2 * libata-sff.c - helper library for PCI IDE BMDMA
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/driver-api/libata.rst
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/module.h>
39 #include <linux/libata.h>
40 #include <linux/highmem.h>
44 static struct workqueue_struct
*ata_sff_wq
;
46 const struct ata_port_operations ata_sff_port_ops
= {
47 .inherits
= &ata_base_port_ops
,
49 .qc_prep
= ata_noop_qc_prep
,
50 .qc_issue
= ata_sff_qc_issue
,
51 .qc_fill_rtf
= ata_sff_qc_fill_rtf
,
53 .freeze
= ata_sff_freeze
,
55 .prereset
= ata_sff_prereset
,
56 .softreset
= ata_sff_softreset
,
57 .hardreset
= sata_sff_hardreset
,
58 .postreset
= ata_sff_postreset
,
59 .error_handler
= ata_sff_error_handler
,
61 .sff_dev_select
= ata_sff_dev_select
,
62 .sff_check_status
= ata_sff_check_status
,
63 .sff_tf_load
= ata_sff_tf_load
,
64 .sff_tf_read
= ata_sff_tf_read
,
65 .sff_exec_command
= ata_sff_exec_command
,
66 .sff_data_xfer
= ata_sff_data_xfer
,
67 .sff_drain_fifo
= ata_sff_drain_fifo
,
69 .lost_interrupt
= ata_sff_lost_interrupt
,
71 EXPORT_SYMBOL_GPL(ata_sff_port_ops
);
74 * ata_sff_check_status - Read device status reg & clear interrupt
75 * @ap: port where the device is
77 * Reads ATA taskfile status register for currently-selected device
78 * and return its value. This also clears pending interrupts
82 * Inherited from caller.
84 u8
ata_sff_check_status(struct ata_port
*ap
)
86 return ioread8(ap
->ioaddr
.status_addr
);
88 EXPORT_SYMBOL_GPL(ata_sff_check_status
);
91 * ata_sff_altstatus - Read device alternate status reg
92 * @ap: port where the device is
94 * Reads ATA taskfile alternate status register for
95 * currently-selected device and return its value.
97 * Note: may NOT be used as the check_altstatus() entry in
98 * ata_port_operations.
101 * Inherited from caller.
103 static u8
ata_sff_altstatus(struct ata_port
*ap
)
105 if (ap
->ops
->sff_check_altstatus
)
106 return ap
->ops
->sff_check_altstatus(ap
);
108 return ioread8(ap
->ioaddr
.altstatus_addr
);
112 * ata_sff_irq_status - Check if the device is busy
113 * @ap: port where the device is
115 * Determine if the port is currently busy. Uses altstatus
116 * if available in order to avoid clearing shared IRQ status
117 * when finding an IRQ source. Non ctl capable devices don't
118 * share interrupt lines fortunately for us.
121 * Inherited from caller.
123 static u8
ata_sff_irq_status(struct ata_port
*ap
)
127 if (ap
->ops
->sff_check_altstatus
|| ap
->ioaddr
.altstatus_addr
) {
128 status
= ata_sff_altstatus(ap
);
129 /* Not us: We are busy */
130 if (status
& ATA_BUSY
)
133 /* Clear INTRQ latch */
134 status
= ap
->ops
->sff_check_status(ap
);
139 * ata_sff_sync - Flush writes
140 * @ap: Port to wait for.
143 * If we have an mmio device with no ctl and no altstatus
144 * method this will fail. No such devices are known to exist.
147 * Inherited from caller.
150 static void ata_sff_sync(struct ata_port
*ap
)
152 if (ap
->ops
->sff_check_altstatus
)
153 ap
->ops
->sff_check_altstatus(ap
);
154 else if (ap
->ioaddr
.altstatus_addr
)
155 ioread8(ap
->ioaddr
.altstatus_addr
);
159 * ata_sff_pause - Flush writes and wait 400nS
160 * @ap: Port to pause for.
163 * If we have an mmio device with no ctl and no altstatus
164 * method this will fail. No such devices are known to exist.
167 * Inherited from caller.
170 void ata_sff_pause(struct ata_port
*ap
)
175 EXPORT_SYMBOL_GPL(ata_sff_pause
);
178 * ata_sff_dma_pause - Pause before commencing DMA
179 * @ap: Port to pause for.
181 * Perform I/O fencing and ensure sufficient cycle delays occur
182 * for the HDMA1:0 transition
185 void ata_sff_dma_pause(struct ata_port
*ap
)
187 if (ap
->ops
->sff_check_altstatus
|| ap
->ioaddr
.altstatus_addr
) {
188 /* An altstatus read will cause the needed delay without
189 messing up the IRQ status */
190 ata_sff_altstatus(ap
);
193 /* There are no DMA controllers without ctl. BUG here to ensure
194 we never violate the HDMA1:0 transition timing and risk
198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause
);
201 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
202 * @ap: port containing status register to be polled
203 * @tmout_pat: impatience timeout in msecs
204 * @tmout: overall timeout in msecs
206 * Sleep until ATA Status register bit BSY clears,
207 * or a timeout occurs.
210 * Kernel thread context (may sleep).
213 * 0 on success, -errno otherwise.
215 int ata_sff_busy_sleep(struct ata_port
*ap
,
216 unsigned long tmout_pat
, unsigned long tmout
)
218 unsigned long timer_start
, timeout
;
221 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 300);
222 timer_start
= jiffies
;
223 timeout
= ata_deadline(timer_start
, tmout_pat
);
224 while (status
!= 0xff && (status
& ATA_BUSY
) &&
225 time_before(jiffies
, timeout
)) {
227 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 3);
230 if (status
!= 0xff && (status
& ATA_BUSY
))
232 "port is slow to respond, please be patient (Status 0x%x)\n",
235 timeout
= ata_deadline(timer_start
, tmout
);
236 while (status
!= 0xff && (status
& ATA_BUSY
) &&
237 time_before(jiffies
, timeout
)) {
239 status
= ap
->ops
->sff_check_status(ap
);
245 if (status
& ATA_BUSY
) {
247 "port failed to respond (%lu secs, Status 0x%x)\n",
248 DIV_ROUND_UP(tmout
, 1000), status
);
254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep
);
256 static int ata_sff_check_ready(struct ata_link
*link
)
258 u8 status
= link
->ap
->ops
->sff_check_status(link
->ap
);
260 return ata_check_ready(status
);
264 * ata_sff_wait_ready - sleep until BSY clears, or timeout
265 * @link: SFF link to wait ready status for
266 * @deadline: deadline jiffies for the operation
268 * Sleep until ATA Status register bit BSY clears, or timeout
272 * Kernel thread context (may sleep).
275 * 0 on success, -errno otherwise.
277 int ata_sff_wait_ready(struct ata_link
*link
, unsigned long deadline
)
279 return ata_wait_ready(link
, deadline
, ata_sff_check_ready
);
281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready
);
284 * ata_sff_set_devctl - Write device control reg
285 * @ap: port where the device is
286 * @ctl: value to write
288 * Writes ATA taskfile device control register.
290 * Note: may NOT be used as the sff_set_devctl() entry in
291 * ata_port_operations.
294 * Inherited from caller.
296 static void ata_sff_set_devctl(struct ata_port
*ap
, u8 ctl
)
298 if (ap
->ops
->sff_set_devctl
)
299 ap
->ops
->sff_set_devctl(ap
, ctl
);
301 iowrite8(ctl
, ap
->ioaddr
.ctl_addr
);
305 * ata_sff_dev_select - Select device 0/1 on ATA bus
306 * @ap: ATA channel to manipulate
307 * @device: ATA device (numbered from zero) to select
309 * Use the method defined in the ATA specification to
310 * make either device 0, or device 1, active on the
311 * ATA channel. Works with both PIO and MMIO.
313 * May be used as the dev_select() entry in ata_port_operations.
318 void ata_sff_dev_select(struct ata_port
*ap
, unsigned int device
)
323 tmp
= ATA_DEVICE_OBS
;
325 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
327 iowrite8(tmp
, ap
->ioaddr
.device_addr
);
328 ata_sff_pause(ap
); /* needed; also flushes, for mmio */
330 EXPORT_SYMBOL_GPL(ata_sff_dev_select
);
333 * ata_dev_select - Select device 0/1 on ATA bus
334 * @ap: ATA channel to manipulate
335 * @device: ATA device (numbered from zero) to select
336 * @wait: non-zero to wait for Status register BSY bit to clear
337 * @can_sleep: non-zero if context allows sleeping
339 * Use the method defined in the ATA specification to
340 * make either device 0, or device 1, active on the
343 * This is a high-level version of ata_sff_dev_select(), which
344 * additionally provides the services of inserting the proper
345 * pauses and status polling, where needed.
350 static void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
351 unsigned int wait
, unsigned int can_sleep
)
353 if (ata_msg_probe(ap
))
354 ata_port_info(ap
, "ata_dev_select: ENTER, device %u, wait %u\n",
360 ap
->ops
->sff_dev_select(ap
, device
);
363 if (can_sleep
&& ap
->link
.device
[device
].class == ATA_DEV_ATAPI
)
370 * ata_sff_irq_on - Enable interrupts on a port.
371 * @ap: Port on which interrupts are enabled.
373 * Enable interrupts on a legacy IDE device using MMIO or PIO,
374 * wait for idle, clear any pending interrupts.
376 * Note: may NOT be used as the sff_irq_on() entry in
377 * ata_port_operations.
380 * Inherited from caller.
382 void ata_sff_irq_on(struct ata_port
*ap
)
384 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
386 if (ap
->ops
->sff_irq_on
) {
387 ap
->ops
->sff_irq_on(ap
);
391 ap
->ctl
&= ~ATA_NIEN
;
392 ap
->last_ctl
= ap
->ctl
;
394 if (ap
->ops
->sff_set_devctl
|| ioaddr
->ctl_addr
)
395 ata_sff_set_devctl(ap
, ap
->ctl
);
398 if (ap
->ops
->sff_irq_clear
)
399 ap
->ops
->sff_irq_clear(ap
);
401 EXPORT_SYMBOL_GPL(ata_sff_irq_on
);
404 * ata_sff_tf_load - send taskfile registers to host controller
405 * @ap: Port to which output is sent
406 * @tf: ATA taskfile register set
408 * Outputs ATA taskfile to standard ATA host controller.
411 * Inherited from caller.
413 void ata_sff_tf_load(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
415 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
416 unsigned int is_addr
= tf
->flags
& ATA_TFLAG_ISADDR
;
418 if (tf
->ctl
!= ap
->last_ctl
) {
419 if (ioaddr
->ctl_addr
)
420 iowrite8(tf
->ctl
, ioaddr
->ctl_addr
);
421 ap
->last_ctl
= tf
->ctl
;
425 if (is_addr
&& (tf
->flags
& ATA_TFLAG_LBA48
)) {
426 WARN_ON_ONCE(!ioaddr
->ctl_addr
);
427 iowrite8(tf
->hob_feature
, ioaddr
->feature_addr
);
428 iowrite8(tf
->hob_nsect
, ioaddr
->nsect_addr
);
429 iowrite8(tf
->hob_lbal
, ioaddr
->lbal_addr
);
430 iowrite8(tf
->hob_lbam
, ioaddr
->lbam_addr
);
431 iowrite8(tf
->hob_lbah
, ioaddr
->lbah_addr
);
432 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
441 iowrite8(tf
->feature
, ioaddr
->feature_addr
);
442 iowrite8(tf
->nsect
, ioaddr
->nsect_addr
);
443 iowrite8(tf
->lbal
, ioaddr
->lbal_addr
);
444 iowrite8(tf
->lbam
, ioaddr
->lbam_addr
);
445 iowrite8(tf
->lbah
, ioaddr
->lbah_addr
);
446 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
454 if (tf
->flags
& ATA_TFLAG_DEVICE
) {
455 iowrite8(tf
->device
, ioaddr
->device_addr
);
456 VPRINTK("device 0x%X\n", tf
->device
);
461 EXPORT_SYMBOL_GPL(ata_sff_tf_load
);
464 * ata_sff_tf_read - input device's ATA taskfile shadow registers
465 * @ap: Port from which input is read
466 * @tf: ATA taskfile register set for storing input
468 * Reads ATA taskfile registers for currently-selected device
469 * into @tf. Assumes the device has a fully SFF compliant task file
470 * layout and behaviour. If you device does not (eg has a different
471 * status method) then you will need to provide a replacement tf_read
474 * Inherited from caller.
