1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Linux Socket Filter - Kernel level socket filtering
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/frame.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
34 #include <asm/unaligned.h>
37 #define BPF_R0 regs[BPF_REG_0]
38 #define BPF_R1 regs[BPF_REG_1]
39 #define BPF_R2 regs[BPF_REG_2]
40 #define BPF_R3 regs[BPF_REG_3]
41 #define BPF_R4 regs[BPF_REG_4]
42 #define BPF_R5 regs[BPF_REG_5]
43 #define BPF_R6 regs[BPF_REG_6]
44 #define BPF_R7 regs[BPF_REG_7]
45 #define BPF_R8 regs[BPF_REG_8]
46 #define BPF_R9 regs[BPF_REG_9]
47 #define BPF_R10 regs[BPF_REG_10]
50 #define DST regs[insn->dst_reg]
51 #define SRC regs[insn->src_reg]
52 #define FP regs[BPF_REG_FP]
53 #define AX regs[BPF_REG_AX]
54 #define ARG1 regs[BPF_REG_ARG1]
55 #define CTX regs[BPF_REG_CTX]
58 /* No hurry in this branch
60 * Exported for the bpf jit load helper.
62 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff
*skb
, int k
, unsigned int size
)
67 ptr
= skb_network_header(skb
) + k
- SKF_NET_OFF
;
68 else if (k
>= SKF_LL_OFF
)
69 ptr
= skb_mac_header(skb
) + k
- SKF_LL_OFF
;
71 if (ptr
>= skb
->head
&& ptr
+ size
<= skb_tail_pointer(skb
))
77 struct bpf_prog
*bpf_prog_alloc_no_stats(unsigned int size
, gfp_t gfp_extra_flags
)
79 gfp_t gfp_flags
= GFP_KERNEL
| __GFP_ZERO
| gfp_extra_flags
;
80 struct bpf_prog_aux
*aux
;
83 size
= round_up(size
, PAGE_SIZE
);
84 fp
= __vmalloc(size
, gfp_flags
, PAGE_KERNEL
);
88 aux
= kzalloc(sizeof(*aux
), GFP_KERNEL
| gfp_extra_flags
);
94 fp
->pages
= size
/ PAGE_SIZE
;
97 fp
->jit_requested
= ebpf_jit_enabled();
99 INIT_LIST_HEAD_RCU(&fp
->aux
->ksym_lnode
);
104 struct bpf_prog
*bpf_prog_alloc(unsigned int size
, gfp_t gfp_extra_flags
)
106 gfp_t gfp_flags
= GFP_KERNEL
| __GFP_ZERO
| gfp_extra_flags
;
107 struct bpf_prog
*prog
;
110 prog
= bpf_prog_alloc_no_stats(size
, gfp_extra_flags
);
114 prog
->aux
->stats
= alloc_percpu_gfp(struct bpf_prog_stats
, gfp_flags
);
115 if (!prog
->aux
->stats
) {
121 for_each_possible_cpu(cpu
) {
122 struct bpf_prog_stats
*pstats
;
124 pstats
= per_cpu_ptr(prog
->aux
->stats
, cpu
);
125 u64_stats_init(&pstats
->syncp
);
129 EXPORT_SYMBOL_GPL(bpf_prog_alloc
);
131 int bpf_prog_alloc_jited_linfo(struct bpf_prog
*prog
)
133 if (!prog
->aux
->nr_linfo
|| !prog
->jit_requested
)
136 prog
->aux
->jited_linfo
= kcalloc(prog
->aux
->nr_linfo
,
137 sizeof(*prog
->aux
->jited_linfo
),
138 GFP_KERNEL
| __GFP_NOWARN
);
139 if (!prog
->aux
->jited_linfo
)
145 void bpf_prog_free_jited_linfo(struct bpf_prog
*prog
)
147 kfree(prog
->aux
->jited_linfo
);
148 prog
->aux
->jited_linfo
= NULL
;
151 void bpf_prog_free_unused_jited_linfo(struct bpf_prog
*prog
)
153 if (prog
->aux
->jited_linfo
&& !prog
->aux
->jited_linfo
[0])
154 bpf_prog_free_jited_linfo(prog
);
157 /* The jit engine is responsible to provide an array
158 * for insn_off to the jited_off mapping (insn_to_jit_off).
160 * The idx to this array is the insn_off. Hence, the insn_off
161 * here is relative to the prog itself instead of the main prog.
162 * This array has one entry for each xlated bpf insn.
164 * jited_off is the byte off to the last byte of the jited insn.
168 * The first bpf insn off of the prog. The insn off
169 * here is relative to the main prog.
170 * e.g. if prog is a subprog, insn_start > 0
172 * The prog's idx to prog->aux->linfo and jited_linfo
174 * jited_linfo[linfo_idx] = prog->bpf_func
178 * jited_linfo[i] = prog->bpf_func +
179 * insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
181 void bpf_prog_fill_jited_linfo(struct bpf_prog
*prog
,
182 const u32
*insn_to_jit_off
)
184 u32 linfo_idx
, insn_start
, insn_end
, nr_linfo
, i
;
185 const struct bpf_line_info
*linfo
;
188 if (!prog
->aux
->jited_linfo
)
189 /* Userspace did not provide linfo */
192 linfo_idx
= prog
->aux
->linfo_idx
;
193 linfo
= &prog
->aux
->linfo
[linfo_idx
];
194 insn_start
= linfo
[0].insn_off
;
195 insn_end
= insn_start
+ prog
->len
;
197 jited_linfo
= &prog
->aux
->jited_linfo
[linfo_idx
];
198 jited_linfo
[0] = prog
->bpf_func
;
200 nr_linfo
= prog
->aux
->nr_linfo
- linfo_idx
;
202 for (i
= 1; i
< nr_linfo
&& linfo
[i
].insn_off
< insn_end
; i
++)
203 /* The verifier ensures that linfo[i].insn_off is
204 * strictly increasing
206 jited_linfo
[i
] = prog
->bpf_func
+
207 insn_to_jit_off
[linfo
[i
].insn_off
- insn_start
- 1];
210 void bpf_prog_free_linfo(struct bpf_prog
*prog
)
212 bpf_prog_free_jited_linfo(prog
);
213 kvfree(prog
->aux
->linfo
);
216 struct bpf_prog
*bpf_prog_realloc(struct bpf_prog
*fp_old
, unsigned int size
,
217 gfp_t gfp_extra_flags
)
219 gfp_t gfp_flags
= GFP_KERNEL
| __GFP_ZERO
| gfp_extra_flags
;
224 BUG_ON(fp_old
== NULL
);
226 size
= round_up(size
, PAGE_SIZE
);
227 pages
= size
/ PAGE_SIZE
;
228 if (pages
<= fp_old
->pages
)
231 delta
= pages
- fp_old
->pages
;
232 ret
= __bpf_prog_charge(fp_old
->aux
->user
, delta
);
236 fp
= __vmalloc(size
, gfp_flags
, PAGE_KERNEL
);
238 __bpf_prog_uncharge(fp_old
->aux
->user
, delta
);
240 memcpy(fp
, fp_old
, fp_old
->pages
* PAGE_SIZE
);
244 /* We keep fp->aux from fp_old around in the new
245 * reallocated structure.
248 __bpf_prog_free(fp_old
);
254 void __bpf_prog_free(struct bpf_prog
*fp
)
257 free_percpu(fp
->aux
->stats
);
263 int bpf_prog_calc_tag(struct bpf_prog
*fp
)
265 const u32 bits_offset
= SHA_MESSAGE_BYTES
- sizeof(__be64
);
266 u32 raw_size
= bpf_prog_tag_scratch_size(fp
);
267 u32 digest
[SHA_DIGEST_WORDS
];
268 u32 ws
[SHA_WORKSPACE_WORDS
];
269 u32 i
, bsize
, psize
, blocks
;
270 struct bpf_insn
*dst
;
276 raw
= vmalloc(raw_size
);
281 memset(ws
, 0, sizeof(ws
));
283 /* We need to take out the map fd for the digest calculation
284 * since they are unstable from user space side.
