1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
25 static const struct bpf_verifier_ops
* const bpf_verifier_ops
[] = {
26 #define BPF_PROG_TYPE(_id, _name) \
27 [_id] = & _name ## _verifier_ops,
28 #define BPF_MAP_TYPE(_id, _ops)
29 #include <linux/bpf_types.h>
34 /* bpf_check() is a static code analyzer that walks eBPF program
35 * instruction by instruction and updates register/stack state.
36 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
38 * The first pass is depth-first-search to check that the program is a DAG.
39 * It rejects the following programs:
40 * - larger than BPF_MAXINSNS insns
41 * - if loop is present (detected via back-edge)
42 * - unreachable insns exist (shouldn't be a forest. program = one function)
43 * - out of bounds or malformed jumps
44 * The second pass is all possible path descent from the 1st insn.
45 * Since it's analyzing all pathes through the program, the length of the
46 * analysis is limited to 64k insn, which may be hit even if total number of
47 * insn is less then 4K, but there are too many branches that change stack/regs.
48 * Number of 'branches to be analyzed' is limited to 1k
50 * On entry to each instruction, each register has a type, and the instruction
51 * changes the types of the registers depending on instruction semantics.
52 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
55 * All registers are 64-bit.
56 * R0 - return register
57 * R1-R5 argument passing registers
58 * R6-R9 callee saved registers
59 * R10 - frame pointer read-only
61 * At the start of BPF program the register R1 contains a pointer to bpf_context
62 * and has type PTR_TO_CTX.
64 * Verifier tracks arithmetic operations on pointers in case:
65 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
66 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
67 * 1st insn copies R10 (which has FRAME_PTR) type into R1
68 * and 2nd arithmetic instruction is pattern matched to recognize
69 * that it wants to construct a pointer to some element within stack.
70 * So after 2nd insn, the register R1 has type PTR_TO_STACK
71 * (and -20 constant is saved for further stack bounds checking).
72 * Meaning that this reg is a pointer to stack plus known immediate constant.
74 * Most of the time the registers have SCALAR_VALUE type, which
75 * means the register has some value, but it's not a valid pointer.
76 * (like pointer plus pointer becomes SCALAR_VALUE type)
78 * When verifier sees load or store instructions the type of base register
79 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
80 * four pointer types recognized by check_mem_access() function.
82 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
83 * and the range of [ptr, ptr + map's value_size) is accessible.
85 * registers used to pass values to function calls are checked against
86 * function argument constraints.
88 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
89 * It means that the register type passed to this function must be
90 * PTR_TO_STACK and it will be used inside the function as
91 * 'pointer to map element key'
93 * For example the argument constraints for bpf_map_lookup_elem():
94 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
95 * .arg1_type = ARG_CONST_MAP_PTR,
96 * .arg2_type = ARG_PTR_TO_MAP_KEY,
98 * ret_type says that this function returns 'pointer to map elem value or null'
99 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
100 * 2nd argument should be a pointer to stack, which will be used inside
101 * the helper function as a pointer to map element key.
103 * On the kernel side the helper function looks like:
104 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
106 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
107 * void *key = (void *) (unsigned long) r2;
110 * here kernel can access 'key' and 'map' pointers safely, knowing that
111 * [key, key + map->key_size) bytes are valid and were initialized on
112 * the stack of eBPF program.
115 * Corresponding eBPF program may look like:
116 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
117 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
118 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
119 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
120 * here verifier looks at prototype of map_lookup_elem() and sees:
121 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
122 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
124 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
125 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
126 * and were initialized prior to this call.
127 * If it's ok, then verifier allows this BPF_CALL insn and looks at
128 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
129 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
130 * returns ether pointer to map value or NULL.
132 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
133 * insn, the register holding that pointer in the true branch changes state to
134 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
135 * branch. See check_cond_jmp_op().
137 * After the call R0 is set to return type of the function and registers R1-R5
138 * are set to NOT_INIT to indicate that they are no longer readable.
140 * The following reference types represent a potential reference to a kernel
141 * resource which, after first being allocated, must be checked and freed by
143 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
145 * When the verifier sees a helper call return a reference type, it allocates a
146 * pointer id for the reference and stores it in the current function state.
147 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
148 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
149 * passes through a NULL-check conditional. For the branch wherein the state is
150 * changed to CONST_IMM, the verifier releases the reference.
152 * For each helper function that allocates a reference, such as
153 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
154 * bpf_sk_release(). When a reference type passes into the release function,
155 * the verifier also releases the reference. If any unchecked or unreleased
156 * reference remains at the end of the program, the verifier rejects it.
159 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
160 struct bpf_verifier_stack_elem
{
161 /* verifer state is 'st'
162 * before processing instruction 'insn_idx'
163 * and after processing instruction 'prev_insn_idx'
165 struct bpf_verifier_state st
;
168 struct bpf_verifier_stack_elem
*next
;
171 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
172 #define BPF_COMPLEXITY_LIMIT_STATES 64
174 #define BPF_MAP_PTR_UNPRIV 1UL
175 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
176 POISON_POINTER_DELTA))
177 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
179 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data
*aux
)
181 return BPF_MAP_PTR(aux
->map_state
) == BPF_MAP_PTR_POISON
;
184 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data
*aux
)
186 return aux
->map_state
& BPF_MAP_PTR_UNPRIV
;
189 static void bpf_map_ptr_store(struct bpf_insn_aux_data
*aux
,
190 const struct bpf_map
*map
, bool unpriv
)
192 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON
& BPF_MAP_PTR_UNPRIV
);
193 unpriv
|= bpf_map_ptr_unpriv(aux
);
194 aux
->map_state
= (unsigned long)map
|
195 (unpriv
? BPF_MAP_PTR_UNPRIV
: 0UL);
198 struct bpf_call_arg_meta
{
199 struct bpf_map
*map_ptr
;
204 s64 msize_smax_value
;
205 u64 msize_umax_value
;
210 static DEFINE_MUTEX(bpf_verifier_lock
);
212 static const struct bpf_line_info
*
213 find_linfo(const struct bpf_verifier_env
*env
, u32 insn_off
)
215 const struct bpf_line_info
*linfo
;
216 const struct bpf_prog
*prog
;
220 nr_linfo
= prog
->aux
->nr_linfo
;
222 if (!nr_linfo
|| insn_off
>= prog
->len
)
225 linfo
= prog
->aux
->linfo
;
226 for (i
= 1; i
< nr_linfo
; i
++)
227 if (insn_off
< linfo
[i
].insn_off
)
230 return &linfo
[i
- 1];
233 void bpf_verifier_vlog(struct bpf_verifier_log
*log
, const char *fmt
,
238 n
= vscnprintf(log
->kbuf
, BPF_VERIFIER_TMP_LOG_SIZE
, fmt
, args
);
240 WARN_ONCE(n
>= BPF_VERIFIER_TMP_LOG_SIZE
- 1,
241 "verifier log line truncated - local buffer too short\n");
243 n
= min(log
->len_total
- log
->len_used
- 1, n
);
246 if (!copy_to_user(log
->ubuf
+ log
->len_used
, log
->kbuf
, n
+ 1))
252 /* log_level controls verbosity level of eBPF verifier.
253 * bpf_verifier_log_write() is used to dump the verification trace to the log,
254 * so the user can figure out what's wrong with the program
256 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env
*env
,
257 const char *fmt
, ...)
261 if (!bpf_verifier_log_needed(&env
->log
))
265 bpf_verifier_vlog(&env
->log
, fmt
, args
);
268 EXPORT_SYMBOL_GPL(bpf_verifier_log_write
);
270 __printf(2, 3) static void verbose(void *private_data
, const char *fmt
, ...)
272 struct bpf_verifier_env
*env
= private_data
;
275 if (!bpf_verifier_log_needed(&env
->log
))
279 bpf_verifier_vlog(&env
->log
, fmt
, args
);
283 static const char *ltrim(const char *s
)
291 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env
*env
,
293 const char *prefix_fmt
, ...)
295 const struct bpf_line_info
*linfo
;
297 if (!bpf_verifier_log_needed(&env
->log
))
300 linfo
= find_linfo(env
, insn_off
);
301 if (!linfo
|| linfo
== env
->prev_linfo
)
307 va_start(args
, prefix_fmt
);
308 bpf_verifier_vlog(&env
->log
, prefix_fmt
, args
);
313 ltrim(btf_name_by_offset(env
->prog
->aux
->btf
,
316 env
->prev_linfo
= linfo
;
319 static bool type_is_pkt_pointer(enum bpf_reg_type type
)
321 return type
== PTR_TO_PACKET
||
322 type
== PTR_TO_PACKET_META
;
325 static bool type_is_sk_pointer(enum bpf_reg_type type
)
327 return type
== PTR_TO_SOCKET
||
328 type
== PTR_TO_SOCK_COMMON
||
329 type
== PTR_TO_TCP_SOCK
||
330 type
== PTR_TO_XDP_SOCK
;
333 static bool reg_type_may_be_null(enum bpf_reg_type type
)
335 return type
== PTR_TO_MAP_VALUE_OR_NULL
||
336 type
== PTR_TO_SOCKET_OR_NULL
||
337 type
== PTR_TO_SOCK_COMMON_OR_NULL
||
338 type
== PTR_TO_TCP_SOCK_OR_NULL
;
341 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state
*reg
)
343 return reg
->type
== PTR_TO_MAP_VALUE
&&
344 map_value_has_spin_lock(reg
->map_ptr
);
347 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type
)
349 return type
== PTR_TO_SOCKET
||
350 type
== PTR_TO_SOCKET_OR_NULL
||
351 type
== PTR_TO_TCP_SOCK
||
352 type
== PTR_TO_TCP_SOCK_OR_NULL
;
355 static bool arg_type_may_be_refcounted(enum bpf_arg_type type
)
357 return type
== ARG_PTR_TO_SOCK_COMMON
;
360 /* Determine whether the function releases some resources allocated by another
361 * function call. The first reference type argument will be assumed to be
362 * released by release_reference().
364 static bool is_release_function(enum bpf_func_id func_id
)
366 return func_id
== BPF_FUNC_sk_release
;
369 static bool is_acquire_function(enum bpf_func_id func_id
)
371 return func_id
== BPF_FUNC_sk_lookup_tcp
||
372 func_id
== BPF_FUNC_sk_lookup_udp
||
373 func_id
== BPF_FUNC_skc_lookup_tcp
;
376 static bool is_ptr_cast_function(enum bpf_func_id func_id
)
378 return func_id
== BPF_FUNC_tcp_sock
||
379 func_id
== BPF_FUNC_sk_fullsock
;
382 /* string representation of 'enum bpf_reg_type' */
383 static const char * const reg_type_str
[] = {
385 [SCALAR_VALUE
] = "inv",
386 [PTR_TO_CTX
] = "ctx",
387 [CONST_PTR_TO_MAP
] = "map_ptr",
388 [PTR_TO_MAP_VALUE
] = "map_value",
389 [PTR_TO_MAP_VALUE_OR_NULL
] = "map_value_or_null",
390 [PTR_TO_STACK
] = "fp",
391 [PTR_TO_PACKET
] = "pkt",
392 [PTR_TO_PACKET_META
] = "pkt_meta",
393 [PTR_TO_PACKET_END
] = "pkt_end",
394 [PTR_TO_FLOW_KEYS
] = "flow_keys",
395 [PTR_TO_SOCKET
] = "sock",
396 [PTR_TO_SOCKET_OR_NULL
] = "sock_or_null",
397 [PTR_TO_SOCK_COMMON
] = "sock_common",
398 [PTR_TO_SOCK_COMMON_OR_NULL
] = "sock_common_or_null",
399 [PTR_TO_TCP_SOCK
] = "tcp_sock",
400 [PTR_TO_TCP_SOCK_OR_NULL
] = "tcp_sock_or_null",
401 [PTR_TO_TP_BUFFER
] = "tp_buffer",
402 [PTR_TO_XDP_SOCK
] = "xdp_sock",
405 static char slot_type_char
[] = {
406 [STACK_INVALID
] = '?',
412 static void print_liveness(struct bpf_verifier_env
*env
,
413 enum bpf_reg_liveness live
)
415 if (live
& (REG_LIVE_READ
| REG_LIVE_WRITTEN
| REG_LIVE_DONE
))
417 if (live
& REG_LIVE_READ
)
419 if (live
& REG_LIVE_WRITTEN
)
421 if (live
& REG_LIVE_DONE
)
425 static struct bpf_func_state
*func(struct bpf_verifier_env
*env
,
426 const struct bpf_reg_state
*reg
)
428 struct bpf_verifier_state
*cur
= env
->cur_state
;
430 return cur
->frame
[reg
->frameno
];
433 static void print_verifier_state(struct bpf_verifier_env
*env
,
434 const struct bpf_func_state
*state
)
436 const struct bpf_reg_state
*reg
;
441 verbose(env
, " frame%d:", state
->frameno
);
442 for (i
= 0; i
< MAX_BPF_REG
; i
++) {
443 reg
= &state
->regs
[i
];
447 verbose(env
, " R%d", i
);
448 print_liveness(env
, reg
->live
);
449 verbose(env
, "=%s", reg_type_str
[t
]);
450 if (t
== SCALAR_VALUE
&& reg
->precise
)
452 if ((t
== SCALAR_VALUE
|| t
== PTR_TO_STACK
) &&
453 tnum_is_const(reg
->var_off
)) {
454 /* reg->off should be 0 for SCALAR_VALUE */
455 verbose(env
, "%lld", reg
->var_off
.value
+ reg
->off
);
457 verbose(env
, "(id=%d", reg
->id
);
458 if (reg_type_may_be_refcounted_or_null(t
))
459 verbose(env
, ",ref_obj_id=%d", reg
->ref_obj_id
);
460 if (t
!= SCALAR_VALUE
)
461 verbose(env
, ",off=%d", reg
->off
);
462 if (type_is_pkt_pointer(t
))
463 verbose(env
, ",r=%d", reg
->range
);
464 else if (t
== CONST_PTR_TO_MAP
||
465 t
== PTR_TO_MAP_VALUE
||
466 t
== PTR_TO_MAP_VALUE_OR_NULL
)
467 verbose(env
, ",ks=%d,vs=%d",
468 reg
->map_ptr
->key_size
,
469 reg
->map_ptr
->value_size
);
470 if (tnum_is_const(reg
->var_off
)) {
471 /* Typically an immediate SCALAR_VALUE, but
472 * could be a pointer whose offset is too big
475 verbose(env
, ",imm=%llx", reg
->var_off
.value
);
477 if (reg
->smin_value
!= reg
->umin_value
&&
478 reg
->smin_value
!= S64_MIN
)
479 verbose(env
, ",smin_value=%lld",
480 (long long)reg
->smin_value
);
481 if (reg
->smax_value
!= reg
->umax_value
&&
482 reg
->smax_value
!= S64_MAX
)
483 verbose(env
, ",smax_value=%lld",
484 (long long)reg
->smax_value
);
485 if (reg
->umin_value
!= 0)
486 verbose(env
, ",umin_value=%llu",
487 (unsigned long long)reg
->umin_value
);
488 if (reg
->umax_value
!= U64_MAX
)
489 verbose(env
, ",umax_value=%llu",
490 (unsigned long long)reg
->umax_value
);
491 if (!tnum_is_unknown(reg
->var_off
)) {
494 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
495 verbose(env
, ",var_off=%s", tn_buf
);
501 for (i
= 0; i
< state
->allocated_stack
/ BPF_REG_SIZE
; i
++) {
502 char types_buf
[BPF_REG_SIZE
+ 1];
506 for (j
= 0; j
< BPF_REG_SIZE
; j
++) {
507 if (state
->stack
[i
].slot_type
[j
] != STACK_INVALID
)
509 types_buf
[j
] = slot_type_char
[
510 state
->stack
[i
].slot_type
[j
]];
512 types_buf
[BPF_REG_SIZE
] = 0;
515 verbose(env
, " fp%d", (-i
- 1) * BPF_REG_SIZE
);
516 print_liveness(env
, state
->stack
[i
].spilled_ptr
.live
);
517 if (state
->stack
[i
].slot_type
[0] == STACK_SPILL
) {
518 reg
= &state
->stack
[i
].spilled_ptr
;
520 verbose(env
, "=%s", reg_type_str
[t
]);
521 if (t
== SCALAR_VALUE
&& reg
->precise
)
523 if (t
== SCALAR_VALUE
&& tnum_is_const(reg
->var_off
))
524 verbose(env
, "%lld", reg
->var_off
.value
+ reg
->off
);
526 verbose(env
, "=%s", types_buf
);
529 if (state
->acquired_refs
&& state
->refs
[0].id
) {
530 verbose(env
, " refs=%d", state
->refs
[0].id
);
531 for (i
= 1; i
< state
->acquired_refs
; i
++)
532 if (state
->refs
[i
].id
)
533 verbose(env
, ",%d", state
->refs
[i
].id
);
538 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
539 static int copy_##NAME##_state(struct bpf_func_state *dst, \
540 const struct bpf_func_state *src) \
544 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
545 /* internal bug, make state invalid to reject the program */ \
546 memset(dst, 0, sizeof(*dst)); \
549 memcpy(dst->FIELD, src->FIELD, \
550 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
553 /* copy_reference_state() */
554 COPY_STATE_FN(reference
, acquired_refs
, refs
, 1)
555 /* copy_stack_state() */
556 COPY_STATE_FN(stack
, allocated_stack
, stack
, BPF_REG_SIZE
)
559 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
560 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
563 u32 old_size = state->COUNT; \
564 struct bpf_##NAME##_state *new_##FIELD; \
565 int slot = size / SIZE; \
567 if (size <= old_size || !size) { \
570 state->COUNT = slot * SIZE; \
571 if (!size && old_size) { \
572 kfree(state->FIELD); \
573 state->FIELD = NULL; \
577 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
583 memcpy(new_##FIELD, state->FIELD, \
584 sizeof(*new_##FIELD) * (old_size / SIZE)); \
585 memset(new_##FIELD + old_size / SIZE, 0, \
586 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
588 state->COUNT = slot * SIZE; \
589 kfree(state->FIELD); \
590 state->FIELD = new_##FIELD; \
593 /* realloc_reference_state() */
594 REALLOC_STATE_FN(reference
, acquired_refs
, refs
, 1)
595 /* realloc_stack_state() */
596 REALLOC_STATE_FN(stack
, allocated_stack
, stack
, BPF_REG_SIZE
)
597 #undef REALLOC_STATE_FN
599 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
600 * make it consume minimal amount of memory. check_stack_write() access from
601 * the program calls into realloc_func_state() to grow the stack size.