476 void ata_sff_tf_read(struct ata_port
*ap
, struct ata_taskfile
*tf
)
478 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
480 tf
->command
= ata_sff_check_status(ap
);
481 tf
->feature
= ioread8(ioaddr
->error_addr
);
482 tf
->nsect
= ioread8(ioaddr
->nsect_addr
);
483 tf
->lbal
= ioread8(ioaddr
->lbal_addr
);
484 tf
->lbam
= ioread8(ioaddr
->lbam_addr
);
485 tf
->lbah
= ioread8(ioaddr
->lbah_addr
);
486 tf
->device
= ioread8(ioaddr
->device_addr
);
488 if (tf
->flags
& ATA_TFLAG_LBA48
) {
489 if (likely(ioaddr
->ctl_addr
)) {
490 iowrite8(tf
->ctl
| ATA_HOB
, ioaddr
->ctl_addr
);
491 tf
->hob_feature
= ioread8(ioaddr
->error_addr
);
492 tf
->hob_nsect
= ioread8(ioaddr
->nsect_addr
);
493 tf
->hob_lbal
= ioread8(ioaddr
->lbal_addr
);
494 tf
->hob_lbam
= ioread8(ioaddr
->lbam_addr
);
495 tf
->hob_lbah
= ioread8(ioaddr
->lbah_addr
);
496 iowrite8(tf
->ctl
, ioaddr
->ctl_addr
);
497 ap
->last_ctl
= tf
->ctl
;
502 EXPORT_SYMBOL_GPL(ata_sff_tf_read
);
505 * ata_sff_exec_command - issue ATA command to host controller
506 * @ap: port to which command is being issued
507 * @tf: ATA taskfile register set
509 * Issues ATA command, with proper synchronization with interrupt
510 * handler / other threads.
513 * spin_lock_irqsave(host lock)
515 void ata_sff_exec_command(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
517 DPRINTK("ata%u: cmd 0x%X\n", ap
->print_id
, tf
->command
);
519 iowrite8(tf
->command
, ap
->ioaddr
.command_addr
);
522 EXPORT_SYMBOL_GPL(ata_sff_exec_command
);
525 * ata_tf_to_host - issue ATA taskfile to host controller
526 * @ap: port to which command is being issued
527 * @tf: ATA taskfile register set
529 * Issues ATA taskfile register set to ATA host controller,
530 * with proper synchronization with interrupt handler and
534 * spin_lock_irqsave(host lock)
536 static inline void ata_tf_to_host(struct ata_port
*ap
,
537 const struct ata_taskfile
*tf
)
539 ap
->ops
->sff_tf_load(ap
, tf
);
540 ap
->ops
->sff_exec_command(ap
, tf
);
544 * ata_sff_data_xfer - Transfer data by PIO
545 * @qc: queued command
547 * @buflen: buffer length
550 * Transfer data from/to the device data register by PIO.
553 * Inherited from caller.
558 unsigned int ata_sff_data_xfer(struct ata_queued_cmd
*qc
, unsigned char *buf
,
559 unsigned int buflen
, int rw
)
561 struct ata_port
*ap
= qc
->dev
->link
->ap
;
562 void __iomem
*data_addr
= ap
->ioaddr
.data_addr
;
563 unsigned int words
= buflen
>> 1;
565 /* Transfer multiple of 2 bytes */
567 ioread16_rep(data_addr
, buf
, words
);
569 iowrite16_rep(data_addr
, buf
, words
);
571 /* Transfer trailing byte, if any. */
572 if (unlikely(buflen
& 0x01)) {
573 unsigned char pad
[2] = { };
575 /* Point buf to the tail of buffer */
579 * Use io*16_rep() accessors here as well to avoid pointlessly
580 * swapping bytes to and from on the big endian machines...
583 ioread16_rep(data_addr
, pad
, 1);
587 iowrite16_rep(data_addr
, pad
, 1);
594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer
);
597 * ata_sff_data_xfer32 - Transfer data by PIO
598 * @qc: queued command
600 * @buflen: buffer length
603 * Transfer data from/to the device data register by PIO using 32bit
607 * Inherited from caller.
613 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd
*qc
, unsigned char *buf
,
614 unsigned int buflen
, int rw
)
616 struct ata_device
*dev
= qc
->dev
;
617 struct ata_port
*ap
= dev
->link
->ap
;
618 void __iomem
*data_addr
= ap
->ioaddr
.data_addr
;
619 unsigned int words
= buflen
>> 2;
620 int slop
= buflen
& 3;
622 if (!(ap
->pflags
& ATA_PFLAG_PIO32
))
623 return ata_sff_data_xfer(qc
, buf
, buflen
, rw
);
625 /* Transfer multiple of 4 bytes */
627 ioread32_rep(data_addr
, buf
, words
);
629 iowrite32_rep(data_addr
, buf
, words
);
631 /* Transfer trailing bytes, if any */
632 if (unlikely(slop
)) {
633 unsigned char pad
[4] = { };
635 /* Point buf to the tail of buffer */
636 buf
+= buflen
- slop
;
639 * Use io*_rep() accessors here as well to avoid pointlessly
640 * swapping bytes to and from on the big endian machines...
644 ioread16_rep(data_addr
, pad
, 1);
646 ioread32_rep(data_addr
, pad
, 1);
647 memcpy(buf
, pad
, slop
);
649 memcpy(pad
, buf
, slop
);
651 iowrite16_rep(data_addr
, pad
, 1);
653 iowrite32_rep(data_addr
, pad
, 1);
656 return (buflen
+ 1) & ~1;
658 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32
);
661 * ata_sff_data_xfer_noirq - Transfer data by PIO
662 * @qc: queued command
664 * @buflen: buffer length
667 * Transfer data from/to the device data register by PIO. Do the
668 * transfer with interrupts disabled.
671 * Inherited from caller.
676 unsigned int ata_sff_data_xfer_noirq(struct ata_queued_cmd
*qc
, unsigned char *buf
,
677 unsigned int buflen
, int rw
)
680 unsigned int consumed
;
682 local_irq_save(flags
);
683 consumed
= ata_sff_data_xfer32(qc
, buf
, buflen
, rw
);
684 local_irq_restore(flags
);
688 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq
);
691 * ata_pio_sector - Transfer a sector of data.
692 * @qc: Command on going
694 * Transfer qc->sect_size bytes of data from/to the ATA device.
697 * Inherited from caller.
699 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
701 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
702 struct ata_port
*ap
= qc
->ap
;
707 if (qc
->curbytes
== qc
->nbytes
- qc
->sect_size
)
708 ap
->hsm_task_state
= HSM_ST_LAST
;
710 page
= sg_page(qc
->cursg
);
711 offset
= qc
->cursg
->offset
+ qc
->cursg_ofs
;
713 /* get the current page and offset */
714 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
717 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
719 /* do the actual data transfer */
720 buf
= kmap_atomic(page
);
721 ap
->ops
->sff_data_xfer(qc
, buf
+ offset
, qc
->sect_size
, do_write
);
724 if (!do_write
&& !PageSlab(page
))
725 flush_dcache_page(page
);
727 qc
->curbytes
+= qc
->sect_size
;
728 qc
->cursg_ofs
+= qc
->sect_size
;
730 if (qc
->cursg_ofs
== qc
->cursg
->length
) {
731 qc
->cursg
= sg_next(qc
->cursg
);
737 * ata_pio_sectors - Transfer one or many sectors.
738 * @qc: Command on going
740 * Transfer one or many sectors of data from/to the
741 * ATA device for the DRQ request.
744 * Inherited from caller.
746 static void ata_pio_sectors(struct ata_queued_cmd
*qc
)
748 if (is_multi_taskfile(&qc
->tf
)) {
749 /* READ/WRITE MULTIPLE */
752 WARN_ON_ONCE(qc
->dev
->multi_count
== 0);
754 nsect
= min((qc
->nbytes
- qc
->curbytes
) / qc
->sect_size
,
755 qc
->dev
->multi_count
);
761 ata_sff_sync(qc
->ap
); /* flush */
765 * atapi_send_cdb - Write CDB bytes to hardware
766 * @ap: Port to which ATAPI device is attached.
767 * @qc: Taskfile currently active
769 * When device has indicated its readiness to accept
770 * a CDB, this function is called. Send the CDB.
775 static void atapi_send_cdb(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
778 DPRINTK("send cdb\n");
779 WARN_ON_ONCE(qc
->dev
->cdb_len
< 12);
781 ap
->ops
->sff_data_xfer(qc
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
783 /* FIXME: If the CDB is for DMA do we need to do the transition delay
784 or is bmdma_start guaranteed to do it ? */
785 switch (qc
->tf
.protocol
) {
787 ap
->hsm_task_state
= HSM_ST
;
789 case ATAPI_PROT_NODATA
:
790 ap
->hsm_task_state
= HSM_ST_LAST
;
792 #ifdef CONFIG_ATA_BMDMA
794 ap
->hsm_task_state
= HSM_ST_LAST
;
796 ap
->ops
->bmdma_start(qc
);
798 #endif /* CONFIG_ATA_BMDMA */
805 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
806 * @qc: Command on going
807 * @bytes: number of bytes
809 * Transfer Transfer data from/to the ATAPI device.
812 * Inherited from caller.
815 static int __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
817 int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? WRITE
: READ
;
818 struct ata_port
*ap
= qc
->ap
;
819 struct ata_device
*dev
= qc
->dev
;
820 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
821 struct scatterlist
*sg
;
824 unsigned int offset
, count
, consumed
;
829 ata_ehi_push_desc(ehi
, "unexpected or too much trailing data "
830 "buf=%u cur=%u bytes=%u",
831 qc
->nbytes
, qc
->curbytes
, bytes
);
836 offset
= sg
->offset
+ qc
->cursg_ofs
;
838 /* get the current page and offset */
839 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
842 /* don't overrun current sg */
843 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
845 /* don't cross page boundaries */
846 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
848 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
850 /* do the actual data transfer */
851 buf
= kmap_atomic(page
);
852 consumed
= ap
->ops
->sff_data_xfer(qc
, buf
+ offset
, count
, rw
);
855 bytes
-= min(bytes
, consumed
);
856 qc
->curbytes
+= count
;
857 qc
->cursg_ofs
+= count
;
859 if (qc
->cursg_ofs
== sg
->length
) {
860 qc
->cursg
= sg_next(qc
->cursg
);
865 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
866 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
867 * check correctly as it doesn't know if it is the last request being
868 * made. Somebody should implement a proper sanity check.
876 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
877 * @qc: Command on going
879 * Transfer Transfer data from/to the ATAPI device.
882 * Inherited from caller.