287 for (i
= 0, was_ld_map
= false; i
< fp
->len
; i
++) {
288 dst
[i
] = fp
->insnsi
[i
];
290 dst
[i
].code
== (BPF_LD
| BPF_IMM
| BPF_DW
) &&
291 (dst
[i
].src_reg
== BPF_PSEUDO_MAP_FD
||
292 dst
[i
].src_reg
== BPF_PSEUDO_MAP_VALUE
)) {
295 } else if (was_ld_map
&&
297 dst
[i
].dst_reg
== 0 &&
298 dst
[i
].src_reg
== 0 &&
307 psize
= bpf_prog_insn_size(fp
);
308 memset(&raw
[psize
], 0, raw_size
- psize
);
311 bsize
= round_up(psize
, SHA_MESSAGE_BYTES
);
312 blocks
= bsize
/ SHA_MESSAGE_BYTES
;
314 if (bsize
- psize
>= sizeof(__be64
)) {
315 bits
= (__be64
*)(todo
+ bsize
- sizeof(__be64
));
317 bits
= (__be64
*)(todo
+ bsize
+ bits_offset
);
320 *bits
= cpu_to_be64((psize
- 1) << 3);
323 sha_transform(digest
, todo
, ws
);
324 todo
+= SHA_MESSAGE_BYTES
;
327 result
= (__force __be32
*)digest
;
328 for (i
= 0; i
< SHA_DIGEST_WORDS
; i
++)
329 result
[i
] = cpu_to_be32(digest
[i
]);
330 memcpy(fp
->tag
, result
, sizeof(fp
->tag
));
336 static int bpf_adj_delta_to_imm(struct bpf_insn
*insn
, u32 pos
, s32 end_old
,
337 s32 end_new
, s32 curr
, const bool probe_pass
)
339 const s64 imm_min
= S32_MIN
, imm_max
= S32_MAX
;
340 s32 delta
= end_new
- end_old
;
343 if (curr
< pos
&& curr
+ imm
+ 1 >= end_old
)
345 else if (curr
>= end_new
&& curr
+ imm
+ 1 < end_new
)
347 if (imm
< imm_min
|| imm
> imm_max
)
354 static int bpf_adj_delta_to_off(struct bpf_insn
*insn
, u32 pos
, s32 end_old
,
355 s32 end_new
, s32 curr
, const bool probe_pass
)
357 const s32 off_min
= S16_MIN
, off_max
= S16_MAX
;
358 s32 delta
= end_new
- end_old
;
361 if (curr
< pos
&& curr
+ off
+ 1 >= end_old
)
363 else if (curr
>= end_new
&& curr
+ off
+ 1 < end_new
)
365 if (off
< off_min
|| off
> off_max
)
372 static int bpf_adj_branches(struct bpf_prog
*prog
, u32 pos
, s32 end_old
,
373 s32 end_new
, const bool probe_pass
)
375 u32 i
, insn_cnt
= prog
->len
+ (probe_pass
? end_new
- end_old
: 0);
376 struct bpf_insn
*insn
= prog
->insnsi
;
379 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
382 /* In the probing pass we still operate on the original,
383 * unpatched image in order to check overflows before we
384 * do any other adjustments. Therefore skip the patchlet.
386 if (probe_pass
&& i
== pos
) {
388 insn
= prog
->insnsi
+ end_old
;
391 if ((BPF_CLASS(code
) != BPF_JMP
&&
392 BPF_CLASS(code
) != BPF_JMP32
) ||
393 BPF_OP(code
) == BPF_EXIT
)
395 /* Adjust offset of jmps if we cross patch boundaries. */
396 if (BPF_OP(code
) == BPF_CALL
) {
397 if (insn
->src_reg
!= BPF_PSEUDO_CALL
)
399 ret
= bpf_adj_delta_to_imm(insn
, pos
, end_old
,
400 end_new
, i
, probe_pass
);
402 ret
= bpf_adj_delta_to_off(insn
, pos
, end_old
,
403 end_new
, i
, probe_pass
);
412 static void bpf_adj_linfo(struct bpf_prog
*prog
, u32 off
, u32 delta
)
414 struct bpf_line_info
*linfo
;
417 nr_linfo
= prog
->aux
->nr_linfo
;
418 if (!nr_linfo
|| !delta
)
421 linfo
= prog
->aux
->linfo
;
423 for (i
= 0; i
< nr_linfo
; i
++)
424 if (off
< linfo
[i
].insn_off
)
427 /* Push all off < linfo[i].insn_off by delta */
428 for (; i
< nr_linfo
; i
++)
429 linfo
[i
].insn_off
+= delta
;
432 struct bpf_prog
*bpf_patch_insn_single(struct bpf_prog
*prog
, u32 off
,
433 const struct bpf_insn
*patch
, u32 len
)
435 u32 insn_adj_cnt
, insn_rest
, insn_delta
= len
- 1;
436 const u32 cnt_max
= S16_MAX
;
437 struct bpf_prog
*prog_adj
;
440 /* Since our patchlet doesn't expand the image, we're done. */
441 if (insn_delta
== 0) {
442 memcpy(prog
->insnsi
+ off
, patch
, sizeof(*patch
));
446 insn_adj_cnt
= prog
->len
+ insn_delta
;
448 /* Reject anything that would potentially let the insn->off
449 * target overflow when we have excessive program expansions.
450 * We need to probe here before we do any reallocation where
451 * we afterwards may not fail anymore.
453 if (insn_adj_cnt
> cnt_max
&&
454 (err
= bpf_adj_branches(prog
, off
, off
+ 1, off
+ len
, true)))
457 /* Several new instructions need to be inserted. Make room
458 * for them. Likely, there's no need for a new allocation as
459 * last page could have large enough tailroom.
461 prog_adj
= bpf_prog_realloc(prog
, bpf_prog_size(insn_adj_cnt
),
464 return ERR_PTR(-ENOMEM
);
466 prog_adj
->len
= insn_adj_cnt
;
468 /* Patching happens in 3 steps:
470 * 1) Move over tail of insnsi from next instruction onwards,
471 * so we can patch the single target insn with one or more
472 * new ones (patching is always from 1 to n insns, n > 0).
473 * 2) Inject new instructions at the target location.
474 * 3) Adjust branch offsets if necessary.
476 insn_rest
= insn_adj_cnt
- off
- len
;
478 memmove(prog_adj
->insnsi
+ off
+ len
, prog_adj
->insnsi
+ off
+ 1,
479 sizeof(*patch
) * insn_rest
);
480 memcpy(prog_adj
->insnsi
+ off
, patch
, sizeof(*patch
) * len
);
482 /* We are guaranteed to not fail at this point, otherwise
483 * the ship has sailed to reverse to the original state. An
484 * overflow cannot happen at this point.
486 BUG_ON(bpf_adj_branches(prog_adj
, off
, off
+ 1, off
+ len
, false));
488 bpf_adj_linfo(prog_adj
, off
, insn_delta
);
493 int bpf_remove_insns(struct bpf_prog
*prog
, u32 off
, u32 cnt
)
495 /* Branch offsets can't overflow when program is shrinking, no need
496 * to call bpf_adj_branches(..., true) here
498 memmove(prog
->insnsi
+ off
, prog
->insnsi
+ off
+ cnt
,
499 sizeof(struct bpf_insn
) * (prog
->len
- off
- cnt
));
502 return WARN_ON_ONCE(bpf_adj_branches(prog
, off
, off
+ cnt
, off
, false));
505 void bpf_prog_kallsyms_del_subprogs(struct bpf_prog
*fp
)
509 for (i
= 0; i
< fp
->aux
->func_cnt
; i
++)
510 bpf_prog_kallsyms_del(fp
->aux
->func
[i
]);
513 void bpf_prog_kallsyms_del_all(struct bpf_prog
*fp
)
515 bpf_prog_kallsyms_del_subprogs(fp
);
516 bpf_prog_kallsyms_del(fp
);
519 #ifdef CONFIG_BPF_JIT
520 /* All BPF JIT sysctl knobs here. */
521 int bpf_jit_enable __read_mostly
= IS_BUILTIN(CONFIG_BPF_JIT_ALWAYS_ON
);
522 int bpf_jit_harden __read_mostly
;
523 int bpf_jit_kallsyms __read_mostly
;
524 long bpf_jit_limit __read_mostly
;
526 static __always_inline
void
527 bpf_get_prog_addr_region(const struct bpf_prog
*prog
,
528 unsigned long *symbol_start
,
529 unsigned long *symbol_end
)
531 const struct bpf_binary_header
*hdr
= bpf_jit_binary_hdr(prog
);
532 unsigned long addr
= (unsigned long)hdr
;
534 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog
));
536 *symbol_start
= addr
;
537 *symbol_end
= addr
+ hdr
->pages
* PAGE_SIZE
;
540 void bpf_get_prog_name(const struct bpf_prog
*prog
, char *sym
)
542 const char *end
= sym
+ KSYM_NAME_LEN
;
543 const struct btf_type
*type
;
544 const char *func_name
;
546 BUILD_BUG_ON(sizeof("bpf_prog_") +
547 sizeof(prog
->tag
) * 2 +
548 /* name has been null terminated.