602 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
603 * which realloc_stack_state() copies over. It points to previous
604 * bpf_verifier_state which is never reallocated.
606 static int realloc_func_state(struct bpf_func_state
*state
, int stack_size
,
607 int refs_size
, bool copy_old
)
609 int err
= realloc_reference_state(state
, refs_size
, copy_old
);
612 return realloc_stack_state(state
, stack_size
, copy_old
);
615 /* Acquire a pointer id from the env and update the state->refs to include
616 * this new pointer reference.
617 * On success, returns a valid pointer id to associate with the register
618 * On failure, returns a negative errno.
620 static int acquire_reference_state(struct bpf_verifier_env
*env
, int insn_idx
)
622 struct bpf_func_state
*state
= cur_func(env
);
623 int new_ofs
= state
->acquired_refs
;
626 err
= realloc_reference_state(state
, state
->acquired_refs
+ 1, true);
630 state
->refs
[new_ofs
].id
= id
;
631 state
->refs
[new_ofs
].insn_idx
= insn_idx
;
636 /* release function corresponding to acquire_reference_state(). Idempotent. */
637 static int release_reference_state(struct bpf_func_state
*state
, int ptr_id
)
641 last_idx
= state
->acquired_refs
- 1;
642 for (i
= 0; i
< state
->acquired_refs
; i
++) {
643 if (state
->refs
[i
].id
== ptr_id
) {
644 if (last_idx
&& i
!= last_idx
)
645 memcpy(&state
->refs
[i
], &state
->refs
[last_idx
],
646 sizeof(*state
->refs
));
647 memset(&state
->refs
[last_idx
], 0, sizeof(*state
->refs
));
648 state
->acquired_refs
--;
655 static int transfer_reference_state(struct bpf_func_state
*dst
,
656 struct bpf_func_state
*src
)
658 int err
= realloc_reference_state(dst
, src
->acquired_refs
, false);
661 err
= copy_reference_state(dst
, src
);
667 static void free_func_state(struct bpf_func_state
*state
)
676 static void clear_jmp_history(struct bpf_verifier_state
*state
)
678 kfree(state
->jmp_history
);
679 state
->jmp_history
= NULL
;
680 state
->jmp_history_cnt
= 0;
683 static void free_verifier_state(struct bpf_verifier_state
*state
,
688 for (i
= 0; i
<= state
->curframe
; i
++) {
689 free_func_state(state
->frame
[i
]);
690 state
->frame
[i
] = NULL
;
692 clear_jmp_history(state
);
697 /* copy verifier state from src to dst growing dst stack space
698 * when necessary to accommodate larger src stack
700 static int copy_func_state(struct bpf_func_state
*dst
,
701 const struct bpf_func_state
*src
)
705 err
= realloc_func_state(dst
, src
->allocated_stack
, src
->acquired_refs
,
709 memcpy(dst
, src
, offsetof(struct bpf_func_state
, acquired_refs
));
710 err
= copy_reference_state(dst
, src
);
713 return copy_stack_state(dst
, src
);
716 static int copy_verifier_state(struct bpf_verifier_state
*dst_state
,
717 const struct bpf_verifier_state
*src
)
719 struct bpf_func_state
*dst
;
720 u32 jmp_sz
= sizeof(struct bpf_idx_pair
) * src
->jmp_history_cnt
;
723 if (dst_state
->jmp_history_cnt
< src
->jmp_history_cnt
) {
724 kfree(dst_state
->jmp_history
);
725 dst_state
->jmp_history
= kmalloc(jmp_sz
, GFP_USER
);
726 if (!dst_state
->jmp_history
)
729 memcpy(dst_state
->jmp_history
, src
->jmp_history
, jmp_sz
);
730 dst_state
->jmp_history_cnt
= src
->jmp_history_cnt
;
732 /* if dst has more stack frames then src frame, free them */
733 for (i
= src
->curframe
+ 1; i
<= dst_state
->curframe
; i
++) {
734 free_func_state(dst_state
->frame
[i
]);
735 dst_state
->frame
[i
] = NULL
;
737 dst_state
->speculative
= src
->speculative
;
738 dst_state
->curframe
= src
->curframe
;
739 dst_state
->active_spin_lock
= src
->active_spin_lock
;
740 dst_state
->branches
= src
->branches
;
741 dst_state
->parent
= src
->parent
;
742 dst_state
->first_insn_idx
= src
->first_insn_idx
;
743 dst_state
->last_insn_idx
= src
->last_insn_idx
;
744 for (i
= 0; i
<= src
->curframe
; i
++) {
745 dst
= dst_state
->frame
[i
];
747 dst
= kzalloc(sizeof(*dst
), GFP_KERNEL
);
750 dst_state
->frame
[i
] = dst
;
752 err
= copy_func_state(dst
, src
->frame
[i
]);
759 static void update_branch_counts(struct bpf_verifier_env
*env
, struct bpf_verifier_state
*st
)
762 u32 br
= --st
->branches
;
764 /* WARN_ON(br > 1) technically makes sense here,
765 * but see comment in push_stack(), hence:
767 WARN_ONCE((int)br
< 0,
768 "BUG update_branch_counts:branches_to_explore=%d\n",
776 static int pop_stack(struct bpf_verifier_env
*env
, int *prev_insn_idx
,
779 struct bpf_verifier_state
*cur
= env
->cur_state
;
780 struct bpf_verifier_stack_elem
*elem
, *head
= env
->head
;
783 if (env
->head
== NULL
)
787 err
= copy_verifier_state(cur
, &head
->st
);
792 *insn_idx
= head
->insn_idx
;
794 *prev_insn_idx
= head
->prev_insn_idx
;
796 free_verifier_state(&head
->st
, false);
803 static struct bpf_verifier_state
*push_stack(struct bpf_verifier_env
*env
,
804 int insn_idx
, int prev_insn_idx
,
807 struct bpf_verifier_state
*cur
= env
->cur_state
;
808 struct bpf_verifier_stack_elem
*elem
;
811 elem
= kzalloc(sizeof(struct bpf_verifier_stack_elem
), GFP_KERNEL
);
815 elem
->insn_idx
= insn_idx
;
816 elem
->prev_insn_idx
= prev_insn_idx
;
817 elem
->next
= env
->head
;
820 err
= copy_verifier_state(&elem
->st
, cur
);
823 elem
->st
.speculative
|= speculative
;
824 if (env
->stack_size
> BPF_COMPLEXITY_LIMIT_JMP_SEQ
) {
825 verbose(env
, "The sequence of %d jumps is too complex.\n",
829 if (elem
->st
.parent
) {
830 ++elem
->st
.parent
->branches
;
831 /* WARN_ON(branches > 2) technically makes sense here,
833 * 1. speculative states will bump 'branches' for non-branch
835 * 2. is_state_visited() heuristics may decide not to create
836 * a new state for a sequence of branches and all such current
837 * and cloned states will be pointing to a single parent state
838 * which might have large 'branches' count.
843 free_verifier_state(env
->cur_state
, true);
844 env
->cur_state
= NULL
;
845 /* pop all elements and return */
846 while (!pop_stack(env
, NULL
, NULL
));
850 #define CALLER_SAVED_REGS 6
851 static const int caller_saved
[CALLER_SAVED_REGS
] = {
852 BPF_REG_0
, BPF_REG_1
, BPF_REG_2
, BPF_REG_3
, BPF_REG_4
, BPF_REG_5
855 static void __mark_reg_not_init(struct bpf_reg_state
*reg
);
857 /* Mark the unknown part of a register (variable offset or scalar value) as
858 * known to have the value @imm.
860 static void __mark_reg_known(struct bpf_reg_state
*reg
, u64 imm
)
862 /* Clear id, off, and union(map_ptr, range) */
863 memset(((u8
*)reg
) + sizeof(reg
->type
), 0,
864 offsetof(struct bpf_reg_state
, var_off
) - sizeof(reg
->type
));
865 reg
->var_off
= tnum_const(imm
);
866 reg
->smin_value
= (s64
)imm
;
867 reg
->smax_value
= (s64
)imm
;
868 reg
->umin_value
= imm
;
869 reg
->umax_value
= imm
;
872 /* Mark the 'variable offset' part of a register as zero. This should be
873 * used only on registers holding a pointer type.
875 static void __mark_reg_known_zero(struct bpf_reg_state
*reg
)
877 __mark_reg_known(reg
, 0);
880 static void __mark_reg_const_zero(struct bpf_reg_state
*reg
)
882 __mark_reg_known(reg
, 0);
883 reg
->type
= SCALAR_VALUE
;
886 static void mark_reg_known_zero(struct bpf_verifier_env
*env
,
887 struct bpf_reg_state
*regs
, u32 regno
)
889 if (WARN_ON(regno
>= MAX_BPF_REG
)) {
890 verbose(env
, "mark_reg_known_zero(regs, %u)\n", regno
);
891 /* Something bad happened, let's kill all regs */
892 for (regno
= 0; regno
< MAX_BPF_REG
; regno
++)
893 __mark_reg_not_init(regs
+ regno
);
896 __mark_reg_known_zero(regs
+ regno
);
899 static bool reg_is_pkt_pointer(const struct bpf_reg_state
*reg
)
901 return type_is_pkt_pointer(reg
->type
);
904 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state
*reg
)
906 return reg_is_pkt_pointer(reg
) ||
907 reg
->type
== PTR_TO_PACKET_END
;
910 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
911 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state
*reg
,
912 enum bpf_reg_type which
)
914 /* The register can already have a range from prior markings.
915 * This is fine as long as it hasn't been advanced from its
918 return reg
->type
== which
&&
921 tnum_equals_const(reg
->var_off
, 0);
924 /* Attempts to improve min/max values based on var_off information */
925 static void __update_reg_bounds(struct bpf_reg_state
*reg
)
927 /* min signed is max(sign bit) | min(other bits) */
928 reg
->smin_value
= max_t(s64
, reg
->smin_value
,
929 reg
->var_off
.value
| (reg
->var_off
.mask
& S64_MIN
));
930 /* max signed is min(sign bit) | max(other bits) */
931 reg
->smax_value
= min_t(s64
, reg
->smax_value
,
932 reg
->var_off
.value
| (reg
->var_off
.mask
& S64_MAX
));
933 reg
->umin_value
= max(reg
->umin_value
, reg
->var_off
.value
);
934 reg
->umax_value
= min(reg
->umax_value
,
935 reg
->var_off
.value
| reg
->var_off
.mask
);
938 /* Uses signed min/max values to inform unsigned, and vice-versa */
939 static void __reg_deduce_bounds(struct bpf_reg_state
*reg
)
941 /* Learn sign from signed bounds.
942 * If we cannot cross the sign boundary, then signed and unsigned bounds
943 * are the same, so combine. This works even in the negative case, e.g.
944 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
946 if (reg
->smin_value
>= 0 || reg
->smax_value
< 0) {
947 reg
->smin_value
= reg
->umin_value
= max_t(u64
, reg
->smin_value
,
949 reg
->smax_value
= reg
->umax_value
= min_t(u64
, reg
->smax_value
,
953 /* Learn sign from unsigned bounds. Signed bounds cross the sign
954 * boundary, so we must be careful.
956 if ((s64
)reg
->umax_value
>= 0) {
957 /* Positive. We can't learn anything from the smin, but smax
958 * is positive, hence safe.
960 reg
->smin_value
= reg
->umin_value
;
961 reg
->smax_value
= reg
->umax_value
= min_t(u64
, reg
->smax_value
,
963 } else if ((s64
)reg
->umin_value
< 0) {
964 /* Negative. We can't learn anything from the smax, but smin
965 * is negative, hence safe.
967 reg
->smin_value
= reg
->umin_value
= max_t(u64
, reg
->smin_value
,
969 reg
->smax_value
= reg
->umax_value
;
973 /* Attempts to improve var_off based on unsigned min/max information */
974 static void __reg_bound_offset(struct bpf_reg_state
*reg
)
976 reg
->var_off
= tnum_intersect(reg
->var_off
,
977 tnum_range(reg
->umin_value
,
981 /* Reset the min/max bounds of a register */
982 static void __mark_reg_unbounded(struct bpf_reg_state
*reg
)
984 reg
->smin_value
= S64_MIN
;
985 reg
->smax_value
= S64_MAX
;
987 reg
->umax_value
= U64_MAX
;
990 /* Mark a register as having a completely unknown (scalar) value. */
991 static void __mark_reg_unknown(struct bpf_reg_state
*reg
)
994 * Clear type, id, off, and union(map_ptr, range) and
995 * padding between 'type' and union
997 memset(reg
, 0, offsetof(struct bpf_reg_state
, var_off
));
998 reg
->type
= SCALAR_VALUE
;
999 reg
->var_off
= tnum_unknown
;
1001 __mark_reg_unbounded(reg
);
1004 static void mark_reg_unknown(struct bpf_verifier_env
*env
,
1005 struct bpf_reg_state
*regs
, u32 regno
)
1007 if (WARN_ON(regno
>= MAX_BPF_REG
)) {
1008 verbose(env
, "mark_reg_unknown(regs, %u)\n", regno
);
1009 /* Something bad happened, let's kill all regs except FP */
1010 for (regno
= 0; regno
< BPF_REG_FP
; regno
++)
1011 __mark_reg_not_init(regs
+ regno
);
1015 __mark_reg_unknown(regs
);
1016 /* constant backtracking is enabled for root without bpf2bpf calls */
1017 regs
->precise
= env
->subprog_cnt
> 1 || !env
->allow_ptr_leaks
?
1021 static void __mark_reg_not_init(struct bpf_reg_state
*reg
)
1023 __mark_reg_unknown(reg
);
1024 reg
->type
= NOT_INIT
;
1027 static void mark_reg_not_init(struct bpf_verifier_env
*env
,
1028 struct bpf_reg_state
*regs
, u32 regno
)
1030 if (WARN_ON(regno
>= MAX_BPF_REG
)) {
1031 verbose(env
, "mark_reg_not_init(regs, %u)\n", regno
);
1032 /* Something bad happened, let's kill all regs except FP */
1033 for (regno
= 0; regno
< BPF_REG_FP
; regno
++)
1034 __mark_reg_not_init(regs
+ regno
);
1037 __mark_reg_not_init(regs
+ regno
);
1040 #define DEF_NOT_SUBREG (0)
1041 static void init_reg_state(struct bpf_verifier_env
*env
,
1042 struct bpf_func_state
*state
)
1044 struct bpf_reg_state
*regs
= state
->regs
;
1047 for (i
= 0; i
< MAX_BPF_REG
; i
++) {
1048 mark_reg_not_init(env
, regs
, i
);
1049 regs
[i
].live
= REG_LIVE_NONE
;
1050 regs
[i
].parent
= NULL
;
1051 regs
[i
].subreg_def
= DEF_NOT_SUBREG
;
1055 regs
[BPF_REG_FP
].type
= PTR_TO_STACK
;
1056 mark_reg_known_zero(env
, regs
, BPF_REG_FP
);
1057 regs
[BPF_REG_FP
].frameno
= state
->frameno
;
1059 /* 1st arg to a function */
1060 regs
[BPF_REG_1
].type
= PTR_TO_CTX
;
1061 mark_reg_known_zero(env
, regs
, BPF_REG_1
);
1064 #define BPF_MAIN_FUNC (-1)
1065 static void init_func_state(struct bpf_verifier_env
*env
,
1066 struct bpf_func_state
*state
,
1067 int callsite
, int frameno
, int subprogno
)
1069 state
->callsite
= callsite
;
1070 state
->frameno
= frameno
;
1071 state
->subprogno
= subprogno
;
1072 init_reg_state(env
, state
);
1076 SRC_OP
, /* register is used as source operand */
1077 DST_OP
, /* register is used as destination operand */
1078 DST_OP_NO_MARK
/* same as above, check only, don't mark */
1081 static int cmp_subprogs(const void *a
, const void *b
)
1083 return ((struct bpf_subprog_info
*)a
)->start
-
1084 ((struct bpf_subprog_info
*)b
)->start
;
1087 static int find_subprog(struct bpf_verifier_env
*env
, int off
)
1089 struct bpf_subprog_info
*p
;
1091 p
= bsearch(&off
, env
->subprog_info
, env
->subprog_cnt
,
1092 sizeof(env
->subprog_info
[0]), cmp_subprogs
);
1095 return p
- env
->subprog_info
;
1099 static int add_subprog(struct bpf_verifier_env
*env
, int off
)
1101 int insn_cnt
= env
->prog
->len
;
1104 if (off
>= insn_cnt
|| off
< 0) {
1105 verbose(env
, "call to invalid destination\n");
1108 ret
= find_subprog(env
, off
);
1111 if (env
->subprog_cnt
>= BPF_MAX_SUBPROGS
) {
1112 verbose(env
, "too many subprograms\n");
1115 env
->subprog_info
[env
->subprog_cnt
++].start
= off
;
1116 sort(env
->subprog_info
, env
->subprog_cnt
,
1117 sizeof(env
->subprog_info
[0]), cmp_subprogs
, NULL
);
1121 static int check_subprogs(struct bpf_verifier_env
*env
)
1123 int i
, ret
, subprog_start
, subprog_end
, off
, cur_subprog
= 0;
1124 struct bpf_subprog_info
*subprog
= env
->subprog_info
;
1125 struct bpf_insn
*insn
= env
->prog
->insnsi
;
1126 int insn_cnt
= env
->prog
->len
;
1128 /* Add entry function. */
1129 ret
= add_subprog(env
, 0);
1133 /* determine subprog starts. The end is one before the next starts */
1134 for (i
= 0; i
< insn_cnt
; i
++) {
1135 if (insn
[i
].code
!= (BPF_JMP
| BPF_CALL
))
1137 if (insn
[i
].src_reg
!= BPF_PSEUDO_CALL
)
1139 if (!env
->allow_ptr_leaks
) {
1140 verbose(env
, "function calls to other bpf functions are allowed for root only\n");
1143 ret
= add_subprog(env
, i
+ insn
[i
].imm
+ 1);
1148 /* Add a fake 'exit' subprog which could simplify subprog iteration
1149 * logic. 'subprog_cnt' should not be increased.