884 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
886 struct ata_port
*ap
= qc
->ap
;
887 struct ata_device
*dev
= qc
->dev
;
888 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
889 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
890 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
892 /* Abuse qc->result_tf for temp storage of intermediate TF
893 * here to save some kernel stack usage.
894 * For normal completion, qc->result_tf is not relevant. For
895 * error, qc->result_tf is later overwritten by ata_qc_complete().
896 * So, the correctness of qc->result_tf is not affected.
898 ap
->ops
->sff_tf_read(ap
, &qc
->result_tf
);
899 ireason
= qc
->result_tf
.nsect
;
900 bc_lo
= qc
->result_tf
.lbam
;
901 bc_hi
= qc
->result_tf
.lbah
;
902 bytes
= (bc_hi
<< 8) | bc_lo
;
904 /* shall be cleared to zero, indicating xfer of data */
905 if (unlikely(ireason
& ATAPI_COD
))
908 /* make sure transfer direction matches expected */
909 i_write
= ((ireason
& ATAPI_IO
) == 0) ? 1 : 0;
910 if (unlikely(do_write
!= i_write
))
913 if (unlikely(!bytes
))
916 VPRINTK("ata%u: xfering %d bytes\n", ap
->print_id
, bytes
);
918 if (unlikely(__atapi_pio_bytes(qc
, bytes
)))
920 ata_sff_sync(ap
); /* flush */
925 ata_ehi_push_desc(ehi
, "ATAPI check failed (ireason=0x%x bytes=%u)",
928 qc
->err_mask
|= AC_ERR_HSM
;
929 ap
->hsm_task_state
= HSM_ST_ERR
;
933 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
934 * @ap: the target ata_port
938 * 1 if ok in workqueue, 0 otherwise.
940 static inline int ata_hsm_ok_in_wq(struct ata_port
*ap
,
941 struct ata_queued_cmd
*qc
)
943 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
946 if (ap
->hsm_task_state
== HSM_ST_FIRST
) {
947 if (qc
->tf
.protocol
== ATA_PROT_PIO
&&
948 (qc
->tf
.flags
& ATA_TFLAG_WRITE
))
951 if (ata_is_atapi(qc
->tf
.protocol
) &&
952 !(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
960 * ata_hsm_qc_complete - finish a qc running on standard HSM
961 * @qc: Command to complete
962 * @in_wq: 1 if called from workqueue, 0 otherwise
964 * Finish @qc which is running on standard HSM.
967 * If @in_wq is zero, spin_lock_irqsave(host lock).
968 * Otherwise, none on entry and grabs host lock.
970 static void ata_hsm_qc_complete(struct ata_queued_cmd
*qc
, int in_wq
)
972 struct ata_port
*ap
= qc
->ap
;
974 if (ap
->ops
->error_handler
) {
976 /* EH might have kicked in while host lock is
979 qc
= ata_qc_from_tag(ap
, qc
->tag
);
981 if (likely(!(qc
->err_mask
& AC_ERR_HSM
))) {
988 if (likely(!(qc
->err_mask
& AC_ERR_HSM
)))
1003 * ata_sff_hsm_move - move the HSM to the next state.
1004 * @ap: the target ata_port
1006 * @status: current device status
1007 * @in_wq: 1 if called from workqueue, 0 otherwise
1010 * 1 when poll next status needed, 0 otherwise.
1012 int ata_sff_hsm_move(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
1013 u8 status
, int in_wq
)
1015 struct ata_link
*link
= qc
->dev
->link
;
1016 struct ata_eh_info
*ehi
= &link
->eh_info
;
1019 lockdep_assert_held(ap
->lock
);
1021 WARN_ON_ONCE((qc
->flags
& ATA_QCFLAG_ACTIVE
) == 0);
1023 /* Make sure ata_sff_qc_issue() does not throw things
1024 * like DMA polling into the workqueue. Notice that
1025 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1027 WARN_ON_ONCE(in_wq
!= ata_hsm_ok_in_wq(ap
, qc
));
1030 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1031 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
, status
);
1033 switch (ap
->hsm_task_state
) {
1035 /* Send first data block or PACKET CDB */
1037 /* If polling, we will stay in the work queue after
1038 * sending the data. Otherwise, interrupt handler
1039 * takes over after sending the data.
1041 poll_next
= (qc
->tf
.flags
& ATA_TFLAG_POLLING
);
1043 /* check device status */
1044 if (unlikely((status
& ATA_DRQ
) == 0)) {
1045 /* handle BSY=0, DRQ=0 as error */
1046 if (likely(status
& (ATA_ERR
| ATA_DF
)))
1047 /* device stops HSM for abort/error */
1048 qc
->err_mask
|= AC_ERR_DEV
;
1050 /* HSM violation. Let EH handle this */
1051 ata_ehi_push_desc(ehi
,
1052 "ST_FIRST: !(DRQ|ERR|DF)");
1053 qc
->err_mask
|= AC_ERR_HSM
;
1056 ap
->hsm_task_state
= HSM_ST_ERR
;
1060 /* Device should not ask for data transfer (DRQ=1)
1061 * when it finds something wrong.
1062 * We ignore DRQ here and stop the HSM by
1063 * changing hsm_task_state to HSM_ST_ERR and
1064 * let the EH abort the command or reset the device.
1066 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1067 /* Some ATAPI tape drives forget to clear the ERR bit
1068 * when doing the next command (mostly request sense).
1069 * We ignore ERR here to workaround and proceed sending
1072 if (!(qc
->dev
->horkage
& ATA_HORKAGE_STUCK_ERR
)) {
1073 ata_ehi_push_desc(ehi
, "ST_FIRST: "
1074 "DRQ=1 with device error, "
1075 "dev_stat 0x%X", status
);
1076 qc
->err_mask
|= AC_ERR_HSM
;
1077 ap
->hsm_task_state
= HSM_ST_ERR
;
1082 if (qc
->tf
.protocol
== ATA_PROT_PIO
) {
1083 /* PIO data out protocol.
1084 * send first data block.
1087 /* ata_pio_sectors() might change the state
1088 * to HSM_ST_LAST. so, the state is changed here
1089 * before ata_pio_sectors().
1091 ap
->hsm_task_state
= HSM_ST
;
1092 ata_pio_sectors(qc
);
1095 atapi_send_cdb(ap
, qc
);
1097 /* if polling, ata_sff_pio_task() handles the rest.
1098 * otherwise, interrupt handler takes over from here.
1103 /* complete command or read/write the data register */
1104 if (qc
->tf
.protocol
== ATAPI_PROT_PIO
) {
1105 /* ATAPI PIO protocol */
1106 if ((status
& ATA_DRQ
) == 0) {
1107 /* No more data to transfer or device error.
1108 * Device error will be tagged in HSM_ST_LAST.
1110 ap
->hsm_task_state
= HSM_ST_LAST
;
1114 /* Device should not ask for data transfer (DRQ=1)
1115 * when it finds something wrong.
1116 * We ignore DRQ here and stop the HSM by
1117 * changing hsm_task_state to HSM_ST_ERR and
1118 * let the EH abort the command or reset the device.
1120 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1121 ata_ehi_push_desc(ehi
, "ST-ATAPI: "
1122 "DRQ=1 with device error, "
1123 "dev_stat 0x%X", status
);
1124 qc
->err_mask
|= AC_ERR_HSM
;
1125 ap
->hsm_task_state
= HSM_ST_ERR
;
1129 atapi_pio_bytes(qc
);
1131 if (unlikely(ap
->hsm_task_state
== HSM_ST_ERR
))
1132 /* bad ireason reported by device */
1136 /* ATA PIO protocol */
1137 if (unlikely((status
& ATA_DRQ
) == 0)) {
1138 /* handle BSY=0, DRQ=0 as error */
1139 if (likely(status
& (ATA_ERR
| ATA_DF
))) {
1140 /* device stops HSM for abort/error */
1141 qc
->err_mask
|= AC_ERR_DEV
;
1143 /* If diagnostic failed and this is
1144 * IDENTIFY, it's likely a phantom
1145 * device. Mark hint.
1147 if (qc
->dev
->horkage
&
1148 ATA_HORKAGE_DIAGNOSTIC
)
1152 /* HSM violation. Let EH handle this.
1153 * Phantom devices also trigger this
1154 * condition. Mark hint.
1156 ata_ehi_push_desc(ehi
, "ST-ATA: "
1157 "DRQ=0 without device error, "
1158 "dev_stat 0x%X", status
);
1159 qc
->err_mask
|= AC_ERR_HSM
|
1163 ap
->hsm_task_state
= HSM_ST_ERR
;
1167 /* For PIO reads, some devices may ask for
1168 * data transfer (DRQ=1) alone with ERR=1.
1169 * We respect DRQ here and transfer one
1170 * block of junk data before changing the
1171 * hsm_task_state to HSM_ST_ERR.
1173 * For PIO writes, ERR=1 DRQ=1 doesn't make
1174 * sense since the data block has been
1175 * transferred to the device.
1177 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1178 /* data might be corrputed */
1179 qc
->err_mask
|= AC_ERR_DEV
;
1181 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
)) {
1182 ata_pio_sectors(qc
);
1183 status
= ata_wait_idle(ap
);
1186 if (status
& (ATA_BUSY
| ATA_DRQ
)) {
1187 ata_ehi_push_desc(ehi
, "ST-ATA: "
1188 "BUSY|DRQ persists on ERR|DF, "
1189 "dev_stat 0x%X", status
);
1190 qc
->err_mask
|= AC_ERR_HSM
;
1193 /* There are oddball controllers with
1194 * status register stuck at 0x7f and
1195 * lbal/m/h at zero which makes it
1196 * pass all other presence detection
1197 * mechanisms we have. Set NODEV_HINT
1198 * for it. Kernel bz#7241.
1201 qc
->err_mask
|= AC_ERR_NODEV_HINT
;
1203 /* ata_pio_sectors() might change the
1204 * state to HSM_ST_LAST. so, the state
1205 * is changed after ata_pio_sectors().