549 * We should need +1 for the '_' preceding
550 * the name. However, the null character
551 * is double counted between the name and the
552 * sizeof("bpf_prog_") above, so we omit
555 sizeof(prog
->aux
->name
) > KSYM_NAME_LEN
);
557 sym
+= snprintf(sym
, KSYM_NAME_LEN
, "bpf_prog_");
558 sym
= bin2hex(sym
, prog
->tag
, sizeof(prog
->tag
));
560 /* prog->aux->name will be ignored if full btf name is available */
561 if (prog
->aux
->func_info_cnt
) {
562 type
= btf_type_by_id(prog
->aux
->btf
,
563 prog
->aux
->func_info
[prog
->aux
->func_idx
].type_id
);
564 func_name
= btf_name_by_offset(prog
->aux
->btf
, type
->name_off
);
565 snprintf(sym
, (size_t)(end
- sym
), "_%s", func_name
);
569 if (prog
->aux
->name
[0])
570 snprintf(sym
, (size_t)(end
- sym
), "_%s", prog
->aux
->name
);
575 static __always_inline
unsigned long
576 bpf_get_prog_addr_start(struct latch_tree_node
*n
)
578 unsigned long symbol_start
, symbol_end
;
579 const struct bpf_prog_aux
*aux
;
581 aux
= container_of(n
, struct bpf_prog_aux
, ksym_tnode
);
582 bpf_get_prog_addr_region(aux
->prog
, &symbol_start
, &symbol_end
);
587 static __always_inline
bool bpf_tree_less(struct latch_tree_node
*a
,
588 struct latch_tree_node
*b
)
590 return bpf_get_prog_addr_start(a
) < bpf_get_prog_addr_start(b
);
593 static __always_inline
int bpf_tree_comp(void *key
, struct latch_tree_node
*n
)
595 unsigned long val
= (unsigned long)key
;
596 unsigned long symbol_start
, symbol_end
;
597 const struct bpf_prog_aux
*aux
;
599 aux
= container_of(n
, struct bpf_prog_aux
, ksym_tnode
);
600 bpf_get_prog_addr_region(aux
->prog
, &symbol_start
, &symbol_end
);
602 if (val
< symbol_start
)
604 if (val
>= symbol_end
)
610 static const struct latch_tree_ops bpf_tree_ops
= {
611 .less
= bpf_tree_less
,
612 .comp
= bpf_tree_comp
,
615 static DEFINE_SPINLOCK(bpf_lock
);
616 static LIST_HEAD(bpf_kallsyms
);
617 static struct latch_tree_root bpf_tree __cacheline_aligned
;
619 static void bpf_prog_ksym_node_add(struct bpf_prog_aux
*aux
)
621 WARN_ON_ONCE(!list_empty(&aux
->ksym_lnode
));
622 list_add_tail_rcu(&aux
->ksym_lnode
, &bpf_kallsyms
);
623 latch_tree_insert(&aux
->ksym_tnode
, &bpf_tree
, &bpf_tree_ops
);
626 static void bpf_prog_ksym_node_del(struct bpf_prog_aux
*aux
)
628 if (list_empty(&aux
->ksym_lnode
))
631 latch_tree_erase(&aux
->ksym_tnode
, &bpf_tree
, &bpf_tree_ops
);
632 list_del_rcu(&aux
->ksym_lnode
);
635 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog
*fp
)
637 return fp
->jited
&& !bpf_prog_was_classic(fp
);
640 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog
*fp
)
642 return list_empty(&fp
->aux
->ksym_lnode
) ||
643 fp
->aux
->ksym_lnode
.prev
== LIST_POISON2
;
646 void bpf_prog_kallsyms_add(struct bpf_prog
*fp
)
648 if (!bpf_prog_kallsyms_candidate(fp
) ||
649 !capable(CAP_SYS_ADMIN
))
652 spin_lock_bh(&bpf_lock
);
653 bpf_prog_ksym_node_add(fp
->aux
);
654 spin_unlock_bh(&bpf_lock
);
657 void bpf_prog_kallsyms_del(struct bpf_prog
*fp
)
659 if (!bpf_prog_kallsyms_candidate(fp
))
662 spin_lock_bh(&bpf_lock
);
663 bpf_prog_ksym_node_del(fp
->aux
);
664 spin_unlock_bh(&bpf_lock
);
667 static struct bpf_prog
*bpf_prog_kallsyms_find(unsigned long addr
)
669 struct latch_tree_node
*n
;
671 if (!bpf_jit_kallsyms_enabled())
674 n
= latch_tree_find((void *)addr
, &bpf_tree
, &bpf_tree_ops
);
676 container_of(n
, struct bpf_prog_aux
, ksym_tnode
)->prog
:
680 const char *__bpf_address_lookup(unsigned long addr
, unsigned long *size
,
681 unsigned long *off
, char *sym
)
683 unsigned long symbol_start
, symbol_end
;
684 struct bpf_prog
*prog
;
688 prog
= bpf_prog_kallsyms_find(addr
);
690 bpf_get_prog_addr_region(prog
, &symbol_start
, &symbol_end
);
691 bpf_get_prog_name(prog
, sym
);
695 *size
= symbol_end
- symbol_start
;
697 *off
= addr
- symbol_start
;
704 bool is_bpf_text_address(unsigned long addr
)
709 ret
= bpf_prog_kallsyms_find(addr
) != NULL
;
715 int bpf_get_kallsym(unsigned int symnum
, unsigned long *value
, char *type
,
718 struct bpf_prog_aux
*aux
;
722 if (!bpf_jit_kallsyms_enabled())
726 list_for_each_entry_rcu(aux
, &bpf_kallsyms
, ksym_lnode
) {
730 bpf_get_prog_name(aux
->prog
, sym
);
732 *value
= (unsigned long)aux
->prog
->bpf_func
;
733 *type
= BPF_SYM_ELF_TYPE
;
743 static atomic_long_t bpf_jit_current
;
745 /* Can be overridden by an arch's JIT compiler if it has a custom,
746 * dedicated BPF backend memory area, or if neither of the two
749 u64 __weak
bpf_jit_alloc_exec_limit(void)
751 #if defined(MODULES_VADDR)
752 return MODULES_END
- MODULES_VADDR
;
754 return VMALLOC_END
- VMALLOC_START
;
758 static int __init
bpf_jit_charge_init(void)
760 /* Only used as heuristic here to derive limit. */
761 bpf_jit_limit
= min_t(u64
, round_up(bpf_jit_alloc_exec_limit() >> 2,
762 PAGE_SIZE
), LONG_MAX
);
765 pure_initcall(bpf_jit_charge_init
);
767 static int bpf_jit_charge_modmem(u32 pages
)
769 if (atomic_long_add_return(pages
, &bpf_jit_current
) >
770 (bpf_jit_limit
>> PAGE_SHIFT
)) {
771 if (!capable(CAP_SYS_ADMIN
)) {
772 atomic_long_sub(pages
, &bpf_jit_current
);
780 static void bpf_jit_uncharge_modmem(u32 pages
)
782 atomic_long_sub(pages
, &bpf_jit_current
);
785 void *__weak
bpf_jit_alloc_exec(unsigned long size
)
787 return module_alloc(size
);
790 void __weak
bpf_jit_free_exec(void *addr
)
792 module_memfree(addr
);
795 struct bpf_binary_header
*
796 bpf_jit_binary_alloc(unsigned int proglen
, u8
**image_ptr
,
797 unsigned int alignment
,
798 bpf_jit_fill_hole_t bpf_fill_ill_insns
)
800 struct bpf_binary_header
*hdr
;
801 u32 size
, hole
, start
, pages
;
803 /* Most of BPF filters are really small, but if some of them
804 * fill a page, allow at least 128 extra bytes to insert a
805 * random section of illegal instructions.
807 size
= round_up(proglen
+ sizeof(*hdr
) + 128, PAGE_SIZE
);
808 pages
= size
/ PAGE_SIZE
;
810 if (bpf_jit_charge_modmem(pages
))
812 hdr
= bpf_jit_alloc_exec(size
);
814 bpf_jit_uncharge_modmem(pages
);
818 /* Fill space with illegal/arch-dep instructions. */
819 bpf_fill_ill_insns(hdr
, size
);
822 hole
= min_t(unsigned int, size
- (proglen
+ sizeof(*hdr
)),
823 PAGE_SIZE
- sizeof(*hdr
));
824 start
= (get_random_int() % hole
) & ~(alignment
- 1);
826 /* Leave a random number of instructions before BPF code. */
827 *image_ptr
= &hdr
->image
[start
];
832 void bpf_jit_binary_free(struct bpf_binary_header
*hdr
)
834 u32 pages
= hdr
->pages
;
836 bpf_jit_free_exec(hdr
);
837 bpf_jit_uncharge_modmem(pages
);
840 /* This symbol is only overridden by archs that have different
841 * requirements than the usual eBPF JITs, f.e. when they only
842 * implement cBPF JIT, do not set images read-only, etc.
