the scaler status.
176 val
= HVS_READ(SCALER_DISPSTATX(vc4_crtc
->channel
));
178 /* Get optional system timestamp after query. */
180 *etime
= ktime_get();
182 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
184 /* Vertical position of hvs composed scanline. */
185 *vpos
= VC4_GET_FIELD(val
, SCALER_DISPSTATX_LINE
);
188 if (mode
->flags
& DRM_MODE_FLAG_INTERLACE
) {
191 /* Use hpos to correct for field offset in interlaced mode. */
192 if (VC4_GET_FIELD(val
, SCALER_DISPSTATX_FRAME_COUNT
) % 2)
193 *hpos
+= mode
->crtc_htotal
/ 2;
196 /* This is the offset we need for translating hvs -> pv scanout pos. */
197 fifo_lines
= vc4_crtc
->cob_size
/ mode
->crtc_hdisplay
;
200 ret
|= DRM_SCANOUTPOS_VALID
;
202 /* HVS more than fifo_lines into frame for compositing? */
203 if (*vpos
> fifo_lines
) {
205 * We are in active scanout and can get some meaningful results
206 * from HVS. The actual PV scanout can not trail behind more
207 * than fifo_lines as that is the fifo's capacity. Assume that
208 * in active scanout the HVS and PV work in lockstep wrt. HVS
209 * refilling the fifo and PV consuming from the fifo, ie.
210 * whenever the PV consumes and frees up a scanline in the
211 * fifo, the HVS will immediately refill it, therefore
212 * incrementing vpos. Therefore we choose HVS read position -
213 * fifo size in scanlines as a estimate of the real scanout
214 * position of the PV.
216 *vpos
-= fifo_lines
+ 1;
218 ret
|= DRM_SCANOUTPOS_ACCURATE
;
223 * Less: This happens when we are in vblank and the HVS, after getting
224 * the VSTART restart signal from the PV, just started refilling its
225 * fifo with new lines from the top-most lines of the new framebuffers.
226 * The PV does not scan out in vblank, so does not remove lines from
227 * the fifo, so the fifo will be full quickly and the HVS has to pause.
228 * We can't get meaningful readings wrt. scanline position of the PV
229 * and need to make things up in a approximative but consistent way.
231 ret
|= DRM_SCANOUTPOS_IN_VBLANK
;
232 vblank_lines
= mode
->vtotal
- mode
->vdisplay
;
234 if (flags
& DRM_CALLED_FROM_VBLIRQ
) {
236 * Assume the irq handler got called close to first
237 * line of vblank, so PV has about a full vblank
238 * scanlines to go, and as a base timestamp use the
239 * one taken at entry into vblank irq handler, so it
240 * is not affected by random delays due to lock
241 * contention on event_lock or vblank_time lock in
244 *vpos
= -vblank_lines
;
247 *stime
= vc4_crtc
->t_vblank
;
249 *etime
= vc4_crtc
->t_vblank
;
252 * If the HVS fifo is not yet full then we know for certain
253 * we are at the very beginning of vblank, as the hvs just
254 * started refilling, and the stime and etime timestamps
255 * truly correspond to start of vblank.