1151 subprog
[env
->subprog_cnt
].start
= insn_cnt
;
1153 if (env
->log
.level
& BPF_LOG_LEVEL2
)
1154 for (i
= 0; i
< env
->subprog_cnt
; i
++)
1155 verbose(env
, "func#%d @%d\n", i
, subprog
[i
].start
);
1157 /* now check that all jumps are within the same subprog */
1158 subprog_start
= subprog
[cur_subprog
].start
;
1159 subprog_end
= subprog
[cur_subprog
+ 1].start
;
1160 for (i
= 0; i
< insn_cnt
; i
++) {
1161 u8 code
= insn
[i
].code
;
1163 if (BPF_CLASS(code
) != BPF_JMP
&& BPF_CLASS(code
) != BPF_JMP32
)
1165 if (BPF_OP(code
) == BPF_EXIT
|| BPF_OP(code
) == BPF_CALL
)
1167 off
= i
+ insn
[i
].off
+ 1;
1168 if (off
< subprog_start
|| off
>= subprog_end
) {
1169 verbose(env
, "jump out of range from insn %d to %d\n", i
, off
);
1173 if (i
== subprog_end
- 1) {
1174 /* to avoid fall-through from one subprog into another
1175 * the last insn of the subprog should be either exit
1176 * or unconditional jump back
1178 if (code
!= (BPF_JMP
| BPF_EXIT
) &&
1179 code
!= (BPF_JMP
| BPF_JA
)) {
1180 verbose(env
, "last insn is not an exit or jmp\n");
1183 subprog_start
= subprog_end
;
1185 if (cur_subprog
< env
->subprog_cnt
)
1186 subprog_end
= subprog
[cur_subprog
+ 1].start
;
1192 /* Parentage chain of this register (or stack slot) should take care of all
1193 * issues like callee-saved registers, stack slot allocation time, etc.
1195 static int mark_reg_read(struct bpf_verifier_env
*env
,
1196 const struct bpf_reg_state
*state
,
1197 struct bpf_reg_state
*parent
, u8 flag
)
1199 bool writes
= parent
== state
->parent
; /* Observe write marks */
1203 /* if read wasn't screened by an earlier write ... */
1204 if (writes
&& state
->live
& REG_LIVE_WRITTEN
)
1206 if (parent
->live
& REG_LIVE_DONE
) {
1207 verbose(env
, "verifier BUG type %s var_off %lld off %d\n",
1208 reg_type_str
[parent
->type
],
1209 parent
->var_off
.value
, parent
->off
);
1212 /* The first condition is more likely to be true than the
1213 * second, checked it first.
1215 if ((parent
->live
& REG_LIVE_READ
) == flag
||
1216 parent
->live
& REG_LIVE_READ64
)
1217 /* The parentage chain never changes and
1218 * this parent was already marked as LIVE_READ.
1219 * There is no need to keep walking the chain again and
1220 * keep re-marking all parents as LIVE_READ.
1221 * This case happens when the same register is read
1222 * multiple times without writes into it in-between.
1223 * Also, if parent has the stronger REG_LIVE_READ64 set,
1224 * then no need to set the weak REG_LIVE_READ32.
1227 /* ... then we depend on parent's value */
1228 parent
->live
|= flag
;
1229 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1230 if (flag
== REG_LIVE_READ64
)
1231 parent
->live
&= ~REG_LIVE_READ32
;
1233 parent
= state
->parent
;
1238 if (env
->longest_mark_read_walk
< cnt
)
1239 env
->longest_mark_read_walk
= cnt
;
1243 /* This function is supposed to be used by the following 32-bit optimization
1244 * code only. It returns TRUE if the source or destination register operates
1245 * on 64-bit, otherwise return FALSE.
1247 static bool is_reg64(struct bpf_verifier_env
*env
, struct bpf_insn
*insn
,
1248 u32 regno
, struct bpf_reg_state
*reg
, enum reg_arg_type t
)
1253 class = BPF_CLASS(code
);
1255 if (class == BPF_JMP
) {
1256 /* BPF_EXIT for "main" will reach here. Return TRUE
1261 if (op
== BPF_CALL
) {
1262 /* BPF to BPF call will reach here because of marking
1263 * caller saved clobber with DST_OP_NO_MARK for which we
1264 * don't care the register def because they are anyway
1265 * marked as NOT_INIT already.
1267 if (insn
->src_reg
== BPF_PSEUDO_CALL
)
1269 /* Helper call will reach here because of arg type
1270 * check, conservatively return TRUE.
1279 if (class == BPF_ALU64
|| class == BPF_JMP
||
1280 /* BPF_END always use BPF_ALU class. */
1281 (class == BPF_ALU
&& op
== BPF_END
&& insn
->imm
== 64))
1284 if (class == BPF_ALU
|| class == BPF_JMP32
)
1287 if (class == BPF_LDX
) {
1289 return BPF_SIZE(code
) == BPF_DW
;
1290 /* LDX source must be ptr. */
1294 if (class == BPF_STX
) {
1295 if (reg
->type
!= SCALAR_VALUE
)
1297 return BPF_SIZE(code
) == BPF_DW
;
1300 if (class == BPF_LD
) {
1301 u8 mode
= BPF_MODE(code
);
1304 if (mode
== BPF_IMM
)
1307 /* Both LD_IND and LD_ABS return 32-bit data. */
1311 /* Implicit ctx ptr. */
1312 if (regno
== BPF_REG_6
)
1315 /* Explicit source could be any width. */
1319 if (class == BPF_ST
)
1320 /* The only source register for BPF_ST is a ptr. */
1323 /* Conservatively return true at default. */
1327 /* Return TRUE if INSN doesn't have explicit value define. */
1328 static bool insn_no_def(struct bpf_insn
*insn
)
1330 u8
class = BPF_CLASS(insn
->code
);
1332 return (class == BPF_JMP
|| class == BPF_JMP32
||
1333 class == BPF_STX
|| class == BPF_ST
);
1336 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1337 static bool insn_has_def32(struct bpf_verifier_env
*env
, struct bpf_insn
*insn
)
1339 if (insn_no_def(insn
))
1342 return !is_reg64(env
, insn
, insn
->dst_reg
, NULL
, DST_OP
);
1345 static void mark_insn_zext(struct bpf_verifier_env
*env
,
1346 struct bpf_reg_state
*reg
)
1348 s32 def_idx
= reg
->subreg_def
;
1350 if (def_idx
== DEF_NOT_SUBREG
)
1353 env
->insn_aux_data
[def_idx
- 1].zext_dst
= true;
1354 /* The dst will be zero extended, so won't be sub-register anymore. */
1355 reg
->subreg_def
= DEF_NOT_SUBREG
;
1358 static int check_reg_arg(struct bpf_verifier_env
*env
, u32 regno
,
1359 enum reg_arg_type t
)
1361 struct bpf_verifier_state
*vstate
= env
->cur_state
;
1362 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
1363 struct bpf_insn
*insn
= env
->prog
->insnsi
+ env
->insn_idx
;
1364 struct bpf_reg_state
*reg
, *regs
= state
->regs
;
1367 if (regno
>= MAX_BPF_REG
) {
1368 verbose(env
, "R%d is invalid\n", regno
);
1373 rw64
= is_reg64(env
, insn
, regno
, reg
, t
);
1375 /* check whether register used as source operand can be read */
1376 if (reg
->type
== NOT_INIT
) {
1377 verbose(env
, "R%d !read_ok\n", regno
);
1380 /* We don't need to worry about FP liveness because it's read-only */
1381 if (regno
== BPF_REG_FP
)
1385 mark_insn_zext(env
, reg
);
1387 return mark_reg_read(env
, reg
, reg
->parent
,
1388 rw64
? REG_LIVE_READ64
: REG_LIVE_READ32
);
1390 /* check whether register used as dest operand can be written to */
1391 if (regno
== BPF_REG_FP
) {
1392 verbose(env
, "frame pointer is read only\n");
1395 reg
->live
|= REG_LIVE_WRITTEN
;
1396 reg
->subreg_def
= rw64
? DEF_NOT_SUBREG
: env
->insn_idx
+ 1;
1398 mark_reg_unknown(env
, regs
, regno
);
1403 /* for any branch, call, exit record the history of jmps in the given state */
1404 static int push_jmp_history(struct bpf_verifier_env
*env
,
1405 struct bpf_verifier_state
*cur
)
1407 u32 cnt
= cur
->jmp_history_cnt
;
1408 struct bpf_idx_pair
*p
;
1411 p
= krealloc(cur
->jmp_history
, cnt
* sizeof(*p
), GFP_USER
);
1414 p
[cnt
- 1].idx
= env
->insn_idx
;
1415 p
[cnt
- 1].prev_idx
= env
->prev_insn_idx
;
1416 cur
->jmp_history
= p
;
1417 cur
->jmp_history_cnt
= cnt
;
1421 /* Backtrack one insn at a time. If idx is not at the top of recorded
1422 * history then previous instruction came from straight line execution.
1424 static int get_prev_insn_idx(struct bpf_verifier_state
*st
, int i
,
1429 if (cnt
&& st
->jmp_history
[cnt
- 1].idx
== i
) {
1430 i
= st
->jmp_history
[cnt
- 1].prev_idx
;
1438 /* For given verifier state backtrack_insn() is called from the last insn to
1439 * the first insn. Its purpose is to compute a bitmask of registers and
1440 * stack slots that needs precision in the parent verifier state.
1442 static int backtrack_insn(struct bpf_verifier_env
*env
, int idx
,
1443 u32
*reg_mask
, u64
*stack_mask
)
1445 const struct bpf_insn_cbs cbs
= {
1446 .cb_print
= verbose
,
1447 .private_data
= env
,
1449 struct bpf_insn
*insn
= env
->prog
->insnsi
+ idx
;
1450 u8
class = BPF_CLASS(insn
->code
);
1451 u8 opcode
= BPF_OP(insn
->code
);
1452 u8 mode
= BPF_MODE(insn
->code
);
1453 u32 dreg
= 1u << insn
->dst_reg
;
1454 u32 sreg
= 1u << insn
->src_reg
;
1457 if (insn
->code
== 0)
1459 if (env
->log
.level
& BPF_LOG_LEVEL
) {
1460 verbose(env
, "regs=%x stack=%llx before ", *reg_mask
, *stack_mask
);
1461 verbose(env
, "%d: ", idx
);
1462 print_bpf_insn(&cbs
, insn
, env
->allow_ptr_leaks
);
1465 if (class == BPF_ALU
|| class == BPF_ALU64
) {
1466 if (!(*reg_mask
& dreg
))
1468 if (opcode
== BPF_MOV
) {
1469 if (BPF_SRC(insn
->code
) == BPF_X
) {
1471 * dreg needs precision after this insn
1472 * sreg needs precision before this insn
1478 * dreg needs precision after this insn.
1479 * Corresponding register is already marked
1480 * as precise=true in this verifier state.
1481 * No further markings in parent are necessary
1486 if (BPF_SRC(insn
->code
) == BPF_X
) {
1488 * both dreg and sreg need precision
1493 * dreg still needs precision before this insn
1496 } else if (class == BPF_LDX
) {
1497 if (!(*reg_mask
& dreg
))
1501 /* scalars can only be spilled into stack w/o losing precision.
1502 * Load from any other memory can be zero extended.
1503 * The desire to keep that precision is already indicated
1504 * by 'precise' mark in corresponding register of this state.
1505 * No further tracking necessary.
1507 if (insn
->src_reg
!= BPF_REG_FP
)
1509 if (BPF_SIZE(insn
->code
) != BPF_DW
)
1512 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1513 * that [fp - off] slot contains scalar that needs to be
1514 * tracked with precision
1516 spi
= (-insn
->off
- 1) / BPF_REG_SIZE
;
1518 verbose(env
, "BUG spi %d\n", spi
);
1519 WARN_ONCE(1, "verifier backtracking bug");
1522 *stack_mask
|= 1ull << spi
;
1523 } else if (class == BPF_STX
|| class == BPF_ST
) {
1524 if (*reg_mask
& dreg
)
1525 /* stx & st shouldn't be using _scalar_ dst_reg
1526 * to access memory. It means backtracking
1527 * encountered a case of pointer subtraction.
1530 /* scalars can only be spilled into stack */
1531 if (insn
->dst_reg
!= BPF_REG_FP
)
1533 if (BPF_SIZE(insn
->code
) != BPF_DW
)
1535 spi
= (-insn
->off
- 1) / BPF_REG_SIZE
;
1537 verbose(env
, "BUG spi %d\n", spi
);
1538 WARN_ONCE(1, "verifier backtracking bug");
1541 if (!(*stack_mask
& (1ull << spi
)))
1543 *stack_mask
&= ~(1ull << spi
);
1544 if (class == BPF_STX
)
1546 } else if (class == BPF_JMP
|| class == BPF_JMP32
) {
1547 if (opcode
== BPF_CALL
) {
1548 if (insn
->src_reg
== BPF_PSEUDO_CALL
)
1550 /* regular helper call sets R0 */
1552 if (*reg_mask
& 0x3f) {
1553 /* if backtracing was looking for registers R1-R5
1554 * they should have been found already.
1556 verbose(env
, "BUG regs %x\n", *reg_mask
);
1557 WARN_ONCE(1, "verifier backtracking bug");
1560 } else if (opcode
== BPF_EXIT
) {
1563 } else if (class == BPF_LD
) {
1564 if (!(*reg_mask
& dreg
))
1567 /* It's ld_imm64 or ld_abs or ld_ind.
1568 * For ld_imm64 no further tracking of precision
1569 * into parent is necessary
1571 if (mode
== BPF_IND
|| mode
== BPF_ABS
)
1572 /* to be analyzed */
1578 /* the scalar precision tracking algorithm:
1579 * . at the start all registers have precise=false.
1580 * . scalar ranges are tracked as normal through alu and jmp insns.
1581 * . once precise value of the scalar register is used in:
1582 * . ptr + scalar alu
1583 * . if (scalar cond K|scalar)
1584 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1585 * backtrack through the verifier states and mark all registers and
1586 * stack slots with spilled constants that these scalar regisers
1587 * should be precise.
1588 * . during state pruning two registers (or spilled stack slots)
1589 * are equivalent if both are not precise.
1591 * Note the verifier cannot simply walk register parentage chain,
1592 * since many different registers and stack slots could have been
1593 * used to compute single precise scalar.
1595 * The approach of starting with precise=true for all registers and then
1596 * backtrack to mark a register as not precise when the verifier detects
1597 * that program doesn't care about specific value (e.g., when helper
1598 * takes register as ARG_ANYTHING parameter) is not safe.
1600 * It's ok to walk single parentage chain of the verifier states.
1601 * It's possible that this backtracking will go all the way till 1st insn.
1602 * All other branches will be explored for needing precision later.
1604 * The backtracking needs to deal with cases like:
1605 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1608 * if r5 > 0x79f goto pc+7
1609 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1612 * call bpf_perf_event_output#25
1613 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1617 * call foo // uses callee's r6 inside to compute r0
1621 * to track above reg_mask/stack_mask needs to be independent for each frame.
1623 * Also if parent's curframe > frame where backtracking started,
1624 * the verifier need to mark registers in both frames, otherwise callees
1625 * may incorrectly prune callers. This is similar to
1626 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1628 * For now backtracking falls back into conservative marking.
1630 static void mark_all_scalars_precise(struct bpf_verifier_env
*env
,
1631 struct bpf_verifier_state
*st
)
1633 struct bpf_func_state
*func
;
1634 struct bpf_reg_state
*reg
;
1637 /* big hammer: mark all scalars precise in this path.
1638 * pop_stack may still get !precise scalars.
1640 for (; st
; st
= st
->parent
)
1641 for (i
= 0; i
<= st
->curframe
; i
++) {
1642 func
= st
->frame
[i
];
1643 for (j
= 0; j
< BPF_REG_FP
; j
++) {
1644 reg
= &func
->regs
[j
];
1645 if (reg
->type
!= SCALAR_VALUE
)
1647 reg
->precise
= true;
1649 for (j
= 0; j
< func
->allocated_stack
/ BPF_REG_SIZE
; j
++) {
1650 if (func
->stack
[j
].slot_type
[0] != STACK_SPILL
)
1652 reg
= &func
->stack
[j
].spilled_ptr
;
1653 if (reg
->type
!= SCALAR_VALUE
)
1655 reg
->precise
= true;
1660 static int __mark_chain_precision(struct bpf_verifier_env
*env
, int regno
,
1663 struct bpf_verifier_state
*st
= env
->cur_state
;
1664 int first_idx
= st
->first_insn_idx
;
1665 int last_idx
= env
->insn_idx
;
1666 struct bpf_func_state
*func
;
1667 struct bpf_reg_state
*reg
;
1668 u32 reg_mask
= regno
>= 0 ? 1u << regno
: 0;
1669 u64 stack_mask
= spi
>= 0 ? 1ull << spi
: 0;
1670 bool skip_first
= true;
1671 bool new_marks
= false;
1674 if (!env
->allow_ptr_leaks
)
1675 /* backtracking is root only for now */
1678 func
= st
->frame
[st
->curframe
];
1680 reg
= &func
->regs
[regno
];
1681 if (reg
->type
!= SCALAR_VALUE
) {
1682 WARN_ONCE(1, "backtracing misuse");
1689 reg
->precise
= true;
1693 if (func
->stack
[spi
].slot_type
[0] != STACK_SPILL
) {
1697 reg
= &func
->stack
[spi
].spilled_ptr
;
1698 if (reg
->type
!= SCALAR_VALUE
) {
1706 reg
->precise
= true;
1712 if (!reg_mask
&& !stack_mask
)
1715 DECLARE_BITMAP(mask
, 64);
1716 u32 history
= st
->jmp_history_cnt
;
1718 if (env
->log
.level
& BPF_LOG_LEVEL
)
1719 verbose(env
, "last_idx %d first_idx %d\n", last_idx
, first_idx
);
1720 for (i
= last_idx
;;) {
1725 err
= backtrack_insn(env
, i
, ®_mask
, &stack_mask
);
1727 if (err
== -ENOTSUPP
) {
1728 mark_all_scalars_precise(env
, st
);
1733 if (!reg_mask
&& !stack_mask
)
1734 /* Found assignment(s) into tracked register in this state.