844 void __weak
bpf_jit_free(struct bpf_prog
*fp
)
847 struct bpf_binary_header
*hdr
= bpf_jit_binary_hdr(fp
);
849 bpf_jit_binary_free(hdr
);
851 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp
));
854 bpf_prog_unlock_free(fp
);
857 int bpf_jit_get_func_addr(const struct bpf_prog
*prog
,
858 const struct bpf_insn
*insn
, bool extra_pass
,
859 u64
*func_addr
, bool *func_addr_fixed
)
865 *func_addr_fixed
= insn
->src_reg
!= BPF_PSEUDO_CALL
;
866 if (!*func_addr_fixed
) {
867 /* Place-holder address till the last pass has collected
868 * all addresses for JITed subprograms in which case we
869 * can pick them up from prog->aux.
873 else if (prog
->aux
->func
&&
874 off
>= 0 && off
< prog
->aux
->func_cnt
)
875 addr
= (u8
*)prog
->aux
->func
[off
]->bpf_func
;
879 /* Address of a BPF helper call. Since part of the core
880 * kernel, it's always at a fixed location. __bpf_call_base
881 * and the helper with imm relative to it are both in core
884 addr
= (u8
*)__bpf_call_base
+ imm
;
887 *func_addr
= (unsigned long)addr
;
891 static int bpf_jit_blind_insn(const struct bpf_insn
*from
,
892 const struct bpf_insn
*aux
,
893 struct bpf_insn
*to_buff
,
896 struct bpf_insn
*to
= to_buff
;
897 u32 imm_rnd
= get_random_int();
900 BUILD_BUG_ON(BPF_REG_AX
+ 1 != MAX_BPF_JIT_REG
);
901 BUILD_BUG_ON(MAX_BPF_REG
+ 1 != MAX_BPF_JIT_REG
);
903 /* Constraints on AX register:
905 * AX register is inaccessible from user space. It is mapped in
906 * all JITs, and used here for constant blinding rewrites. It is
907 * typically "stateless" meaning its contents are only valid within
908 * the executed instruction, but not across several instructions.
909 * There are a few exceptions however which are further detailed
912 * Constant blinding is only used by JITs, not in the interpreter.
913 * The interpreter uses AX in some occasions as a local temporary
914 * register e.g. in DIV or MOD instructions.
916 * In restricted circumstances, the verifier can also use the AX
917 * register for rewrites as long as they do not interfere with
920 if (from
->dst_reg
== BPF_REG_AX
|| from
->src_reg
== BPF_REG_AX
)
923 if (from
->imm
== 0 &&
924 (from
->code
== (BPF_ALU
| BPF_MOV
| BPF_K
) ||
925 from
->code
== (BPF_ALU64
| BPF_MOV
| BPF_K
))) {
926 *to
++ = BPF_ALU64_REG(BPF_XOR
, from
->dst_reg
, from
->dst_reg
);
930 switch (from
->code
) {
931 case BPF_ALU
| BPF_ADD
| BPF_K
:
932 case BPF_ALU
| BPF_SUB
| BPF_K
:
933 case BPF_ALU
| BPF_AND
| BPF_K
:
934 case BPF_ALU
| BPF_OR
| BPF_K
:
935 case BPF_ALU
| BPF_XOR
| BPF_K
:
936 case BPF_ALU
| BPF_MUL
| BPF_K
:
937 case BPF_ALU
| BPF_MOV
| BPF_K
:
938 case BPF_ALU
| BPF_DIV
| BPF_K
:
939 case BPF_ALU
| BPF_MOD
| BPF_K
:
940 *to
++ = BPF_ALU32_IMM(BPF_MOV
, BPF_REG_AX
, imm_rnd
^ from
->imm
);
941 *to
++ = BPF_ALU32_IMM(BPF_XOR
, BPF_REG_AX
, imm_rnd
);
942 *to
++ = BPF_ALU32_REG(from
->code
, from
->dst_reg
, BPF_REG_AX
);
945 case BPF_ALU64
| BPF_ADD
| BPF_K
:
946 case BPF_ALU64
| BPF_SUB
| BPF_K
:
947 case BPF_ALU64
| BPF_AND
| BPF_K
:
948 case BPF_ALU64
| BPF_OR
| BPF_K
:
949 case BPF_ALU64
| BPF_XOR
| BPF_K
:
950 case BPF_ALU64
| BPF_MUL
| BPF_K
:
951 case BPF_ALU64
| BPF_MOV
| BPF_K
:
952 case BPF_ALU64
| BPF_DIV
| BPF_K
:
953 case BPF_ALU64
| BPF_MOD
| BPF_K
:
954 *to
++ = BPF_ALU64_IMM(BPF_MOV
, BPF_REG_AX
, imm_rnd
^ from
->imm
);
955 *to
++ = BPF_ALU64_IMM(BPF_XOR
, BPF_REG_AX
, imm_rnd
);
956 *to
++ = BPF_ALU64_REG(from
->code
, from
->dst_reg
, BPF_REG_AX
);
959 case BPF_JMP
| BPF_JEQ
| BPF_K
:
960 case BPF_JMP
| BPF_JNE
| BPF_K
:
961 case BPF_JMP
| BPF_JGT
| BPF_K
:
962 case BPF_JMP
| BPF_JLT
| BPF_K
:
963 case BPF_JMP
| BPF_JGE
| BPF_K
:
964 case BPF_JMP
| BPF_JLE
| BPF_K
:
965 case BPF_JMP
| BPF_JSGT
| BPF_K
:
966 case BPF_JMP
| BPF_JSLT
| BPF_K
:
967 case BPF_JMP
| BPF_JSGE
| BPF_K
:
968 case BPF_JMP
| BPF_JSLE
| BPF_K
:
969 case BPF_JMP
| BPF_JSET
| BPF_K
:
970 /* Accommodate for extra offset in case of a backjump. */
974 *to
++ = BPF_ALU64_IMM(BPF_MOV
, BPF_REG_AX
, imm_rnd
^ from
->imm
);
975 *to
++ = BPF_ALU64_IMM(BPF_XOR
, BPF_REG_AX
, imm_rnd
);
976 *to
++ = BPF_JMP_REG(from
->code
, from
->dst_reg
, BPF_REG_AX
, off
);
979 case BPF_JMP32
| BPF_JEQ
| BPF_K
:
980 case BPF_JMP32
| BPF_JNE
| BPF_K
:
981 case BPF_JMP32
| BPF_JGT
| BPF_K
:
982 case BPF_JMP32
| BPF_JLT
| BPF_K
:
983 case BPF_JMP32
| BPF_JGE
| BPF_K
:
984 case BPF_JMP32
| BPF_JLE
| BPF_K
:
985 case BPF_JMP32
| BPF_JSGT
| BPF_K
:
986 case BPF_JMP32
| BPF_JSLT
| BPF_K
:
987 case BPF_JMP32
| BPF_JSGE
| BPF_K
:
988 case BPF_JMP32
| BPF_JSLE
| BPF_K
:
989 case BPF_JMP32
| BPF_JSET
| BPF_K
:
990 /* Accommodate for extra offset in case of a backjump. */
994 *to
++ = BPF_ALU32_IMM(BPF_MOV
, BPF_REG_AX
, imm_rnd
^ from
->imm
);
995 *to
++ = BPF_ALU32_IMM(BPF_XOR
, BPF_REG_AX
, imm_rnd
);
996 *to
++ = BPF_JMP32_REG(from
->code
, from
->dst_reg
, BPF_REG_AX
,
1000 case BPF_LD
| BPF_IMM
| BPF_DW
:
1001 *to
++ = BPF_ALU64_IMM(BPF_MOV
, BPF_REG_AX
, imm_rnd
^ aux
[1].imm
);
1002 *to
++ = BPF_ALU64_IMM(BPF_XOR
, BPF_REG_AX
, imm_rnd
);
1003 *to
++ = BPF_ALU64_IMM(BPF_LSH
, BPF_REG_AX
, 32);
1004 *to
++ = BPF_ALU64_REG(BPF_MOV
, aux
[0].dst_reg
, BPF_REG_AX
);
1006 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1007 *to
++ = BPF_ALU32_IMM(BPF_MOV
, BPF_REG_AX
, imm_rnd
^ aux
[0].imm
);
1008 *to
++ = BPF_ALU32_IMM(BPF_XOR
, BPF_REG_AX
, imm_rnd
);
1010 *to
++ = BPF_ZEXT_REG(BPF_REG_AX
);
1011 *to
++ = BPF_ALU64_REG(BPF_OR
, aux
[0].dst_reg
, BPF_REG_AX
);
1014 case BPF_ST
| BPF_MEM
| BPF_DW
:
1015 case BPF_ST
| BPF_MEM
| BPF_W
:
1016 case BPF_ST
| BPF_MEM
| BPF_H
:
1017 case BPF_ST
| BPF_MEM
| BPF_B
:
1018 *to
++ = BPF_ALU64_IMM(BPF_MOV
, BPF_REG_AX
, imm_rnd
^ from
->imm
);
1019 *to
++ = BPF_ALU64_IMM(BPF_XOR
, BPF_REG_AX
, imm_rnd
);
1020 *to
++ = BPF_STX_MEM(from
->code
, from
->dst_reg
, BPF_REG_AX
, from
->off
);
1024 return to
- to_buff
;
1027 static struct bpf_prog
*bpf_prog_clone_create(struct bpf_prog
*fp_other
,
1028 gfp_t gfp_extra_flags
)
1030 gfp_t gfp_flags
= GFP_KERNEL
| __GFP_ZERO
| gfp_extra_flags
;
1031 struct bpf_prog
*fp
;
1033 fp
= __vmalloc(fp_other
->pages
* PAGE_SIZE
, gfp_flags
, PAGE_KERNEL
);
1035 /* aux->prog still points to the fp_other one, so
1036 * when promoting the clone to the real program,
1037 * this still needs to be adapted.