257 if ((val
& SCALER_DISPSTATX_FULL
) != SCALER_DISPSTATX_FULL
)
258 ret
|= DRM_SCANOUTPOS_ACCURATE
;
261 * No clue where we are inside vblank. Return a vpos of zero,
262 * which will cause calling code to just return the etime
263 * timestamp uncorrected. At least this is no worse than the
272 int vc4_crtc_get_vblank_timestamp(struct drm_device
*dev
, unsigned int crtc_id
,
273 int *max_error
, struct timeval
*vblank_time
,
276 struct drm_crtc
*crtc
= drm_crtc_from_index(dev
, crtc_id
);
277 struct drm_crtc_state
*state
= crtc
->state
;
279 /* Helper routine in DRM core does all the work: */
280 return drm_calc_vbltimestamp_from_scanoutpos(dev
, crtc_id
, max_error
,
282 &state
->adjusted_mode
);
285 static void vc4_crtc_destroy(struct drm_crtc
*crtc
)
287 drm_crtc_cleanup(crtc
);
291 vc4_crtc_lut_load(struct drm_crtc
*crtc
)
293 struct drm_device
*dev
= crtc
->dev
;
294 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
295 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
298 /* The LUT memory is laid out with each HVS channel in order,
299 * each of which takes 256 writes for R, 256 for G, then 256
302 HVS_WRITE(SCALER_GAMADDR
,
303 SCALER_GAMADDR_AUTOINC
|
304 (vc4_crtc
->channel
* 3 * crtc
->gamma_size
));
306 for (i
= 0; i
< crtc
->gamma_size
; i
++)
307 HVS_WRITE(SCALER_GAMDATA
, vc4_crtc
->lut_r
[i
]);
308 for (i
= 0; i
< crtc
->gamma_size
; i
++)
309 HVS_WRITE(SCALER_GAMDATA
, vc4_crtc
->lut_g
[i
]);
310 for (i
= 0; i
< crtc
->gamma_size
; i
++)
311 HVS_WRITE(SCALER_GAMDATA
, vc4_crtc
->lut_b
[i
]);
315 vc4_crtc_gamma_set(struct drm_crtc
*crtc
, u16
*r
, u16
*g
, u16
*b
,
318 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
321 for (i
= 0; i
< size
; i
++) {
322 vc4_crtc
->lut_r
[i
] = r
[i
] >> 8;
323 vc4_crtc
->lut_g
[i
] = g
[i
] >> 8;
324 vc4_crtc
->lut_b
[i
] = b
[i
] >> 8;
327 vc4_crtc_lut_load(crtc
);
332 static u32
vc4_get_fifo_full_level(u32 format
)
334 static const u32 fifo_len_bytes
= 64;
335 static const u32 hvs_latency_pix
= 6;
338 case PV_CONTROL_FORMAT_DSIV_16
:
339 case PV_CONTROL_FORMAT_DSIC_16
:
340 return fifo_len_bytes
- 2 * hvs_latency_pix
;
341 case PV_CONTROL_FORMAT_DSIV_18
:
342 return fifo_len_bytes
- 14;
343 case PV_CONTROL_FORMAT_24
:
344 case PV_CONTROL_FORMAT_DSIV_24
:
346 return fifo_len_bytes
- 3 * hvs_latency_pix
;
351 * Returns the clock select bit for the connector attached to the
354 static int vc4_get_clock_select(struct drm_crtc
*crtc
)
356 struct drm_connector
*connector
;
358 drm_for_each_connector(connector
, crtc
->dev
) {
359 if (connector
->state
->crtc
== crtc
) {
360 struct drm_encoder
*encoder
= connector
->encoder
;
361 struct vc4_encoder
*vc4_encoder
=
362 to_vc4_encoder(encoder
);
364 return vc4_encoder
->clock_select
;
371 static void vc4_crtc_mode_set_nofb(struct drm_crtc
*crtc
)
373 struct drm_device
*dev
= crtc
->dev
;
374 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
375 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
376 struct drm_crtc_state
*state
= crtc
->state
;
377 struct drm_display_mode
*mode
= &state
->adjusted_mode
;
378 bool interlace
= mode
->flags
& DRM_MODE_FLAG_INTERLACE
;
379 u32 pixel_rep
= (mode
->flags
& DRM_MODE_FLAG_DBLCLK
) ? 2 : 1;
380 u32 format
= PV_CONTROL_FORMAT_24
;
381 bool debug_dump_regs
= false;
382 int clock_select
= vc4_get_clock_select(crtc
);
384 if (debug_dump_regs
) {
385 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc
));
386 vc4_crtc_dump_regs(vc4_crtc
);
389 /* Reset the PV fifo. */
390 CRTC_WRITE(PV_CONTROL
, 0);
391 CRTC_WRITE(PV_CONTROL
, PV_CONTROL_FIFO_CLR
| PV_CONTROL_EN
);
392 CRTC_WRITE(PV_CONTROL
, 0);
395 VC4_SET_FIELD((mode
->htotal
-
396 mode
->hsync_end
) * pixel_rep
,
398 VC4_SET_FIELD((mode
->hsync_end
-
399 mode
->hsync_start
) * pixel_rep
,
402 VC4_SET_FIELD((mode
->hsync_start
-
403 mode
->hdisplay
) * pixel_rep
,
405 VC4_SET_FIELD(mode
->hdisplay
* pixel_rep
, PV_HORZB_HACTIVE
));
408 VC4_SET_FIELD(mode
->crtc_vtotal
- mode
->crtc_vsync_end
,
410 VC4_SET_FIELD(mode
->crtc_vsync_end
- mode
->crtc_vsync_start
,
413 VC4_SET_FIELD(mode
->crtc_vsync_start
- mode
->crtc_vdisplay
,
415 VC4_SET_FIELD(mode
->crtc_vdisplay
, PV_VERTB_VACTIVE
));
418 CRTC_WRITE(PV_VERTA_EVEN
,
419 VC4_SET_FIELD(mode
->crtc_vtotal
-
420 mode
->crtc_vsync_end
- 1,
422 VC4_SET_FIELD(mode
->crtc_vsync_end
-
423 mode
->crtc_vsync_start
,
425 CRTC_WRITE(PV_VERTB_EVEN
,
426 VC4_SET_FIELD(mode
->crtc_vsync_start
-
429 VC4_SET_FIELD(mode
->crtc_vdisplay
, PV_VERTB_VACTIVE
));
431 /* We set up first field even mode for HDMI. VEC's
432 * NTSC mode would want first field odd instead, once
433 * we support it (to do so, set ODD_FIRST and put the
434 * delay in VSYNCD_EVEN instead).
