drm/exynos: Stop using drm_framebuffer_unregister_private
[linux/fpc-iii.git] / drivers / mailbox / bcm-pdc-mailbox.c
blob2aeb034d5fb9cd4d0ce14e5c26a10fb6abf62538
1 /*
2 * Copyright 2016 Broadcom
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License, version 2, as
6 * published by the Free Software Foundation (the "GPL").
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License version 2 (GPLv2) for more details.
13 * You should have received a copy of the GNU General Public License
14 * version 2 (GPLv2) along with this source code.
18 * Broadcom PDC Mailbox Driver
19 * The PDC provides a ring based programming interface to one or more hardware
20 * offload engines. For example, the PDC driver works with both SPU-M and SPU2
21 * cryptographic offload hardware. In some chips the PDC is referred to as MDE.
23 * The PDC driver registers with the Linux mailbox framework as a mailbox
24 * controller, once for each PDC instance. Ring 0 for each PDC is registered as
25 * a mailbox channel. The PDC driver uses interrupts to determine when data
26 * transfers to and from an offload engine are complete. The PDC driver uses
27 * threaded IRQs so that response messages are handled outside of interrupt
28 * context.
30 * The PDC driver allows multiple messages to be pending in the descriptor
31 * rings. The tx_msg_start descriptor index indicates where the last message
32 * starts. The txin_numd value at this index indicates how many descriptor
33 * indexes make up the message. Similar state is kept on the receive side. When
34 * an rx interrupt indicates a response is ready, the PDC driver processes numd
35 * descriptors from the tx and rx ring, thus processing one response at a time.
38 #include <linux/errno.h>
39 #include <linux/module.h>
40 #include <linux/init.h>
41 #include <linux/slab.h>
42 #include <linux/debugfs.h>
43 #include <linux/interrupt.h>
44 #include <linux/wait.h>
45 #include <linux/platform_device.h>
46 #include <linux/io.h>
47 #include <linux/of.h>
48 #include <linux/of_device.h>
49 #include <linux/of_address.h>
50 #include <linux/of_irq.h>
51 #include <linux/mailbox_controller.h>
52 #include <linux/mailbox/brcm-message.h>
53 #include <linux/scatterlist.h>
54 #include <linux/dma-direction.h>
55 #include <linux/dma-mapping.h>
56 #include <linux/dmapool.h>
58 #define PDC_SUCCESS 0
60 #define RING_ENTRY_SIZE sizeof(struct dma64dd)
62 /* # entries in PDC dma ring */
63 #define PDC_RING_ENTRIES 512
65 * Minimum number of ring descriptor entries that must be free to tell mailbox
66 * framework that it can submit another request
68 #define PDC_RING_SPACE_MIN 15
70 #define PDC_RING_SIZE (PDC_RING_ENTRIES * RING_ENTRY_SIZE)
71 /* Rings are 8k aligned */
72 #define RING_ALIGN_ORDER 13
73 #define RING_ALIGN BIT(RING_ALIGN_ORDER)
75 #define RX_BUF_ALIGN_ORDER 5
76 #define RX_BUF_ALIGN BIT(RX_BUF_ALIGN_ORDER)
78 /* descriptor bumping macros */
79 #define XXD(x, max_mask) ((x) & (max_mask))
80 #define TXD(x, max_mask) XXD((x), (max_mask))
81 #define RXD(x, max_mask) XXD((x), (max_mask))
82 #define NEXTTXD(i, max_mask) TXD((i) + 1, (max_mask))
83 #define PREVTXD(i, max_mask) TXD((i) - 1, (max_mask))
84 #define NEXTRXD(i, max_mask) RXD((i) + 1, (max_mask))
85 #define PREVRXD(i, max_mask) RXD((i) - 1, (max_mask))
86 #define NTXDACTIVE(h, t, max_mask) TXD((t) - (h), (max_mask))
87 #define NRXDACTIVE(h, t, max_mask) RXD((t) - (h), (max_mask))
89 /* Length of BCM header at start of SPU msg, in bytes */
90 #define BCM_HDR_LEN 8
93 * PDC driver reserves ringset 0 on each SPU for its own use. The driver does
94 * not currently support use of multiple ringsets on a single PDC engine.
96 #define PDC_RINGSET 0
99 * Interrupt mask and status definitions. Enable interrupts for tx and rx on
100 * ring 0
102 #define PDC_RCVINT_0 (16 + PDC_RINGSET)
103 #define PDC_RCVINTEN_0 BIT(PDC_RCVINT_0)
104 #define PDC_INTMASK (PDC_RCVINTEN_0)
105 #define PDC_LAZY_FRAMECOUNT 1
106 #define PDC_LAZY_TIMEOUT 10000
107 #define PDC_LAZY_INT (PDC_LAZY_TIMEOUT | (PDC_LAZY_FRAMECOUNT << 24))
108 #define PDC_INTMASK_OFFSET 0x24
109 #define PDC_INTSTATUS_OFFSET 0x20
110 #define PDC_RCVLAZY0_OFFSET (0x30 + 4 * PDC_RINGSET)
113 * For SPU2, configure MDE_CKSUM_CONTROL to write 17 bytes of metadata
114 * before frame
116 #define PDC_SPU2_RESP_HDR_LEN 17
117 #define PDC_CKSUM_CTRL BIT(27)
118 #define PDC_CKSUM_CTRL_OFFSET 0x400
120 #define PDC_SPUM_RESP_HDR_LEN 32
123 * Sets the following bits for write to transmit control reg:
124 * 11 - PtyChkDisable - parity check is disabled
125 * 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory
127 #define PDC_TX_CTL 0x000C0800
129 /* Bit in tx control reg to enable tx channel */
130 #define PDC_TX_ENABLE 0x1
133 * Sets the following bits for write to receive control reg:
134 * 7:1 - RcvOffset - size in bytes of status region at start of rx frame buf
135 * 9 - SepRxHdrDescEn - place start of new frames only in descriptors
136 * that have StartOfFrame set
137 * 10 - OflowContinue - on rx FIFO overflow, clear rx fifo, discard all
138 * remaining bytes in current frame, report error
139 * in rx frame status for current frame
140 * 11 - PtyChkDisable - parity check is disabled
141 * 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory
143 #define PDC_RX_CTL 0x000C0E00
145 /* Bit in rx control reg to enable rx channel */
146 #define PDC_RX_ENABLE 0x1
148 #define CRYPTO_D64_RS0_CD_MASK ((PDC_RING_ENTRIES * RING_ENTRY_SIZE) - 1)
150 /* descriptor flags */
151 #define D64_CTRL1_EOT BIT(28) /* end of descriptor table */
152 #define D64_CTRL1_IOC BIT(29) /* interrupt on complete */
153 #define D64_CTRL1_EOF BIT(30) /* end of frame */
154 #define D64_CTRL1_SOF BIT(31) /* start of frame */
156 #define RX_STATUS_OVERFLOW 0x00800000
157 #define RX_STATUS_LEN 0x0000FFFF
159 #define PDC_TXREGS_OFFSET 0x200
160 #define PDC_RXREGS_OFFSET 0x220
162 /* Maximum size buffer the DMA engine can handle */
163 #define PDC_DMA_BUF_MAX 16384
165 struct pdc_dma_map {
166 void *ctx; /* opaque context associated with frame */
169 /* dma descriptor */
170 struct dma64dd {
171 u32 ctrl1; /* misc control bits */
172 u32 ctrl2; /* buffer count and address extension */
173 u32 addrlow; /* memory address of the date buffer, bits 31:0 */
174 u32 addrhigh; /* memory address of the date buffer, bits 63:32 */
177 /* dma registers per channel(xmt or rcv) */
178 struct dma64_regs {