1735 * Since this state is already marked, just return.
1736 * Nothing to be tracked further in the parent state.
1741 i
= get_prev_insn_idx(st
, i
, &history
);
1742 if (i
>= env
->prog
->len
) {
1743 /* This can happen if backtracking reached insn 0
1744 * and there are still reg_mask or stack_mask
1746 * It means the backtracking missed the spot where
1747 * particular register was initialized with a constant.
1749 verbose(env
, "BUG backtracking idx %d\n", i
);
1750 WARN_ONCE(1, "verifier backtracking bug");
1759 func
= st
->frame
[st
->curframe
];
1760 bitmap_from_u64(mask
, reg_mask
);
1761 for_each_set_bit(i
, mask
, 32) {
1762 reg
= &func
->regs
[i
];
1763 if (reg
->type
!= SCALAR_VALUE
) {
1764 reg_mask
&= ~(1u << i
);
1769 reg
->precise
= true;
1772 bitmap_from_u64(mask
, stack_mask
);
1773 for_each_set_bit(i
, mask
, 64) {
1774 if (i
>= func
->allocated_stack
/ BPF_REG_SIZE
) {
1775 /* This can happen if backtracking
1776 * is propagating stack precision where
1777 * caller has larger stack frame
1778 * than callee, but backtrack_insn() should
1779 * have returned -ENOTSUPP.
1781 verbose(env
, "BUG spi %d stack_size %d\n",
1782 i
, func
->allocated_stack
);
1783 WARN_ONCE(1, "verifier backtracking bug");
1787 if (func
->stack
[i
].slot_type
[0] != STACK_SPILL
) {
1788 stack_mask
&= ~(1ull << i
);
1791 reg
= &func
->stack
[i
].spilled_ptr
;
1792 if (reg
->type
!= SCALAR_VALUE
) {
1793 stack_mask
&= ~(1ull << i
);
1798 reg
->precise
= true;
1800 if (env
->log
.level
& BPF_LOG_LEVEL
) {
1801 print_verifier_state(env
, func
);
1802 verbose(env
, "parent %s regs=%x stack=%llx marks\n",
1803 new_marks
? "didn't have" : "already had",
1804 reg_mask
, stack_mask
);
1807 if (!reg_mask
&& !stack_mask
)
1812 last_idx
= st
->last_insn_idx
;
1813 first_idx
= st
->first_insn_idx
;
1818 static int mark_chain_precision(struct bpf_verifier_env
*env
, int regno
)
1820 return __mark_chain_precision(env
, regno
, -1);
1823 static int mark_chain_precision_stack(struct bpf_verifier_env
*env
, int spi
)
1825 return __mark_chain_precision(env
, -1, spi
);
1828 static bool is_spillable_regtype(enum bpf_reg_type type
)
1831 case PTR_TO_MAP_VALUE
:
1832 case PTR_TO_MAP_VALUE_OR_NULL
:
1836 case PTR_TO_PACKET_META
:
1837 case PTR_TO_PACKET_END
:
1838 case PTR_TO_FLOW_KEYS
:
1839 case CONST_PTR_TO_MAP
:
1841 case PTR_TO_SOCKET_OR_NULL
:
1842 case PTR_TO_SOCK_COMMON
:
1843 case PTR_TO_SOCK_COMMON_OR_NULL
:
1844 case PTR_TO_TCP_SOCK
:
1845 case PTR_TO_TCP_SOCK_OR_NULL
:
1846 case PTR_TO_XDP_SOCK
:
1853 /* Does this register contain a constant zero? */
1854 static bool register_is_null(struct bpf_reg_state
*reg
)
1856 return reg
->type
== SCALAR_VALUE
&& tnum_equals_const(reg
->var_off
, 0);
1859 static bool register_is_const(struct bpf_reg_state
*reg
)
1861 return reg
->type
== SCALAR_VALUE
&& tnum_is_const(reg
->var_off
);
1864 static void save_register_state(struct bpf_func_state
*state
,
1865 int spi
, struct bpf_reg_state
*reg
)
1869 state
->stack
[spi
].spilled_ptr
= *reg
;
1870 state
->stack
[spi
].spilled_ptr
.live
|= REG_LIVE_WRITTEN
;
1872 for (i
= 0; i
< BPF_REG_SIZE
; i
++)
1873 state
->stack
[spi
].slot_type
[i
] = STACK_SPILL
;
1876 /* check_stack_read/write functions track spill/fill of registers,
1877 * stack boundary and alignment are checked in check_mem_access()
1879 static int check_stack_write(struct bpf_verifier_env
*env
,
1880 struct bpf_func_state
*state
, /* func where register points to */
1881 int off
, int size
, int value_regno
, int insn_idx
)
1883 struct bpf_func_state
*cur
; /* state of the current function */
1884 int i
, slot
= -off
- 1, spi
= slot
/ BPF_REG_SIZE
, err
;
1885 u32 dst_reg
= env
->prog
->insnsi
[insn_idx
].dst_reg
;
1886 struct bpf_reg_state
*reg
= NULL
;
1888 err
= realloc_func_state(state
, round_up(slot
+ 1, BPF_REG_SIZE
),
1889 state
->acquired_refs
, true);
1892 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1893 * so it's aligned access and [off, off + size) are within stack limits
1895 if (!env
->allow_ptr_leaks
&&
1896 state
->stack
[spi
].slot_type
[0] == STACK_SPILL
&&
1897 size
!= BPF_REG_SIZE
) {
1898 verbose(env
, "attempt to corrupt spilled pointer on stack\n");
1902 cur
= env
->cur_state
->frame
[env
->cur_state
->curframe
];
1903 if (value_regno
>= 0)
1904 reg
= &cur
->regs
[value_regno
];
1906 if (reg
&& size
== BPF_REG_SIZE
&& register_is_const(reg
) &&
1907 !register_is_null(reg
) && env
->allow_ptr_leaks
) {
1908 if (dst_reg
!= BPF_REG_FP
) {
1909 /* The backtracking logic can only recognize explicit
1910 * stack slot address like [fp - 8]. Other spill of
1911 * scalar via different register has to be conervative.
1912 * Backtrack from here and mark all registers as precise
1913 * that contributed into 'reg' being a constant.
1915 err
= mark_chain_precision(env
, value_regno
);
1919 save_register_state(state
, spi
, reg
);
1920 } else if (reg
&& is_spillable_regtype(reg
->type
)) {
1921 /* register containing pointer is being spilled into stack */
1922 if (size
!= BPF_REG_SIZE
) {
1923 verbose_linfo(env
, insn_idx
, "; ");
1924 verbose(env
, "invalid size of register spill\n");
1928 if (state
!= cur
&& reg
->type
== PTR_TO_STACK
) {
1929 verbose(env
, "cannot spill pointers to stack into stack frame of the caller\n");
1933 if (!env
->allow_ptr_leaks
) {
1934 bool sanitize
= false;
1936 if (state
->stack
[spi
].slot_type
[0] == STACK_SPILL
&&
1937 register_is_const(&state
->stack
[spi
].spilled_ptr
))
1939 for (i
= 0; i
< BPF_REG_SIZE
; i
++)
1940 if (state
->stack
[spi
].slot_type
[i
] == STACK_MISC
) {
1945 int *poff
= &env
->insn_aux_data
[insn_idx
].sanitize_stack_off
;
1946 int soff
= (-spi
- 1) * BPF_REG_SIZE
;
1948 /* detected reuse of integer stack slot with a pointer
1949 * which means either llvm is reusing stack slot or
1950 * an attacker is trying to exploit CVE-2018-3639
1951 * (speculative store bypass)
1952 * Have to sanitize that slot with preemptive
1955 if (*poff
&& *poff
!= soff
) {
1956 /* disallow programs where single insn stores
1957 * into two different stack slots, since verifier
1958 * cannot sanitize them
1961 "insn %d cannot access two stack slots fp%d and fp%d",
1962 insn_idx
, *poff
, soff
);
1968 save_register_state(state
, spi
, reg
);
1970 u8 type
= STACK_MISC
;
1972 /* regular write of data into stack destroys any spilled ptr */
1973 state
->stack
[spi
].spilled_ptr
.type
= NOT_INIT
;
1974 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1975 if (state
->stack
[spi
].slot_type
[0] == STACK_SPILL
)
1976 for (i
= 0; i
< BPF_REG_SIZE
; i
++)
1977 state
->stack
[spi
].slot_type
[i
] = STACK_MISC
;
1979 /* only mark the slot as written if all 8 bytes were written
1980 * otherwise read propagation may incorrectly stop too soon
1981 * when stack slots are partially written.
1982 * This heuristic means that read propagation will be
1983 * conservative, since it will add reg_live_read marks
1984 * to stack slots all the way to first state when programs
1985 * writes+reads less than 8 bytes
1987 if (size
== BPF_REG_SIZE
)
1988 state
->stack
[spi
].spilled_ptr
.live
|= REG_LIVE_WRITTEN
;
1990 /* when we zero initialize stack slots mark them as such */
1991 if (reg
&& register_is_null(reg
)) {
1992 /* backtracking doesn't work for STACK_ZERO yet. */
1993 err
= mark_chain_precision(env
, value_regno
);
1999 /* Mark slots affected by this stack write. */
2000 for (i
= 0; i
< size
; i
++)
2001 state
->stack
[spi
].slot_type
[(slot
- i
) % BPF_REG_SIZE
] =
2007 static int check_stack_read(struct bpf_verifier_env
*env
,
2008 struct bpf_func_state
*reg_state
/* func where register points to */,
2009 int off
, int size
, int value_regno
)
2011 struct bpf_verifier_state
*vstate
= env
->cur_state
;
2012 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
2013 int i
, slot
= -off
- 1, spi
= slot
/ BPF_REG_SIZE
;
2014 struct bpf_reg_state
*reg
;
2017 if (reg_state
->allocated_stack
<= slot
) {
2018 verbose(env
, "invalid read from stack off %d+0 size %d\n",
2022 stype
= reg_state
->stack
[spi
].slot_type
;
2023 reg
= ®_state
->stack
[spi
].spilled_ptr
;
2025 if (stype
[0] == STACK_SPILL
) {
2026 if (size
!= BPF_REG_SIZE
) {
2027 if (reg
->type
!= SCALAR_VALUE
) {
2028 verbose_linfo(env
, env
->insn_idx
, "; ");
2029 verbose(env
, "invalid size of register fill\n");
2032 if (value_regno
>= 0) {
2033 mark_reg_unknown(env
, state
->regs
, value_regno
);
2034 state
->regs
[value_regno
].live
|= REG_LIVE_WRITTEN
;
2036 mark_reg_read(env
, reg
, reg
->parent
, REG_LIVE_READ64
);
2039 for (i
= 1; i
< BPF_REG_SIZE
; i
++) {
2040 if (stype
[(slot
- i
) % BPF_REG_SIZE
] != STACK_SPILL
) {
2041 verbose(env
, "corrupted spill memory\n");
2046 if (value_regno
>= 0) {
2047 /* restore register state from stack */
2048 state
->regs
[value_regno
] = *reg
;
2049 /* mark reg as written since spilled pointer state likely
2050 * has its liveness marks cleared by is_state_visited()
2051 * which resets stack/reg liveness for state transitions
2053 state
->regs
[value_regno
].live
|= REG_LIVE_WRITTEN
;
2055 mark_reg_read(env
, reg
, reg
->parent
, REG_LIVE_READ64
);
2059 for (i
= 0; i
< size
; i
++) {
2060 if (stype
[(slot
- i
) % BPF_REG_SIZE
] == STACK_MISC
)
2062 if (stype
[(slot
- i
) % BPF_REG_SIZE
] == STACK_ZERO
) {
2066 verbose(env
, "invalid read from stack off %d+%d size %d\n",
2070 mark_reg_read(env
, reg
, reg
->parent
, REG_LIVE_READ64
);
2071 if (value_regno
>= 0) {
2072 if (zeros
== size
) {
2073 /* any size read into register is zero extended,
2074 * so the whole register == const_zero
2076 __mark_reg_const_zero(&state
->regs
[value_regno
]);
2077 /* backtracking doesn't support STACK_ZERO yet,
2078 * so mark it precise here, so that later
2079 * backtracking can stop here.
2080 * Backtracking may not need this if this register
2081 * doesn't participate in pointer adjustment.
2082 * Forward propagation of precise flag is not
2083 * necessary either. This mark is only to stop
2084 * backtracking. Any register that contributed
2085 * to const 0 was marked precise before spill.
2087 state
->regs
[value_regno
].precise
= true;
2089 /* have read misc data from the stack */
2090 mark_reg_unknown(env
, state
->regs
, value_regno
);
2092 state
->regs
[value_regno
].live
|= REG_LIVE_WRITTEN
;
2098 static int check_stack_access(struct bpf_verifier_env
*env
,
2099 const struct bpf_reg_state
*reg
,
2102 /* Stack accesses must be at a fixed offset, so that we
2103 * can determine what type of data were returned. See
2104 * check_stack_read().
2106 if (!tnum_is_const(reg
->var_off
)) {
2109 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
2110 verbose(env
, "variable stack access var_off=%s off=%d size=%d\n",
2115 if (off
>= 0 || off
< -MAX_BPF_STACK
) {
2116 verbose(env
, "invalid stack off=%d size=%d\n", off
, size
);
2123 static int check_map_access_type(struct bpf_verifier_env
*env
, u32 regno
,
2124 int off
, int size
, enum bpf_access_type type
)
2126 struct bpf_reg_state
*regs
= cur_regs(env
);
2127 struct bpf_map
*map
= regs
[regno
].map_ptr
;
2128 u32 cap
= bpf_map_flags_to_cap(map
);
2130 if (type
== BPF_WRITE
&& !(cap
& BPF_MAP_CAN_WRITE
)) {
2131 verbose(env
, "write into map forbidden, value_size=%d off=%d size=%d\n",
2132 map
->value_size
, off
, size
);
2136 if (type
== BPF_READ
&& !(cap
& BPF_MAP_CAN_READ
)) {
2137 verbose(env
, "read from map forbidden, value_size=%d off=%d size=%d\n",
2138 map
->value_size
, off
, size
);
2145 /* check read/write into map element returned by bpf_map_lookup_elem() */
2146 static int __check_map_access(struct bpf_verifier_env
*env
, u32 regno
, int off
,
2147 int size
, bool zero_size_allowed
)
2149 struct bpf_reg_state
*regs
= cur_regs(env
);
2150 struct bpf_map
*map
= regs
[regno
].map_ptr
;
2152 if (off
< 0 || size
< 0 || (size
== 0 && !zero_size_allowed
) ||
2153 off
+ size
> map
->value_size
) {
2154 verbose(env
, "invalid access to map value, value_size=%d off=%d size=%d\n",
2155 map
->value_size
, off
, size
);
2161 /* check read/write into a map element with possible variable offset */
2162 static int check_map_access(struct bpf_verifier_env
*env
, u32 regno
,
2163 int off
, int size
, bool zero_size_allowed
)
2165 struct bpf_verifier_state
*vstate
= env
->cur_state
;
2166 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
2167 struct bpf_reg_state
*reg
= &state
->regs
[regno
];
2170 /* We may have adjusted the register to this map value, so we
2171 * need to try adding each of min_value and max_value to off
2172 * to make sure our theoretical access will be safe.
2174 if (env
->log
.level
& BPF_LOG_LEVEL
)
2175 print_verifier_state(env
, state
);
2177 /* The minimum value is only important with signed
2178 * comparisons where we can't assume the floor of a
2179 * value is 0. If we are using signed variables for our
2180 * index'es we need to make sure that whatever we use
2181 * will have a set floor within our range.
2183 if (reg
->smin_value
< 0 &&
2184 (reg
->smin_value
== S64_MIN
||
2185 (off
+ reg
->smin_value
!= (s64
)(s32
)(off
+ reg
->smin_value
)) ||
2186 reg
->smin_value
+ off
< 0)) {
2187 verbose(env
, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2191 err
= __check_map_access(env
, regno
, reg
->smin_value
+ off
, size
,
2194 verbose(env
, "R%d min value is outside of the array range\n",
2199 /* If we haven't set a max value then we need to bail since we can't be
2200 * sure we won't do bad things.
2201 * If reg->umax_value + off could overflow, treat that as unbounded too.
2203 if (reg
->umax_value
>= BPF_MAX_VAR_OFF
) {
2204 verbose(env
, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
2208 err
= __check_map_access(env
, regno
, reg
->umax_value
+ off
, size
,
2211 verbose(env
, "R%d max value is outside of the array range\n",
2214 if (map_value_has_spin_lock(reg
->map_ptr
)) {
2215 u32 lock
= reg
->map_ptr
->spin_lock_off
;
2217 /* if any part of struct bpf_spin_lock can be touched by
2218 * load/store reject this program.
2219 * To check that [x1, x2) overlaps with [y1, y2)
2220 * it is sufficient to check x1 < y2 && y1 < x2.