436 CRTC_WRITE(PV_V_CONTROL
,
437 PV_VCONTROL_CONTINUOUS
|
438 PV_VCONTROL_INTERLACE
|
439 VC4_SET_FIELD(mode
->htotal
* pixel_rep
/ 2,
440 PV_VCONTROL_ODD_DELAY
));
441 CRTC_WRITE(PV_VSYNCD_EVEN
, 0);
443 CRTC_WRITE(PV_V_CONTROL
, PV_VCONTROL_CONTINUOUS
);
446 CRTC_WRITE(PV_HACT_ACT
, mode
->hdisplay
* pixel_rep
);
449 CRTC_WRITE(PV_CONTROL
,
450 VC4_SET_FIELD(format
, PV_CONTROL_FORMAT
) |
451 VC4_SET_FIELD(vc4_get_fifo_full_level(format
),
452 PV_CONTROL_FIFO_LEVEL
) |
453 VC4_SET_FIELD(pixel_rep
- 1, PV_CONTROL_PIXEL_REP
) |
454 PV_CONTROL_CLR_AT_START
|
455 PV_CONTROL_TRIGGER_UNDERFLOW
|
456 PV_CONTROL_WAIT_HSTART
|
457 VC4_SET_FIELD(clock_select
, PV_CONTROL_CLK_SELECT
) |
458 PV_CONTROL_FIFO_CLR
|
461 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc
->channel
),
462 SCALER_DISPBKGND_AUTOHS
|
463 SCALER_DISPBKGND_GAMMA
|
464 (interlace
? SCALER_DISPBKGND_INTERLACE
: 0));
466 /* Reload the LUT, since the SRAMs would have been disabled if
467 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
469 vc4_crtc_lut_load(crtc
);
471 if (debug_dump_regs
) {
472 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc
));
473 vc4_crtc_dump_regs(vc4_crtc
);
477 static void require_hvs_enabled(struct drm_device
*dev
)
479 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
481 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL
) & SCALER_DISPCTRL_ENABLE
) !=
482 SCALER_DISPCTRL_ENABLE
);
485 static void vc4_crtc_disable(struct drm_crtc
*crtc
)
487 struct drm_device
*dev
= crtc
->dev
;
488 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
489 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
490 u32 chan
= vc4_crtc
->channel
;
492 require_hvs_enabled(dev
);
494 /* Disable vblank irq handling before crtc is disabled. */
495 drm_crtc_vblank_off(crtc
);
497 CRTC_WRITE(PV_V_CONTROL
,
498 CRTC_READ(PV_V_CONTROL
) & ~PV_VCONTROL_VIDEN
);
499 ret
= wait_for(!(CRTC_READ(PV_V_CONTROL
) & PV_VCONTROL_VIDEN
), 1);
500 WARN_ONCE(ret
, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
502 if (HVS_READ(SCALER_DISPCTRLX(chan
)) &
503 SCALER_DISPCTRLX_ENABLE
) {
504 HVS_WRITE(SCALER_DISPCTRLX(chan
),
505 SCALER_DISPCTRLX_RESET
);
507 /* While the docs say that reset is self-clearing, it
508 * seems it doesn't actually.