179 u32 control; /* enable, et al */
180 u32 ptr; /* last descriptor posted to chip */
181 u32 addrlow; /* descriptor ring base address low 32-bits */
182 u32 addrhigh; /* descriptor ring base address bits 63:32 */
183 u32 status0; /* last rx descriptor written by hw */
184 u32 status1; /* driver does not use */
187 /* cpp contortions to concatenate w/arg prescan */
188 #ifndef PAD
189 #define _PADLINE(line) pad ## line
190 #define _XSTR(line) _PADLINE(line)
191 #define PAD _XSTR(__LINE__)
192 #endif /* PAD */
194 /* dma registers. matches hw layout. */
195 struct dma64 {
196 struct dma64_regs dmaxmt; /* dma tx */
197 u32 PAD[2];
198 struct dma64_regs dmarcv; /* dma rx */
199 u32 PAD[2];
202 /* PDC registers */
203 struct pdc_regs {
204 u32 devcontrol; /* 0x000 */
205 u32 devstatus; /* 0x004 */
206 u32 PAD;
207 u32 biststatus; /* 0x00c */
208 u32 PAD[4];
209 u32 intstatus; /* 0x020 */
210 u32 intmask; /* 0x024 */
211 u32 gptimer; /* 0x028 */
213 u32 PAD;
214 u32 intrcvlazy_0; /* 0x030 */
215 u32 intrcvlazy_1; /* 0x034 */
216 u32 intrcvlazy_2; /* 0x038 */
217 u32 intrcvlazy_3; /* 0x03c */
219 u32 PAD[48];
220 u32 removed_intrecvlazy; /* 0x100 */
221 u32 flowctlthresh; /* 0x104 */
222 u32 wrrthresh; /* 0x108 */
223 u32 gmac_idle_cnt_thresh; /* 0x10c */
225 u32 PAD[4];
226 u32 ifioaccessaddr; /* 0x120 */
227 u32 ifioaccessbyte; /* 0x124 */
228 u32 ifioaccessdata; /* 0x128 */
230 u32 PAD[21];
231 u32 phyaccess; /* 0x180 */
232 u32 PAD;
233 u32 phycontrol; /* 0x188 */
234 u32 txqctl; /* 0x18c */
235 u32 rxqctl; /* 0x190 */
236 u32 gpioselect; /* 0x194 */
237 u32 gpio_output_en; /* 0x198 */
238 u32 PAD; /* 0x19c */
239 u32 txq_rxq_mem_ctl; /* 0x1a0 */
240 u32 memory_ecc_status; /* 0x1a4 */
241 u32 serdes_ctl; /* 0x1a8 */
242 u32 serdes_status0; /* 0x1ac */
243 u32 serdes_status1; /* 0x1b0 */
244 u32 PAD[11]; /* 0x1b4-1dc */
245 u32 clk_ctl_st; /* 0x1e0 */
246 u32 hw_war; /* 0x1e4 */
247 u32 pwrctl; /* 0x1e8 */
248 u32 PAD[5];
250 #define PDC_NUM_DMA_RINGS 4
251 struct dma64 dmaregs[PDC_NUM_DMA_RINGS]; /* 0x0200 - 0x2fc */
253 /* more registers follow, but we don't use them */
256 /* structure for allocating/freeing DMA rings */
257 struct pdc_ring_alloc {
258 dma_addr_t dmabase; /* DMA address of start of ring */
259 void *vbase; /* base kernel virtual address of ring */
260 u32 size; /* ring allocation size in bytes */
264 * context associated with a receive descriptor.
265 * @rxp_ctx: opaque context associated with frame that starts at each
266 * rx ring index.
267 * @dst_sg: Scatterlist used to form reply frames beginning at a given ring
268 * index. Retained in order to unmap each sg after reply is processed.
269 * @rxin_numd: Number of rx descriptors associated with the message that starts
270 * at a descriptor index. Not set for every index. For example,
271 * if descriptor index i points to a scatterlist with 4 entries,
272 * then the next three descriptor indexes don't have a value set.
273 * @resp_hdr: Virtual address of buffer used to catch DMA rx status
274 * @resp_hdr_daddr: physical address of DMA rx status buffer
276 struct pdc_rx_ctx {
277 void *rxp_ctx;
278 struct scatterlist *dst_sg;
279 u32 rxin_numd;
280 void *resp_hdr;
281 dma_addr_t resp_hdr_daddr;
284 /* PDC state structure */
285 struct pdc_state {
286 /* Index of the PDC whose state is in this structure instance */
287 u8 pdc_idx;
289 /* Platform device for this PDC instance */
290 struct platform_device *pdev;
293 * Each PDC instance has a mailbox controller. PDC receives request
294 * messages through mailboxes, and sends response messages through the
295 * mailbox framework.
297 struct mbox_controller mbc;
299 unsigned int pdc_irq;
301 /* tasklet for deferred processing after DMA rx interrupt */
302 struct tasklet_struct rx_tasklet;
304 /* Number of bytes of receive status prior to each rx frame */
305 u32 rx_status_len;
306 /* Whether a BCM header is prepended to each frame */
307 bool use_bcm_hdr;
308 /* Sum of length of BCM header and rx status header */
309 u32 pdc_resp_hdr_len;
311 /* The base virtual address of DMA hw registers */
312 void __iomem *pdc_reg_vbase;
314 /* Pool for allocation of DMA rings */
315 struct dma_pool *ring_pool;
317 /* Pool for allocation of metadata buffers for response messages */
318 struct dma_pool *rx_buf_pool;
321 * The base virtual address of DMA tx/rx descriptor rings. Corresponding
322 * DMA address and size of ring allocation.
324 struct pdc_ring_alloc tx_ring_alloc;
325 struct pdc_ring_alloc rx_ring_alloc;
327 struct pdc_regs *regs; /* start of PDC registers */
329 struct dma64_regs *txregs_64; /* dma tx engine registers */
330 struct dma64_regs *rxregs_64; /* dma rx engine registers */
333 * Arrays of PDC_RING_ENTRIES descriptors
334 * To use multiple ringsets, this needs to be extended
336 struct dma64dd *txd_64; /* tx descriptor ring */
337 struct dma64dd *rxd_64; /* rx descriptor ring */
339 /* descriptor ring sizes */
340 u32 ntxd; /* # tx descriptors */
341 u32 nrxd; /* # rx descriptors */
342 u32 nrxpost; /* # rx buffers to keep posted */
343 u32 ntxpost; /* max number of tx buffers that can be posted */
346 * Index of next tx descriptor to reclaim. That is, the descriptor
347 * index of the oldest tx buffer for which the host has yet to process
348 * the corresponding response.
350 u32 txin;
353 * Index of the first receive descriptor for the sequence of
354 * message fragments currently under construction. Used to build up
355 * the rxin_numd count for a message. Updated to rxout when the host
356 * starts a new sequence of rx buffers for a new message.
358 u32 tx_msg_start;
360 /* Index of next tx descriptor to post. */
361 u32 txout;
364 * Number of tx descriptors associated with the message that starts
365 * at this tx descriptor index.
367 u32 txin_numd[PDC_RING_ENTRIES];
370 * Index of next rx descriptor to reclaim. This is the index of
371 * the next descriptor whose data has yet to be processed by the host.
373 u32 rxin;
376 * Index of the first receive descriptor for the sequence of
377 * message fragments currently under construction. Used to build up
378 * the rxin_numd count for a message. Updated to rxout when the host
379 * starts a new sequence of rx buffers for a new message.
381 u32 rx_msg_start;
384 * Saved value of current hardware rx descriptor index.
385 * The last rx buffer written by the hw is the index previous to
386 * this one.