2222 if (reg
->smin_value
+ off
< lock
+ sizeof(struct bpf_spin_lock
) &&
2223 lock
< reg
->umax_value
+ off
+ size
) {
2224 verbose(env
, "bpf_spin_lock cannot be accessed directly by load/store\n");
2231 #define MAX_PACKET_OFF 0xffff
2233 static bool may_access_direct_pkt_data(struct bpf_verifier_env
*env
,
2234 const struct bpf_call_arg_meta
*meta
,
2235 enum bpf_access_type t
)
2237 switch (env
->prog
->type
) {
2238 /* Program types only with direct read access go here! */
2239 case BPF_PROG_TYPE_LWT_IN
:
2240 case BPF_PROG_TYPE_LWT_OUT
:
2241 case BPF_PROG_TYPE_LWT_SEG6LOCAL
:
2242 case BPF_PROG_TYPE_SK_REUSEPORT
:
2243 case BPF_PROG_TYPE_FLOW_DISSECTOR
:
2244 case BPF_PROG_TYPE_CGROUP_SKB
:
2249 /* Program types with direct read + write access go here! */
2250 case BPF_PROG_TYPE_SCHED_CLS
:
2251 case BPF_PROG_TYPE_SCHED_ACT
:
2252 case BPF_PROG_TYPE_XDP
:
2253 case BPF_PROG_TYPE_LWT_XMIT
:
2254 case BPF_PROG_TYPE_SK_SKB
:
2255 case BPF_PROG_TYPE_SK_MSG
:
2257 return meta
->pkt_access
;
2259 env
->seen_direct_write
= true;
2262 case BPF_PROG_TYPE_CGROUP_SOCKOPT
:
2264 env
->seen_direct_write
= true;
2273 static int __check_packet_access(struct bpf_verifier_env
*env
, u32 regno
,
2274 int off
, int size
, bool zero_size_allowed
)
2276 struct bpf_reg_state
*regs
= cur_regs(env
);
2277 struct bpf_reg_state
*reg
= ®s
[regno
];
2279 if (off
< 0 || size
< 0 || (size
== 0 && !zero_size_allowed
) ||
2280 (u64
)off
+ size
> reg
->range
) {
2281 verbose(env
, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2282 off
, size
, regno
, reg
->id
, reg
->off
, reg
->range
);
2288 static int check_packet_access(struct bpf_verifier_env
*env
, u32 regno
, int off
,
2289 int size
, bool zero_size_allowed
)
2291 struct bpf_reg_state
*regs
= cur_regs(env
);
2292 struct bpf_reg_state
*reg
= ®s
[regno
];
2295 /* We may have added a variable offset to the packet pointer; but any
2296 * reg->range we have comes after that. We are only checking the fixed
2300 /* We don't allow negative numbers, because we aren't tracking enough
2301 * detail to prove they're safe.
2303 if (reg
->smin_value
< 0) {
2304 verbose(env
, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2308 err
= __check_packet_access(env
, regno
, off
, size
, zero_size_allowed
);
2310 verbose(env
, "R%d offset is outside of the packet\n", regno
);
2314 /* __check_packet_access has made sure "off + size - 1" is within u16.
2315 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2316 * otherwise find_good_pkt_pointers would have refused to set range info
2317 * that __check_packet_access would have rejected this pkt access.
2318 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2320 env
->prog
->aux
->max_pkt_offset
=
2321 max_t(u32
, env
->prog
->aux
->max_pkt_offset
,
2322 off
+ reg
->umax_value
+ size
- 1);
2327 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
2328 static int check_ctx_access(struct bpf_verifier_env
*env
, int insn_idx
, int off
, int size
,
2329 enum bpf_access_type t
, enum bpf_reg_type
*reg_type
)
2331 struct bpf_insn_access_aux info
= {
2332 .reg_type
= *reg_type
,
2335 if (env
->ops
->is_valid_access
&&
2336 env
->ops
->is_valid_access(off
, size
, t
, env
->prog
, &info
)) {
2337 /* A non zero info.ctx_field_size indicates that this field is a
2338 * candidate for later verifier transformation to load the whole
2339 * field and then apply a mask when accessed with a narrower
2340 * access than actual ctx access size. A zero info.ctx_field_size
2341 * will only allow for whole field access and rejects any other
2342 * type of narrower access.
2344 *reg_type
= info
.reg_type
;
2346 env
->insn_aux_data
[insn_idx
].ctx_field_size
= info
.ctx_field_size
;
2347 /* remember the offset of last byte accessed in ctx */
2348 if (env
->prog
->aux
->max_ctx_offset
< off
+ size
)
2349 env
->prog
->aux
->max_ctx_offset
= off
+ size
;
2353 verbose(env
, "invalid bpf_context access off=%d size=%d\n", off
, size
);
2357 static int check_flow_keys_access(struct bpf_verifier_env
*env
, int off
,
2360 if (size
< 0 || off
< 0 ||
2361 (u64
)off
+ size
> sizeof(struct bpf_flow_keys
)) {
2362 verbose(env
, "invalid access to flow keys off=%d size=%d\n",
2369 static int check_sock_access(struct bpf_verifier_env
*env
, int insn_idx
,
2370 u32 regno
, int off
, int size
,
2371 enum bpf_access_type t
)
2373 struct bpf_reg_state
*regs
= cur_regs(env
);
2374 struct bpf_reg_state
*reg
= ®s
[regno
];
2375 struct bpf_insn_access_aux info
= {};
2378 if (reg
->smin_value
< 0) {
2379 verbose(env
, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2384 switch (reg
->type
) {
2385 case PTR_TO_SOCK_COMMON
:
2386 valid
= bpf_sock_common_is_valid_access(off
, size
, t
, &info
);
2389 valid
= bpf_sock_is_valid_access(off
, size
, t
, &info
);
2391 case PTR_TO_TCP_SOCK
:
2392 valid
= bpf_tcp_sock_is_valid_access(off
, size
, t
, &info
);
2394 case PTR_TO_XDP_SOCK
:
2395 valid
= bpf_xdp_sock_is_valid_access(off
, size
, t
, &info
);
2403 env
->insn_aux_data
[insn_idx
].ctx_field_size
=
2404 info
.ctx_field_size
;
2408 verbose(env
, "R%d invalid %s access off=%d size=%d\n",
2409 regno
, reg_type_str
[reg
->type
], off
, size
);
2414 static bool __is_pointer_value(bool allow_ptr_leaks
,
2415 const struct bpf_reg_state
*reg
)
2417 if (allow_ptr_leaks
)
2420 return reg
->type
!= SCALAR_VALUE
;
2423 static struct bpf_reg_state
*reg_state(struct bpf_verifier_env
*env
, int regno
)
2425 return cur_regs(env
) + regno
;
2428 static bool is_pointer_value(struct bpf_verifier_env
*env
, int regno
)
2430 return __is_pointer_value(env
->allow_ptr_leaks
, reg_state(env
, regno
));
2433 static bool is_ctx_reg(struct bpf_verifier_env
*env
, int regno
)
2435 const struct bpf_reg_state
*reg
= reg_state(env
, regno
);
2437 return reg
->type
== PTR_TO_CTX
;
2440 static bool is_sk_reg(struct bpf_verifier_env
*env
, int regno
)
2442 const struct bpf_reg_state
*reg
= reg_state(env
, regno
);
2444 return type_is_sk_pointer(reg
->type
);
2447 static bool is_pkt_reg(struct bpf_verifier_env
*env
, int regno
)
2449 const struct bpf_reg_state
*reg
= reg_state(env
, regno
);
2451 return type_is_pkt_pointer(reg
->type
);
2454 static bool is_flow_key_reg(struct bpf_verifier_env
*env
, int regno
)
2456 const struct bpf_reg_state
*reg
= reg_state(env
, regno
);
2458 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2459 return reg
->type
== PTR_TO_FLOW_KEYS
;
2462 static int check_pkt_ptr_alignment(struct bpf_verifier_env
*env
,
2463 const struct bpf_reg_state
*reg
,
2464 int off
, int size
, bool strict
)
2466 struct tnum reg_off
;
2469 /* Byte size accesses are always allowed. */
2470 if (!strict
|| size
== 1)
2473 /* For platforms that do not have a Kconfig enabling
2474 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2475 * NET_IP_ALIGN is universally set to '2'. And on platforms
2476 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2477 * to this code only in strict mode where we want to emulate
2478 * the NET_IP_ALIGN==2 checking. Therefore use an
2479 * unconditional IP align value of '2'.
2483 reg_off
= tnum_add(reg
->var_off
, tnum_const(ip_align
+ reg
->off
+ off
));
2484 if (!tnum_is_aligned(reg_off
, size
)) {
2487 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
2489 "misaligned packet access off %d+%s+%d+%d size %d\n",
2490 ip_align
, tn_buf
, reg
->off
, off
, size
);
2497 static int check_generic_ptr_alignment(struct bpf_verifier_env
*env
,
2498 const struct bpf_reg_state
*reg
,
2499 const char *pointer_desc
,
2500 int off
, int size
, bool strict
)
2502 struct tnum reg_off
;
2504 /* Byte size accesses are always allowed. */
2505 if (!strict
|| size
== 1)
2508 reg_off
= tnum_add(reg
->var_off
, tnum_const(reg
->off
+ off
));
2509 if (!tnum_is_aligned(reg_off
, size
)) {
2512 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
2513 verbose(env
, "misaligned %saccess off %s+%d+%d size %d\n",
2514 pointer_desc
, tn_buf
, reg
->off
, off
, size
);
2521 static int check_ptr_alignment(struct bpf_verifier_env
*env
,
2522 const struct bpf_reg_state
*reg
, int off
,
2523 int size
, bool strict_alignment_once
)
2525 bool strict
= env
->strict_alignment
|| strict_alignment_once
;
2526 const char *pointer_desc
= "";
2528 switch (reg
->type
) {
2530 case PTR_TO_PACKET_META
:
2531 /* Special case, because of NET_IP_ALIGN. Given metadata sits
2532 * right in front, treat it the very same way.
2534 return check_pkt_ptr_alignment(env
, reg
, off
, size
, strict
);
2535 case PTR_TO_FLOW_KEYS
:
2536 pointer_desc
= "flow keys ";
2538 case PTR_TO_MAP_VALUE
:
2539 pointer_desc
= "value ";
2542 pointer_desc
= "context ";
2545 pointer_desc
= "stack ";
2546 /* The stack spill tracking logic in check_stack_write()
2547 * and check_stack_read() relies on stack accesses being
2553 pointer_desc
= "sock ";
2555 case PTR_TO_SOCK_COMMON
:
2556 pointer_desc
= "sock_common ";
2558 case PTR_TO_TCP_SOCK
:
2559 pointer_desc
= "tcp_sock ";
2561 case PTR_TO_XDP_SOCK
:
2562 pointer_desc
= "xdp_sock ";
2567 return check_generic_ptr_alignment(env
, reg
, pointer_desc
, off
, size
,
2571 static int update_stack_depth(struct bpf_verifier_env
*env
,
2572 const struct bpf_func_state
*func
,
2575 u16 stack
= env
->subprog_info
[func
->subprogno
].stack_depth
;
2580 /* update known max for given subprogram */
2581 env
->subprog_info
[func
->subprogno
].stack_depth
= -off
;
2585 /* starting from main bpf function walk all instructions of the function
2586 * and recursively walk all callees that given function can call.
2587 * Ignore jump and exit insns.
2588 * Since recursion is prevented by check_cfg() this algorithm
2589 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2591 static int check_max_stack_depth(struct bpf_verifier_env
*env
)
2593 int depth
= 0, frame
= 0, idx
= 0, i
= 0, subprog_end
;
2594 struct bpf_subprog_info
*subprog
= env
->subprog_info
;
2595 struct bpf_insn
*insn
= env
->prog
->insnsi
;
2596 int ret_insn
[MAX_CALL_FRAMES
];
2597 int ret_prog
[MAX_CALL_FRAMES
];
2600 /* round up to 32-bytes, since this is granularity
2601 * of interpreter stack size
2603 depth
+= round_up(max_t(u32
, subprog
[idx
].stack_depth
, 1), 32);
2604 if (depth
> MAX_BPF_STACK
) {
2605 verbose(env
, "combined stack size of %d calls is %d. Too large\n",
2610 subprog_end
= subprog
[idx
+ 1].start
;
2611 for (; i
< subprog_end
; i
++) {
2612 if (insn
[i
].code
!= (BPF_JMP
| BPF_CALL
))
2614 if (insn
[i
].src_reg
!= BPF_PSEUDO_CALL
)
2616 /* remember insn and function to return to */
2617 ret_insn
[frame
] = i
+ 1;
2618 ret_prog
[frame
] = idx
;
2620 /* find the callee */
2621 i
= i
+ insn
[i
].imm
+ 1;
2622 idx
= find_subprog(env
, i
);
2624 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2629 if (frame
>= MAX_CALL_FRAMES
) {
2630 verbose(env
, "the call stack of %d frames is too deep !\n",
2636 /* end of for() loop means the last insn of the 'subprog'
2637 * was reached. Doesn't matter whether it was JA or EXIT
2641 depth
-= round_up(max_t(u32
, subprog
[idx
].stack_depth
, 1), 32);
2643 i
= ret_insn
[frame
];
2644 idx
= ret_prog
[frame
];
2648 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2649 static int get_callee_stack_depth(struct bpf_verifier_env
*env
,
2650 const struct bpf_insn
*insn
, int idx
)
2652 int start
= idx
+ insn
->imm
+ 1, subprog
;
2654 subprog
= find_subprog(env
, start
);
2656 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2660 return env
->subprog_info
[subprog
].stack_depth
;
2664 static int check_ctx_reg(struct bpf_verifier_env
*env
,
2665 const struct bpf_reg_state
*reg
, int regno
)
2667 /* Access to ctx or passing it to a helper is only allowed in
2668 * its original, unmodified form.
2672 verbose(env
, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2677 if (!tnum_is_const(reg
->var_off
) || reg
->var_off
.value
) {
2680 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
2681 verbose(env
, "variable ctx access var_off=%s disallowed\n", tn_buf
);
2688 static int check_tp_buffer_access(struct bpf_verifier_env
*env
,
2689 const struct bpf_reg_state
*reg
,
2690 int regno
, int off
, int size
)
2694 "R%d invalid tracepoint buffer access: off=%d, size=%d",
2698 if (!tnum_is_const(reg
->var_off
) || reg
->var_off
.value
) {
2701 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
2703 "R%d invalid variable buffer offset: off=%d, var_off=%s",
2704 regno
, off
, tn_buf
);
2707 if (off
+ size
> env
->prog
->aux
->max_tp_access
)
2708 env
->prog
->aux
->max_tp_access
= off
+ size
;
2714 /* truncate register to smaller size (in bytes)
2715 * must be called with size < BPF_REG_SIZE
2717 static void coerce_reg_to_size(struct bpf_reg_state
*reg
, int size
)
2721 /* clear high bits in bit representation */
2722 reg
->var_off
= tnum_cast(reg
->var_off
, size
);
2724 /* fix arithmetic bounds */
2725 mask
= ((u64
)1 << (size
* 8)) - 1;
2726 if ((reg
->umin_value
& ~mask
) == (reg
->umax_value
& ~mask
)) {
2727 reg
->umin_value
&= mask
;
2728 reg
->umax_value
&= mask
;
2730 reg
->umin_value
= 0;
2731 reg
->umax_value
= mask
;
2733 reg
->smin_value
= reg
->umin_value
;
2734 reg
->smax_value
= reg
->umax_value
;
2737 /* check whether memory at (regno + off) is accessible for t = (read | write)
2738 * if t==write, value_regno is a register which value is stored into memory
2739 * if t==read, value_regno is a register which will receive the value from memory
2740 * if t==write && value_regno==-1, some unknown value is stored into memory
2741 * if t==read && value_regno==-1, don't care what we read from memory
2743 static int check_mem_access(struct bpf_verifier_env
*env
, int insn_idx
, u32 regno
,
2744 int off
, int bpf_size
, enum bpf_access_type t
,
2745 int value_regno
, bool strict_alignment_once
)
2747 struct bpf_reg_state
*regs
= cur_regs(env
);
2748 struct bpf_reg_state
*reg
= regs
+ regno
;
2749 struct bpf_func_state
*state
;
2752 size
= bpf_size_to_bytes(bpf_size
);
2756 /* alignment checks will add in reg->off themselves */
2757 err
= check_ptr_alignment(env
, reg
, off
, size
, strict_alignment_once
);
2761 /* for access checks, reg->off is just part of off */
2764 if (reg
->type
== PTR_TO_MAP_VALUE
) {
2765 if (t
== BPF_WRITE
&& value_regno
>= 0 &&
2766 is_pointer_value(env
, value_regno
)) {
2767 verbose(env
, "R%d leaks addr into map\n", value_regno
);
2770 err
= check_map_access_type(env
, regno
, off
, size
, t
);
2773 err
= check_map_access(env
, regno
, off
, size
, false);
2774 if (!err
&& t
== BPF_READ
&& value_regno
>= 0)
2775 mark_reg_unknown(env
, regs
, value_regno
);
2777 } else if (reg
->type
== PTR_TO_CTX
) {
2778 enum bpf_reg_type reg_type
= SCALAR_VALUE
;
2780 if (t
== BPF_WRITE
&& value_regno
>= 0 &&
2781 is_pointer_value(env
, value_regno
)) {
2782 verbose(env
, "R%d leaks addr into ctx\n", value_regno
);
2786 err
= check_ctx_reg(env
, reg
, regno
);
2790 err
= check_ctx_access(env
, insn_idx
, off
, size
, t
, ®_type
);
2791 if (!err
&& t
== BPF_READ
&& value_regno
>= 0) {
2792 /* ctx access returns either a scalar, or a
2793 * PTR_TO_PACKET[_META,_END]. In the latter
2794 * case, we know the offset is zero.