1207 ap
->hsm_task_state
= HSM_ST_ERR
;
1211 ata_pio_sectors(qc
);
1213 if (ap
->hsm_task_state
== HSM_ST_LAST
&&
1214 (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))) {
1216 status
= ata_wait_idle(ap
);
1225 if (unlikely(!ata_ok(status
))) {
1226 qc
->err_mask
|= __ac_err_mask(status
);
1227 ap
->hsm_task_state
= HSM_ST_ERR
;
1231 /* no more data to transfer */
1232 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1233 ap
->print_id
, qc
->dev
->devno
, status
);
1235 WARN_ON_ONCE(qc
->err_mask
& (AC_ERR_DEV
| AC_ERR_HSM
));
1237 ap
->hsm_task_state
= HSM_ST_IDLE
;
1239 /* complete taskfile transaction */
1240 ata_hsm_qc_complete(qc
, in_wq
);
1246 ap
->hsm_task_state
= HSM_ST_IDLE
;
1248 /* complete taskfile transaction */
1249 ata_hsm_qc_complete(qc
, in_wq
);
1255 WARN(true, "ata%d: SFF host state machine in invalid state %d",
1256 ap
->print_id
, ap
->hsm_task_state
);
1261 EXPORT_SYMBOL_GPL(ata_sff_hsm_move
);
1263 void ata_sff_queue_work(struct work_struct
*work
)
1265 queue_work(ata_sff_wq
, work
);
1267 EXPORT_SYMBOL_GPL(ata_sff_queue_work
);
1269 void ata_sff_queue_delayed_work(struct delayed_work
*dwork
, unsigned long delay
)
1271 queue_delayed_work(ata_sff_wq
, dwork
, delay
);
1273 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work
);
1275 void ata_sff_queue_pio_task(struct ata_link
*link
, unsigned long delay
)
1277 struct ata_port
*ap
= link
->ap
;
1279 WARN_ON((ap
->sff_pio_task_link
!= NULL
) &&
1280 (ap
->sff_pio_task_link
!= link
));
1281 ap
->sff_pio_task_link
= link
;
1283 /* may fail if ata_sff_flush_pio_task() in progress */
1284 ata_sff_queue_delayed_work(&ap
->sff_pio_task
, msecs_to_jiffies(delay
));
1286 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task
);
1288 void ata_sff_flush_pio_task(struct ata_port
*ap
)
1292 cancel_delayed_work_sync(&ap
->sff_pio_task
);
1295 * We wanna reset the HSM state to IDLE. If we do so without
1296 * grabbing the port lock, critical sections protected by it which
1297 * expect the HSM state to stay stable may get surprised. For
1298 * example, we may set IDLE in between the time
1299 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1300 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1302 spin_lock_irq(ap
->lock
);
1303 ap
->hsm_task_state
= HSM_ST_IDLE
;
1304 spin_unlock_irq(ap
->lock
);
1306 ap
->sff_pio_task_link
= NULL
;
1308 if (ata_msg_ctl(ap
))
1309 ata_port_dbg(ap
, "%s: EXIT\n", __func__
);
1312 static void ata_sff_pio_task(struct work_struct
*work
)
1314 struct ata_port
*ap
=
1315 container_of(work
, struct ata_port
, sff_pio_task
.work
);
1316 struct ata_link
*link
= ap
->sff_pio_task_link
;
1317 struct ata_queued_cmd
*qc
;
1321 spin_lock_irq(ap
->lock
);
1323 BUG_ON(ap
->sff_pio_task_link
== NULL
);
1324 /* qc can be NULL if timeout occurred */
1325 qc
= ata_qc_from_tag(ap
, link
->active_tag
);
1327 ap
->sff_pio_task_link
= NULL
;
1332 WARN_ON_ONCE(ap
->hsm_task_state
== HSM_ST_IDLE
);
1335 * This is purely heuristic. This is a fast path.
1336 * Sometimes when we enter, BSY will be cleared in
1337 * a chk-status or two. If not, the drive is probably seeking
1338 * or something. Snooze for a couple msecs, then
1339 * chk-status again. If still busy, queue delayed work.
1341 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 5);
1342 if (status
& ATA_BUSY
) {
1343 spin_unlock_irq(ap
->lock
);
1345 spin_lock_irq(ap
->lock
);
1347 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 10);
1348 if (status
& ATA_BUSY
) {
1349 ata_sff_queue_pio_task(link
, ATA_SHORT_PAUSE
);
1355 * hsm_move() may trigger another command to be processed.
1356 * clean the link beforehand.
1358 ap
->sff_pio_task_link
= NULL
;
1360 poll_next
= ata_sff_hsm_move(ap
, qc
, status
, 1);
1362 /* another command or interrupt handler
1363 * may be running at this point.
1368 spin_unlock_irq(ap
->lock
);
1372 * ata_sff_qc_issue - issue taskfile to a SFF controller
1373 * @qc: command to issue to device
1375 * This function issues a PIO or NODATA command to a SFF
1379 * spin_lock_irqsave(host lock)
1382 * Zero on success, AC_ERR_* mask on failure
1384 unsigned int ata_sff_qc_issue(struct ata_queued_cmd
*qc
)
1386 struct ata_port
*ap
= qc
->ap
;
1387 struct ata_link
*link
= qc
->dev
->link
;
1389 /* Use polling pio if the LLD doesn't handle
1390 * interrupt driven pio and atapi CDB interrupt.
1392 if (ap
->flags
& ATA_FLAG_PIO_POLLING
)
1393 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
1395 /* select the device */
1396 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
1398 /* start the command */
1399 switch (qc
->tf
.protocol
) {
1400 case ATA_PROT_NODATA
:
1401 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1402 ata_qc_set_polling(qc
);
1404 ata_tf_to_host(ap
, &qc
->tf
);
1405 ap
->hsm_task_state
= HSM_ST_LAST
;
1407 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1408 ata_sff_queue_pio_task(link
, 0);
1413 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1414 ata_qc_set_polling(qc
);
1416 ata_tf_to_host(ap
, &qc
->tf
);
1418 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
1419 /* PIO data out protocol */
1420 ap
->hsm_task_state
= HSM_ST_FIRST
;
1421 ata_sff_queue_pio_task(link
, 0);
1423 /* always send first data block using the
1424 * ata_sff_pio_task() codepath.
1427 /* PIO data in protocol */
1428 ap
->hsm_task_state
= HSM_ST
;
1430 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1431 ata_sff_queue_pio_task(link
, 0);
1433 /* if polling, ata_sff_pio_task() handles the
1434 * rest. otherwise, interrupt handler takes
1441 case ATAPI_PROT_PIO
:
1442 case ATAPI_PROT_NODATA
:
1443 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1444 ata_qc_set_polling(qc
);
1446 ata_tf_to_host(ap
, &qc
->tf
);
1448 ap
->hsm_task_state
= HSM_ST_FIRST
;
1450 /* send cdb by polling if no cdb interrupt */
1451 if ((!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)) ||
1452 (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1453 ata_sff_queue_pio_task(link
, 0);
1457 return AC_ERR_SYSTEM
;
1462 EXPORT_SYMBOL_GPL(ata_sff_qc_issue
);
1465 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1466 * @qc: qc to fill result TF for
1468 * @qc is finished and result TF needs to be filled. Fill it
1469 * using ->sff_tf_read.
1472 * spin_lock_irqsave(host lock)
1475 * true indicating that result TF is successfully filled.
1477 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd
*qc
)
1479 qc
->ap
->ops
->sff_tf_read(qc
->ap
, &qc
->result_tf
);
1482 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf
);
1484 static unsigned int ata_sff_idle_irq(struct ata_port
*ap
)
1486 ap
->stats
.idle_irq
++;
1489 if ((ap
->stats
.idle_irq
% 1000) == 0) {
1490 ap
->ops
->sff_check_status(ap
);
1491 if (ap
->ops
->sff_irq_clear
)
1492 ap
->ops
->sff_irq_clear(ap
);
1493 ata_port_warn(ap
, "irq trap\n");
1497 return 0; /* irq not handled */
1500 static unsigned int __ata_sff_port_intr(struct ata_port
*ap
,
1501 struct ata_queued_cmd
*qc
,
1506 VPRINTK("ata%u: protocol %d task_state %d\n",
1507 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
);
1509 /* Check whether we are expecting interrupt in this state */
1510 switch (ap
->hsm_task_state
) {
1512 /* Some pre-ATAPI-4 devices assert INTRQ
1513 * at this state when ready to receive CDB.
1516 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1517 * The flag was turned on only for atapi devices. No
1518 * need to check ata_is_atapi(qc->tf.protocol) again.
1520 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
1521 return ata_sff_idle_irq(ap
);
1524 return ata_sff_idle_irq(ap
);
1529 /* check main status, clearing INTRQ if needed */
1530 status
= ata_sff_irq_status(ap
);
1531 if (status
& ATA_BUSY
) {
1533 /* BMDMA engine is already stopped, we're screwed */
1534 qc
->err_mask
|= AC_ERR_HSM
;
1535 ap
->hsm_task_state
= HSM_ST_ERR
;
1537 return ata_sff_idle_irq(ap
);
1540 /* clear irq events */
1541 if (ap
->ops
->sff_irq_clear
)
1542 ap
->ops
->sff_irq_clear(ap
);
1544 ata_sff_hsm_move(ap
, qc
, status
, 0);
1546 return 1; /* irq handled */
1550 * ata_sff_port_intr - Handle SFF port interrupt
1551 * @ap: Port on which interrupt arrived (possibly...)
1552 * @qc: Taskfile currently active in engine
1554 * Handle port interrupt for given queued command.
1557 * spin_lock_irqsave(host lock)
1560 * One if interrupt was handled, zero if not (shared irq).
1562 unsigned int ata_sff_port_intr(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
1564 return __ata_sff_port_intr(ap
, qc
, false);
1566 EXPORT_SYMBOL_GPL(ata_sff_port_intr
);
1568 static inline irqreturn_t
__ata_sff_interrupt(int irq
, void *dev_instance
,
1569 unsigned int (*port_intr
)(struct ata_port
*, struct ata_queued_cmd
*))
1571 struct ata_host
*host
= dev_instance
;
1572 bool retried
= false;
1574 unsigned int handled
, idle
, polling
;
1575 unsigned long flags
;
1577 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1578 spin_lock_irqsave(&host
->lock
, flags
);
1581 handled
= idle
= polling
= 0;
1582 for (i
= 0; i
< host
->n_ports
; i
++) {
1583 struct ata_port
*ap
= host
->ports
[i
];
1584 struct ata_queued_cmd
*qc
;
1586 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1588 if (!(qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1589 handled
|= port_intr(ap
, qc
);
1597 * If no port was expecting IRQ but the controller is actually
1598 * asserting IRQ line, nobody cared will ensue. Check IRQ
1599 * pending status if available and clear spurious IRQ.
1601 if (!handled
&& !retried
) {
1604 for (i
= 0; i
< host
->n_ports
; i
++) {
1605 struct ata_port
*ap
= host
->ports
[i
];
1607 if (polling
& (1 << i
))
1610 if (!ap
->ops
->sff_irq_check
||
1611 !ap
->ops
->sff_irq_check(ap
))
1614 if (idle
& (1 << i
)) {
1615 ap
->ops
->sff_check_status(ap
);
1616 if (ap
->ops
->sff_irq_clear
)
1617 ap
->ops
->sff_irq_clear(ap
);
1619 /* clear INTRQ and check if BUSY cleared */
1620 if (!(ap
->ops
->sff_check_status(ap
) & ATA_BUSY
))
1623 * With command in flight, we can't do
1624 * sff_irq_clear() w/o racing with completion.
1635 spin_unlock_irqrestore(&host
->lock
, flags
);
1637 return IRQ_RETVAL(handled
);
1641 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1642 * @irq: irq line (unused)
1643 * @dev_instance: pointer to our ata_host information structure
1645 * Default interrupt handler for PCI IDE devices. Calls
1646 * ata_sff_port_intr() for each port that is not disabled.
1649 * Obtains host lock during operation.
1652 * IRQ_NONE or IRQ_HANDLED.
1654 irqreturn_t
ata_sff_interrupt(int irq
, void *dev_instance
)
1656 return __ata_sff_interrupt(irq
, dev_instance
, ata_sff_port_intr
);
1658 EXPORT_SYMBOL_GPL(ata_sff_interrupt
);
1661 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1662 * @ap: port that appears to have timed out
1664 * Called from the libata error handlers when the core code suspects
1665 * an interrupt has been lost. If it has complete anything we can and
1666 * then return. Interface must support altstatus for this faster
1667 * recovery to occur.
1670 * Caller holds host lock
1673 void ata_sff_lost_interrupt(struct ata_port
*ap
)
1676 struct ata_queued_cmd
*qc
;
1678 /* Only one outstanding command per SFF channel */
1679 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1680 /* We cannot lose an interrupt on a non-existent or polled command */
1681 if (!qc
|| qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1683 /* See if the controller thinks it is still busy - if so the command
1684 isn't a lost IRQ but is still in progress */
1685 status
= ata_sff_altstatus(ap
);
1686 if (status
& ATA_BUSY
)
1689 /* There was a command running, we are no longer busy and we have
1691 ata_port_warn(ap
, "lost interrupt (Status 0x%x)\n",
1693 /* Run the host interrupt logic as if the interrupt had not been
1695 ata_sff_port_intr(ap
, qc
);
1697 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt
);
1700 * ata_sff_freeze - Freeze SFF controller port
1701 * @ap: port to freeze
1703 * Freeze SFF controller port.