388 u32 last_rx_curr;
390 /* Index of next rx descriptor to post. */
391 u32 rxout;
393 struct pdc_rx_ctx rx_ctx[PDC_RING_ENTRIES];
396 * Scatterlists used to form request and reply frames beginning at a
397 * given ring index. Retained in order to unmap each sg after reply
398 * is processed
400 struct scatterlist *src_sg[PDC_RING_ENTRIES];
402 struct dentry *debugfs_stats; /* debug FS stats file for this PDC */
404 /* counters */
405 u32 pdc_requests; /* number of request messages submitted */
406 u32 pdc_replies; /* number of reply messages received */
407 u32 last_tx_not_done; /* too few tx descriptors to indicate done */
408 u32 tx_ring_full; /* unable to accept msg because tx ring full */
409 u32 rx_ring_full; /* unable to accept msg because rx ring full */
410 u32 txnobuf; /* unable to create tx descriptor */
411 u32 rxnobuf; /* unable to create rx descriptor */
412 u32 rx_oflow; /* count of rx overflows */
415 /* Global variables */
417 struct pdc_globals {
418 /* Actual number of SPUs in hardware, as reported by device tree */
419 u32 num_spu;
422 static struct pdc_globals pdcg;
424 /* top level debug FS directory for PDC driver */
425 static struct dentry *debugfs_dir;
427 static ssize_t pdc_debugfs_read(struct file *filp, char __user *ubuf,
428 size_t count, loff_t *offp)
430 struct pdc_state *pdcs;
431 char *buf;
432 ssize_t ret, out_offset, out_count;
434 out_count = 512;
436 buf = kmalloc(out_count, GFP_KERNEL);
437 if (!buf)
438 return -ENOMEM;
440 pdcs = filp->private_data;
441 out_offset = 0;
442 out_offset += snprintf(buf + out_offset, out_count - out_offset,
443 "SPU %u stats:\n", pdcs->pdc_idx);
444 out_offset += snprintf(buf + out_offset, out_count - out_offset,
445 "PDC requests....................%u\n",
446 pdcs->pdc_requests);
447 out_offset += snprintf(buf + out_offset, out_count - out_offset,
448 "PDC responses...................%u\n",
449 pdcs->pdc_replies);
450 out_offset += snprintf(buf + out_offset, out_count - out_offset,
451 "Tx not done.....................%u\n",
452 pdcs->last_tx_not_done);
453 out_offset += snprintf(buf + out_offset, out_count - out_offset,
454 "Tx ring full....................%u\n",
455 pdcs->tx_ring_full);
456 out_offset += snprintf(buf + out_offset, out_count - out_offset,
457 "Rx ring full....................%u\n",
458 pdcs->rx_ring_full);
459 out_offset += snprintf(buf + out_offset, out_count - out_offset,
460 "Tx desc write fail. Ring full...%u\n",
461 pdcs->txnobuf);
462 out_offset += snprintf(buf + out_offset, out_count - out_offset,
463 "Rx desc write fail. Ring full...%u\n",
464 pdcs->rxnobuf);
465 out_offset += snprintf(buf + out_offset, out_count - out_offset,
466 "Receive overflow................%u\n",
467 pdcs->rx_oflow);
468 out_offset += snprintf(buf + out_offset, out_count - out_offset,
469 "Num frags in rx ring............%u\n",
470 NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr,
471 pdcs->nrxpost));
473 if (out_offset > out_count)
474 out_offset = out_count;
476 ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
477 kfree(buf);
478 return ret;
481 static const struct file_operations pdc_debugfs_stats = {
482 .owner = THIS_MODULE,
483 .open = simple_open,
484 .read = pdc_debugfs_read,
488 * pdc_setup_debugfs() - Create the debug FS directories. If the top-level
489 * directory has not yet been created, create it now. Create a stats file in
490 * this directory for a SPU.
491 * @pdcs: PDC state structure
493 static void pdc_setup_debugfs(struct pdc_state *pdcs)
495 char spu_stats_name[16];
497 if (!debugfs_initialized())
498 return;
500 snprintf(spu_stats_name, 16, "pdc%d_stats", pdcs->pdc_idx);
501 if (!debugfs_dir)
502 debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
504 /* S_IRUSR == 0400 */
505 pdcs->debugfs_stats = debugfs_create_file(spu_stats_name, 0400,
506 debugfs_dir, pdcs,
507 &pdc_debugfs_stats);
510 static void pdc_free_debugfs(void)
512 debugfs_remove_recursive(debugfs_dir);
513 debugfs_dir = NULL;
517 * pdc_build_rxd() - Build DMA descriptor to receive SPU result.
518 * @pdcs: PDC state for SPU that will generate result
519 * @dma_addr: DMA address of buffer that descriptor is being built for
520 * @buf_len: Length of the receive buffer, in bytes
521 * @flags: Flags to be stored in descriptor
523 static inline void
524 pdc_build_rxd(struct pdc_state *pdcs, dma_addr_t dma_addr,
525 u32 buf_len, u32 flags)
527 struct device *dev = &pdcs->pdev->dev;
528 struct dma64dd *rxd = &pdcs->rxd_64[pdcs->rxout];
530 dev_dbg(dev,
531 "Writing rx descriptor for PDC %u at index %u with length %u. flags %#x\n",
532 pdcs->pdc_idx, pdcs->rxout, buf_len, flags);
534 rxd->addrlow = cpu_to_le32(lower_32_bits(dma_addr));
535 rxd->addrhigh = cpu_to_le32(upper_32_bits(dma_addr));
536 rxd->ctrl1 = cpu_to_le32(flags);
537 rxd->ctrl2 = cpu_to_le32(buf_len);
539 /* bump ring index and return */
540 pdcs->rxout = NEXTRXD(pdcs->rxout, pdcs->nrxpost);
544 * pdc_build_txd() - Build a DMA descriptor to transmit a SPU request to
545 * hardware.
546 * @pdcs: PDC state for the SPU that will process this request
547 * @dma_addr: DMA address of packet to be transmitted
548 * @buf_len: Length of tx buffer, in bytes
549 * @flags: Flags to be stored in descriptor
551 static inline void
552 pdc_build_txd(struct pdc_state *pdcs, dma_addr_t dma_addr, u32 buf_len,
553 u32 flags)
555 struct device *dev = &pdcs->pdev->dev;
556 struct dma64dd *txd = &pdcs->txd_64[pdcs->txout];
558 dev_dbg(dev,
559 "Writing tx descriptor for PDC %u at index %u with length %u, flags %#x\n",
560 pdcs->pdc_idx, pdcs->txout, buf_len, flags);
562 txd->addrlow = cpu_to_le32(lower_32_bits(dma_addr));
563 txd->addrhigh = cpu_to_le32(upper_32_bits(dma_addr));
564 txd->ctrl1 = cpu_to_le32(flags);
565 txd->ctrl2 = cpu_to_le32(buf_len);
567 /* bump ring index and return */
568 pdcs->txout = NEXTTXD(pdcs->txout, pdcs->ntxpost);
572 * pdc_receive_one() - Receive a response message from a given SPU.
573 * @pdcs: PDC state for the SPU to receive from
575 * When the return code indicates success, the response message is available in
576 * the receive buffers provided prior to submission of the request.
578 * Return: PDC_SUCCESS if one or more receive descriptors was processed
579 * -EAGAIN indicates that no response message is available
580 * -EIO an error occurred
582 static int
583 pdc_receive_one(struct pdc_state *pdcs)
585 struct device *dev = &pdcs->pdev->dev;
586 struct mbox_controller *mbc;
587 struct mbox_chan *chan;
588 struct brcm_message mssg;
589 u32 len, rx_status;
590 u32 num_frags;
591 u8 *resp_hdr; /* virtual addr of start of resp message DMA header */
592 u32 frags_rdy; /* number of fragments ready to read */
593 u32 rx_idx; /* ring index of start of receive frame */
594 dma_addr_t resp_hdr_daddr;
595 struct pdc_rx_ctx *rx_ctx;
597 mbc = &pdcs->mbc;
598 chan = &mbc->chans[0];
599 mssg.type = BRCM_MESSAGE_SPU;
602 * return if a complete response message is not yet ready.