2796 if (reg_type
== SCALAR_VALUE
) {
2797 mark_reg_unknown(env
, regs
, value_regno
);
2799 mark_reg_known_zero(env
, regs
,
2801 if (reg_type_may_be_null(reg_type
))
2802 regs
[value_regno
].id
= ++env
->id_gen
;
2803 /* A load of ctx field could have different
2804 * actual load size with the one encoded in the
2805 * insn. When the dst is PTR, it is for sure not
2808 regs
[value_regno
].subreg_def
= DEF_NOT_SUBREG
;
2810 regs
[value_regno
].type
= reg_type
;
2813 } else if (reg
->type
== PTR_TO_STACK
) {
2814 off
+= reg
->var_off
.value
;
2815 err
= check_stack_access(env
, reg
, off
, size
);
2819 state
= func(env
, reg
);
2820 err
= update_stack_depth(env
, state
, off
);
2825 err
= check_stack_write(env
, state
, off
, size
,
2826 value_regno
, insn_idx
);
2828 err
= check_stack_read(env
, state
, off
, size
,
2830 } else if (reg_is_pkt_pointer(reg
)) {
2831 if (t
== BPF_WRITE
&& !may_access_direct_pkt_data(env
, NULL
, t
)) {
2832 verbose(env
, "cannot write into packet\n");
2835 if (t
== BPF_WRITE
&& value_regno
>= 0 &&
2836 is_pointer_value(env
, value_regno
)) {
2837 verbose(env
, "R%d leaks addr into packet\n",
2841 err
= check_packet_access(env
, regno
, off
, size
, false);
2842 if (!err
&& t
== BPF_READ
&& value_regno
>= 0)
2843 mark_reg_unknown(env
, regs
, value_regno
);
2844 } else if (reg
->type
== PTR_TO_FLOW_KEYS
) {
2845 if (t
== BPF_WRITE
&& value_regno
>= 0 &&
2846 is_pointer_value(env
, value_regno
)) {
2847 verbose(env
, "R%d leaks addr into flow keys\n",
2852 err
= check_flow_keys_access(env
, off
, size
);
2853 if (!err
&& t
== BPF_READ
&& value_regno
>= 0)
2854 mark_reg_unknown(env
, regs
, value_regno
);
2855 } else if (type_is_sk_pointer(reg
->type
)) {
2856 if (t
== BPF_WRITE
) {
2857 verbose(env
, "R%d cannot write into %s\n",
2858 regno
, reg_type_str
[reg
->type
]);
2861 err
= check_sock_access(env
, insn_idx
, regno
, off
, size
, t
);
2862 if (!err
&& value_regno
>= 0)
2863 mark_reg_unknown(env
, regs
, value_regno
);
2864 } else if (reg
->type
== PTR_TO_TP_BUFFER
) {
2865 err
= check_tp_buffer_access(env
, reg
, regno
, off
, size
);
2866 if (!err
&& t
== BPF_READ
&& value_regno
>= 0)
2867 mark_reg_unknown(env
, regs
, value_regno
);
2869 verbose(env
, "R%d invalid mem access '%s'\n", regno
,
2870 reg_type_str
[reg
->type
]);
2874 if (!err
&& size
< BPF_REG_SIZE
&& value_regno
>= 0 && t
== BPF_READ
&&
2875 regs
[value_regno
].type
== SCALAR_VALUE
) {
2876 /* b/h/w load zero-extends, mark upper bits as known 0 */
2877 coerce_reg_to_size(®s
[value_regno
], size
);
2882 static int check_xadd(struct bpf_verifier_env
*env
, int insn_idx
, struct bpf_insn
*insn
)
2886 if ((BPF_SIZE(insn
->code
) != BPF_W
&& BPF_SIZE(insn
->code
) != BPF_DW
) ||
2888 verbose(env
, "BPF_XADD uses reserved fields\n");
2892 /* check src1 operand */
2893 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
2897 /* check src2 operand */
2898 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
2902 if (is_pointer_value(env
, insn
->src_reg
)) {
2903 verbose(env
, "R%d leaks addr into mem\n", insn
->src_reg
);
2907 if (is_ctx_reg(env
, insn
->dst_reg
) ||
2908 is_pkt_reg(env
, insn
->dst_reg
) ||
2909 is_flow_key_reg(env
, insn
->dst_reg
) ||
2910 is_sk_reg(env
, insn
->dst_reg
)) {
2911 verbose(env
, "BPF_XADD stores into R%d %s is not allowed\n",
2913 reg_type_str
[reg_state(env
, insn
->dst_reg
)->type
]);
2917 /* check whether atomic_add can read the memory */
2918 err
= check_mem_access(env
, insn_idx
, insn
->dst_reg
, insn
->off
,
2919 BPF_SIZE(insn
->code
), BPF_READ
, -1, true);
2923 /* check whether atomic_add can write into the same memory */
2924 return check_mem_access(env
, insn_idx
, insn
->dst_reg
, insn
->off
,
2925 BPF_SIZE(insn
->code
), BPF_WRITE
, -1, true);
2928 static int __check_stack_boundary(struct bpf_verifier_env
*env
, u32 regno
,
2929 int off
, int access_size
,
2930 bool zero_size_allowed
)
2932 struct bpf_reg_state
*reg
= reg_state(env
, regno
);
2934 if (off
>= 0 || off
< -MAX_BPF_STACK
|| off
+ access_size
> 0 ||
2935 access_size
< 0 || (access_size
== 0 && !zero_size_allowed
)) {
2936 if (tnum_is_const(reg
->var_off
)) {
2937 verbose(env
, "invalid stack type R%d off=%d access_size=%d\n",
2938 regno
, off
, access_size
);
2942 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
2943 verbose(env
, "invalid stack type R%d var_off=%s access_size=%d\n",
2944 regno
, tn_buf
, access_size
);
2951 /* when register 'regno' is passed into function that will read 'access_size'
2952 * bytes from that pointer, make sure that it's within stack boundary
2953 * and all elements of stack are initialized.
2954 * Unlike most pointer bounds-checking functions, this one doesn't take an
2955 * 'off' argument, so it has to add in reg->off itself.
2957 static int check_stack_boundary(struct bpf_verifier_env
*env
, int regno
,
2958 int access_size
, bool zero_size_allowed
,
2959 struct bpf_call_arg_meta
*meta
)
2961 struct bpf_reg_state
*reg
= reg_state(env
, regno
);
2962 struct bpf_func_state
*state
= func(env
, reg
);
2963 int err
, min_off
, max_off
, i
, j
, slot
, spi
;
2965 if (reg
->type
!= PTR_TO_STACK
) {
2966 /* Allow zero-byte read from NULL, regardless of pointer type */
2967 if (zero_size_allowed
&& access_size
== 0 &&
2968 register_is_null(reg
))
2971 verbose(env
, "R%d type=%s expected=%s\n", regno
,
2972 reg_type_str
[reg
->type
],
2973 reg_type_str
[PTR_TO_STACK
]);
2977 if (tnum_is_const(reg
->var_off
)) {
2978 min_off
= max_off
= reg
->var_off
.value
+ reg
->off
;
2979 err
= __check_stack_boundary(env
, regno
, min_off
, access_size
,
2984 /* Variable offset is prohibited for unprivileged mode for
2985 * simplicity since it requires corresponding support in
2986 * Spectre masking for stack ALU.
2987 * See also retrieve_ptr_limit().
2989 if (!env
->allow_ptr_leaks
) {
2992 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
2993 verbose(env
, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
2997 /* Only initialized buffer on stack is allowed to be accessed
2998 * with variable offset. With uninitialized buffer it's hard to
2999 * guarantee that whole memory is marked as initialized on
3000 * helper return since specific bounds are unknown what may
3001 * cause uninitialized stack leaking.
3003 if (meta
&& meta
->raw_mode
)
3006 if (reg
->smax_value
>= BPF_MAX_VAR_OFF
||
3007 reg
->smax_value
<= -BPF_MAX_VAR_OFF
) {
3008 verbose(env
, "R%d unbounded indirect variable offset stack access\n",
3012 min_off
= reg
->smin_value
+ reg
->off
;
3013 max_off
= reg
->smax_value
+ reg
->off
;
3014 err
= __check_stack_boundary(env
, regno
, min_off
, access_size
,
3017 verbose(env
, "R%d min value is outside of stack bound\n",
3021 err
= __check_stack_boundary(env
, regno
, max_off
, access_size
,
3024 verbose(env
, "R%d max value is outside of stack bound\n",
3030 if (meta
&& meta
->raw_mode
) {
3031 meta
->access_size
= access_size
;
3032 meta
->regno
= regno
;
3036 for (i
= min_off
; i
< max_off
+ access_size
; i
++) {
3040 spi
= slot
/ BPF_REG_SIZE
;
3041 if (state
->allocated_stack
<= slot
)
3043 stype
= &state
->stack
[spi
].slot_type
[slot
% BPF_REG_SIZE
];
3044 if (*stype
== STACK_MISC
)
3046 if (*stype
== STACK_ZERO
) {
3047 /* helper can write anything into the stack */
3048 *stype
= STACK_MISC
;
3051 if (state
->stack
[spi
].slot_type
[0] == STACK_SPILL
&&
3052 state
->stack
[spi
].spilled_ptr
.type
== SCALAR_VALUE
) {
3053 __mark_reg_unknown(&state
->stack
[spi
].spilled_ptr
);
3054 for (j
= 0; j
< BPF_REG_SIZE
; j
++)
3055 state
->stack
[spi
].slot_type
[j
] = STACK_MISC
;
3060 if (tnum_is_const(reg
->var_off
)) {
3061 verbose(env
, "invalid indirect read from stack off %d+%d size %d\n",
3062 min_off
, i
- min_off
, access_size
);
3066 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
3067 verbose(env
, "invalid indirect read from stack var_off %s+%d size %d\n",
3068 tn_buf
, i
- min_off
, access_size
);
3072 /* reading any byte out of 8-byte 'spill_slot' will cause
3073 * the whole slot to be marked as 'read'
3075 mark_reg_read(env
, &state
->stack
[spi
].spilled_ptr
,
3076 state
->stack
[spi
].spilled_ptr
.parent
,
3079 return update_stack_depth(env
, state
, min_off
);
3082 static int check_helper_mem_access(struct bpf_verifier_env
*env
, int regno
,
3083 int access_size
, bool zero_size_allowed
,
3084 struct bpf_call_arg_meta
*meta
)
3086 struct bpf_reg_state
*regs
= cur_regs(env
), *reg
= ®s
[regno
];
3088 switch (reg
->type
) {
3090 case PTR_TO_PACKET_META
:
3091 return check_packet_access(env
, regno
, reg
->off
, access_size
,
3093 case PTR_TO_MAP_VALUE
:
3094 if (check_map_access_type(env
, regno
, reg
->off
, access_size
,
3095 meta
&& meta
->raw_mode
? BPF_WRITE
:
3098 return check_map_access(env
, regno
, reg
->off
, access_size
,
3100 default: /* scalar_value|ptr_to_stack or invalid ptr */
3101 return check_stack_boundary(env
, regno
, access_size
,
3102 zero_size_allowed
, meta
);
3106 /* Implementation details:
3107 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3108 * Two bpf_map_lookups (even with the same key) will have different reg->id.
3109 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3110 * value_or_null->value transition, since the verifier only cares about
3111 * the range of access to valid map value pointer and doesn't care about actual
3112 * address of the map element.
3113 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3114 * reg->id > 0 after value_or_null->value transition. By doing so
3115 * two bpf_map_lookups will be considered two different pointers that
3116 * point to different bpf_spin_locks.
3117 * The verifier allows taking only one bpf_spin_lock at a time to avoid
3119 * Since only one bpf_spin_lock is allowed the checks are simpler than
3120 * reg_is_refcounted() logic. The verifier needs to remember only
3121 * one spin_lock instead of array of acquired_refs.
3122 * cur_state->active_spin_lock remembers which map value element got locked
3123 * and clears it after bpf_spin_unlock.
3125 static int process_spin_lock(struct bpf_verifier_env
*env
, int regno
,
3128 struct bpf_reg_state
*regs
= cur_regs(env
), *reg
= ®s
[regno
];
3129 struct bpf_verifier_state
*cur
= env
->cur_state
;
3130 bool is_const
= tnum_is_const(reg
->var_off
);
3131 struct bpf_map
*map
= reg
->map_ptr
;
3132 u64 val
= reg
->var_off
.value
;
3134 if (reg
->type
!= PTR_TO_MAP_VALUE
) {
3135 verbose(env
, "R%d is not a pointer to map_value\n", regno
);
3140 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3146 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
3150 if (!map_value_has_spin_lock(map
)) {
3151 if (map
->spin_lock_off
== -E2BIG
)
3153 "map '%s' has more than one 'struct bpf_spin_lock'\n",
3155 else if (map
->spin_lock_off
== -ENOENT
)
3157 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
3161 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3165 if (map
->spin_lock_off
!= val
+ reg
->off
) {
3166 verbose(env
, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3171 if (cur
->active_spin_lock
) {
3173 "Locking two bpf_spin_locks are not allowed\n");
3176 cur
->active_spin_lock
= reg
->id
;
3178 if (!cur
->active_spin_lock
) {
3179 verbose(env
, "bpf_spin_unlock without taking a lock\n");
3182 if (cur
->active_spin_lock
!= reg
->id
) {
3183 verbose(env
, "bpf_spin_unlock of different lock\n");
3186 cur
->active_spin_lock
= 0;
3191 static bool arg_type_is_mem_ptr(enum bpf_arg_type type
)
3193 return type
== ARG_PTR_TO_MEM
||
3194 type
== ARG_PTR_TO_MEM_OR_NULL
||
3195 type
== ARG_PTR_TO_UNINIT_MEM
;
3198 static bool arg_type_is_mem_size(enum bpf_arg_type type
)
3200 return type
== ARG_CONST_SIZE
||
3201 type
== ARG_CONST_SIZE_OR_ZERO
;
3204 static bool arg_type_is_int_ptr(enum bpf_arg_type type
)
3206 return type
== ARG_PTR_TO_INT
||
3207 type
== ARG_PTR_TO_LONG
;
3210 static int int_ptr_type_to_size(enum bpf_arg_type type
)
3212 if (type
== ARG_PTR_TO_INT
)
3214 else if (type
== ARG_PTR_TO_LONG
)
3220 static int check_func_arg(struct bpf_verifier_env
*env
, u32 regno
,
3221 enum bpf_arg_type arg_type
,
3222 struct bpf_call_arg_meta
*meta
)
3224 struct bpf_reg_state
*regs
= cur_regs(env
), *reg
= ®s
[regno
];
3225 enum bpf_reg_type expected_type
, type
= reg
->type
;
3228 if (arg_type
== ARG_DONTCARE
)
3231 err
= check_reg_arg(env
, regno
, SRC_OP
);
3235 if (arg_type
== ARG_ANYTHING
) {
3236 if (is_pointer_value(env
, regno
)) {
3237 verbose(env
, "R%d leaks addr into helper function\n",
3244 if (type_is_pkt_pointer(type
) &&
3245 !may_access_direct_pkt_data(env
, meta
, BPF_READ
)) {
3246 verbose(env
, "helper access to the packet is not allowed\n");
3250 if (arg_type
== ARG_PTR_TO_MAP_KEY
||
3251 arg_type
== ARG_PTR_TO_MAP_VALUE
||
3252 arg_type
== ARG_PTR_TO_UNINIT_MAP_VALUE
||
3253 arg_type
== ARG_PTR_TO_MAP_VALUE_OR_NULL
) {
3254 expected_type
= PTR_TO_STACK
;
3255 if (register_is_null(reg
) &&
3256 arg_type
== ARG_PTR_TO_MAP_VALUE_OR_NULL
)
3257 /* final test in check_stack_boundary() */;
3258 else if (!type_is_pkt_pointer(type
) &&
3259 type
!= PTR_TO_MAP_VALUE
&&
3260 type
!= expected_type
)
3262 } else if (arg_type
== ARG_CONST_SIZE
||
3263 arg_type
== ARG_CONST_SIZE_OR_ZERO
) {
3264 expected_type
= SCALAR_VALUE
;
3265 if (type
!= expected_type
)
3267 } else if (arg_type
== ARG_CONST_MAP_PTR
) {
3268 expected_type
= CONST_PTR_TO_MAP
;
3269 if (type
!= expected_type
)
3271 } else if (arg_type
== ARG_PTR_TO_CTX
) {
3272 expected_type
= PTR_TO_CTX
;
3273 if (type
!= expected_type
)
3275 err
= check_ctx_reg(env
, reg
, regno
);
3278 } else if (arg_type
== ARG_PTR_TO_SOCK_COMMON
) {
3279 expected_type
= PTR_TO_SOCK_COMMON
;
3280 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3281 if (!type_is_sk_pointer(type
))
3283 if (reg
->ref_obj_id
) {
3284 if (meta
->ref_obj_id
) {
3285 verbose(env
, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3286 regno
, reg
->ref_obj_id
,
3290 meta
->ref_obj_id
= reg
->ref_obj_id
;
3292 } else if (arg_type
== ARG_PTR_TO_SOCKET
) {
3293 expected_type
= PTR_TO_SOCKET
;
3294 if (type
!= expected_type
)
3296 } else if (arg_type
== ARG_PTR_TO_SPIN_LOCK
) {
3297 if (meta
->func_id
== BPF_FUNC_spin_lock
) {
3298 if (process_spin_lock(env
, regno
, true))
3300 } else if (meta
->func_id
== BPF_FUNC_spin_unlock
) {
3301 if (process_spin_lock(env
, regno
, false))
3304 verbose(env
, "verifier internal error\n");
3307 } else if (arg_type_is_mem_ptr(arg_type
)) {
3308 expected_type
= PTR_TO_STACK
;
3309 /* One exception here. In case function allows for NULL to be
3310 * passed in as argument, it's a SCALAR_VALUE type. Final test
3311 * happens during stack boundary checking.
3313 if (register_is_null(reg
) &&
3314 arg_type
== ARG_PTR_TO_MEM_OR_NULL
)
3315 /* final test in check_stack_boundary() */;
3316 else if (!type_is_pkt_pointer(type
) &&
3317 type
!= PTR_TO_MAP_VALUE
&&
3318 type
!= expected_type
)
3320 meta
->raw_mode
= arg_type
== ARG_PTR_TO_UNINIT_MEM
;
3321 } else if (arg_type_is_int_ptr(arg_type
)) {
3322 expected_type
= PTR_TO_STACK
;
3323 if (!type_is_pkt_pointer(type
) &&
3324 type
!= PTR_TO_MAP_VALUE
&&
3325 type
!= expected_type
)
3328 verbose(env
, "unsupported arg_type %d\n", arg_type
);
3332 if (arg_type
== ARG_CONST_MAP_PTR
) {
3333 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3334 meta
->map_ptr
= reg
->map_ptr
;
3335 } else if (arg_type
== ARG_PTR_TO_MAP_KEY
) {
3336 /* bpf_map_xxx(..., map_ptr, ..., key) call:
3337 * check that [key, key + map->key_size) are within
3338 * stack limits and initialized
3340 if (!meta
->map_ptr
) {
3341 /* in function declaration map_ptr must come before
3342 * map_key, so that it's verified and known before
3343 * we have to check map_key here. Otherwise it means
3344 * that kernel subsystem misconfigured verifier
3346 verbose(env
, "invalid map_ptr to access map->key\n");
3349 err
= check_helper_mem_access(env
, regno
,
3350 meta
->map_ptr
->key_size
, false,
3352 } else if (arg_type
== ARG_PTR_TO_MAP_VALUE
||
3353 (arg_type
== ARG_PTR_TO_MAP_VALUE_OR_NULL
&&
3354 !register_is_null(reg
)) ||
3355 arg_type
== ARG_PTR_TO_UNINIT_MAP_VALUE
) {
3356 /* bpf_map_xxx(..., map_ptr, ..., value) call:
3357 * check [value, value + map->value_size) validity
3359 if (!meta
->map_ptr
) {
3360 /* kernel subsystem misconfigured verifier */
3361 verbose(env
, "invalid map_ptr to access map->value\n");
3364 meta
->raw_mode
= (arg_type
== ARG_PTR_TO_UNINIT_MAP_VALUE
);
3365 err
= check_helper_mem_access(env
, regno
,
3366 meta
->map_ptr
->value_size
, false,
3368 } else if (arg_type_is_mem_size(arg_type
)) {
3369 bool zero_size_allowed
= (arg_type
== ARG_CONST_SIZE_OR_ZERO
);
3371 /* remember the mem_size which may be used later
3372 * to refine return values.