510 HVS_WRITE(SCALER_DISPCTRLX(chan
), 0);
513 /* Once we leave, the scaler should be disabled and its fifo empty. */
515 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan
)) & SCALER_DISPCTRLX_RESET
);
517 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan
)),
518 SCALER_DISPSTATX_MODE
) !=
519 SCALER_DISPSTATX_MODE_DISABLED
);
521 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan
)) &
522 (SCALER_DISPSTATX_FULL
| SCALER_DISPSTATX_EMPTY
)) !=
523 SCALER_DISPSTATX_EMPTY
);
526 static void vc4_crtc_enable(struct drm_crtc
*crtc
)
528 struct drm_device
*dev
= crtc
->dev
;
529 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
530 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
531 struct drm_crtc_state
*state
= crtc
->state
;
532 struct drm_display_mode
*mode
= &state
->adjusted_mode
;
534 require_hvs_enabled(dev
);
536 /* Turn on the scaler, which will wait for vstart to start
539 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc
->channel
),
540 VC4_SET_FIELD(mode
->hdisplay
, SCALER_DISPCTRLX_WIDTH
) |
541 VC4_SET_FIELD(mode
->vdisplay
, SCALER_DISPCTRLX_HEIGHT
) |
542 SCALER_DISPCTRLX_ENABLE
);
544 /* Turn on the pixel valve, which will emit the vstart signal. */
545 CRTC_WRITE(PV_V_CONTROL
,
546 CRTC_READ(PV_V_CONTROL
) | PV_VCONTROL_VIDEN
);
548 /* Enable vblank irq handling after crtc is started. */
549 drm_crtc_vblank_on(crtc
);
552 static bool vc4_crtc_mode_fixup(struct drm_crtc
*crtc
,
553 const struct drm_display_mode
*mode
,
554 struct drm_display_mode
*adjusted_mode
)
556 /* Do not allow doublescan modes from user space */
557 if (adjusted_mode
->flags
& DRM_MODE_FLAG_DBLSCAN
) {
558 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
566 static int vc4_crtc_atomic_check(struct drm_crtc
*crtc
,
567 struct drm_crtc_state
*state
)
569 struct vc4_crtc_state
*vc4_state
= to_vc4_crtc_state(state
);
570 struct drm_device
*dev
= crtc
->dev
;
571 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
572 struct drm_plane
*plane
;
574 const struct drm_plane_state
*plane_state
;
578 /* The pixelvalve can only feed one encoder (and encoders are
579 * 1:1 with connectors.)
581 if (hweight32(state
->connector_mask
) > 1)
584 drm_atomic_crtc_state_for_each_plane_state(plane
, plane_state
, state
)
585 dlist_count
+= vc4_plane_dlist_size(plane_state
);
587 dlist_count
++; /* Account for SCALER_CTL0_END. */
589 spin_lock_irqsave(&vc4
->hvs
->mm_lock
, flags
);
590 ret
= drm_mm_insert_node(&vc4
->hvs
->dlist_mm
, &vc4_state
->mm
,
592 spin_unlock_irqrestore(&vc4
->hvs
->mm_lock
, flags
);
599 static void vc4_crtc_atomic_flush(struct drm_crtc
*crtc
,
600 struct drm_crtc_state
*old_state
)
602 struct drm_device
*dev
= crtc
->dev
;
603 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
604 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
605 struct vc4_crtc_state
*vc4_state
= to_vc4_crtc_state(crtc
->state
);
606 struct drm_plane
*plane
;
607 bool debug_dump_regs
= false;
608 u32 __iomem
*dlist_start
= vc4
->hvs
->dlist
+ vc4_state
->mm
.start
;
609 u32 __iomem
*dlist_next
= dlist_start
;
611 if (debug_dump_regs
) {
612 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc
));
613 vc4_hvs_dump_state(dev
);
616 /* Copy all the active planes' dlist contents to the hardware dlist. */
617 drm_atomic_crtc_for_each_plane(plane
, crtc
) {
618 dlist_next
+= vc4_plane_write_dlist(plane
, dlist_next
);
621 writel(SCALER_CTL0_END
, dlist_next
);
624 WARN_ON_ONCE(dlist_next
- dlist_start