1706 * Inherited from caller.
1708 void ata_sff_freeze(struct ata_port
*ap
)
1710 ap
->ctl
|= ATA_NIEN
;
1711 ap
->last_ctl
= ap
->ctl
;
1713 if (ap
->ops
->sff_set_devctl
|| ap
->ioaddr
.ctl_addr
)
1714 ata_sff_set_devctl(ap
, ap
->ctl
);
1716 /* Under certain circumstances, some controllers raise IRQ on
1717 * ATA_NIEN manipulation. Also, many controllers fail to mask
1718 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1720 ap
->ops
->sff_check_status(ap
);
1722 if (ap
->ops
->sff_irq_clear
)
1723 ap
->ops
->sff_irq_clear(ap
);
1725 EXPORT_SYMBOL_GPL(ata_sff_freeze
);
1728 * ata_sff_thaw - Thaw SFF controller port
1731 * Thaw SFF controller port.
1734 * Inherited from caller.
1736 void ata_sff_thaw(struct ata_port
*ap
)
1738 /* clear & re-enable interrupts */
1739 ap
->ops
->sff_check_status(ap
);
1740 if (ap
->ops
->sff_irq_clear
)
1741 ap
->ops
->sff_irq_clear(ap
);
1744 EXPORT_SYMBOL_GPL(ata_sff_thaw
);
1747 * ata_sff_prereset - prepare SFF link for reset
1748 * @link: SFF link to be reset
1749 * @deadline: deadline jiffies for the operation
1751 * SFF link @link is about to be reset. Initialize it. It first
1752 * calls ata_std_prereset() and wait for !BSY if the port is
1756 * Kernel thread context (may sleep)
1759 * 0 on success, -errno otherwise.
1761 int ata_sff_prereset(struct ata_link
*link
, unsigned long deadline
)
1763 struct ata_eh_context
*ehc
= &link
->eh_context
;
1766 rc
= ata_std_prereset(link
, deadline
);
1770 /* if we're about to do hardreset, nothing more to do */
1771 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
1774 /* wait for !BSY if we don't know that no device is attached */
1775 if (!ata_link_offline(link
)) {
1776 rc
= ata_sff_wait_ready(link
, deadline
);
1777 if (rc
&& rc
!= -ENODEV
) {
1779 "device not ready (errno=%d), forcing hardreset\n",
1781 ehc
->i
.action
|= ATA_EH_HARDRESET
;
1787 EXPORT_SYMBOL_GPL(ata_sff_prereset
);
1790 * ata_devchk - PATA device presence detection
1791 * @ap: ATA channel to examine
1792 * @device: Device to examine (starting at zero)
1794 * This technique was originally described in
1795 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1796 * later found its way into the ATA/ATAPI spec.
1798 * Write a pattern to the ATA shadow registers,
1799 * and if a device is present, it will respond by
1800 * correctly storing and echoing back the
1801 * ATA shadow register contents.
1806 static unsigned int ata_devchk(struct ata_port
*ap
, unsigned int device
)
1808 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1811 ap
->ops
->sff_dev_select(ap
, device
);
1813 iowrite8(0x55, ioaddr
->nsect_addr
);
1814 iowrite8(0xaa, ioaddr
->lbal_addr
);
1816 iowrite8(0xaa, ioaddr
->nsect_addr
);
1817 iowrite8(0x55, ioaddr
->lbal_addr
);
1819 iowrite8(0x55, ioaddr
->nsect_addr
);
1820 iowrite8(0xaa, ioaddr
->lbal_addr
);
1822 nsect
= ioread8(ioaddr
->nsect_addr
);
1823 lbal
= ioread8(ioaddr
->lbal_addr
);
1825 if ((nsect
== 0x55) && (lbal
== 0xaa))
1826 return 1; /* we found a device */
1828 return 0; /* nothing found */
1832 * ata_sff_dev_classify - Parse returned ATA device signature
1833 * @dev: ATA device to classify (starting at zero)
1834 * @present: device seems present
1835 * @r_err: Value of error register on completion
1837 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1838 * an ATA/ATAPI-defined set of values is placed in the ATA
1839 * shadow registers, indicating the results of device detection
1842 * Select the ATA device, and read the values from the ATA shadow
1843 * registers. Then parse according to the Error register value,
1844 * and the spec-defined values examined by ata_dev_classify().
1850 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1852 unsigned int ata_sff_dev_classify(struct ata_device
*dev
, int present
,
1855 struct ata_port
*ap
= dev
->link
->ap
;
1856 struct ata_taskfile tf
;
1860 ap
->ops
->sff_dev_select(ap
, dev
->devno
);
1862 memset(&tf
, 0, sizeof(tf
));
1864 ap
->ops
->sff_tf_read(ap
, &tf
);
1869 /* see if device passed diags: continue and warn later */
1871 /* diagnostic fail : do nothing _YET_ */
1872 dev
->horkage
|= ATA_HORKAGE_DIAGNOSTIC
;
1875 else if ((dev
->devno
== 0) && (err
== 0x81))
1878 return ATA_DEV_NONE
;
1880 /* determine if device is ATA or ATAPI */
1881 class = ata_dev_classify(&tf
);
1883 if (class == ATA_DEV_UNKNOWN
) {
1884 /* If the device failed diagnostic, it's likely to
1885 * have reported incorrect device signature too.
1886 * Assume ATA device if the device seems present but
1887 * device signature is invalid with diagnostic
1890 if (present
&& (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
))
1891 class = ATA_DEV_ATA
;
1893 class = ATA_DEV_NONE
;
1894 } else if ((class == ATA_DEV_ATA
) &&
1895 (ap
->ops
->sff_check_status(ap
) == 0))
1896 class = ATA_DEV_NONE
;
1900 EXPORT_SYMBOL_GPL(ata_sff_dev_classify
);
1903 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1904 * @link: SFF link which is just reset
1905 * @devmask: mask of present devices
1906 * @deadline: deadline jiffies for the operation
1908 * Wait devices attached to SFF @link to become ready after
1909 * reset. It contains preceding 150ms wait to avoid accessing TF
1910 * status register too early.
1913 * Kernel thread context (may sleep).
1916 * 0 on success, -ENODEV if some or all of devices in @devmask
1917 * don't seem to exist. -errno on other errors.
1919 int ata_sff_wait_after_reset(struct ata_link
*link
, unsigned int devmask
,
1920 unsigned long deadline
)
1922 struct ata_port
*ap
= link
->ap
;
1923 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1924 unsigned int dev0
= devmask
& (1 << 0);
1925 unsigned int dev1
= devmask
& (1 << 1);
1928 ata_msleep(ap
, ATA_WAIT_AFTER_RESET
);
1930 /* always check readiness of the master device */
1931 rc
= ata_sff_wait_ready(link
, deadline
);
1932 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1933 * and TF status is 0xff, bail out on it too.
1938 /* if device 1 was found in ata_devchk, wait for register
1939 * access briefly, then wait for BSY to clear.
1944 ap
->ops
->sff_dev_select(ap
, 1);
1946 /* Wait for register access. Some ATAPI devices fail
1947 * to set nsect/lbal after reset, so don't waste too
1948 * much time on it. We're gonna wait for !BSY anyway.
1950 for (i
= 0; i
< 2; i
++) {
1953 nsect
= ioread8(ioaddr
->nsect_addr
);
1954 lbal
= ioread8(ioaddr
->lbal_addr
);
1955 if ((nsect
== 1) && (lbal
== 1))
1957 ata_msleep(ap
, 50); /* give drive a breather */
1960 rc
= ata_sff_wait_ready(link
, deadline
);
1968 /* is all this really necessary? */
1969 ap
->ops
->sff_dev_select(ap
, 0);
1971 ap
->ops
->sff_dev_select(ap
, 1);
1973 ap
->ops
->sff_dev_select(ap
, 0);
1977 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset
);
1979 static int ata_bus_softreset(struct ata_port
*ap
, unsigned int devmask
,
1980 unsigned long deadline
)
1982 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1984 DPRINTK("ata%u: bus reset via SRST\n", ap
->print_id
);
1986 if (ap
->ioaddr
.ctl_addr
) {
1987 /* software reset. causes dev0 to be selected */
1988 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
1989 udelay(20); /* FIXME: flush */
1990 iowrite8(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
1991 udelay(20); /* FIXME: flush */
1992 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
1993 ap
->last_ctl
= ap
->ctl
;
1996 /* wait the port to become ready */
1997 return ata_sff_wait_after_reset(&ap
->link
, devmask
, deadline
);
2001 * ata_sff_softreset - reset host port via ATA SRST
2002 * @link: ATA link to reset
2003 * @classes: resulting classes of attached devices
2004 * @deadline: deadline jiffies for the operation
2006 * Reset host port using ATA SRST.
2009 * Kernel thread context (may sleep)
2012 * 0 on success, -errno otherwise.
2014 int ata_sff_softreset(struct ata_link
*link
, unsigned int *classes
,
2015 unsigned long deadline
)
2017 struct ata_port
*ap
= link
->ap
;
2018 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
2019 unsigned int devmask
= 0;
2025 /* determine if device 0/1 are present */
2026 if (ata_devchk(ap
, 0))
2027 devmask
|= (1 << 0);
2028 if (slave_possible
&& ata_devchk(ap
, 1))
2029 devmask
|= (1 << 1);
2031 /* select device 0 again */
2032 ap
->ops
->sff_dev_select(ap
, 0);
2034 /* issue bus reset */
2035 DPRINTK("about to softreset, devmask=%x\n", devmask
);
2036 rc
= ata_bus_softreset(ap
, devmask
, deadline
);
2037 /* if link is occupied, -ENODEV too is an error */
2038 if (rc
&& (rc
!= -ENODEV
|| sata_scr_valid(link
))) {
2039 ata_link_err(link
, "SRST failed (errno=%d)\n", rc
);
2043 /* determine by signature whether we have ATA or ATAPI devices */
2044 classes
[0] = ata_sff_dev_classify(&link
->device
[0],
2045 devmask
& (1 << 0), &err
);
2046 if (slave_possible
&& err
!= 0x81)
2047 classes
[1] = ata_sff_dev_classify(&link
->device
[1],
2048 devmask
& (1 << 1), &err
);
2050 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes
[0], classes
[1]);
2053 EXPORT_SYMBOL_GPL(ata_sff_softreset
);
2056 * sata_sff_hardreset - reset host port via SATA phy reset
2057 * @link: link to reset
2058 * @class: resulting class of attached device
2059 * @deadline: deadline jiffies for the operation
2061 * SATA phy-reset host port using DET bits of SControl register,
2062 * wait for !BSY and classify the attached device.
2065 * Kernel thread context (may sleep)
2068 * 0 on success, -errno otherwise.