3374 meta
->msize_smax_value
= reg
->smax_value
;
3375 meta
->msize_umax_value
= reg
->umax_value
;
3377 /* The register is SCALAR_VALUE; the access check
3378 * happens using its boundaries.
3380 if (!tnum_is_const(reg
->var_off
))
3381 /* For unprivileged variable accesses, disable raw
3382 * mode so that the program is required to
3383 * initialize all the memory that the helper could
3384 * just partially fill up.
3388 if (reg
->smin_value
< 0) {
3389 verbose(env
, "R%d min value is negative, either use unsigned or 'var &= const'\n",
3394 if (reg
->umin_value
== 0) {
3395 err
= check_helper_mem_access(env
, regno
- 1, 0,
3402 if (reg
->umax_value
>= BPF_MAX_VAR_SIZ
) {
3403 verbose(env
, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
3407 err
= check_helper_mem_access(env
, regno
- 1,
3409 zero_size_allowed
, meta
);
3411 err
= mark_chain_precision(env
, regno
);
3412 } else if (arg_type_is_int_ptr(arg_type
)) {
3413 int size
= int_ptr_type_to_size(arg_type
);
3415 err
= check_helper_mem_access(env
, regno
, size
, false, meta
);
3418 err
= check_ptr_alignment(env
, reg
, 0, size
, true);
3423 verbose(env
, "R%d type=%s expected=%s\n", regno
,
3424 reg_type_str
[type
], reg_type_str
[expected_type
]);
3428 static int check_map_func_compatibility(struct bpf_verifier_env
*env
,
3429 struct bpf_map
*map
, int func_id
)
3434 /* We need a two way check, first is from map perspective ... */
3435 switch (map
->map_type
) {
3436 case BPF_MAP_TYPE_PROG_ARRAY
:
3437 if (func_id
!= BPF_FUNC_tail_call
)
3440 case BPF_MAP_TYPE_PERF_EVENT_ARRAY
:
3441 if (func_id
!= BPF_FUNC_perf_event_read
&&
3442 func_id
!= BPF_FUNC_perf_event_output
&&
3443 func_id
!= BPF_FUNC_perf_event_read_value
)
3446 case BPF_MAP_TYPE_STACK_TRACE
:
3447 if (func_id
!= BPF_FUNC_get_stackid
)
3450 case BPF_MAP_TYPE_CGROUP_ARRAY
:
3451 if (func_id
!= BPF_FUNC_skb_under_cgroup
&&
3452 func_id
!= BPF_FUNC_current_task_under_cgroup
)
3455 case BPF_MAP_TYPE_CGROUP_STORAGE
:
3456 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE
:
3457 if (func_id
!= BPF_FUNC_get_local_storage
)
3460 case BPF_MAP_TYPE_DEVMAP
:
3461 if (func_id
!= BPF_FUNC_redirect_map
&&
3462 func_id
!= BPF_FUNC_map_lookup_elem
)
3465 /* Restrict bpf side of cpumap and xskmap, open when use-cases
3468 case BPF_MAP_TYPE_CPUMAP
:
3469 if (func_id
!= BPF_FUNC_redirect_map
)
3472 case BPF_MAP_TYPE_XSKMAP
:
3473 if (func_id
!= BPF_FUNC_redirect_map
&&
3474 func_id
!= BPF_FUNC_map_lookup_elem
)
3477 case BPF_MAP_TYPE_ARRAY_OF_MAPS
:
3478 case BPF_MAP_TYPE_HASH_OF_MAPS
:
3479 if (func_id
!= BPF_FUNC_map_lookup_elem
)
3482 case BPF_MAP_TYPE_SOCKMAP
:
3483 if (func_id
!= BPF_FUNC_sk_redirect_map
&&
3484 func_id
!= BPF_FUNC_sock_map_update
&&
3485 func_id
!= BPF_FUNC_map_delete_elem
&&
3486 func_id
!= BPF_FUNC_msg_redirect_map
)
3489 case BPF_MAP_TYPE_SOCKHASH
:
3490 if (func_id
!= BPF_FUNC_sk_redirect_hash
&&
3491 func_id
!= BPF_FUNC_sock_hash_update
&&
3492 func_id
!= BPF_FUNC_map_delete_elem
&&
3493 func_id
!= BPF_FUNC_msg_redirect_hash
)
3496 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY
:
3497 if (func_id
!= BPF_FUNC_sk_select_reuseport
)
3500 case BPF_MAP_TYPE_QUEUE
:
3501 case BPF_MAP_TYPE_STACK
:
3502 if (func_id
!= BPF_FUNC_map_peek_elem
&&
3503 func_id
!= BPF_FUNC_map_pop_elem
&&
3504 func_id
!= BPF_FUNC_map_push_elem
)
3507 case BPF_MAP_TYPE_SK_STORAGE
:
3508 if (func_id
!= BPF_FUNC_sk_storage_get
&&
3509 func_id
!= BPF_FUNC_sk_storage_delete
)
3516 /* ... and second from the function itself. */
3518 case BPF_FUNC_tail_call
:
3519 if (map
->map_type
!= BPF_MAP_TYPE_PROG_ARRAY
)
3521 if (env
->subprog_cnt
> 1) {
3522 verbose(env
, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
3526 case BPF_FUNC_perf_event_read
:
3527 case BPF_FUNC_perf_event_output
:
3528 case BPF_FUNC_perf_event_read_value
:
3529 if (map
->map_type
!= BPF_MAP_TYPE_PERF_EVENT_ARRAY
)
3532 case BPF_FUNC_get_stackid
:
3533 if (map
->map_type
!= BPF_MAP_TYPE_STACK_TRACE
)
3536 case BPF_FUNC_current_task_under_cgroup
:
3537 case BPF_FUNC_skb_under_cgroup
:
3538 if (map
->map_type
!= BPF_MAP_TYPE_CGROUP_ARRAY
)
3541 case BPF_FUNC_redirect_map
:
3542 if (map
->map_type
!= BPF_MAP_TYPE_DEVMAP
&&
3543 map
->map_type
!= BPF_MAP_TYPE_CPUMAP
&&
3544 map
->map_type
!= BPF_MAP_TYPE_XSKMAP
)
3547 case BPF_FUNC_sk_redirect_map
:
3548 case BPF_FUNC_msg_redirect_map
:
3549 case BPF_FUNC_sock_map_update
:
3550 if (map
->map_type
!= BPF_MAP_TYPE_SOCKMAP
)
3553 case BPF_FUNC_sk_redirect_hash
:
3554 case BPF_FUNC_msg_redirect_hash
:
3555 case BPF_FUNC_sock_hash_update
:
3556 if (map
->map_type
!= BPF_MAP_TYPE_SOCKHASH
)
3559 case BPF_FUNC_get_local_storage
:
3560 if (map
->map_type
!= BPF_MAP_TYPE_CGROUP_STORAGE
&&
3561 map
->map_type
!= BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE
)
3564 case BPF_FUNC_sk_select_reuseport
:
3565 if (map
->map_type
!= BPF_MAP_TYPE_REUSEPORT_SOCKARRAY
)
3568 case BPF_FUNC_map_peek_elem
:
3569 case BPF_FUNC_map_pop_elem
:
3570 case BPF_FUNC_map_push_elem
:
3571 if (map
->map_type
!= BPF_MAP_TYPE_QUEUE
&&
3572 map
->map_type
!= BPF_MAP_TYPE_STACK
)
3575 case BPF_FUNC_sk_storage_get
:
3576 case BPF_FUNC_sk_storage_delete
:
3577 if (map
->map_type
!= BPF_MAP_TYPE_SK_STORAGE
)
3586 verbose(env
, "cannot pass map_type %d into func %s#%d\n",
3587 map
->map_type
, func_id_name(func_id
), func_id
);
3591 static bool check_raw_mode_ok(const struct bpf_func_proto
*fn
)
3595 if (fn
->arg1_type
== ARG_PTR_TO_UNINIT_MEM
)
3597 if (fn
->arg2_type
== ARG_PTR_TO_UNINIT_MEM
)
3599 if (fn
->arg3_type
== ARG_PTR_TO_UNINIT_MEM
)
3601 if (fn
->arg4_type
== ARG_PTR_TO_UNINIT_MEM
)
3603 if (fn
->arg5_type
== ARG_PTR_TO_UNINIT_MEM
)
3606 /* We only support one arg being in raw mode at the moment,
3607 * which is sufficient for the helper functions we have
3613 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr
,
3614 enum bpf_arg_type arg_next
)
3616 return (arg_type_is_mem_ptr(arg_curr
) &&
3617 !arg_type_is_mem_size(arg_next
)) ||
3618 (!arg_type_is_mem_ptr(arg_curr
) &&
3619 arg_type_is_mem_size(arg_next
));
3622 static bool check_arg_pair_ok(const struct bpf_func_proto
*fn
)
3624 /* bpf_xxx(..., buf, len) call will access 'len'
3625 * bytes from memory 'buf'. Both arg types need
3626 * to be paired, so make sure there's no buggy
3627 * helper function specification.
3629 if (arg_type_is_mem_size(fn
->arg1_type
) ||
3630 arg_type_is_mem_ptr(fn
->arg5_type
) ||
3631 check_args_pair_invalid(fn
->arg1_type
, fn
->arg2_type
) ||
3632 check_args_pair_invalid(fn
->arg2_type
, fn
->arg3_type
) ||
3633 check_args_pair_invalid(fn
->arg3_type
, fn
->arg4_type
) ||
3634 check_args_pair_invalid(fn
->arg4_type
, fn
->arg5_type
))
3640 static bool check_refcount_ok(const struct bpf_func_proto
*fn
, int func_id
)
3644 if (arg_type_may_be_refcounted(fn
->arg1_type
))
3646 if (arg_type_may_be_refcounted(fn
->arg2_type
))
3648 if (arg_type_may_be_refcounted(fn
->arg3_type
))
3650 if (arg_type_may_be_refcounted(fn
->arg4_type
))
3652 if (arg_type_may_be_refcounted(fn
->arg5_type
))
3655 /* A reference acquiring function cannot acquire
3656 * another refcounted ptr.
3658 if (is_acquire_function(func_id
) && count
)
3661 /* We only support one arg being unreferenced at the moment,
3662 * which is sufficient for the helper functions we have right now.
3667 static int check_func_proto(const struct bpf_func_proto
*fn
, int func_id
)
3669 return check_raw_mode_ok(fn
) &&
3670 check_arg_pair_ok(fn
) &&
3671 check_refcount_ok(fn
, func_id
) ? 0 : -EINVAL
;
3674 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
3675 * are now invalid, so turn them into unknown SCALAR_VALUE.
3677 static void __clear_all_pkt_pointers(struct bpf_verifier_env
*env
,
3678 struct bpf_func_state
*state
)
3680 struct bpf_reg_state
*regs
= state
->regs
, *reg
;
3683 for (i
= 0; i
< MAX_BPF_REG
; i
++)
3684 if (reg_is_pkt_pointer_any(®s
[i
]))
3685 mark_reg_unknown(env
, regs
, i
);
3687 bpf_for_each_spilled_reg(i
, state
, reg
) {
3690 if (reg_is_pkt_pointer_any(reg
))
3691 __mark_reg_unknown(reg
);
3695 static void clear_all_pkt_pointers(struct bpf_verifier_env
*env
)
3697 struct bpf_verifier_state
*vstate
= env
->cur_state
;
3700 for (i
= 0; i
<= vstate
->curframe
; i
++)
3701 __clear_all_pkt_pointers(env
, vstate
->frame
[i
]);
3704 static void release_reg_references(struct bpf_verifier_env
*env
,
3705 struct bpf_func_state
*state
,
3708 struct bpf_reg_state
*regs
= state
->regs
, *reg
;
3711 for (i
= 0; i
< MAX_BPF_REG
; i
++)
3712 if (regs
[i
].ref_obj_id
== ref_obj_id
)
3713 mark_reg_unknown(env
, regs
, i
);
3715 bpf_for_each_spilled_reg(i
, state
, reg
) {
3718 if (reg
->ref_obj_id
== ref_obj_id
)
3719 __mark_reg_unknown(reg
);
3723 /* The pointer with the specified id has released its reference to kernel
3724 * resources. Identify all copies of the same pointer and clear the reference.
3726 static int release_reference(struct bpf_verifier_env
*env
,
3729 struct bpf_verifier_state
*vstate
= env
->cur_state
;
3733 err
= release_reference_state(cur_func(env
), ref_obj_id
);
3737 for (i
= 0; i
<= vstate
->curframe
; i
++)
3738 release_reg_references(env
, vstate
->frame
[i
], ref_obj_id
);
3743 static int check_func_call(struct bpf_verifier_env
*env
, struct bpf_insn
*insn
,
3746 struct bpf_verifier_state
*state
= env
->cur_state
;
3747 struct bpf_func_state
*caller
, *callee
;
3748 int i
, err
, subprog
, target_insn
;
3750 if (state
->curframe
+ 1 >= MAX_CALL_FRAMES
) {
3751 verbose(env
, "the call stack of %d frames is too deep\n",
3752 state
->curframe
+ 2);
3756 target_insn
= *insn_idx
+ insn
->imm
;
3757 subprog
= find_subprog(env
, target_insn
+ 1);
3759 verbose(env
, "verifier bug. No program starts at insn %d\n",
3764 caller
= state
->frame
[state
->curframe
];
3765 if (state
->frame
[state
->curframe
+ 1]) {
3766 verbose(env
, "verifier bug. Frame %d already allocated\n",
3767 state
->curframe
+ 1);
3771 callee
= kzalloc(sizeof(*callee
), GFP_KERNEL
);
3774 state
->frame
[state
->curframe
+ 1] = callee
;
3776 /* callee cannot access r0, r6 - r9 for reading and has to write
3777 * into its own stack before reading from it.
3778 * callee can read/write into caller's stack
3780 init_func_state(env
, callee
,
3781 /* remember the callsite, it will be used by bpf_exit */
3782 *insn_idx
/* callsite */,
3783 state
->curframe
+ 1 /* frameno within this callchain */,
3784 subprog
/* subprog number within this prog */);
3786 /* Transfer references to the callee */
3787 err
= transfer_reference_state(callee
, caller
);
3791 /* copy r1 - r5 args that callee can access. The copy includes parent
3792 * pointers, which connects us up to the liveness chain
3794 for (i
= BPF_REG_1
; i
<= BPF_REG_5
; i
++)
3795 callee
->regs
[i
] = caller
->regs
[i
];
3797 /* after the call registers r0 - r5 were scratched */
3798 for (i
= 0; i
< CALLER_SAVED_REGS
; i
++) {
3799 mark_reg_not_init(env
, caller
->regs
, caller_saved
[i
]);
3800 check_reg_arg(env
, caller_saved
[i
], DST_OP_NO_MARK
);
3803 /* only increment it after check_reg_arg() finished */
3806 /* and go analyze first insn of the callee */
3807 *insn_idx
= target_insn
;
3809 if (env
->log
.level
& BPF_LOG_LEVEL
) {
3810 verbose(env
, "caller:\n");
3811 print_verifier_state(env
, caller
);
3812 verbose(env
, "callee:\n");
3813 print_verifier_state(env
, callee
);
3818 static int prepare_func_exit(struct bpf_verifier_env
*env
, int *insn_idx
)
3820 struct bpf_verifier_state
*state
= env
->cur_state
;
3821 struct bpf_func_state
*caller
, *callee
;
3822 struct bpf_reg_state
*r0
;
3825 callee
= state
->frame
[state
->curframe
];
3826 r0
= &callee
->regs
[BPF_REG_0
];
3827 if (r0
->type
== PTR_TO_STACK
) {
3828 /* technically it's ok to return caller's stack pointer
3829 * (or caller's caller's pointer) back to the caller,
3830 * since these pointers are valid. Only current stack
3831 * pointer will be invalid as soon as function exits,
3832 * but let's be conservative
3834 verbose(env
, "cannot return stack pointer to the caller\n");
3839 caller
= state
->frame
[state
->curframe
];
3840 /* return to the caller whatever r0 had in the callee */
3841 caller
->regs
[BPF_REG_0
] = *r0
;
3843 /* Transfer references to the caller */
3844 err
= transfer_reference_state(caller
, callee
);
3848 *insn_idx
= callee
->callsite
+ 1;
3849 if (env
->log
.level
& BPF_LOG_LEVEL
) {
3850 verbose(env
, "returning from callee:\n");
3851 print_verifier_state(env
, callee
);
3852 verbose(env
, "to caller at %d:\n", *insn_idx
);
3853 print_verifier_state(env
, caller
);
3855 /* clear everything in the callee */
3856 free_func_state(callee
);
3857 state
->frame
[state
->curframe
+ 1] = NULL
;
3861 static void do_refine_retval_range(struct bpf_reg_state
*regs
, int ret_type
,
3863 struct bpf_call_arg_meta
*meta
)
3865 struct bpf_reg_state
*ret_reg
= ®s
[BPF_REG_0
];
3867 if (ret_type
!= RET_INTEGER
||
3868 (func_id
!= BPF_FUNC_get_stack
&&
3869 func_id
!= BPF_FUNC_probe_read_str
))
3872 ret_reg
->smax_value
= meta
->msize_smax_value
;
3873 ret_reg
->umax_value
= meta
->msize_umax_value
;
3874 __reg_deduce_bounds(ret_reg
);
3875 __reg_bound_offset(ret_reg
);
3879 record_func_map(struct bpf_verifier_env
*env
, struct bpf_call_arg_meta
*meta
,
3880 int func_id
, int insn_idx
)
3882 struct bpf_insn_aux_data
*aux
= &env
->insn_aux_data
[insn_idx
];
3883 struct bpf_map
*map
= meta
->map_ptr
;
3885 if (func_id
!= BPF_FUNC_tail_call
&&
3886 func_id
!= BPF_FUNC_map_lookup_elem
&&
3887 func_id
!= BPF_FUNC_map_update_elem
&&
3888 func_id
!= BPF_FUNC_map_delete_elem
&&
3889 func_id
!= BPF_FUNC_map_push_elem
&&
3890 func_id
!= BPF_FUNC_map_pop_elem
&&
3891 func_id
!= BPF_FUNC_map_peek_elem
)
3895 verbose(env
, "kernel subsystem misconfigured verifier\n");
3899 /* In case of read-only, some additional restrictions
3900 * need to be applied in order to prevent altering the
3901 * state of the map from program side.