603 * rxin_numd[rxin] is the number of fragments in the next msg
604 * to read.
606 frags_rdy = NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr, pdcs->nrxpost);
607 if ((frags_rdy == 0) ||
608 (frags_rdy < pdcs->rx_ctx[pdcs->rxin].rxin_numd))
609 /* No response ready */
610 return -EAGAIN;
612 num_frags = pdcs->txin_numd[pdcs->txin];
613 WARN_ON(num_frags == 0);
615 dma_unmap_sg(dev, pdcs->src_sg[pdcs->txin],
616 sg_nents(pdcs->src_sg[pdcs->txin]), DMA_TO_DEVICE);
618 pdcs->txin = (pdcs->txin + num_frags) & pdcs->ntxpost;
620 dev_dbg(dev, "PDC %u reclaimed %d tx descriptors",
621 pdcs->pdc_idx, num_frags);
623 rx_idx = pdcs->rxin;
624 rx_ctx = &pdcs->rx_ctx[rx_idx];
625 num_frags = rx_ctx->rxin_numd;
626 /* Return opaque context with result */
627 mssg.ctx = rx_ctx->rxp_ctx;
628 rx_ctx->rxp_ctx = NULL;
629 resp_hdr = rx_ctx->resp_hdr;
630 resp_hdr_daddr = rx_ctx->resp_hdr_daddr;
631 dma_unmap_sg(dev, rx_ctx->dst_sg, sg_nents(rx_ctx->dst_sg),
632 DMA_FROM_DEVICE);
634 pdcs->rxin = (pdcs->rxin + num_frags) & pdcs->nrxpost;
636 dev_dbg(dev, "PDC %u reclaimed %d rx descriptors",
637 pdcs->pdc_idx, num_frags);
639 dev_dbg(dev,
640 "PDC %u txin %u, txout %u, rxin %u, rxout %u, last_rx_curr %u\n",
641 pdcs->pdc_idx, pdcs->txin, pdcs->txout, pdcs->rxin,
642 pdcs->rxout, pdcs->last_rx_curr);
644 if (pdcs->pdc_resp_hdr_len == PDC_SPUM_RESP_HDR_LEN) {
646 * For SPU-M, get length of response msg and rx overflow status.
648 rx_status = *((u32 *)resp_hdr);
649 len = rx_status & RX_STATUS_LEN;
650 dev_dbg(dev,
651 "SPU response length %u bytes", len);
652 if (unlikely(((rx_status & RX_STATUS_OVERFLOW) || (!len)))) {
653 if (rx_status & RX_STATUS_OVERFLOW) {
654 dev_err_ratelimited(dev,
655 "crypto receive overflow");
656 pdcs->rx_oflow++;
657 } else {
658 dev_info_ratelimited(dev, "crypto rx len = 0");
660 return -EIO;
664 dma_pool_free(pdcs->rx_buf_pool, resp_hdr, resp_hdr_daddr);
666 mbox_chan_received_data(chan, &mssg);
668 pdcs->pdc_replies++;
669 return PDC_SUCCESS;
673 * pdc_receive() - Process as many responses as are available in the rx ring.
674 * @pdcs: PDC state
676 * Called within the hard IRQ.
677 * Return:
679 static int
680 pdc_receive(struct pdc_state *pdcs)
682 int rx_status;
684 /* read last_rx_curr from register once */
685 pdcs->last_rx_curr =
686 (ioread32(&pdcs->rxregs_64->status0) &
687 CRYPTO_D64_RS0_CD_MASK) / RING_ENTRY_SIZE;
689 do {
690 /* Could be many frames ready */
691 rx_status = pdc_receive_one(pdcs);
692 } while (rx_status == PDC_SUCCESS);
694 return 0;
698 * pdc_tx_list_sg_add() - Add the buffers in a scatterlist to the transmit
699 * descriptors for a given SPU. The scatterlist buffers contain the data for a
700 * SPU request message.
701 * @spu_idx: The index of the SPU to submit the request to, [0, max_spu)
702 * @sg: Scatterlist whose buffers contain part of the SPU request
704 * If a scatterlist buffer is larger than PDC_DMA_BUF_MAX, multiple descriptors
705 * are written for that buffer, each <= PDC_DMA_BUF_MAX byte in length.
707 * Return: PDC_SUCCESS if successful
708 * < 0 otherwise
710 static int pdc_tx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg)
712 u32 flags = 0;
713 u32 eot;
714 u32 tx_avail;
717 * Num descriptors needed. Conservatively assume we need a descriptor
718 * for every entry in sg.
720 u32 num_desc;
721 u32 desc_w = 0; /* Number of tx descriptors written */
722 u32 bufcnt; /* Number of bytes of buffer pointed to by descriptor */
723 dma_addr_t databufptr; /* DMA address to put in descriptor */
725 num_desc = (u32)sg_nents(sg);
727 /* check whether enough tx descriptors are available */
728 tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout,
729 pdcs->ntxpost);
730 if (unlikely(num_desc > tx_avail)) {
731 pdcs->txnobuf++;
732 return -ENOSPC;
735 /* build tx descriptors */
736 if (pdcs->tx_msg_start == pdcs->txout) {
737 /* Start of frame */
738 pdcs->txin_numd[pdcs->tx_msg_start] = 0;
739 pdcs->src_sg[pdcs->txout] = sg;
740 flags = D64_CTRL1_SOF;
743 while (sg) {
744 if (unlikely(pdcs->txout == (pdcs->ntxd - 1)))
745 eot = D64_CTRL1_EOT;
746 else
747 eot = 0;
750 * If sg buffer larger than PDC limit, split across
751 * multiple descriptors
753 bufcnt = sg_dma_len(sg);
754 databufptr = sg_dma_address(sg);
755 while (bufcnt > PDC_DMA_BUF_MAX) {
756 pdc_build_txd(pdcs, databufptr, PDC_DMA_BUF_MAX,
757 flags | eot);
758 desc_w++;
759 bufcnt -= PDC_DMA_BUF_MAX;
760 databufptr += PDC_DMA_BUF_MAX;
761 if (unlikely(pdcs->txout == (pdcs->ntxd - 1)))
762 eot = D64_CTRL1_EOT;
763 else
764 eot = 0;
766 sg = sg_next(sg);
767 if (!sg)
768 /* Writing last descriptor for frame */
769 flags |= (D64_CTRL1_EOF | D64_CTRL1_IOC);
770 pdc_build_txd(pdcs, databufptr, bufcnt, flags | eot);
771 desc_w++;
772 /* Clear start of frame after first descriptor */
773 flags &= ~D64_CTRL1_SOF;
775 pdcs->txin_numd[pdcs->tx_msg_start] += desc_w;
777 return PDC_SUCCESS;
781 * pdc_tx_list_final() - Initiate DMA transfer of last frame written to tx
782 * ring.
783 * @pdcs: PDC state for SPU to process the request
785 * Sets the index of the last descriptor written in both the rx and tx ring.
787 * Return: PDC_SUCCESS
789 static int pdc_tx_list_final(struct pdc_state *pdcs)
792 * write barrier to ensure all register writes are complete
793 * before chip starts to process new request
795 wmb();
796 iowrite32(pdcs->rxout << 4, &pdcs->rxregs_64->ptr);
797 iowrite32(pdcs->txout << 4, &pdcs->txregs_64->ptr);
798 pdcs->pdc_requests++;
800 return PDC_SUCCESS;
804 * pdc_rx_list_init() - Start a new receive descriptor list for a given PDC.