1039 memcpy(fp
, fp_other
, fp_other
->pages
* PAGE_SIZE
);
1045 static void bpf_prog_clone_free(struct bpf_prog
*fp
)
1047 /* aux was stolen by the other clone, so we cannot free
1048 * it from this path! It will be freed eventually by the
1049 * other program on release.
1051 * At this point, we don't need a deferred release since
1052 * clone is guaranteed to not be locked.
1055 __bpf_prog_free(fp
);
1058 void bpf_jit_prog_release_other(struct bpf_prog
*fp
, struct bpf_prog
*fp_other
)
1060 /* We have to repoint aux->prog to self, as we don't
1061 * know whether fp here is the clone or the original.
1064 bpf_prog_clone_free(fp_other
);
1067 struct bpf_prog
*bpf_jit_blind_constants(struct bpf_prog
*prog
)
1069 struct bpf_insn insn_buff
[16], aux
[2];
1070 struct bpf_prog
*clone
, *tmp
;
1071 int insn_delta
, insn_cnt
;
1072 struct bpf_insn
*insn
;
1075 if (!bpf_jit_blinding_enabled(prog
) || prog
->blinded
)
1078 clone
= bpf_prog_clone_create(prog
, GFP_USER
);
1080 return ERR_PTR(-ENOMEM
);
1082 insn_cnt
= clone
->len
;
1083 insn
= clone
->insnsi
;
1085 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
1086 /* We temporarily need to hold the original ld64 insn
1087 * so that we can still access the first part in the
1088 * second blinding run.
1090 if (insn
[0].code
== (BPF_LD
| BPF_IMM
| BPF_DW
) &&
1092 memcpy(aux
, insn
, sizeof(aux
));
1094 rewritten
= bpf_jit_blind_insn(insn
, aux
, insn_buff
,
1095 clone
->aux
->verifier_zext
);
1099 tmp
= bpf_patch_insn_single(clone
, i
, insn_buff
, rewritten
);
1101 /* Patching may have repointed aux->prog during
1102 * realloc from the original one, so we need to
1103 * fix it up here on error.
1105 bpf_jit_prog_release_other(prog
, clone
);
1110 insn_delta
= rewritten
- 1;
1112 /* Walk new program and skip insns we just inserted. */
1113 insn
= clone
->insnsi
+ i
+ insn_delta
;
1114 insn_cnt
+= insn_delta
;
1121 #endif /* CONFIG_BPF_JIT */
1123 /* Base function for offset calculation. Needs to go into .text section,
1124 * therefore keeping it non-static as well; will also be used by JITs
1125 * anyway later on, so do not let the compiler omit it. This also needs
1126 * to go into kallsyms for correlation from e.g. bpftool, so naming
1129 noinline u64
__bpf_call_base(u64 r1
, u64 r2
, u64 r3
, u64 r4
, u64 r5
)
1133 EXPORT_SYMBOL_GPL(__bpf_call_base
);
1135 /* All UAPI available opcodes. */
1136 #define BPF_INSN_MAP(INSN_2, INSN_3) \
1137 /* 32 bit ALU operations. */ \
1138 /* Register based. */ \
1139 INSN_3(ALU, ADD, X), \
1140 INSN_3(ALU, SUB, X), \
1141 INSN_3(ALU, AND, X), \
1142 INSN_3(ALU, OR, X), \
1143 INSN_3(ALU, LSH, X), \
1144 INSN_3(ALU, RSH, X), \
1145 INSN_3(ALU, XOR, X), \
1146 INSN_3(ALU, MUL, X), \
1147 INSN_3(ALU, MOV, X), \
1148 INSN_3(ALU, ARSH, X), \
1149 INSN_3(ALU, DIV, X), \
1150 INSN_3(ALU, MOD, X), \
1152 INSN_3(ALU, END, TO_BE), \
1153 INSN_3(ALU, END, TO_LE), \
1154 /* Immediate based. */ \
1155 INSN_3(ALU, ADD, K), \
1156 INSN_3(ALU, SUB, K), \
1157 INSN_3(ALU, AND, K), \
1158 INSN_3(ALU, OR, K), \
1159 INSN_3(ALU, LSH, K), \
1160 INSN_3(ALU, RSH, K), \
1161 INSN_3(ALU, XOR, K), \
1162 INSN_3(ALU, MUL, K), \
1163 INSN_3(ALU, MOV, K), \
1164 INSN_3(ALU, ARSH, K), \
1165 INSN_3(ALU, DIV, K), \
1166 INSN_3(ALU, MOD, K), \
1167 /* 64 bit ALU operations. */ \
1168 /* Register based. */ \
1169 INSN_3(ALU64, ADD, X), \
1170 INSN_3(ALU64, SUB, X), \
1171 INSN_3(ALU64, AND, X), \
1172 INSN_3(ALU64, OR, X), \
1173 INSN_3(ALU64, LSH, X), \
1174 INSN_3(ALU64, RSH, X), \
1175 INSN_3(ALU64, XOR, X), \
1176 INSN_3(ALU64, MUL, X), \
1177 INSN_3(ALU64, MOV, X), \
1178 INSN_3(ALU64, ARSH, X), \
1179 INSN_3(ALU64, DIV, X), \
1180 INSN_3(ALU64, MOD, X), \
1181 INSN_2(ALU64, NEG), \
1182 /* Immediate based. */ \
1183 INSN_3(ALU64, ADD, K), \
1184 INSN_3(ALU64, SUB, K), \
1185 INSN_3(ALU64, AND, K), \
1186 INSN_3(ALU64, OR, K), \
1187 INSN_3(ALU64, LSH, K), \
1188 INSN_3(ALU64, RSH, K), \
1189 INSN_3(ALU64, XOR, K), \
1190 INSN_3(ALU64, MUL, K), \
1191 INSN_3(ALU64, MOV, K), \
1192 INSN_3(ALU64, ARSH, K), \
1193 INSN_3(ALU64, DIV, K), \
1194 INSN_3(ALU64, MOD, K), \
1195 /* Call instruction. */ \
1196 INSN_2(JMP, CALL), \
1197 /* Exit instruction. */ \
1198 INSN_2(JMP, EXIT), \
1199 /* 32-bit Jump instructions. */ \
1200 /* Register based. */ \
1201 INSN_3(JMP32, JEQ, X), \
1202 INSN_3(JMP32, JNE, X), \
1203 INSN_3(JMP32, JGT, X), \
1204 INSN_3(JMP32, JLT, X), \
1205 INSN_3(JMP32, JGE, X), \
1206 INSN_3(JMP32, JLE, X), \
1207 INSN_3(JMP32, JSGT, X), \
1208 INSN_3(JMP32, JSLT, X), \
1209 INSN_3(JMP32, JSGE, X), \
1210 INSN_3(JMP32, JSLE, X), \
1211 INSN_3(JMP32, JSET, X), \
1212 /* Immediate based. */ \
1213 INSN_3(JMP32, JEQ, K), \
1214 INSN_3(JMP32, JNE, K), \
1215 INSN_3(JMP32, JGT, K), \
1216 INSN_3(JMP32, JLT, K), \
1217 INSN_3(JMP32, JGE, K), \
1218 INSN_3(JMP32, JLE, K), \
1219 INSN_3(JMP32, JSGT, K), \
1220 INSN_3(JMP32, JSLT, K), \
1221 INSN_3(JMP32, JSGE, K), \
1222 INSN_3(JMP32, JSLE, K), \