!= vc4_state
->mm
.size
);
626 if (crtc
->state
->event
) {
629 crtc
->state
->event
->pipe
= drm_crtc_index(crtc
);
631 WARN_ON(drm_crtc_vblank_get(crtc
) != 0);
633 spin_lock_irqsave(&dev
->event_lock
, flags
);
634 vc4_crtc
->event
= crtc
->state
->event
;
635 crtc
->state
->event
= NULL
;
637 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc
->channel
),
638 vc4_state
->mm
.start
);
640 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
642 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc
->channel
),
643 vc4_state
->mm
.start
);
646 if (debug_dump_regs
) {
647 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc
));
648 vc4_hvs_dump_state(dev
);
652 int vc4_enable_vblank(struct drm_device
*dev
, unsigned int crtc_id
)
654 struct drm_crtc
*crtc
= drm_crtc_from_index(dev
, crtc_id
);
655 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
657 CRTC_WRITE(PV_INTEN
, PV_INT_VFP_START
);
662 void vc4_disable_vblank(struct drm_device
*dev
, unsigned int crtc_id
)
664 struct drm_crtc
*crtc
= drm_crtc_from_index(dev
, crtc_id
);
665 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
667 CRTC_WRITE(PV_INTEN
, 0);
670 /* Must be called with the event lock held */
671 bool vc4_event_pending(struct drm_crtc
*crtc
)
673 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
675 return !!vc4_crtc
->event
;
678 static void vc4_crtc_handle_page_flip(struct vc4_crtc
*vc4_crtc
)
680 struct drm_crtc
*crtc
= &vc4_crtc
->base
;
681 struct drm_device
*dev
= crtc
->dev
;
682 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
683 struct vc4_crtc_state
*vc4_state
= to_vc4_crtc_state(crtc
->state
);
684 u32 chan
= vc4_crtc
->channel
;
687 spin_lock_irqsave(&dev
->event_lock
, flags
);
688 if (vc4_crtc
->event
&&
689 (vc4_state
->mm
.start
== HVS_READ(SCALER_DISPLACTX(chan
)))) {
690 drm_crtc_send_vblank_event(crtc
, vc4_crtc
->event
);
691 vc4_crtc
->event
= NULL
;
692 drm_crtc_vblank_put(crtc
);
694 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
697 static irqreturn_t
vc4_crtc_irq_handler(int irq
, void *data
)
699 struct vc4_crtc
*vc4_crtc
= data
;
700 u32 stat
= CRTC_READ(PV_INTSTAT
);
701 irqreturn_t ret
= IRQ_NONE
;
703 if (stat
& PV_INT_VFP_START
) {
704 vc4_crtc
->t_vblank
= ktime_get();
705 CRTC_WRITE(PV_INTSTAT
, PV_INT_VFP_START
);
706 drm_crtc_handle_vblank(&vc4_crtc
->base
);
707 vc4_crtc_handle_page_flip(vc4_crtc
);
714 struct vc4_async_flip_state
{
715 struct drm_crtc
*crtc
;
716 struct drm_framebuffer
*fb
;
717 struct drm_pending_vblank_event
*event
;
719 struct vc4_seqno_cb cb
;
722 /* Called when the V3D execution for the BO being flipped to is done, so that
723 * we can actually update the plane's address to point to it.
726 vc4_async_page_flip_complete(struct vc4_seqno_cb
*cb
)
728 struct vc4_async_flip_state
*flip_state
=
729 container_of(cb
, struct vc4_async_flip_state
, cb
);
730 struct drm_crtc
*crtc
= flip_state
->crtc
;
731 struct drm_device
*dev
= crtc
->dev
;
732 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
733 struct drm_plane
*plane
= crtc
->primary
;
735 vc4_plane_async_set_fb(plane
, flip_state
->fb
);
736 if (flip_state
->event
) {
739 spin_lock_irqsave(&dev
->event_lock
, flags
);
740 drm_crtc_send_vblank_event(crtc
, flip_state
->event
);
741 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
744 drm_crtc_vblank_put(crtc
);
745 drm_framebuffer_unreference(flip_state
->fb
);
748 up(&vc4
->async_modeset
);
751 /* Implements async (non-vblank-synced) page flips.