2070 int sata_sff_hardreset(struct ata_link
*link
, unsigned int *class,
2071 unsigned long deadline
)
2073 struct ata_eh_context
*ehc
= &link
->eh_context
;
2074 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
2078 rc
= sata_link_hardreset(link
, timing
, deadline
, &online
,
2079 ata_sff_check_ready
);
2081 *class = ata_sff_dev_classify(link
->device
, 1, NULL
);
2083 DPRINTK("EXIT, class=%u\n", *class);
2086 EXPORT_SYMBOL_GPL(sata_sff_hardreset
);
2089 * ata_sff_postreset - SFF postreset callback
2090 * @link: the target SFF ata_link
2091 * @classes: classes of attached devices
2093 * This function is invoked after a successful reset. It first
2094 * calls ata_std_postreset() and performs SFF specific postreset
2098 * Kernel thread context (may sleep)
2100 void ata_sff_postreset(struct ata_link
*link
, unsigned int *classes
)
2102 struct ata_port
*ap
= link
->ap
;
2104 ata_std_postreset(link
, classes
);
2106 /* is double-select really necessary? */
2107 if (classes
[0] != ATA_DEV_NONE
)
2108 ap
->ops
->sff_dev_select(ap
, 1);
2109 if (classes
[1] != ATA_DEV_NONE
)
2110 ap
->ops
->sff_dev_select(ap
, 0);
2112 /* bail out if no device is present */
2113 if (classes
[0] == ATA_DEV_NONE
&& classes
[1] == ATA_DEV_NONE
) {
2114 DPRINTK("EXIT, no device\n");
2118 /* set up device control */
2119 if (ap
->ops
->sff_set_devctl
|| ap
->ioaddr
.ctl_addr
) {
2120 ata_sff_set_devctl(ap
, ap
->ctl
);
2121 ap
->last_ctl
= ap
->ctl
;
2124 EXPORT_SYMBOL_GPL(ata_sff_postreset
);
2127 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2130 * Drain the FIFO and device of any stuck data following a command
2131 * failing to complete. In some cases this is necessary before a
2132 * reset will recover the device.
2136 void ata_sff_drain_fifo(struct ata_queued_cmd
*qc
)
2139 struct ata_port
*ap
;
2141 /* We only need to flush incoming data when a command was running */
2142 if (qc
== NULL
|| qc
->dma_dir
== DMA_TO_DEVICE
)
2146 /* Drain up to 64K of data before we give up this recovery method */
2147 for (count
= 0; (ap
->ops
->sff_check_status(ap
) & ATA_DRQ
)
2148 && count
< 65536; count
+= 2)
2149 ioread16(ap
->ioaddr
.data_addr
);
2151 /* Can become DEBUG later */
2153 ata_port_dbg(ap
, "drained %d bytes to clear DRQ\n", count
);
2156 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo
);
2159 * ata_sff_error_handler - Stock error handler for SFF controller
2160 * @ap: port to handle error for
2162 * Stock error handler for SFF controller. It can handle both
2163 * PATA and SATA controllers. Many controllers should be able to
2164 * use this EH as-is or with some added handling before and
2168 * Kernel thread context (may sleep)
2170 void ata_sff_error_handler(struct ata_port
*ap
)
2172 ata_reset_fn_t softreset
= ap
->ops
->softreset
;
2173 ata_reset_fn_t hardreset
= ap
->ops
->hardreset
;
2174 struct ata_queued_cmd
*qc
;
2175 unsigned long flags
;
2177 qc
= __ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2178 if (qc
&& !(qc
->flags
& ATA_QCFLAG_FAILED
))
2181 spin_lock_irqsave(ap
->lock
, flags
);
2184 * We *MUST* do FIFO draining before we issue a reset as
2185 * several devices helpfully clear their internal state and
2186 * will lock solid if we touch the data port post reset. Pass
2187 * qc in case anyone wants to do different PIO/DMA recovery or
2188 * has per command fixups
2190 if (ap
->ops
->sff_drain_fifo
)
2191 ap
->ops
->sff_drain_fifo(qc
);
2193 spin_unlock_irqrestore(ap
->lock
, flags
);
2195 /* ignore built-in hardresets if SCR access is not available */
2196 if ((hardreset
== sata_std_hardreset
||
2197 hardreset
== sata_sff_hardreset
) && !sata_scr_valid(&ap
->link
))
2200 ata_do_eh(ap
, ap
->ops
->prereset
, softreset
, hardreset
,
2201 ap
->ops
->postreset
);
2203 EXPORT_SYMBOL_GPL(ata_sff_error_handler
);
2206 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2207 * @ioaddr: IO address structure to be initialized
2209 * Utility function which initializes data_addr, error_addr,
2210 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2211 * device_addr, status_addr, and command_addr to standard offsets
2212 * relative to cmd_addr.
2214 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2216 void ata_sff_std_ports(struct ata_ioports
*ioaddr
)
2218 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
2219 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
2220 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
2221 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
2222 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
2223 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
2224 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
2225 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
2226 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
2227 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
2229 EXPORT_SYMBOL_GPL(ata_sff_std_ports
);
2233 static int ata_resources_present(struct pci_dev
*pdev
, int port
)
2237 /* Check the PCI resources for this channel are enabled */
2239 for (i
= 0; i
< 2; i
++) {
2240 if (pci_resource_start(pdev
, port
+ i
) == 0 ||
2241 pci_resource_len(pdev
, port
+ i
) == 0)
2248 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2249 * @host: target ATA host
2251 * Acquire native PCI ATA resources for @host and initialize the
2252 * first two ports of @host accordingly. Ports marked dummy are
2253 * skipped and allocation failure makes the port dummy.
2255 * Note that native PCI resources are valid even for legacy hosts
2256 * as we fix up pdev resources array early in boot, so this
2257 * function can be used for both native and legacy SFF hosts.
2260 * Inherited from calling layer (may sleep).
2263 * 0 if at least one port is initialized, -ENODEV if no port is
2266 int ata_pci_sff_init_host(struct ata_host
*host
)
2268 struct device
*gdev
= host
->dev
;
2269 struct pci_dev
*pdev
= to_pci_dev(gdev
);
2270 unsigned int mask
= 0;
2273 /* request, iomap BARs and init port addresses accordingly */
2274 for (i
= 0; i
< 2; i
++) {
2275 struct ata_port
*ap
= host
->ports
[i
];
2277 void __iomem
* const *iomap
;
2279 if (ata_port_is_dummy(ap
))
2282 /* Discard disabled ports. Some controllers show
2283 * their unused channels this way. Disabled ports are
2286 if (!ata_resources_present(pdev
, i
)) {
2287 ap
->ops
= &ata_dummy_port_ops
;
2291 rc
= pcim_iomap_regions(pdev
, 0x3 << base
,
2292 dev_driver_string(gdev
));
2295 "failed to request/iomap BARs for port %d (errno=%d)\n",
2298 pcim_pin_device(pdev
);
2299 ap
->ops
= &ata_dummy_port_ops
;
2302 host
->iomap
= iomap
= pcim_iomap_table(pdev
);
2304 ap
->ioaddr
.cmd_addr
= iomap
[base
];
2305 ap
->ioaddr
.altstatus_addr
=
2306 ap
->ioaddr
.ctl_addr
= (void __iomem
*)
2307 ((unsigned long)iomap
[base
+ 1] | ATA_PCI_CTL_OFS
);
2308 ata_sff_std_ports(&ap
->ioaddr
);
2310 ata_port_desc(ap
, "cmd 0x%llx ctl 0x%llx",
2311 (unsigned long long)pci_resource_start(pdev
, base
),
2312 (unsigned long long)pci_resource_start(pdev
, base
+ 1));
2318 dev_err(gdev
, "no available native port\n");
2324 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host
);
2327 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2328 * @pdev: target PCI device
2329 * @ppi: array of port_info, must be enough for two ports
2330 * @r_host: out argument for the initialized ATA host
2332 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2333 * all PCI resources and initialize it accordingly in one go.
2336 * Inherited from calling layer (may sleep).
2339 * 0 on success, -errno otherwise.
2341 int ata_pci_sff_prepare_host(struct pci_dev
*pdev
,
2342 const struct ata_port_info
* const *ppi
,
2343 struct ata_host
**r_host
)
2345 struct ata_host
*host
;
2348 if (!devres_open_group(&pdev
->dev
, NULL
, GFP_KERNEL
))
2351 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, 2);
2353 dev_err(&pdev
->dev
, "failed to allocate ATA host\n");
2358 rc
= ata_pci_sff_init_host(host
);
2362 devres_remove_group(&pdev
->dev
, NULL
);
2367 devres_release_group(&pdev
->dev
, NULL
);
2370 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host
);
2373 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2374 * @host: target SFF ATA host
2375 * @irq_handler: irq_handler used when requesting IRQ(s)
2376 * @sht: scsi_host_template to use when registering the host
2378 * This is the counterpart of ata_host_activate() for SFF ATA
2379 * hosts. This separate helper is necessary because SFF hosts
2380 * use two separate interrupts in legacy mode.
2383 * Inherited from calling layer (may sleep).
2386 * 0 on success, -errno otherwise.
2388 int ata_pci_sff_activate_host(struct ata_host
*host
,
2389 irq_handler_t irq_handler
,
2390 struct scsi_host_template
*sht
)
2392 struct device
*dev
= host
->dev
;
2393 struct pci_dev
*pdev
= to_pci_dev(dev
);
2394 const char *drv_name
= dev_driver_string(host
->dev
);
2395 int legacy_mode
= 0, rc
;
2397 rc
= ata_host_start(host
);
2401 if ((pdev
->class >> 8) == PCI_CLASS_STORAGE_IDE
) {
2405 * ATA spec says we should use legacy mode when one
2406 * port is in legacy mode, but disabled ports on some
2407 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2408 * on which the secondary port is not wired, so
2409 * ignore ports that are marked as 'dummy' during
2412 pci_read_config_byte(pdev
, PCI_CLASS_PROG
, &tmp8
);
2413 if (!ata_port_is_dummy(host
->ports
[0]))
2415 if (!ata_port_is_dummy(host
->ports
[1]))
2417 if ((tmp8
& mask
) != mask
)
2421 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
2424 if (!legacy_mode
&& pdev
->irq
) {
2427 rc
= devm_request_irq(dev
, pdev
->irq
, irq_handler
,
2428 IRQF_SHARED
, drv_name
, host
);
2432 for (i
= 0; i
< 2; i
++) {
2433 if (ata_port_is_dummy(host
->ports
[i
]))
2435 ata_port_desc(host
->ports
[i
], "irq %d", pdev
->irq
);
2437 } else if (legacy_mode
) {
2438 if (!ata_port_is_dummy(host
->ports
[0])) {
2439 rc
= devm_request_irq(dev
, ATA_PRIMARY_IRQ(pdev
),
2440 irq_handler
, IRQF_SHARED
,
2445 ata_port_desc(host
->ports
[0], "irq %d",
2446 ATA_PRIMARY_IRQ(pdev
));
2449 if (!ata_port_is_dummy(host
->ports
[1])) {
2450 rc
= devm_request_irq(dev
, ATA_SECONDARY_IRQ(pdev
),
2451 irq_handler
, IRQF_SHARED
,
2456 ata_port_desc(host
->ports
[1], "irq %d",
2457 ATA_SECONDARY_IRQ(pdev
));
2461 rc
= ata_host_register(host
, sht
);
2464 devres_remove_group(dev
, NULL
);
2466 devres_release_group(dev
, NULL
);
2470 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host
);
2472 static const struct ata_port_info
*ata_sff_find_valid_pi(
2473 const struct ata_port_info
* const *ppi
)
2477 /* look up the first valid port_info */
2478 for (i
= 0; i
< 2 && ppi
[i
]; i
++)
2479 if (ppi
[i
]->port_ops
!= &ata_dummy_port_ops
)
2485 static int ata_pci_init_one(struct pci_dev
*pdev
,
2486 const struct ata_port_info
* const *ppi
,
2487 struct scsi_host_template
*sht
, void *host_priv
,
2488 int hflags
, bool bmdma
)
2490 struct device
*dev
= &pdev
->dev
;
2491 const struct ata_port_info
*pi
;
2492 struct ata_host
*host
= NULL
;
2497 pi
= ata_sff_find_valid_pi(ppi
);
2499 dev_err(&pdev
->dev
, "no valid port_info specified\n");
2503 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
2506 rc
= pcim_enable_device(pdev
);
2510 #ifdef CONFIG_ATA_BMDMA
2512 /* prepare and activate BMDMA host */
2513 rc
= ata_pci_bmdma_prepare_host(pdev
, ppi
, &host
);
2516 /* prepare and activate SFF host */
2517 rc
= ata_pci_sff_prepare_host(pdev
, ppi
, &host
);
2520 host
->private_data
= host_priv
;
2521 host
->flags
|= hflags
;
2523 #ifdef CONFIG_ATA_BMDMA
2525 pci_set_master(pdev
);
2526 rc
= ata_pci_sff_activate_host(host
, ata_bmdma_interrupt
, sht
);
2529 rc
= ata_pci_sff_activate_host(host
, ata_sff_interrupt
, sht
);
2532 devres_remove_group(&pdev
->dev
, NULL
);
2534 devres_release_group(&pdev
->dev
, NULL
);
2540 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2541 * @pdev: Controller to be initialized
2542 * @ppi: array of port_info, must be enough for two ports
2543 * @sht: scsi_host_template to use when registering the host
2544 * @host_priv: host private_data
2545 * @hflag: host flags
2547 * This is a helper function which can be called from a driver's
2548 * xxx_init_one() probe function if the hardware uses traditional
2549 * IDE taskfile registers and is PIO only.