1223 INSN_3(JMP32, JSET, K), \
1224 /* Jump instructions. */ \
1225 /* Register based. */ \
1226 INSN_3(JMP, JEQ, X), \
1227 INSN_3(JMP, JNE, X), \
1228 INSN_3(JMP, JGT, X), \
1229 INSN_3(JMP, JLT, X), \
1230 INSN_3(JMP, JGE, X), \
1231 INSN_3(JMP, JLE, X), \
1232 INSN_3(JMP, JSGT, X), \
1233 INSN_3(JMP, JSLT, X), \
1234 INSN_3(JMP, JSGE, X), \
1235 INSN_3(JMP, JSLE, X), \
1236 INSN_3(JMP, JSET, X), \
1237 /* Immediate based. */ \
1238 INSN_3(JMP, JEQ, K), \
1239 INSN_3(JMP, JNE, K), \
1240 INSN_3(JMP, JGT, K), \
1241 INSN_3(JMP, JLT, K), \
1242 INSN_3(JMP, JGE, K), \
1243 INSN_3(JMP, JLE, K), \
1244 INSN_3(JMP, JSGT, K), \
1245 INSN_3(JMP, JSLT, K), \
1246 INSN_3(JMP, JSGE, K), \
1247 INSN_3(JMP, JSLE, K), \
1248 INSN_3(JMP, JSET, K), \
1250 /* Store instructions. */ \
1251 /* Register based. */ \
1252 INSN_3(STX, MEM, B), \
1253 INSN_3(STX, MEM, H), \
1254 INSN_3(STX, MEM, W), \
1255 INSN_3(STX, MEM, DW), \
1256 INSN_3(STX, XADD, W), \
1257 INSN_3(STX, XADD, DW), \
1258 /* Immediate based. */ \
1259 INSN_3(ST, MEM, B), \
1260 INSN_3(ST, MEM, H), \
1261 INSN_3(ST, MEM, W), \
1262 INSN_3(ST, MEM, DW), \
1263 /* Load instructions. */ \
1264 /* Register based. */ \
1265 INSN_3(LDX, MEM, B), \
1266 INSN_3(LDX, MEM, H), \
1267 INSN_3(LDX, MEM, W), \
1268 INSN_3(LDX, MEM, DW), \
1269 /* Immediate based. */ \
1272 bool bpf_opcode_in_insntable(u8 code
)
1274 #define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true
1275 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1276 static const bool public_insntable
[256] = {
1277 [0 ... 255] = false,
1278 /* Now overwrite non-defaults ... */
1279 BPF_INSN_MAP(BPF_INSN_2_TBL
, BPF_INSN_3_TBL
),
1280 /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1281 [BPF_LD
| BPF_ABS
| BPF_B
] = true,
1282 [BPF_LD
| BPF_ABS
| BPF_H
] = true,
1283 [BPF_LD
| BPF_ABS
| BPF_W
] = true,
1284 [BPF_LD
| BPF_IND
| BPF_B
] = true,
1285 [BPF_LD
| BPF_IND
| BPF_H
] = true,
1286 [BPF_LD
| BPF_IND
| BPF_W
] = true,
1288 #undef BPF_INSN_3_TBL
1289 #undef BPF_INSN_2_TBL
1290 return public_insntable
[code
];
1293 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1295 * __bpf_prog_run - run eBPF program on a given context
1296 * @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1297 * @insn: is the array of eBPF instructions
1298 * @stack: is the eBPF storage stack
1300 * Decode and execute eBPF instructions.
1302 static u64 __no_fgcse
___bpf_prog_run(u64
*regs
, const struct bpf_insn
*insn
, u64
*stack
)
1304 #define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y
1305 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1306 static const void * const jumptable
[256] __annotate_jump_table
= {
1307 [0 ... 255] = &&default_label
,
1308 /* Now overwrite non-defaults ... */
1309 BPF_INSN_MAP(BPF_INSN_2_LBL
, BPF_INSN_3_LBL
),
1310 /* Non-UAPI available opcodes. */
1311 [BPF_JMP
| BPF_CALL_ARGS
] = &&JMP_CALL_ARGS
,
1312 [BPF_JMP
| BPF_TAIL_CALL
] = &&JMP_TAIL_CALL
,
1314 #undef BPF_INSN_3_LBL
1315 #undef BPF_INSN_2_LBL
1316 u32 tail_call_cnt
= 0;
1318 #define CONT ({ insn++; goto select_insn; })
1319 #define CONT_JMP ({ insn++; goto select_insn; })
1322 goto *jumptable
[insn
->code
];
1325 #define ALU(OPCODE, OP) \
1326 ALU64_##OPCODE##_X: \
1330 DST = (u32) DST OP (u32) SRC; \
1332 ALU64_##OPCODE##_K: \
1336 DST = (u32) DST OP (u32) IMM; \
1367 DST
= (u64
) (u32
) insn
[0].imm
| ((u64
) (u32
) insn
[1].imm
) << 32;
1371 DST
= (u64
) (u32
) (((s32
) DST
) >> SRC
);
1374 DST
= (u64
) (u32
) (((s32
) DST
) >> IMM
);
1377 (*(s64
*) &DST
) >>= SRC
;
1380 (*(s64
*) &DST
) >>= IMM
;
1383 div64_u64_rem(DST
, SRC
, &AX
);
1388 DST
= do_div(AX
, (u32
) SRC
);
1391 div64_u64_rem(DST
, IMM
, &AX
);
1396 DST
= do_div(AX
, (u32
) IMM
);
1399 DST
= div64_u64(DST
, SRC
);
1403 do_div(AX
, (u32
) SRC
);
1407 DST
= div64_u64(DST
, IMM
);
1411 do_div(AX
, (u32
) IMM
);
1417 DST
= (__force u16
) cpu_to_be16(DST
);
1420 DST
= (__force u32
) cpu_to_be32(DST
);
1423 DST
= (__force u64
) cpu_to_be64(DST
);
1430 DST
= (__force u16
) cpu_to_le16(DST
);
1433 DST
= (__force u32
) cpu_to_le32(DST
);
1436 DST
= (__force u64
) cpu_to_le64(DST
);
1443 /* Function call scratches BPF_R1-BPF_R5 registers,
1444 * preserves BPF_R6-BPF_R9, and stores return value
1447 BPF_R0
= (__bpf_call_base
+ insn
->imm
)(BPF_R1
, BPF_R2
, BPF_R3
,
1452 BPF_R0
= (__bpf_call_base_args
+ insn
->imm
)(BPF_R1
, BPF_R2
,
1455 insn
+ insn
->off
+ 1);
1459 struct bpf_map
*map
= (struct bpf_map
*) (unsigned long) BPF_R2
;
1460 struct bpf_array
*array
= container_of(map
, struct bpf_array
, map
);
1461 struct bpf_prog
*prog
;
1464 if (unlikely(index
>= array
->map
.max_entries
))
1466 if (unlikely(tail_call_cnt
> MAX_TAIL_CALL_CNT
))
1471 prog
= READ_ONCE(array
->ptrs
[index
]);
1475 /* ARG1 at this point is guaranteed to point to CTX from
1476 * the verifier side due to the fact that the tail call is
1477 * handeled like a helper, that is, bpf_tail_call_proto,
1478 * where arg1_type is ARG_PTR_TO_CTX.