753 * The page flip ioctl needs to return immediately, so we grab the
754 * modeset semaphore on the pipe, and queue the address update for
755 * when V3D is done with the BO being flipped to.
757 static int vc4_async_page_flip(struct drm_crtc
*crtc
,
758 struct drm_framebuffer
*fb
,
759 struct drm_pending_vblank_event
*event
,
762 struct drm_device
*dev
= crtc
->dev
;
763 struct vc4_dev
*vc4
= to_vc4_dev(dev
);
764 struct drm_plane
*plane
= crtc
->primary
;
766 struct vc4_async_flip_state
*flip_state
;
767 struct drm_gem_cma_object
*cma_bo
= drm_fb_cma_get_gem_obj(fb
, 0);
768 struct vc4_bo
*bo
= to_vc4_bo(&cma_bo
->base
);
770 flip_state
= kzalloc(sizeof(*flip_state
), GFP_KERNEL
);
774 drm_framebuffer_reference(fb
);
776 flip_state
->crtc
= crtc
;
777 flip_state
->event
= event
;
779 /* Make sure all other async modesetes have landed. */
780 ret
= down_interruptible(&vc4
->async_modeset
);
782 drm_framebuffer_unreference(fb
);
787 WARN_ON(drm_crtc_vblank_get(crtc
) != 0);
789 /* Immediately update the plane's legacy fb pointer, so that later
790 * modeset prep sees the state that will be present when the semaphore
793 drm_atomic_set_fb_for_plane(plane
->state
, fb
);
796 vc4_queue_seqno_cb(dev
, &flip_state
->cb
, bo
->seqno
,
797 vc4_async_page_flip_complete
);
799 /* Driver takes ownership of state on successful async commit. */
803 static int vc4_page_flip(struct drm_crtc
*crtc
,
804 struct drm_framebuffer
*fb
,
805 struct drm_pending_vblank_event
*event
,
808 if (flags
& DRM_MODE_PAGE_FLIP_ASYNC
)
809 return vc4_async_page_flip(crtc
, fb
, event
, flags
);
811 return drm_atomic_helper_page_flip(crtc
, fb
, event
, flags
);
814 static struct drm_crtc_state
*vc4_crtc_duplicate_state(struct drm_crtc
*crtc
)
816 struct vc4_crtc_state
*vc4_state
;
818 vc4_state
= kzalloc(sizeof(*vc4_state
), GFP_KERNEL
);
822 __drm_atomic_helper_crtc_duplicate_state(crtc
, &vc4_state
->base
);
823 return &vc4_state
->base
;
826 static void vc4_crtc_destroy_state(struct drm_crtc
*crtc
,
827 struct drm_crtc_state
*state
)
829 struct vc4_dev
*vc4
= to_vc4_dev(crtc
->dev
);
830 struct vc4_crtc_state
*vc4_state
= to_vc4_crtc_state(state
);
832 if (vc4_state
->mm
.allocated
) {
835 spin_lock_irqsave(&vc4
->hvs
->mm_lock
, flags
);
836 drm_mm_remove_node(&vc4_state
->mm
);
837 spin_unlock_irqrestore(&vc4
->hvs
->mm_lock
, flags
);
841 __drm_atomic_helper_crtc_destroy_state(state
);
844 static const struct drm_crtc_funcs vc4_crtc_funcs
= {
845 .set_config
= drm_atomic_helper_set_config
,
846 .destroy
= vc4_crtc_destroy
,
847 .page_flip
= vc4_page_flip
,
848 .set_property
= NULL
,
849 .cursor_set
= NULL
, /* handled by drm_mode_cursor_universal */
850 .cursor_move
= NULL
, /* handled by drm_mode_cursor_universal */
851 .reset
= drm_atomic_helper_crtc_reset
,
852 .atomic_duplicate_state
= vc4_crtc_duplicate_state
,
853 .atomic_destroy_state
= vc4_crtc_destroy_state
,
854 .gamma_set
= vc4_crtc_gamma_set
,
857 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs
= {
858 .mode_set_nofb
= vc4_crtc_mode_set_nofb
,
859 .disable
= vc4_crtc_disable
,
860 .enable
= vc4_crtc_enable
,
861 .mode_fixup