2552 * Nobody makes a single channel controller that appears solely as
2553 * the secondary legacy port on PCI.
2556 * Inherited from PCI layer (may sleep).
2559 * Zero on success, negative on errno-based value on error.
2561 int ata_pci_sff_init_one(struct pci_dev
*pdev
,
2562 const struct ata_port_info
* const *ppi
,
2563 struct scsi_host_template
*sht
, void *host_priv
, int hflag
)
2565 return ata_pci_init_one(pdev
, ppi
, sht
, host_priv
, hflag
, 0);
2567 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one
);
2569 #endif /* CONFIG_PCI */
2575 #ifdef CONFIG_ATA_BMDMA
2577 const struct ata_port_operations ata_bmdma_port_ops
= {
2578 .inherits
= &ata_sff_port_ops
,
2580 .error_handler
= ata_bmdma_error_handler
,
2581 .post_internal_cmd
= ata_bmdma_post_internal_cmd
,
2583 .qc_prep
= ata_bmdma_qc_prep
,
2584 .qc_issue
= ata_bmdma_qc_issue
,
2586 .sff_irq_clear
= ata_bmdma_irq_clear
,
2587 .bmdma_setup
= ata_bmdma_setup
,
2588 .bmdma_start
= ata_bmdma_start
,
2589 .bmdma_stop
= ata_bmdma_stop
,
2590 .bmdma_status
= ata_bmdma_status
,
2592 .port_start
= ata_bmdma_port_start
,
2594 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops
);
2596 const struct ata_port_operations ata_bmdma32_port_ops
= {
2597 .inherits
= &ata_bmdma_port_ops
,
2599 .sff_data_xfer
= ata_sff_data_xfer32
,
2600 .port_start
= ata_bmdma_port_start32
,
2602 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops
);
2605 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2606 * @qc: Metadata associated with taskfile to be transferred
2608 * Fill PCI IDE PRD (scatter-gather) table with segments
2609 * associated with the current disk command.
2612 * spin_lock_irqsave(host lock)
2615 static void ata_bmdma_fill_sg(struct ata_queued_cmd
*qc
)
2617 struct ata_port
*ap
= qc
->ap
;
2618 struct ata_bmdma_prd
*prd
= ap
->bmdma_prd
;
2619 struct scatterlist
*sg
;
2620 unsigned int si
, pi
;
2623 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
2627 /* determine if physical DMA addr spans 64K boundary.
2628 * Note h/w doesn't support 64-bit, so we unconditionally
2629 * truncate dma_addr_t to u32.
2631 addr
= (u32
) sg_dma_address(sg
);
2632 sg_len
= sg_dma_len(sg
);
2635 offset
= addr
& 0xffff;
2637 if ((offset
+ sg_len
) > 0x10000)
2638 len
= 0x10000 - offset
;
2640 prd
[pi
].addr
= cpu_to_le32(addr
);
2641 prd
[pi
].flags_len
= cpu_to_le32(len
& 0xffff);
2642 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
2650 prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
2654 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2655 * @qc: Metadata associated with taskfile to be transferred
2657 * Fill PCI IDE PRD (scatter-gather) table with segments
2658 * associated with the current disk command. Perform the fill
2659 * so that we avoid writing any length 64K records for
2660 * controllers that don't follow the spec.
2663 * spin_lock_irqsave(host lock)
2666 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd
*qc
)
2668 struct ata_port
*ap
= qc
->ap
;
2669 struct ata_bmdma_prd
*prd
= ap
->bmdma_prd
;
2670 struct scatterlist
*sg
;
2671 unsigned int si
, pi
;
2674 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
2676 u32 sg_len
, len
, blen
;
2678 /* determine if physical DMA addr spans 64K boundary.
2679 * Note h/w doesn't support 64-bit, so we unconditionally
2680 * truncate dma_addr_t to u32.
2682 addr
= (u32
) sg_dma_address(sg
);
2683 sg_len
= sg_dma_len(sg
);
2686 offset
= addr
& 0xffff;
2688 if ((offset
+ sg_len
) > 0x10000)
2689 len
= 0x10000 - offset
;
2691 blen
= len
& 0xffff;
2692 prd
[pi
].addr
= cpu_to_le32(addr
);
2694 /* Some PATA chipsets like the CS5530 can't
2695 cope with 0x0000 meaning 64K as the spec
2697 prd
[pi
].flags_len
= cpu_to_le32(0x8000);
2699 prd
[++pi
].addr
= cpu_to_le32(addr
+ 0x8000);
2701 prd
[pi
].flags_len
= cpu_to_le32(blen
);
2702 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
2710 prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
2714 * ata_bmdma_qc_prep - Prepare taskfile for submission
2715 * @qc: Metadata associated with taskfile to be prepared
2717 * Prepare ATA taskfile for submission.
2720 * spin_lock_irqsave(host lock)
2722 void ata_bmdma_qc_prep(struct ata_queued_cmd
*qc
)
2724 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2727 ata_bmdma_fill_sg(qc
);
2729 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep
);
2732 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2733 * @qc: Metadata associated with taskfile to be prepared
2735 * Prepare ATA taskfile for submission.
2738 * spin_lock_irqsave(host lock)
2740 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd
*qc
)
2742 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2745 ata_bmdma_fill_sg_dumb(qc
);
2747 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep
);
2750 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2751 * @qc: command to issue to device
2753 * This function issues a PIO, NODATA or DMA command to a
2754 * SFF/BMDMA controller. PIO and NODATA are handled by
2755 * ata_sff_qc_issue().
2758 * spin_lock_irqsave(host lock)
2761 * Zero on success, AC_ERR_* mask on failure
2763 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd
*qc
)
2765 struct ata_port
*ap
= qc
->ap
;
2766 struct ata_link
*link
= qc
->dev
->link
;
2768 /* defer PIO handling to sff_qc_issue */
2769 if (!ata_is_dma(qc
->tf
.protocol
))
2770 return ata_sff_qc_issue(qc
);
2772 /* select the device */
2773 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
2775 /* start the command */
2776 switch (qc
->tf
.protocol
) {
2778 WARN_ON_ONCE(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
2780 ap
->ops
->sff_tf_load(ap
, &qc
->tf
); /* load tf registers */
2781 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
2782 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
2783 ap
->hsm_task_state
= HSM_ST_LAST
;
2786 case ATAPI_PROT_DMA
:
2787 WARN_ON_ONCE(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
2789 ap
->ops
->sff_tf_load(ap
, &qc
->tf
); /* load tf registers */
2790 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
2791 ap
->hsm_task_state
= HSM_ST_FIRST
;
2793 /* send cdb by polling if no cdb interrupt */
2794 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
2795 ata_sff_queue_pio_task(link
, 0);
2800 return AC_ERR_SYSTEM
;
2805 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue
);
2808 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2809 * @ap: Port on which interrupt arrived (possibly...)
2810 * @qc: Taskfile currently active in engine
2812 * Handle port interrupt for given queued command.
2815 * spin_lock_irqsave(host lock)
2818 * One if interrupt was handled, zero if not (shared irq).
2820 unsigned int ata_bmdma_port_intr(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
2822 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
2824 bool bmdma_stopped
= false;
2825 unsigned int handled
;
2827 if (ap
->hsm_task_state
== HSM_ST_LAST
&& ata_is_dma(qc
->tf
.protocol
)) {
2828 /* check status of DMA engine */
2829 host_stat
= ap
->ops
->bmdma_status(ap
);
2830 VPRINTK("ata%u: host_stat 0x%X\n", ap
->print_id
, host_stat
);
2832 /* if it's not our irq... */
2833 if (!(host_stat
& ATA_DMA_INTR
))
2834 return ata_sff_idle_irq(ap
);
2836 /* before we do anything else, clear DMA-Start bit */
2837 ap
->ops
->bmdma_stop(qc
);
2838 bmdma_stopped
= true;
2840 if (unlikely(host_stat
& ATA_DMA_ERR
)) {
2841 /* error when transferring data to/from memory */
2842 qc
->err_mask
|= AC_ERR_HOST_BUS
;
2843 ap
->hsm_task_state
= HSM_ST_ERR
;
2847 handled
= __ata_sff_port_intr(ap
, qc
, bmdma_stopped
);
2849 if (unlikely(qc
->err_mask
) && ata_is_dma(qc
->tf
.protocol
))
2850 ata_ehi_push_desc(ehi
, "BMDMA stat 0x%x", host_stat
);
2854 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr
);
2857 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2858 * @irq: irq line (unused)
2859 * @dev_instance: pointer to our ata_host information structure
2861 * Default interrupt handler for PCI IDE devices. Calls
2862 * ata_bmdma_port_intr() for each port that is not disabled.
2865 * Obtains host lock during operation.
2868 * IRQ_NONE or IRQ_HANDLED.
2870 irqreturn_t
ata_bmdma_interrupt(int irq
, void *dev_instance
)
2872 return __ata_sff_interrupt(irq
, dev_instance
, ata_bmdma_port_intr
);
2874 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt
);
2877 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2878 * @ap: port to handle error for
2880 * Stock error handler for BMDMA controller. It can handle both
2881 * PATA and SATA controllers. Most BMDMA controllers should be
2882 * able to use this EH as-is or with some added handling before
2886 * Kernel thread context (may sleep)
2888 void ata_bmdma_error_handler(struct ata_port
*ap
)
2890 struct ata_queued_cmd
*qc
;
2891 unsigned long flags
;
2894 qc
= __ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2895 if (qc
&& !(qc
->flags
& ATA_QCFLAG_FAILED
))
2898 /* reset PIO HSM and stop DMA engine */
2899 spin_lock_irqsave(ap
->lock
, flags
);
2901 if (qc
&& ata_is_dma(qc
->tf
.protocol
)) {
2904 host_stat
= ap
->ops
->bmdma_status(ap
);
2906 /* BMDMA controllers indicate host bus error by
2907 * setting DMA_ERR bit and timing out. As it wasn't
2908 * really a timeout event, adjust error mask and
2909 * cancel frozen state.