805 * @pdcs: PDC state for SPU handling request
806 * @dst_sg: scatterlist providing rx buffers for response to be returned to
807 * mailbox client
808 * @ctx: Opaque context for this request
810 * Posts a single receive descriptor to hold the metadata that precedes a
811 * response. For example, with SPU-M, the metadata is a 32-byte DMA header and
812 * an 8-byte BCM header. Moves the msg_start descriptor indexes for both tx and
813 * rx to indicate the start of a new message.
815 * Return: PDC_SUCCESS if successful
816 * < 0 if an error (e.g., rx ring is full)
818 static int pdc_rx_list_init(struct pdc_state *pdcs, struct scatterlist *dst_sg,
819 void *ctx)
821 u32 flags = 0;
822 u32 rx_avail;
823 u32 rx_pkt_cnt = 1; /* Adding a single rx buffer */
824 dma_addr_t daddr;
825 void *vaddr;
826 struct pdc_rx_ctx *rx_ctx;
828 rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
829 pdcs->nrxpost);
830 if (unlikely(rx_pkt_cnt > rx_avail)) {
831 pdcs->rxnobuf++;
832 return -ENOSPC;
835 /* allocate a buffer for the dma rx status */
836 vaddr = dma_pool_zalloc(pdcs->rx_buf_pool, GFP_ATOMIC, &daddr);
837 if (unlikely(!vaddr))
838 return -ENOMEM;
841 * Update msg_start indexes for both tx and rx to indicate the start
842 * of a new sequence of descriptor indexes that contain the fragments
843 * of the same message.
845 pdcs->rx_msg_start = pdcs->rxout;
846 pdcs->tx_msg_start = pdcs->txout;
848 /* This is always the first descriptor in the receive sequence */
849 flags = D64_CTRL1_SOF;
850 pdcs->rx_ctx[pdcs->rx_msg_start].rxin_numd = 1;
852 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
853 flags |= D64_CTRL1_EOT;
855 rx_ctx = &pdcs->rx_ctx[pdcs->rxout];
856 rx_ctx->rxp_ctx = ctx;
857 rx_ctx->dst_sg = dst_sg;
858 rx_ctx->resp_hdr = vaddr;
859 rx_ctx->resp_hdr_daddr = daddr;
860 pdc_build_rxd(pdcs, daddr, pdcs->pdc_resp_hdr_len, flags);
861 return PDC_SUCCESS;
865 * pdc_rx_list_sg_add() - Add the buffers in a scatterlist to the receive
866 * descriptors for a given SPU. The caller must have already DMA mapped the
867 * scatterlist.
868 * @spu_idx: Indicates which SPU the buffers are for
869 * @sg: Scatterlist whose buffers are added to the receive ring
871 * If a receive buffer in the scatterlist is larger than PDC_DMA_BUF_MAX,
872 * multiple receive descriptors are written, each with a buffer <=
873 * PDC_DMA_BUF_MAX.
875 * Return: PDC_SUCCESS if successful
876 * < 0 otherwise (e.g., receive ring is full)
878 static int pdc_rx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg)
880 u32 flags = 0;
881 u32 rx_avail;
884 * Num descriptors needed. Conservatively assume we need a descriptor
885 * for every entry from our starting point in the scatterlist.
887 u32 num_desc;
888 u32 desc_w = 0; /* Number of tx descriptors written */
889 u32 bufcnt; /* Number of bytes of buffer pointed to by descriptor */
890 dma_addr_t databufptr; /* DMA address to put in descriptor */
892 num_desc = (u32)sg_nents(sg);
894 rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
895 pdcs->nrxpost);
896 if (unlikely(num_desc > rx_avail)) {
897 pdcs->rxnobuf++;
898 return -ENOSPC;
901 while (sg) {
902 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
903 flags = D64_CTRL1_EOT;
904 else
905 flags = 0;
908 * If sg buffer larger than PDC limit, split across
909 * multiple descriptors
911 bufcnt = sg_dma_len(sg);
912 databufptr = sg_dma_address(sg);
913 while (bufcnt > PDC_DMA_BUF_MAX) {
914 pdc_build_rxd(pdcs, databufptr, PDC_DMA_BUF_MAX, flags);
915 desc_w++;
916 bufcnt -= PDC_DMA_BUF_MAX;
917 databufptr += PDC_DMA_BUF_MAX;
918 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
919 flags = D64_CTRL1_EOT;
920 else
921 flags = 0;
923 pdc_build_rxd(pdcs, databufptr, bufcnt, flags);
924 desc_w++;
925 sg = sg_next(sg);
927 pdcs->rx_ctx[pdcs->rx_msg_start].rxin_numd += desc_w;
929 return PDC_SUCCESS;
933 * pdc_irq_handler() - Interrupt handler called in interrupt context.
934 * @irq: Interrupt number that has fired
935 * @data: device struct for DMA engine that generated the interrupt
937 * We have to clear the device interrupt status flags here. So cache the
938 * status for later use in the thread function. Other than that, just return
939 * WAKE_THREAD to invoke the thread function.
941 * Return: IRQ_WAKE_THREAD if interrupt is ours
942 * IRQ_NONE otherwise
944 static irqreturn_t pdc_irq_handler(int irq, void *data)
946 struct device *dev = (struct device *)data;
947 struct pdc_state *pdcs = dev_get_drvdata(dev);
948 u32 intstatus = ioread32(pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET);
950 if (unlikely(intstatus == 0))
951 return IRQ_NONE;
953 /* Disable interrupts until soft handler runs */
954 iowrite32(0, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
956 /* Clear interrupt flags in device */
957 iowrite32(intstatus, pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET);
959 /* Wakeup IRQ thread */
960 tasklet_schedule(&pdcs->rx_tasklet);
961 return IRQ_HANDLED;
965 * pdc_tasklet_cb() - Tasklet callback that runs the deferred processing after
966 * a DMA receive interrupt. Reenables the receive interrupt.
967 * @data: PDC state structure
969 static void pdc_tasklet_cb(unsigned long data)
971 struct pdc_state *pdcs = (struct pdc_state *)data;
973 pdc_receive(pdcs);
975 /* reenable interrupts */
976 iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
980 * pdc_ring_init() - Allocate DMA rings and initialize constant fields of
981 * descriptors in one ringset.