= vc4_crtc_mode_fixup
,
862 .atomic_check
= vc4_crtc_atomic_check
,
863 .atomic_flush
= vc4_crtc_atomic_flush
,
866 static const struct vc4_crtc_data pv0_data
= {
869 [PV_CONTROL_CLK_SELECT_DSI
] = VC4_ENCODER_TYPE_DSI0
,
870 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI
] = VC4_ENCODER_TYPE_DPI
,
874 static const struct vc4_crtc_data pv1_data
= {
877 [PV_CONTROL_CLK_SELECT_DSI
] = VC4_ENCODER_TYPE_DSI1
,
878 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI
] = VC4_ENCODER_TYPE_SMI
,
882 static const struct vc4_crtc_data pv2_data
= {
885 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI
] = VC4_ENCODER_TYPE_HDMI
,
886 [PV_CONTROL_CLK_SELECT_VEC
] = VC4_ENCODER_TYPE_VEC
,
890 static const struct of_device_id vc4_crtc_dt_match
[] = {
891 { .compatible
= "brcm,bcm2835-pixelvalve0", .data
= &pv0_data
},
892 { .compatible
= "brcm,bcm2835-pixelvalve1", .data
= &pv1_data
},
893 { .compatible
= "brcm,bcm2835-pixelvalve2", .data
= &pv2_data
},
897 static void vc4_set_crtc_possible_masks(struct drm_device
*drm
,
898 struct drm_crtc
*crtc
)
900 struct vc4_crtc
*vc4_crtc
= to_vc4_crtc(crtc
);
901 const struct vc4_crtc_data
*crtc_data
= vc4_crtc
->data
;
902 const enum vc4_encoder_type
*encoder_types
= crtc_data
->encoder_types
;
903 struct drm_encoder
*encoder
;
905 drm_for_each_encoder(encoder
, drm
) {
906 struct vc4_encoder
*vc4_encoder
= to_vc4_encoder(encoder
);
909 for (i
= 0; i
< ARRAY_SIZE(crtc_data
->encoder_types
); i
++) {
910 if (vc4_encoder
->type
== encoder_types
[i
]) {
911 vc4_encoder
->clock_select
= i
;
912 encoder
->possible_crtcs
|= drm_crtc_mask(crtc
);
920 vc4_crtc_get_cob_allocation(struct vc4_crtc
*vc4_crtc
)
922 struct drm_device
*drm
= vc4_crtc
->base
.dev
;
923 struct vc4_dev
*vc4
= to_vc4_dev(drm
);
924 u32 dispbase
= HVS_READ(SCALER_DISPBASEX(vc4_crtc
->channel
));
925 /* Top/base are supposed to be 4-pixel aligned, but the
926 * Raspberry Pi firmware fills the low bits (which are
927 * presumably ignored).
929 u32 top
= VC4_GET_FIELD(dispbase
, SCALER_DISPBASEX_TOP
) & ~3;
930 u32 base
= VC4_GET_FIELD(dispbase
, SCALER_DISPBASEX_BASE
) & ~3;
932 vc4_crtc
->cob_size
= top
- base
+ 4;
935 static int vc4_crtc_bind(struct device
*dev
, struct device
*master
, void *data
)
937 struct platform_device
*pdev
= to_platform_device(dev
);
938 struct drm_device
*drm
= dev_get_drvdata(master
);
939 struct vc4_crtc
*vc4_crtc
;
940 struct drm_crtc
*crtc
;
941 struct drm_plane
*primary_plane
, *cursor_plane
, *destroy_plane
, *temp
;
942 const struct of_device_id
*match
;
945 vc4_crtc
= devm_kzalloc(dev
, sizeof(*vc4_crtc
), GFP_KERNEL
);
948 crtc
= &vc4_crtc
->base
;
950 match
= of_match_device(vc4_crtc_dt_match
, dev
);
953 vc4_crtc
->data
= match
->data
;
955 vc4_crtc
->regs
= vc4_ioremap_regs(pdev
, 0);
956 if (IS_ERR(vc4_crtc
->regs
))
957 return PTR_ERR(vc4_crtc
->regs
);
959 /* For now, we create just the primary and the legacy cursor
960 * planes. We should be able to stack more planes on easily,
961 * but to do that we would need to compute the bandwidth
962 * requirement of the plane configuration, and reject ones
963 * that will take too much.