2911 if (qc
->err_mask
== AC_ERR_TIMEOUT
&& (host_stat
& ATA_DMA_ERR
)) {
2912 qc
->err_mask
= AC_ERR_HOST_BUS
;
2916 ap
->ops
->bmdma_stop(qc
);
2918 /* if we're gonna thaw, make sure IRQ is clear */
2920 ap
->ops
->sff_check_status(ap
);
2921 if (ap
->ops
->sff_irq_clear
)
2922 ap
->ops
->sff_irq_clear(ap
);
2926 spin_unlock_irqrestore(ap
->lock
, flags
);
2929 ata_eh_thaw_port(ap
);
2931 ata_sff_error_handler(ap
);
2933 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler
);
2936 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2937 * @qc: internal command to clean up
2940 * Kernel thread context (may sleep)
2942 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd
*qc
)
2944 struct ata_port
*ap
= qc
->ap
;
2945 unsigned long flags
;
2947 if (ata_is_dma(qc
->tf
.protocol
)) {
2948 spin_lock_irqsave(ap
->lock
, flags
);
2949 ap
->ops
->bmdma_stop(qc
);
2950 spin_unlock_irqrestore(ap
->lock
, flags
);
2953 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd
);
2956 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2957 * @ap: Port associated with this ATA transaction.
2959 * Clear interrupt and error flags in DMA status register.
2961 * May be used as the irq_clear() entry in ata_port_operations.
2964 * spin_lock_irqsave(host lock)
2966 void ata_bmdma_irq_clear(struct ata_port
*ap
)
2968 void __iomem
*mmio
= ap
->ioaddr
.bmdma_addr
;
2973 iowrite8(ioread8(mmio
+ ATA_DMA_STATUS
), mmio
+ ATA_DMA_STATUS
);
2975 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
2978 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2979 * @qc: Info associated with this ATA transaction.
2982 * spin_lock_irqsave(host lock)
2984 void ata_bmdma_setup(struct ata_queued_cmd
*qc
)
2986 struct ata_port
*ap
= qc
->ap
;
2987 unsigned int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
2990 /* load PRD table addr. */
2991 mb(); /* make sure PRD table writes are visible to controller */
2992 iowrite32(ap
->bmdma_prd_dma
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_TABLE_OFS
);
2994 /* specify data direction, triple-check start bit is clear */
2995 dmactl
= ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
2996 dmactl
&= ~(ATA_DMA_WR
| ATA_DMA_START
);
2998 dmactl
|= ATA_DMA_WR
;
2999 iowrite8(dmactl
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3001 /* issue r/w command */
3002 ap
->ops
->sff_exec_command(ap
, &qc
->tf
);
3004 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
3007 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3008 * @qc: Info associated with this ATA transaction.
3011 * spin_lock_irqsave(host lock)
3013 void ata_bmdma_start(struct ata_queued_cmd
*qc
)
3015 struct ata_port
*ap
= qc
->ap
;
3018 /* start host DMA transaction */
3019 dmactl
= ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3020 iowrite8(dmactl
| ATA_DMA_START
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3022 /* Strictly, one may wish to issue an ioread8() here, to
3023 * flush the mmio write. However, control also passes
3024 * to the hardware at this point, and it will interrupt
3025 * us when we are to resume control. So, in effect,
3026 * we don't care when the mmio write flushes.
3027 * Further, a read of the DMA status register _immediately_
3028 * following the write may not be what certain flaky hardware
3029 * is expected, so I think it is best to not add a readb()
3030 * without first all the MMIO ATA cards/mobos.
3031 * Or maybe I'm just being paranoid.
3033 * FIXME: The posting of this write means I/O starts are
3034 * unnecessarily delayed for MMIO
3037 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
3040 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3041 * @qc: Command we are ending DMA for
3043 * Clears the ATA_DMA_START flag in the dma control register
3045 * May be used as the bmdma_stop() entry in ata_port_operations.
3048 * spin_lock_irqsave(host lock)
3050 void ata_bmdma_stop(struct ata_queued_cmd
*qc
)
3052 struct ata_port
*ap
= qc
->ap
;
3053 void __iomem
*mmio
= ap
->ioaddr
.bmdma_addr
;
3055 /* clear start/stop bit */
3056 iowrite8(ioread8(mmio
+ ATA_DMA_CMD
) & ~ATA_DMA_START
,
3057 mmio
+ ATA_DMA_CMD
);
3059 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3060 ata_sff_dma_pause(ap
);
3062 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
3065 * ata_bmdma_status - Read PCI IDE BMDMA status
3066 * @ap: Port associated with this ATA transaction.
3068 * Read and return BMDMA status register.
3070 * May be used as the bmdma_status() entry in ata_port_operations.
3073 * spin_lock_irqsave(host lock)
3075 u8
ata_bmdma_status(struct ata_port
*ap
)
3077 return ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_STATUS
);
3079 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
3083 * ata_bmdma_port_start - Set port up for bmdma.
3084 * @ap: Port to initialize
3086 * Called just after data structures for each port are
3087 * initialized. Allocates space for PRD table.
3089 * May be used as the port_start() entry in ata_port_operations.
3092 * Inherited from caller.
3094 int ata_bmdma_port_start(struct ata_port
*ap
)
3096 if (ap
->mwdma_mask
|| ap
->udma_mask
) {
3098 dmam_alloc_coherent(ap
->host
->dev
, ATA_PRD_TBL_SZ
,
3099 &ap
->bmdma_prd_dma
, GFP_KERNEL
);
3106 EXPORT_SYMBOL_GPL(ata_bmdma_port_start
);
3109 * ata_bmdma_port_start32 - Set port up for dma.
3110 * @ap: Port to initialize
3112 * Called just after data structures for each port are
3113 * initialized. Enables 32bit PIO and allocates space for PRD
3116 * May be used as the port_start() entry in ata_port_operations for
3117 * devices that are capable of 32bit PIO.
3120 * Inherited from caller.
3122 int ata_bmdma_port_start32(struct ata_port
*ap
)
3124 ap
->pflags
|= ATA_PFLAG_PIO32
| ATA_PFLAG_PIO32CHANGE
;
3125 return ata_bmdma_port_start(ap
);
3127 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32
);
3132 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3135 * Some PCI ATA devices report simplex mode but in fact can be told to
3136 * enter non simplex mode. This implements the necessary logic to
3137 * perform the task on such devices. Calling it on other devices will
3138 * have -undefined- behaviour.
3140 int ata_pci_bmdma_clear_simplex(struct pci_dev
*pdev
)
3142 unsigned long bmdma
= pci_resource_start(pdev
, 4);
3148 simplex
= inb(bmdma
+ 0x02);
3149 outb(simplex
& 0x60, bmdma
+ 0x02);
3150 simplex
= inb(bmdma
+ 0x02);
3155 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex
);
3157 static void ata_bmdma_nodma(struct ata_host
*host
, const char *reason
)
3161 dev_err(host
->dev
, "BMDMA: %s, falling back to PIO\n", reason
);
3163 for (i
= 0; i
< 2; i
++) {
3164 host
->ports
[i
]->mwdma_mask
= 0;
3165 host
->ports
[i
]->udma_mask
= 0;
3170 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3171 * @host: target ATA host
3173 * Acquire PCI BMDMA resources and initialize @host accordingly.
3176 * Inherited from calling layer (may sleep).
3178 void ata_pci_bmdma_init(struct ata_host
*host
)
3180 struct device
*gdev
= host
->dev
;
3181 struct pci_dev
*pdev
= to_pci_dev(gdev
);
3184 /* No BAR4 allocation: No DMA */
3185 if (pci_resource_start(pdev
, 4) == 0) {
3186 ata_bmdma_nodma(host
, "BAR4 is zero");
3191 * Some controllers require BMDMA region to be initialized
3192 * even if DMA is not in use to clear IRQ status via
3193 * ->sff_irq_clear method. Try to initialize bmdma_addr
3194 * regardless of dma masks.
3196 rc
= dma_set_mask(&pdev
->dev
, ATA_DMA_MASK
);
3198 ata_bmdma_nodma(host
, "failed to set dma mask");
3200 rc
= dma_set_coherent_mask(&pdev
->dev
, ATA_DMA_MASK
);
3202 ata_bmdma_nodma(host
,
3203 "failed to set consistent dma mask");
3206 /* request and iomap DMA region */
3207 rc
= pcim_iomap_regions(pdev
, 1 << 4, dev_driver_string(gdev
));
3209 ata_bmdma_nodma(host
, "failed to request/iomap BAR4");
3212 host
->iomap
= pcim_iomap_table(pdev
);
3214 for (i
= 0; i
< 2; i
++) {
3215 struct ata_port
*ap
= host
->ports
[i
];
3216 void __iomem
*bmdma
= host
->iomap
[4] + 8 * i
;
3218 if (ata_port_is_dummy(ap
))
3221 ap
->ioaddr
.bmdma_addr
= bmdma
;
3222 if ((!(ap
->flags
& ATA_FLAG_IGN_SIMPLEX
)) &&
3223 (ioread8(bmdma
+ 2) & 0x80))
3224 host
->flags
|= ATA_HOST_SIMPLEX
;
3226 ata_port_desc(ap
, "bmdma 0x%llx",
3227 (unsigned long long)pci_resource_start(pdev
, 4) + 8 * i
);
3230 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init
);
3233 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3234 * @pdev: target PCI device
3235 * @ppi: array of port_info, must be enough for two ports
3236 * @r_host: out argument for the initialized ATA host
3238 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3239 * resources and initialize it accordingly in one go.
3242 * Inherited from calling layer (may sleep).
3245 * 0 on success, -errno otherwise.
3247 int ata_pci_bmdma_prepare_host(struct pci_dev
*pdev
,
3248 const struct ata_port_info
* const * ppi
,
3249 struct ata_host
**r_host
)
3253 rc
= ata_pci_sff_prepare_host(pdev
, ppi
, r_host
);
3257 ata_pci_bmdma_init(*r_host
);
3260 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host
);
3263 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3264 * @pdev: Controller to be initialized
3265 * @ppi: array of port_info, must be enough for two ports
3266 * @sht: scsi_host_template to use when registering the host
3267 * @host_priv: host private_data
3268 * @hflags: host flags
3270 * This function is similar to ata_pci_sff_init_one() but also
3271 * takes care of BMDMA initialization.
3274 * Inherited from PCI layer (may sleep).
3277 * Zero on success, negative on errno-based value on error.
3279 int ata_pci_bmdma_init_one(struct pci_dev
*pdev
,
3280 const struct ata_port_info
* const * ppi
,
3281 struct scsi_host_template
*sht
, void *host_priv
,
3284 return ata_pci_init_one(pdev
, ppi
, sht
, host_priv
, hflags
, 1);
3286 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one
);
3288 #endif /* CONFIG_PCI */
3289 #endif /* CONFIG_ATA_BMDMA */
3292 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3293 * @ap: Port to initialize
3295 * Called on port allocation to initialize SFF/BMDMA specific
3301 void ata_sff_port_init(struct ata_port
*ap
)
3303 INIT_DELAYED_WORK(&ap
->sff_pio_task
, ata_sff_pio_task
);
3304 ap
->ctl
= ATA_DEVCTL_OBS
;
3305 ap
->last_ctl
= 0xFF;
3308 int __init
ata_sff_init(void)
3310 ata_sff_wq
= alloc_workqueue("ata_sff", WQ_MEM_RECLAIM
, WQ_MAX_ACTIVE
);
3317 void ata_sff_exit(void)
3319 destroy_workqueue(ata_sff_wq
);