982 * @pdcs: PDC instance state
983 * @ringset: index of ringset being used
985 * Return: PDC_SUCCESS if ring initialized
986 * < 0 otherwise
988 static int pdc_ring_init(struct pdc_state *pdcs, int ringset)
990 int i;
991 int err = PDC_SUCCESS;
992 struct dma64 *dma_reg;
993 struct device *dev = &pdcs->pdev->dev;
994 struct pdc_ring_alloc tx;
995 struct pdc_ring_alloc rx;
997 /* Allocate tx ring */
998 tx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &tx.dmabase);
999 if (unlikely(!tx.vbase)) {
1000 err = -ENOMEM;
1001 goto done;
1004 /* Allocate rx ring */
1005 rx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &rx.dmabase);
1006 if (unlikely(!rx.vbase)) {
1007 err = -ENOMEM;
1008 goto fail_dealloc;
1011 dev_dbg(dev, " - base DMA addr of tx ring %pad", &tx.dmabase);
1012 dev_dbg(dev, " - base virtual addr of tx ring %p", tx.vbase);
1013 dev_dbg(dev, " - base DMA addr of rx ring %pad", &rx.dmabase);
1014 dev_dbg(dev, " - base virtual addr of rx ring %p", rx.vbase);
1016 memcpy(&pdcs->tx_ring_alloc, &tx, sizeof(tx));
1017 memcpy(&pdcs->rx_ring_alloc, &rx, sizeof(rx));
1019 pdcs->rxin = 0;
1020 pdcs->rx_msg_start = 0;
1021 pdcs->last_rx_curr = 0;
1022 pdcs->rxout = 0;
1023 pdcs->txin = 0;
1024 pdcs->tx_msg_start = 0;
1025 pdcs->txout = 0;
1027 /* Set descriptor array base addresses */
1028 pdcs->txd_64 = (struct dma64dd *)pdcs->tx_ring_alloc.vbase;
1029 pdcs->rxd_64 = (struct dma64dd *)pdcs->rx_ring_alloc.vbase;
1031 /* Tell device the base DMA address of each ring */
1032 dma_reg = &pdcs->regs->dmaregs[ringset];
1034 /* But first disable DMA and set curptr to 0 for both TX & RX */
1035 iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control);
1036 iowrite32((PDC_RX_CTL + (pdcs->rx_status_len << 1)),
1037 &dma_reg->dmarcv.control);
1038 iowrite32(0, &dma_reg->dmaxmt.ptr);
1039 iowrite32(0, &dma_reg->dmarcv.ptr);
1041 /* Set base DMA addresses */
1042 iowrite32(lower_32_bits(pdcs->tx_ring_alloc.dmabase),
1043 &dma_reg->dmaxmt.addrlow);
1044 iowrite32(upper_32_bits(pdcs->tx_ring_alloc.dmabase),
1045 &dma_reg->dmaxmt.addrhigh);
1047 iowrite32(lower_32_bits(pdcs->rx_ring_alloc.dmabase),
1048 &dma_reg->dmarcv.addrlow);
1049 iowrite32(upper_32_bits(pdcs->rx_ring_alloc.dmabase),
1050 &dma_reg->dmarcv.addrhigh);
1052 /* Re-enable DMA */
1053 iowrite32(PDC_TX_CTL | PDC_TX_ENABLE, &dma_reg->dmaxmt.control);
1054 iowrite32((PDC_RX_CTL | PDC_RX_ENABLE | (pdcs->rx_status_len << 1)),
1055 &dma_reg->dmarcv.control);
1057 /* Initialize descriptors */
1058 for (i = 0; i < PDC_RING_ENTRIES; i++) {
1059 /* Every tx descriptor can be used for start of frame. */
1060 if (i != pdcs->ntxpost) {
1061 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF,
1062 &pdcs->txd_64[i].ctrl1);
1063 } else {
1064 /* Last descriptor in ringset. Set End of Table. */
1065 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF |
1066 D64_CTRL1_EOT, &pdcs->txd_64[i].ctrl1);
1069 /* Every rx descriptor can be used for start of frame */
1070 if (i != pdcs->nrxpost) {
1071 iowrite32(D64_CTRL1_SOF,
1072 &pdcs->rxd_64[i].ctrl1);
1073 } else {
1074 /* Last descriptor in ringset. Set End of Table. */
1075 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOT,
1076 &pdcs->rxd_64[i].ctrl1);
1079 return PDC_SUCCESS;
1081 fail_dealloc:
1082 dma_pool_free(pdcs->ring_pool, tx.vbase, tx.dmabase);
1083 done:
1084 return err;
1087 static void pdc_ring_free(struct pdc_state *pdcs)
1089 if (pdcs->tx_ring_alloc.vbase) {
1090 dma_pool_free(pdcs->ring_pool, pdcs->tx_ring_alloc.vbase,
1091 pdcs->tx_ring_alloc.dmabase);
1092 pdcs->tx_ring_alloc.vbase = NULL;
1095 if (pdcs->rx_ring_alloc.vbase) {
1096 dma_pool_free(pdcs->ring_pool, pdcs->rx_ring_alloc.vbase,
1097 pdcs->rx_ring_alloc.dmabase);
1098 pdcs->rx_ring_alloc.vbase = NULL;
1103 * pdc_desc_count() - Count the number of DMA descriptors that will be required
1104 * for a given scatterlist. Account for the max length of a DMA buffer.
1105 * @sg: Scatterlist to be DMA'd
1106 * Return: Number of descriptors required
1108 static u32 pdc_desc_count(struct scatterlist *sg)
1110 u32 cnt = 0;
1112 while (sg) {
1113 cnt += ((sg->length / PDC_DMA_BUF_MAX) + 1);
1114 sg = sg_next(sg);
1116 return cnt;
1120 * pdc_rings_full() - Check whether the tx ring has room for tx_cnt descriptors
1121 * and the rx ring has room for rx_cnt descriptors.
1122 * @pdcs: PDC state
1123 * @tx_cnt: The number of descriptors required in the tx ring
1124 * @rx_cnt: The number of descriptors required i the rx ring
1126 * Return: true if one of the rings does not have enough space
1127 * false if sufficient space is available in both rings
1129 static bool pdc_rings_full(struct pdc_state *pdcs, int tx_cnt, int rx_cnt)
1131 u32 rx_avail;
1132 u32 tx_avail;
1133 bool full = false;
1135 /* Check if the tx and rx rings are likely to have enough space */
1136 rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
1137 pdcs->nrxpost);
1138 if (unlikely(rx_cnt > rx_avail)) {
1139 pdcs->rx_ring_full++;
1140 full = true;
1143 if (likely(!full)) {
1144 tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout,
1145 pdcs->ntxpost);
1146 if (unlikely(tx_cnt > tx_avail)) {
1147 pdcs->tx_ring_full++;
1148 full = true;
1151 return full;
1155 * pdc_last_tx_done() - If both the tx and rx rings have at least
1156 * PDC_RING_SPACE_MIN descriptors available, then indicate that the mailbox
1157 * framework can submit another message.
1158 * @chan: mailbox channel to check
1159 * Return: true if PDC can accept another message on this channel
1161 static bool pdc_last_tx_done(struct mbox_chan *chan)
1163 struct pdc_state *pdcs = chan->con_priv;
1164 bool ret;
1166 if (unlikely(pdc_rings_full(pdcs, PDC_RING_SPACE_MIN,
1167 PDC_RING_SPACE_MIN))) {
1168 pdcs->last_tx_not_done++;
1169 ret = false;
1170 } else {
1171 ret = true;
1173 return ret;
1177 * pdc_send_data() - mailbox send_data function
1178 * @chan: The mailbox channel on which the data is sent. The channel
1179 * corresponds to a DMA ringset.
1180 * @data: The mailbox message to be sent. The message must be a
1181 * brcm_message structure.
1183 * This function is registered as the send_data function for the mailbox
1184 * controller. From the destination scatterlist in the mailbox message, it
1185 * creates a sequence of receive descriptors in the rx ring. From the source
1186 * scatterlist, it creates a sequence of transmit descriptors in the tx ring.
1187 * After creating the descriptors, it writes the rx ptr and tx ptr registers to
1188 * initiate the DMA transfer.
1190 * This function does the DMA map and unmap of the src and dst scatterlists in
1191 * the mailbox message.