1480 insn
= prog
->insnsi
;
1491 #define COND_JMP(SIGN, OPCODE, CMP_OP) \
1493 if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) { \
1494 insn += insn->off; \
1498 JMP32_##OPCODE##_X: \
1499 if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) { \
1500 insn += insn->off; \
1505 if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) { \
1506 insn += insn->off; \
1510 JMP32_##OPCODE##_K: \
1511 if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) { \
1512 insn += insn->off; \
1516 COND_JMP(u
, JEQ
, ==)
1517 COND_JMP(u
, JNE
, !=)
1520 COND_JMP(u
, JGE
, >=)
1521 COND_JMP(u
, JLE
, <=)
1522 COND_JMP(u
, JSET
, &)
1523 COND_JMP(s
, JSGT
, >)
1524 COND_JMP(s
, JSLT
, <)
1525 COND_JMP(s
, JSGE
, >=)
1526 COND_JMP(s
, JSLE
, <=)
1528 /* STX and ST and LDX*/
1529 #define LDST(SIZEOP, SIZE) \
1531 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
1534 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
1537 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
1545 STX_XADD_W
: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1546 atomic_add((u32
) SRC
, (atomic_t
*)(unsigned long)
1549 STX_XADD_DW
: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1550 atomic64_add((u64
) SRC
, (atomic64_t
*)(unsigned long)
1555 /* If we ever reach this, we have a bug somewhere. Die hard here
1556 * instead of just returning 0; we could be somewhere in a subprog,
1557 * so execution could continue otherwise which we do /not/ want.
1559 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1561 pr_warn("BPF interpreter: unknown opcode %02x\n", insn
->code
);
1566 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1567 #define DEFINE_BPF_PROG_RUN(stack_size) \
1568 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1570 u64 stack[stack_size / sizeof(u64)]; \
1571 u64 regs[MAX_BPF_EXT_REG]; \
1573 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1574 ARG1 = (u64) (unsigned long) ctx; \
1575 return ___bpf_prog_run(regs, insn, stack); \
1578 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1579 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1580 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1581 const struct bpf_insn *insn) \
1583 u64 stack[stack_size / sizeof(u64)]; \
1584 u64 regs[MAX_BPF_EXT_REG]; \
1586 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1592 return ___bpf_prog_run(regs, insn, stack); \
1595 #define EVAL1(FN, X) FN(X)
1596 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1597 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1598 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1599 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1600 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1602 EVAL6(DEFINE_BPF_PROG_RUN
, 32, 64, 96, 128, 160, 192);
1603 EVAL6(DEFINE_BPF_PROG_RUN
, 224, 256, 288, 320, 352, 384);
1604 EVAL4(DEFINE_BPF_PROG_RUN
, 416, 448, 480, 512);
1606 EVAL6(DEFINE_BPF_PROG_RUN_ARGS
, 32, 64, 96, 128, 160, 192);
1607 EVAL6(DEFINE_BPF_PROG_RUN_ARGS
, 224, 256, 288, 320, 352, 384);
1608 EVAL4(DEFINE_BPF_PROG_RUN_ARGS
, 416, 448, 480, 512);
1610 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1612 static unsigned int (*interpreters
[])(const void *ctx
,
1613 const struct bpf_insn
*insn
) = {
1614 EVAL6(PROG_NAME_LIST
, 32, 64, 96, 128, 160, 192)
1615 EVAL6(PROG_NAME_LIST
, 224, 256, 288, 320, 352, 384)
1616 EVAL4(PROG_NAME_LIST
, 416, 448, 480, 512)
1618 #undef PROG_NAME_LIST
1619 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1620 static u64 (*interpreters_args
[])(u64 r1
, u64 r2
, u64 r3
, u64 r4
, u64 r5
,
1621 const struct bpf_insn
*insn
) = {
1622 EVAL6(PROG_NAME_LIST
, 32, 64, 96, 128, 160, 192)
1623 EVAL6(PROG_NAME_LIST
, 224, 256, 288, 320, 352, 384)
1624 EVAL4(PROG_NAME_LIST
, 416, 448, 480, 512)
1626 #undef PROG_NAME_LIST
1628 void bpf_patch_call_args(struct bpf_insn
*insn
, u32 stack_depth
)
1630 stack_depth
= max_t(u32
, stack_depth
, 1);
1631 insn
->off
= (s16
) insn
->imm
;
1632 insn
->imm
= interpreters_args
[(round_up(stack_depth
, 32) / 32) - 1] -
1633 __bpf_call_base_args
;
1634 insn
->code
= BPF_JMP
| BPF_CALL_ARGS
;
1638 static unsigned int __bpf_prog_ret0_warn(const void *ctx
,
1639 const struct bpf_insn
*insn
)
1641 /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1642 * is not working properly, so warn about it!
1649 bool bpf_prog_array_compatible(struct bpf_array
*array
,
1650 const struct bpf_prog
*fp
)
1652 if (fp
->kprobe_override
)
1655 if (!array
->owner_prog_type
) {
1656 /* There's no owner yet where we could check for
1659 array
->owner_prog_type
= fp
->type
;
1660 array
->owner_jited
= fp
->jited
;
1665 return array
->owner_prog_type
== fp
->type
&&
1666 array
->owner_jited
== fp
->jited
;
1669 static int bpf_check_tail_call(const struct bpf_prog
*fp
)
1671 struct bpf_prog_aux
*aux
= fp
->aux
;
1674 for (i
= 0; i
< aux
->used_map_cnt
; i
++) {
1675 struct bpf_map
*map
= aux
->used_maps
[i
];
1676 struct bpf_array
*array
;
1678 if (map
->map_type
!= BPF_MAP_TYPE_PROG_ARRAY
)
1681 array
= container_of(map
, struct bpf_array
, map
);
1682 if (!bpf_prog_array_compatible(array
, fp
))
1689 static void bpf_prog_select_func(struct bpf_prog
*fp
)
1691 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1692 u32 stack_depth
= max_t(u32
, fp
->aux
->stack_depth
, 1);
1694 fp
->bpf_func
= interpreters
[(round_up(stack_depth
, 32) / 32) - 1];
1696 fp
->bpf_func
= __bpf_prog_ret0_warn
;
1701 * bpf_prog_select_runtime - select exec runtime for BPF program
1702 * @fp: bpf_prog populated with internal BPF program
1703 * @err: pointer to error variable
1705 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1706 * The BPF program will be executed via BPF_PROG_RUN() macro.
1708 struct bpf_prog
*bpf_prog_select_runtime(struct bpf_prog
*fp
, int *err
)
1710 /* In case of BPF to BPF calls, verifier did all the prep
1711 * work with regards to JITing, etc.
1716 bpf_prog_select_func(fp
);
1718 /* eBPF JITs can rewrite the program in case constant
1719 * blinding is active. However, in case of error during
1720 * blinding, bpf_int_jit_compile() must always return a
1721 * valid program, which in this case would simply not
1722 * be JITed, but falls back to the interpreter.
1724 if (!bpf_prog_is_dev_bound(fp
->aux
)) {
1725 *err
= bpf_prog_alloc_jited_linfo(fp
);
1729 fp
= bpf_int_jit_compile(fp
);
1731 bpf_prog_free_jited_linfo(fp
);
1732 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1737 bpf_prog_free_unused_jited_linfo(fp
);
1740 *err
= bpf_prog_offload_compile(fp
);
1746 bpf_prog_lock_ro(fp
);
1748 /* The tail call compatibility check can only be done at
1749 * this late stage as we need to determine, if we deal
1750 * with JITed or non JITed program concatenations and not
1751 * all eBPF JITs might immediately support all features.
1753 *err
= bpf_check_tail_call(fp
);
1757 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime
);
1759 static unsigned int __bpf_prog_ret1(const void *ctx
,
1760 const struct bpf_insn
*insn
)
1765 static struct bpf_prog_dummy
{
1766 struct bpf_prog prog
;
1767 } dummy_bpf_prog
= {
1769 .bpf_func
= __bpf_prog_ret1
,
1773 /* to avoid allocating empty bpf_prog_array for cgroups that
1774 * don't have bpf program attached use one global 'empty_prog_array'
1775 * It will not be modified the caller of bpf_prog_array_alloc()
1776 * (since caller requested prog_cnt == 0)
1777 * that pointer should be 'freed' by bpf_prog_array_free()
1780 struct bpf_prog_array hdr
;
1781 struct bpf_prog
*null_prog
;
1782 } empty_prog_array
= {
1786 struct bpf_prog_array
*bpf_prog_array_alloc(u32 prog_cnt
, gfp_t flags
)
1789 return kzalloc(sizeof(struct bpf_prog_array
) +
1790 sizeof(struct bpf_prog_array_item
) *
1794 return &empty_prog_array
.hdr
;
1797 void bpf_prog_array_free(struct bpf_prog_array
*progs
)
1799 if (!progs
|| progs
== &empty_prog_array
.hdr
)
1801 kfree_rcu(progs
, rcu
);
1804 int bpf_prog_array_length(struct bpf_prog_array
*array
)
1806 struct bpf_prog_array_item
*item
;
1809 for (item
= array
->items
; item
->prog
; item
++)
1810 if (item
->prog
!= &dummy_bpf_prog
.prog
)
1815 bool bpf_prog_array_is_empty(struct bpf_prog_array
*array
)
1817 struct bpf_prog_array_item
*item
;
1819 for (item
= array
->items
; item
->prog
; item
++)
1820 if (item
->prog
!= &dummy_bpf_prog
.prog
)
1825 static bool bpf_prog_array_copy_core(struct bpf_prog_array
*array
,
1829 struct bpf_prog_array_item
*item
;
1832 for (item
= array
->items
; item
->prog
; item
++) {
1833 if (item
->prog
== &dummy_bpf_prog
.prog
)
1835 prog_ids
[i
] = item
->prog
->aux
->id
;
1836 if (++i
== request_cnt
) {
1842 return !!(item
->prog
);
1845 int bpf_prog_array_copy_to_user(struct bpf_prog_array
*array
,
1846 __u32 __user
*prog_ids
, u32 cnt
)
1848 unsigned long err
= 0;
1852 /* users of this function are doing:
1853 * cnt = bpf_prog_array_length();
1855 * bpf_prog_array_copy_to_user(..., cnt);
1856 * so below kcalloc doesn't need extra cnt > 0 check.