965 primary_plane
= vc4_plane_init(drm
, DRM_PLANE_TYPE_PRIMARY
);
966 if (IS_ERR(primary_plane
)) {
967 dev_err(dev
, "failed to construct primary plane\n");
968 ret
= PTR_ERR(primary_plane
);
972 drm_crtc_init_with_planes(drm
, crtc
, primary_plane
, NULL
,
973 &vc4_crtc_funcs
, NULL
);
974 drm_crtc_helper_add(crtc
, &vc4_crtc_helper_funcs
);
975 primary_plane
->crtc
= crtc
;
976 vc4_crtc
->channel
= vc4_crtc
->data
->hvs_channel
;
977 drm_mode_crtc_set_gamma_size(crtc
, ARRAY_SIZE(vc4_crtc
->lut_r
));
979 /* Set up some arbitrary number of planes. We're not limited
980 * by a set number of physical registers, just the space in
981 * the HVS (16k) and how small an plane can be (28 bytes).
982 * However, each plane we set up takes up some memory, and
983 * increases the cost of looping over planes, which atomic
984 * modesetting does quite a bit. As a result, we pick a
985 * modest number of planes to expose, that should hopefully
986 * still cover any sane usecase.
988 for (i
= 0; i
< 8; i
++) {
989 struct drm_plane
*plane
=
990 vc4_plane_init(drm
, DRM_PLANE_TYPE_OVERLAY
);
995 plane
->possible_crtcs
= 1 << drm_crtc_index(crtc
);
998 /* Set up the legacy cursor after overlay initialization,
999 * since we overlay planes on the CRTC in the order they were
1002 cursor_plane
= vc4_plane_init(drm
, DRM_PLANE_TYPE_CURSOR
);
1003 if (!IS_ERR(cursor_plane
)) {
1004 cursor_plane
->possible_crtcs
= 1 << drm_crtc_index(crtc
);
1005 cursor_plane
->crtc
= crtc
;
1006 crtc
->cursor
= cursor_plane
;
1009 vc4_crtc_get_cob_allocation(vc4_crtc
);
1011 CRTC_WRITE(PV_INTEN
, 0);
1012 CRTC_WRITE(PV_INTSTAT
, PV_INT_VFP_START
);
1013 ret
= devm_request_irq(dev
, platform_get_irq(pdev
, 0),
1014 vc4_crtc_irq_handler
, 0, "vc4 crtc", vc4_crtc
);
1016 goto err_destroy_planes
;
1018 vc4_set_crtc_possible_masks(drm
, crtc
);
1020 for (i
= 0; i
< crtc
->gamma_size
; i
++) {
1021 vc4_crtc
->lut_r
[i
] = i
;
1022 vc4_crtc
->lut_g
[i
] = i
;
1023 vc4_crtc
->lut_b
[i
] = i
;
1026 platform_set_drvdata(pdev
, vc4_crtc
);
1031 list_for_each_entry_safe(destroy_plane
, temp
,
1032 &drm
->mode_config
.plane_list
, head
) {
1033 if (destroy_plane
->possible_crtcs
== 1 << drm_crtc_index(crtc
))
1034 destroy_plane
->funcs
->destroy(destroy_plane
);
1040 static void vc4_crtc_unbind(struct device
*dev
, struct device
*master
,
1043 struct platform_device
*pdev
= to_platform_device(dev
);
1044 struct vc4_crtc
*vc4_crtc
= dev_get_drvdata(dev
);
1046 vc4_crtc_destroy(&vc4_crtc
->base
);
1048 CRTC_WRITE(PV_INTEN
, 0);
1050 platform_set_drvdata(pdev
, NULL
);
1053 static const struct component_ops vc4_crtc_ops
= {
1054 .bind
= vc4_crtc_bind
,
1055 .unbind
= vc4_crtc_unbind
,
1058 static int vc4_crtc_dev_probe(struct platform_device
*pdev
)
1060 return component_add(&pdev
->dev
, &vc4_crtc_ops
);
1063 static int vc4_crtc_dev_remove(struct platform_device
*pdev
)
1065 component_del(&pdev
->dev
, &vc4_crtc_ops
);
1069 struct platform_driver vc4_crtc_driver
= {
1070 .probe
= vc4_crtc_dev_probe
,
1071 .remove
= vc4_crtc_dev_remove
,
1074 .of_match_table
= vc4_crtc_dt_match
,