1193 * Return: 0 if successful
1194 * -ENOTSUPP if the mailbox message is a type this driver does not
1195 * support
1196 * < 0 if an error
1198 static int pdc_send_data(struct mbox_chan *chan, void *data)
1200 struct pdc_state *pdcs = chan->con_priv;
1201 struct device *dev = &pdcs->pdev->dev;
1202 struct brcm_message *mssg = data;
1203 int err = PDC_SUCCESS;
1204 int src_nent;
1205 int dst_nent;
1206 int nent;
1207 u32 tx_desc_req;
1208 u32 rx_desc_req;
1210 if (unlikely(mssg->type != BRCM_MESSAGE_SPU))
1211 return -ENOTSUPP;
1213 src_nent = sg_nents(mssg->spu.src);
1214 if (likely(src_nent)) {
1215 nent = dma_map_sg(dev, mssg->spu.src, src_nent, DMA_TO_DEVICE);
1216 if (unlikely(nent == 0))
1217 return -EIO;
1220 dst_nent = sg_nents(mssg->spu.dst);
1221 if (likely(dst_nent)) {
1222 nent = dma_map_sg(dev, mssg->spu.dst, dst_nent,
1223 DMA_FROM_DEVICE);
1224 if (unlikely(nent == 0)) {
1225 dma_unmap_sg(dev, mssg->spu.src, src_nent,
1226 DMA_TO_DEVICE);
1227 return -EIO;
1232 * Check if the tx and rx rings have enough space. Do this prior to
1233 * writing any tx or rx descriptors. Need to ensure that we do not write
1234 * a partial set of descriptors, or write just rx descriptors but
1235 * corresponding tx descriptors don't fit. Note that we want this check
1236 * and the entire sequence of descriptor to happen without another
1237 * thread getting in. The channel spin lock in the mailbox framework
1238 * ensures this.
1240 tx_desc_req = pdc_desc_count(mssg->spu.src);
1241 rx_desc_req = pdc_desc_count(mssg->spu.dst);
1242 if (unlikely(pdc_rings_full(pdcs, tx_desc_req, rx_desc_req + 1)))
1243 return -ENOSPC;
1245 /* Create rx descriptors to SPU catch response */
1246 err = pdc_rx_list_init(pdcs, mssg->spu.dst, mssg->ctx);
1247 err |= pdc_rx_list_sg_add(pdcs, mssg->spu.dst);
1249 /* Create tx descriptors to submit SPU request */
1250 err |= pdc_tx_list_sg_add(pdcs, mssg->spu.src);
1251 err |= pdc_tx_list_final(pdcs); /* initiate transfer */
1253 if (unlikely(err))
1254 dev_err(&pdcs->pdev->dev,
1255 "%s failed with error %d", __func__, err);
1257 return err;
1260 static int pdc_startup(struct mbox_chan *chan)
1262 return pdc_ring_init(chan->con_priv, PDC_RINGSET);
1265 static void pdc_shutdown(struct mbox_chan *chan)
1267 struct pdc_state *pdcs = chan->con_priv;
1269 if (!pdcs)
1270 return;
1272 dev_dbg(&pdcs->pdev->dev,
1273 "Shutdown mailbox channel for PDC %u", pdcs->pdc_idx);
1274 pdc_ring_free(pdcs);
1278 * pdc_hw_init() - Use the given initialization parameters to initialize the
1279 * state for one of the PDCs.
1280 * @pdcs: state of the PDC
1282 static
1283 void pdc_hw_init(struct pdc_state *pdcs)
1285 struct platform_device *pdev;
1286 struct device *dev;
1287 struct dma64 *dma_reg;
1288 int ringset = PDC_RINGSET;
1290 pdev = pdcs->pdev;
1291 dev = &pdev->dev;
1293 dev_dbg(dev, "PDC %u initial values:", pdcs->pdc_idx);
1294 dev_dbg(dev, "state structure: %p",
1295 pdcs);
1296 dev_dbg(dev, " - base virtual addr of hw regs %p",
1297 pdcs->pdc_reg_vbase);
1299 /* initialize data structures */
1300 pdcs->regs = (struct pdc_regs *)pdcs->pdc_reg_vbase;
1301 pdcs->txregs_64 = (struct dma64_regs *)
1302 (((u8 *)pdcs->pdc_reg_vbase) +
1303 PDC_TXREGS_OFFSET + (sizeof(struct dma64) * ringset));
1304 pdcs->rxregs_64 = (struct dma64_regs *)
1305 (((u8 *)pdcs->pdc_reg_vbase) +
1306 PDC_RXREGS_OFFSET + (sizeof(struct dma64) * ringset));
1308 pdcs->ntxd = PDC_RING_ENTRIES;
1309 pdcs->nrxd = PDC_RING_ENTRIES;
1310 pdcs->ntxpost = PDC_RING_ENTRIES - 1;
1311 pdcs->nrxpost = PDC_RING_ENTRIES - 1;
1312 iowrite32(0, &pdcs->regs->intmask);
1314 dma_reg = &pdcs->regs->dmaregs[ringset];
1316 /* Configure DMA but will enable later in pdc_ring_init() */
1317 iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control);
1319 iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1),
1320 &dma_reg->dmarcv.control);
1322 /* Reset current index pointers after making sure DMA is disabled */
1323 iowrite32(0, &dma_reg->dmaxmt.ptr);
1324 iowrite32(0, &dma_reg->dmarcv.ptr);
1326 if (pdcs->pdc_resp_hdr_len == PDC_SPU2_RESP_HDR_LEN)
1327 iowrite32(PDC_CKSUM_CTRL,
1328 pdcs->pdc_reg_vbase + PDC_CKSUM_CTRL_OFFSET);
1332 * pdc_hw_disable() - Disable the tx and rx control in the hw.
1333 * @pdcs: PDC state structure
1336 static void pdc_hw_disable(struct pdc_state *pdcs)
1338 struct dma64 *dma_reg;
1340 dma_reg = &pdcs->regs->dmaregs[PDC_RINGSET];
1341 iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control);
1342 iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1),
1343 &dma_reg->dmarcv.control);
1347 * pdc_rx_buf_pool_create() - Pool of receive buffers used to catch the metadata
1348 * header returned with each response message.
1349 * @pdcs: PDC state structure
1351 * The metadata is not returned to the mailbox client. So the PDC driver
1352 * manages these buffers.
1354 * Return: PDC_SUCCESS
1355 * -ENOMEM if pool creation fails
1357 static int pdc_rx_buf_pool_create(struct pdc_state *pdcs)
1359 struct platform_device *pdev;
1360 struct device *dev;
1362 pdev = pdcs->pdev;
1363 dev = &pdev->dev;
1365 pdcs->pdc_resp_hdr_len = pdcs->rx_status_len;
1366 if (pdcs->use_bcm_hdr)
1367 pdcs->pdc_resp_hdr_len += BCM_HDR_LEN;
1369 pdcs->rx_buf_pool = dma_pool_create("pdc rx bufs", dev,
1370 pdcs->pdc_resp_hdr_len,
1371 RX_BUF_ALIGN, 0);
1372 if (!pdcs->rx_buf_pool)
1373 return -ENOMEM;
1375 return PDC_SUCCESS;
1379 * pdc_interrupts_init() - Initialize the interrupt configuration for a PDC and
1380 * specify a threaded IRQ handler for deferred handling of interrupts outside of
1381 * interrupt context.
1382 * @pdcs: PDC state
1384 * Set the interrupt mask for transmit and receive done.
1385 * Set the lazy interrupt frame count to generate an interrupt for just one pkt.
1387 * Return: PDC_SUCCESS
1388 * <0 if threaded irq request fails
1390 static int pdc_interrupts_init(struct pdc_state *pdcs)
1392 struct platform_device *pdev = pdcs->pdev;
1393 struct device *dev = &pdev->dev;
1394 struct device_node *dn = pdev->dev.of_node;
1395 int err;
1397 /* interrupt configuration */
1398 iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
1399 iowrite32(PDC_LAZY_INT, pdcs->pdc_reg_vbase + PDC_RCVLAZY0_OFFSET);
1401 /* read irq from device tree */
1402 pdcs->pdc_irq = irq_of_parse_and_map(dn, 0);
1403 dev_dbg(dev, "pdc device %s irq %u for pdcs %p",
1404 dev_name(dev), pdcs->pdc_irq, pdcs);
1406 err = devm_request_irq(dev, pdcs->pdc_irq, pdc_irq_handler, 0,
1407 dev_name(dev), dev);
1408 if (err) {
1409 dev_err(dev, "IRQ %u request failed with err %d\n",
1410 pdcs->pdc_irq, err);
1411 return err;
1413 return PDC_SUCCESS;
1416 static const struct mbox_chan_ops pdc_mbox_chan_ops = {
1417 .send_data = pdc_send_data,
1418 .last_tx_done = pdc_last_tx_done,
1419 .startup = pdc_startup,
1420 .shutdown = pdc_shutdown
1424 * pdc_mb_init() - Initialize the mailbox controller.