1858 ids
= kcalloc(cnt
, sizeof(u32
), GFP_USER
| __GFP_NOWARN
);
1861 nospc
= bpf_prog_array_copy_core(array
, ids
, cnt
);
1862 err
= copy_to_user(prog_ids
, ids
, cnt
* sizeof(u32
));
1871 void bpf_prog_array_delete_safe(struct bpf_prog_array
*array
,
1872 struct bpf_prog
*old_prog
)
1874 struct bpf_prog_array_item
*item
;
1876 for (item
= array
->items
; item
->prog
; item
++)
1877 if (item
->prog
== old_prog
) {
1878 WRITE_ONCE(item
->prog
, &dummy_bpf_prog
.prog
);
1883 int bpf_prog_array_copy(struct bpf_prog_array
*old_array
,
1884 struct bpf_prog
*exclude_prog
,
1885 struct bpf_prog
*include_prog
,
1886 struct bpf_prog_array
**new_array
)
1888 int new_prog_cnt
, carry_prog_cnt
= 0;
1889 struct bpf_prog_array_item
*existing
;
1890 struct bpf_prog_array
*array
;
1891 bool found_exclude
= false;
1892 int new_prog_idx
= 0;
1894 /* Figure out how many existing progs we need to carry over to
1898 existing
= old_array
->items
;
1899 for (; existing
->prog
; existing
++) {
1900 if (existing
->prog
== exclude_prog
) {
1901 found_exclude
= true;
1904 if (existing
->prog
!= &dummy_bpf_prog
.prog
)
1906 if (existing
->prog
== include_prog
)
1911 if (exclude_prog
&& !found_exclude
)
1914 /* How many progs (not NULL) will be in the new array? */
1915 new_prog_cnt
= carry_prog_cnt
;
1919 /* Do we have any prog (not NULL) in the new array? */
1920 if (!new_prog_cnt
) {
1925 /* +1 as the end of prog_array is marked with NULL */
1926 array
= bpf_prog_array_alloc(new_prog_cnt
+ 1, GFP_KERNEL
);
1930 /* Fill in the new prog array */
1931 if (carry_prog_cnt
) {
1932 existing
= old_array
->items
;
1933 for (; existing
->prog
; existing
++)
1934 if (existing
->prog
!= exclude_prog
&&
1935 existing
->prog
!= &dummy_bpf_prog
.prog
) {
1936 array
->items
[new_prog_idx
++].prog
=
1941 array
->items
[new_prog_idx
++].prog
= include_prog
;
1942 array
->items
[new_prog_idx
].prog
= NULL
;
1947 int bpf_prog_array_copy_info(struct bpf_prog_array
*array
,
1948 u32
*prog_ids
, u32 request_cnt
,
1954 cnt
= bpf_prog_array_length(array
);
1958 /* return early if user requested only program count or nothing to copy */
1959 if (!request_cnt
|| !cnt
)
1962 /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
1963 return bpf_prog_array_copy_core(array
, prog_ids
, request_cnt
) ? -ENOSPC
1967 static void bpf_prog_free_deferred(struct work_struct
*work
)
1969 struct bpf_prog_aux
*aux
;
1972 aux
= container_of(work
, struct bpf_prog_aux
, work
);
1973 if (bpf_prog_is_dev_bound(aux
))
1974 bpf_prog_offload_destroy(aux
->prog
);
1975 #ifdef CONFIG_PERF_EVENTS
1976 if (aux
->prog
->has_callchain_buf
)
1977 put_callchain_buffers();
1979 for (i
= 0; i
< aux
->func_cnt
; i
++)
1980 bpf_jit_free(aux
->func
[i
]);
1981 if (aux
->func_cnt
) {
1983 bpf_prog_unlock_free(aux
->prog
);
1985 bpf_jit_free(aux
->prog
);
1989 /* Free internal BPF program */
1990 void bpf_prog_free(struct bpf_prog
*fp
)
1992 struct bpf_prog_aux
*aux
= fp
->aux
;
1994 INIT_WORK(&aux
->work
, bpf_prog_free_deferred
);
1995 schedule_work(&aux
->work
);
1997 EXPORT_SYMBOL_GPL(bpf_prog_free
);
1999 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2000 static DEFINE_PER_CPU(struct rnd_state
, bpf_user_rnd_state
);
2002 void bpf_user_rnd_init_once(void)
2004 prandom_init_once(&bpf_user_rnd_state
);
2007 BPF_CALL_0(bpf_user_rnd_u32
)
2009 /* Should someone ever have the rather unwise idea to use some
2010 * of the registers passed into this function, then note that
2011 * this function is called from native eBPF and classic-to-eBPF
2012 * transformations. Register assignments from both sides are
2013 * different, f.e. classic always sets fn(ctx, A, X) here.
2015 struct rnd_state
*state
;
2018 state
= &get_cpu_var(bpf_user_rnd_state
);
2019 res
= prandom_u32_state(state
);
2020 put_cpu_var(bpf_user_rnd_state
);
2025 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2026 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak
;
2027 const struct bpf_func_proto bpf_map_update_elem_proto __weak
;
2028 const struct bpf_func_proto bpf_map_delete_elem_proto __weak
;
2029 const struct bpf_func_proto bpf_map_push_elem_proto __weak
;
2030 const struct bpf_func_proto bpf_map_pop_elem_proto __weak
;
2031 const struct bpf_func_proto bpf_map_peek_elem_proto __weak
;
2032 const struct bpf_func_proto bpf_spin_lock_proto __weak
;
2033 const struct bpf_func_proto bpf_spin_unlock_proto __weak
;
2035 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak
;
2036 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak
;
2037 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak
;
2038 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak
;
2040 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak
;
2041 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak
;
2042 const struct bpf_func_proto bpf_get_current_comm_proto __weak
;
2043 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak
;
2044 const struct bpf_func_proto bpf_get_local_storage_proto __weak
;
2046 const struct bpf_func_proto
* __weak
bpf_get_trace_printk_proto(void)
2052 bpf_event_output(struct bpf_map
*map
, u64 flags
, void *meta
, u64 meta_size
,
2053 void *ctx
, u64 ctx_size
, bpf_ctx_copy_t ctx_copy
)
2057 EXPORT_SYMBOL_GPL(bpf_event_output
);
2059 /* Always built-in helper functions. */
2060 const struct bpf_func_proto bpf_tail_call_proto
= {
2063 .ret_type
= RET_VOID
,
2064 .arg1_type
= ARG_PTR_TO_CTX
,
2065 .arg2_type
= ARG_CONST_MAP_PTR
,
2066 .arg3_type
= ARG_ANYTHING
,
2069 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2070 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2071 * eBPF and implicitly also cBPF can get JITed!
2073 struct bpf_prog
* __weak
bpf_int_jit_compile(struct bpf_prog
*prog
)
2078 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2079 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2081 void __weak
bpf_jit_compile(struct bpf_prog
*prog
)
2085 bool __weak
bpf_helper_changes_pkt_data(void *func
)
2090 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2091 * analysis code and wants explicit zero extension inserted by verifier.
2092 * Otherwise, return FALSE.
2094 bool __weak
bpf_jit_needs_zext(void)
2099 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2100 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2102 int __weak
skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
,
2108 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key
);
2109 EXPORT_SYMBOL(bpf_stats_enabled_key
);
2111 /* All definitions of tracepoints related to BPF. */
2112 #define CREATE_TRACE_POINTS
2113 #include <linux/bpf_trace.h>
2115 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception
);
2116 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx
);