1425 * @pdcs: PDC state
1427 * Each PDC is a mailbox controller. Each ringset is a mailbox channel. Kernel
1428 * driver only uses one ringset and thus one mb channel. PDC uses the transmit
1429 * complete interrupt to determine when a mailbox message has successfully been
1430 * transmitted.
1432 * Return: 0 on success
1433 * < 0 if there is an allocation or registration failure
1435 static int pdc_mb_init(struct pdc_state *pdcs)
1437 struct device *dev = &pdcs->pdev->dev;
1438 struct mbox_controller *mbc;
1439 int chan_index;
1440 int err;
1442 mbc = &pdcs->mbc;
1443 mbc->dev = dev;
1444 mbc->ops = &pdc_mbox_chan_ops;
1445 mbc->num_chans = 1;
1446 mbc->chans = devm_kcalloc(dev, mbc->num_chans, sizeof(*mbc->chans),
1447 GFP_KERNEL);
1448 if (!mbc->chans)
1449 return -ENOMEM;
1451 mbc->txdone_irq = false;
1452 mbc->txdone_poll = true;
1453 mbc->txpoll_period = 1;
1454 for (chan_index = 0; chan_index < mbc->num_chans; chan_index++)
1455 mbc->chans[chan_index].con_priv = pdcs;
1457 /* Register mailbox controller */
1458 err = mbox_controller_register(mbc);
1459 if (err) {
1460 dev_crit(dev,
1461 "Failed to register PDC mailbox controller. Error %d.",
1462 err);
1463 return err;
1465 return 0;
1469 * pdc_dt_read() - Read application-specific data from device tree.
1470 * @pdev: Platform device
1471 * @pdcs: PDC state
1473 * Reads the number of bytes of receive status that precede each received frame.
1474 * Reads whether transmit and received frames should be preceded by an 8-byte
1475 * BCM header.
1477 * Return: 0 if successful
1478 * -ENODEV if device not available
1480 static int pdc_dt_read(struct platform_device *pdev, struct pdc_state *pdcs)
1482 struct device *dev = &pdev->dev;
1483 struct device_node *dn = pdev->dev.of_node;
1484 int err;
1486 err = of_property_read_u32(dn, "brcm,rx-status-len",
1487 &pdcs->rx_status_len);
1488 if (err < 0)
1489 dev_err(dev,
1490 "%s failed to get DMA receive status length from device tree",
1491 __func__);
1493 pdcs->use_bcm_hdr = of_property_read_bool(dn, "brcm,use-bcm-hdr");
1495 return 0;
1499 * pdc_probe() - Probe function for PDC driver.
1500 * @pdev: PDC platform device
1502 * Reserve and map register regions defined in device tree.
1503 * Allocate and initialize tx and rx DMA rings.
1504 * Initialize a mailbox controller for each PDC.
1506 * Return: 0 if successful
1507 * < 0 if an error
1509 static int pdc_probe(struct platform_device *pdev)
1511 int err = 0;
1512 struct device *dev = &pdev->dev;
1513 struct resource *pdc_regs;
1514 struct pdc_state *pdcs;
1516 /* PDC state for one SPU */
1517 pdcs = devm_kzalloc(dev, sizeof(*pdcs), GFP_KERNEL);
1518 if (!pdcs) {
1519 err = -ENOMEM;
1520 goto cleanup;
1523 pdcs->pdev = pdev;
1524 platform_set_drvdata(pdev, pdcs);
1525 pdcs->pdc_idx = pdcg.num_spu;
1526 pdcg.num_spu++;
1528 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
1529 if (err) {
1530 dev_warn(dev, "PDC device cannot perform DMA. Error %d.", err);
1531 goto cleanup;
1534 /* Create DMA pool for tx ring */
1535 pdcs->ring_pool = dma_pool_create("pdc rings", dev, PDC_RING_SIZE,
1536 RING_ALIGN, 0);
1537 if (!pdcs->ring_pool) {
1538 err = -ENOMEM;
1539 goto cleanup;
1542 err = pdc_dt_read(pdev, pdcs);
1543 if (err)
1544 goto cleanup_ring_pool;
1546 pdc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1547 if (!pdc_regs) {
1548 err = -ENODEV;
1549 goto cleanup_ring_pool;
1551 dev_dbg(dev, "PDC register region res.start = %pa, res.end = %pa",
1552 &pdc_regs->start, &pdc_regs->end);
1554 pdcs->pdc_reg_vbase = devm_ioremap_resource(&pdev->dev, pdc_regs);
1555 if (IS_ERR(pdcs->pdc_reg_vbase)) {
1556 err = PTR_ERR(pdcs->pdc_reg_vbase);
1557 dev_err(&pdev->dev, "Failed to map registers: %d\n", err);
1558 goto cleanup_ring_pool;
1561 /* create rx buffer pool after dt read to know how big buffers are */
1562 err = pdc_rx_buf_pool_create(pdcs);
1563 if (err)
1564 goto cleanup_ring_pool;
1566 pdc_hw_init(pdcs);
1568 /* Init tasklet for deferred DMA rx processing */
1569 tasklet_init(&pdcs->rx_tasklet, pdc_tasklet_cb, (unsigned long)pdcs);
1571 err = pdc_interrupts_init(pdcs);
1572 if (err)
1573 goto cleanup_buf_pool;
1575 /* Initialize mailbox controller */
1576 err = pdc_mb_init(pdcs);
1577 if (err)
1578 goto cleanup_buf_pool;
1580 pdcs->debugfs_stats = NULL;
1581 pdc_setup_debugfs(pdcs);
1583 dev_dbg(dev, "pdc_probe() successful");
1584 return PDC_SUCCESS;
1586 cleanup_buf_pool:
1587 tasklet_kill(&pdcs->rx_tasklet);
1588 dma_pool_destroy(pdcs->rx_buf_pool);
1590 cleanup_ring_pool:
1591 dma_pool_destroy(pdcs->ring_pool);
1593 cleanup:
1594 return err;
1597 static int pdc_remove(struct platform_device *pdev)
1599 struct pdc_state *pdcs = platform_get_drvdata(pdev);
1601 pdc_free_debugfs();
1603 tasklet_kill(&pdcs->rx_tasklet);
1605 pdc_hw_disable(pdcs);
1607 mbox_controller_unregister(&pdcs->mbc);
1609 dma_pool_destroy(pdcs->rx_buf_pool);
1610 dma_pool_destroy(pdcs->ring_pool);
1611 return 0;
1614 static const struct of_device_id pdc_mbox_of_match[] = {
1615 {.compatible = "brcm,iproc-pdc-mbox"},
1616 { /* sentinel */ }
1618 MODULE_DEVICE_TABLE(of, pdc_mbox_of_match);
1620 static struct platform_driver pdc_mbox_driver = {
1621 .probe = pdc_probe,
1622 .remove = pdc_remove,
1623 .driver = {
1624 .name = "brcm-iproc-pdc-mbox",
1625 .of_match_table = of_match_ptr(pdc_mbox_of_match),
1628 module_platform_driver(pdc_mbox_driver);
1630 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
1631 MODULE_DESCRIPTION("Broadcom PDC mailbox driver");
1632 MODULE_LICENSE("GPL v2");