3903 if ((map
->map_flags
& BPF_F_RDONLY_PROG
) &&
3904 (func_id
== BPF_FUNC_map_delete_elem
||
3905 func_id
== BPF_FUNC_map_update_elem
||
3906 func_id
== BPF_FUNC_map_push_elem
||
3907 func_id
== BPF_FUNC_map_pop_elem
)) {
3908 verbose(env
, "write into map forbidden\n");
3912 if (!BPF_MAP_PTR(aux
->map_state
))
3913 bpf_map_ptr_store(aux
, meta
->map_ptr
,
3914 meta
->map_ptr
->unpriv_array
);
3915 else if (BPF_MAP_PTR(aux
->map_state
) != meta
->map_ptr
)
3916 bpf_map_ptr_store(aux
, BPF_MAP_PTR_POISON
,
3917 meta
->map_ptr
->unpriv_array
);
3921 static int check_reference_leak(struct bpf_verifier_env
*env
)
3923 struct bpf_func_state
*state
= cur_func(env
);
3926 for (i
= 0; i
< state
->acquired_refs
; i
++) {
3927 verbose(env
, "Unreleased reference id=%d alloc_insn=%d\n",
3928 state
->refs
[i
].id
, state
->refs
[i
].insn_idx
);
3930 return state
->acquired_refs
? -EINVAL
: 0;
3933 static int check_helper_call(struct bpf_verifier_env
*env
, int func_id
, int insn_idx
)
3935 const struct bpf_func_proto
*fn
= NULL
;
3936 struct bpf_reg_state
*regs
;
3937 struct bpf_call_arg_meta meta
;
3941 /* find function prototype */
3942 if (func_id
< 0 || func_id
>= __BPF_FUNC_MAX_ID
) {
3943 verbose(env
, "invalid func %s#%d\n", func_id_name(func_id
),
3948 if (env
->ops
->get_func_proto
)
3949 fn
= env
->ops
->get_func_proto(func_id
, env
->prog
);
3951 verbose(env
, "unknown func %s#%d\n", func_id_name(func_id
),
3956 /* eBPF programs must be GPL compatible to use GPL-ed functions */
3957 if (!env
->prog
->gpl_compatible
&& fn
->gpl_only
) {
3958 verbose(env
, "cannot call GPL-restricted function from non-GPL compatible program\n");
3962 /* With LD_ABS/IND some JITs save/restore skb from r1. */
3963 changes_data
= bpf_helper_changes_pkt_data(fn
->func
);
3964 if (changes_data
&& fn
->arg1_type
!= ARG_PTR_TO_CTX
) {
3965 verbose(env
, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
3966 func_id_name(func_id
), func_id
);
3970 memset(&meta
, 0, sizeof(meta
));
3971 meta
.pkt_access
= fn
->pkt_access
;
3973 err
= check_func_proto(fn
, func_id
);
3975 verbose(env
, "kernel subsystem misconfigured func %s#%d\n",
3976 func_id_name(func_id
), func_id
);
3980 meta
.func_id
= func_id
;
3982 err
= check_func_arg(env
, BPF_REG_1
, fn
->arg1_type
, &meta
);
3985 err
= check_func_arg(env
, BPF_REG_2
, fn
->arg2_type
, &meta
);
3988 err
= check_func_arg(env
, BPF_REG_3
, fn
->arg3_type
, &meta
);
3991 err
= check_func_arg(env
, BPF_REG_4
, fn
->arg4_type
, &meta
);
3994 err
= check_func_arg(env
, BPF_REG_5
, fn
->arg5_type
, &meta
);
3998 err
= record_func_map(env
, &meta
, func_id
, insn_idx
);
4002 /* Mark slots with STACK_MISC in case of raw mode, stack offset
4003 * is inferred from register state.
4005 for (i
= 0; i
< meta
.access_size
; i
++) {
4006 err
= check_mem_access(env
, insn_idx
, meta
.regno
, i
, BPF_B
,
4007 BPF_WRITE
, -1, false);
4012 if (func_id
== BPF_FUNC_tail_call
) {
4013 err
= check_reference_leak(env
);
4015 verbose(env
, "tail_call would lead to reference leak\n");
4018 } else if (is_release_function(func_id
)) {
4019 err
= release_reference(env
, meta
.ref_obj_id
);
4021 verbose(env
, "func %s#%d reference has not been acquired before\n",
4022 func_id_name(func_id
), func_id
);
4027 regs
= cur_regs(env
);
4029 /* check that flags argument in get_local_storage(map, flags) is 0,
4030 * this is required because get_local_storage() can't return an error.
4032 if (func_id
== BPF_FUNC_get_local_storage
&&
4033 !register_is_null(®s
[BPF_REG_2
])) {
4034 verbose(env
, "get_local_storage() doesn't support non-zero flags\n");
4038 /* reset caller saved regs */
4039 for (i
= 0; i
< CALLER_SAVED_REGS
; i
++) {
4040 mark_reg_not_init(env
, regs
, caller_saved
[i
]);
4041 check_reg_arg(env
, caller_saved
[i
], DST_OP_NO_MARK
);
4044 /* helper call returns 64-bit value. */
4045 regs
[BPF_REG_0
].subreg_def
= DEF_NOT_SUBREG
;
4047 /* update return register (already marked as written above) */
4048 if (fn
->ret_type
== RET_INTEGER
) {
4049 /* sets type to SCALAR_VALUE */
4050 mark_reg_unknown(env
, regs
, BPF_REG_0
);
4051 } else if (fn
->ret_type
== RET_VOID
) {
4052 regs
[BPF_REG_0
].type
= NOT_INIT
;
4053 } else if (fn
->ret_type
== RET_PTR_TO_MAP_VALUE_OR_NULL
||
4054 fn
->ret_type
== RET_PTR_TO_MAP_VALUE
) {
4055 /* There is no offset yet applied, variable or fixed */
4056 mark_reg_known_zero(env
, regs
, BPF_REG_0
);
4057 /* remember map_ptr, so that check_map_access()
4058 * can check 'value_size' boundary of memory access
4059 * to map element returned from bpf_map_lookup_elem()
4061 if (meta
.map_ptr
== NULL
) {
4063 "kernel subsystem misconfigured verifier\n");
4066 regs
[BPF_REG_0
].map_ptr
= meta
.map_ptr
;
4067 if (fn
->ret_type
== RET_PTR_TO_MAP_VALUE
) {
4068 regs
[BPF_REG_0
].type
= PTR_TO_MAP_VALUE
;
4069 if (map_value_has_spin_lock(meta
.map_ptr
))
4070 regs
[BPF_REG_0
].id
= ++env
->id_gen
;
4072 regs
[BPF_REG_0
].type
= PTR_TO_MAP_VALUE_OR_NULL
;
4073 regs
[BPF_REG_0
].id
= ++env
->id_gen
;
4075 } else if (fn
->ret_type
== RET_PTR_TO_SOCKET_OR_NULL
) {
4076 mark_reg_known_zero(env
, regs
, BPF_REG_0
);
4077 regs
[BPF_REG_0
].type
= PTR_TO_SOCKET_OR_NULL
;
4078 regs
[BPF_REG_0
].id
= ++env
->id_gen
;
4079 } else if (fn
->ret_type
== RET_PTR_TO_SOCK_COMMON_OR_NULL
) {
4080 mark_reg_known_zero(env
, regs
, BPF_REG_0
);
4081 regs
[BPF_REG_0
].type
= PTR_TO_SOCK_COMMON_OR_NULL
;
4082 regs
[BPF_REG_0
].id
= ++env
->id_gen
;
4083 } else if (fn
->ret_type
== RET_PTR_TO_TCP_SOCK_OR_NULL
) {
4084 mark_reg_known_zero(env
, regs
, BPF_REG_0
);
4085 regs
[BPF_REG_0
].type
= PTR_TO_TCP_SOCK_OR_NULL
;
4086 regs
[BPF_REG_0
].id
= ++env
->id_gen
;
4088 verbose(env
, "unknown return type %d of func %s#%d\n",
4089 fn
->ret_type
, func_id_name(func_id
), func_id
);
4093 if (is_ptr_cast_function(func_id
)) {
4094 /* For release_reference() */
4095 regs
[BPF_REG_0
].ref_obj_id
= meta
.ref_obj_id
;
4096 } else if (is_acquire_function(func_id
)) {
4097 int id
= acquire_reference_state(env
, insn_idx
);
4101 /* For mark_ptr_or_null_reg() */
4102 regs
[BPF_REG_0
].id
= id
;
4103 /* For release_reference() */
4104 regs
[BPF_REG_0
].ref_obj_id
= id
;
4107 do_refine_retval_range(regs
, fn
->ret_type
, func_id
, &meta
);
4109 err
= check_map_func_compatibility(env
, meta
.map_ptr
, func_id
);
4113 if (func_id
== BPF_FUNC_get_stack
&& !env
->prog
->has_callchain_buf
) {
4114 const char *err_str
;
4116 #ifdef CONFIG_PERF_EVENTS
4117 err
= get_callchain_buffers(sysctl_perf_event_max_stack
);
4118 err_str
= "cannot get callchain buffer for func %s#%d\n";
4121 err_str
= "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4124 verbose(env
, err_str
, func_id_name(func_id
), func_id
);
4128 env
->prog
->has_callchain_buf
= true;
4132 clear_all_pkt_pointers(env
);
4136 static bool signed_add_overflows(s64 a
, s64 b
)
4138 /* Do the add in u64, where overflow is well-defined */
4139 s64 res
= (s64
)((u64
)a
+ (u64
)b
);
4146 static bool signed_sub_overflows(s64 a
, s64 b
)
4148 /* Do the sub in u64, where overflow is well-defined */
4149 s64 res
= (s64
)((u64
)a
- (u64
)b
);
4156 static bool check_reg_sane_offset(struct bpf_verifier_env
*env
,
4157 const struct bpf_reg_state
*reg
,
4158 enum bpf_reg_type type
)
4160 bool known
= tnum_is_const(reg
->var_off
);
4161 s64 val
= reg
->var_off
.value
;
4162 s64 smin
= reg
->smin_value
;
4164 if (known
&& (val
>= BPF_MAX_VAR_OFF
|| val
<= -BPF_MAX_VAR_OFF
)) {
4165 verbose(env
, "math between %s pointer and %lld is not allowed\n",
4166 reg_type_str
[type
], val
);
4170 if (reg
->off
>= BPF_MAX_VAR_OFF
|| reg
->off
<= -BPF_MAX_VAR_OFF
) {
4171 verbose(env
, "%s pointer offset %d is not allowed\n",
4172 reg_type_str
[type
], reg
->off
);
4176 if (smin
== S64_MIN
) {
4177 verbose(env
, "math between %s pointer and register with unbounded min value is not allowed\n",
4178 reg_type_str
[type
]);
4182 if (smin
>= BPF_MAX_VAR_OFF
|| smin
<= -BPF_MAX_VAR_OFF
) {
4183 verbose(env
, "value %lld makes %s pointer be out of bounds\n",
4184 smin
, reg_type_str
[type
]);
4191 static struct bpf_insn_aux_data
*cur_aux(struct bpf_verifier_env
*env
)
4193 return &env
->insn_aux_data
[env
->insn_idx
];
4196 static int retrieve_ptr_limit(const struct bpf_reg_state
*ptr_reg
,
4197 u32
*ptr_limit
, u8 opcode
, bool off_is_neg
)
4199 bool mask_to_left
= (opcode
== BPF_ADD
&& off_is_neg
) ||
4200 (opcode
== BPF_SUB
&& !off_is_neg
);
4203 switch (ptr_reg
->type
) {
4205 /* Indirect variable offset stack access is prohibited in
4206 * unprivileged mode so it's not handled here.
4208 off
= ptr_reg
->off
+ ptr_reg
->var_off
.value
;
4210 *ptr_limit
= MAX_BPF_STACK
+ off
;
4214 case PTR_TO_MAP_VALUE
:
4216 *ptr_limit
= ptr_reg
->umax_value
+ ptr_reg
->off
;
4218 off
= ptr_reg
->smin_value
+ ptr_reg
->off
;
4219 *ptr_limit
= ptr_reg
->map_ptr
->value_size
- off
;
4227 static bool can_skip_alu_sanitation(const struct bpf_verifier_env
*env
,
4228 const struct bpf_insn
*insn
)
4230 return env
->allow_ptr_leaks
|| BPF_SRC(insn
->code
) == BPF_K
;
4233 static int update_alu_sanitation_state(struct bpf_insn_aux_data
*aux
,
4234 u32 alu_state
, u32 alu_limit
)
4236 /* If we arrived here from different branches with different
4237 * state or limits to sanitize, then this won't work.
4239 if (aux
->alu_state
&&
4240 (aux
->alu_state
!= alu_state
||
4241 aux
->alu_limit
!= alu_limit
))
4244 /* Corresponding fixup done in fixup_bpf_calls(). */
4245 aux
->alu_state
= alu_state
;
4246 aux
->alu_limit
= alu_limit
;
4250 static int sanitize_val_alu(struct bpf_verifier_env
*env
,
4251 struct bpf_insn
*insn
)
4253 struct bpf_insn_aux_data
*aux
= cur_aux(env
);
4255 if (can_skip_alu_sanitation(env
, insn
))
4258 return update_alu_sanitation_state(aux
, BPF_ALU_NON_POINTER
, 0);
4261 static int sanitize_ptr_alu(struct bpf_verifier_env
*env
,
4262 struct bpf_insn
*insn
,
4263 const struct bpf_reg_state
*ptr_reg
,
4264 struct bpf_reg_state
*dst_reg
,
4267 struct bpf_verifier_state
*vstate
= env
->cur_state
;
4268 struct bpf_insn_aux_data
*aux
= cur_aux(env
);
4269 bool ptr_is_dst_reg
= ptr_reg
== dst_reg
;
4270 u8 opcode
= BPF_OP(insn
->code
);
4271 u32 alu_state
, alu_limit
;
4272 struct bpf_reg_state tmp
;
4275 if (can_skip_alu_sanitation(env
, insn
))
4278 /* We already marked aux for masking from non-speculative
4279 * paths, thus we got here in the first place. We only care
4280 * to explore bad access from here.
4282 if (vstate
->speculative
)
4285 alu_state
= off_is_neg
? BPF_ALU_NEG_VALUE
: 0;
4286 alu_state
|= ptr_is_dst_reg
?
4287 BPF_ALU_SANITIZE_SRC
: BPF_ALU_SANITIZE_DST
;
4289 if (retrieve_ptr_limit(ptr_reg
, &alu_limit
, opcode
, off_is_neg
))
4291 if (update_alu_sanitation_state(aux
, alu_state
, alu_limit
))
4294 /* Simulate and find potential out-of-bounds access under
4295 * speculative execution from truncation as a result of
4296 * masking when off was not within expected range. If off
4297 * sits in dst, then we temporarily need to move ptr there
4298 * to simulate dst (== 0) +/-= ptr. Needed, for example,
4299 * for cases where we use K-based arithmetic in one direction
4300 * and truncated reg-based in the other in order to explore
4303 if (!ptr_is_dst_reg
) {
4305 *dst_reg
= *ptr_reg
;
4307 ret
= push_stack(env
, env
->insn_idx
+ 1, env
->insn_idx
, true);
4308 if (!ptr_is_dst_reg
&& ret
)
4310 return !ret
? -EFAULT
: 0;
4313 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
4314 * Caller should also handle BPF_MOV case separately.
4315 * If we return -EACCES, caller may want to try again treating pointer as a
4316 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
4318 static int adjust_ptr_min_max_vals(struct bpf_verifier_env
*env
,
4319 struct bpf_insn
*insn
,
4320 const struct bpf_reg_state
*ptr_reg
,
4321 const struct bpf_reg_state
*off_reg
)
4323 struct bpf_verifier_state
*vstate
= env
->cur_state
;
4324 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
4325 struct bpf_reg_state
*regs
= state
->regs
, *dst_reg
;
4326 bool known
= tnum_is_const(off_reg
->var_off
);
4327 s64 smin_val
= off_reg
->smin_value
, smax_val
= off_reg
->smax_value
,
4328 smin_ptr
= ptr_reg
->smin_value
, smax_ptr
= ptr_reg
->smax_value
;
4329 u64 umin_val
= off_reg
->umin_value
, umax_val
= off_reg
->umax_value
,
4330 umin_ptr
= ptr_reg
->umin_value
, umax_ptr
= ptr_reg
->umax_value
;
4331 u32 dst
= insn
->dst_reg
, src
= insn
->src_reg
;
4332 u8 opcode
= BPF_OP(insn
->code
);
4335 dst_reg
= ®s
[dst
];
4337 if ((known
&& (smin_val
!= smax_val
|| umin_val
!= umax_val
)) ||
4338 smin_val
> smax_val
|| umin_val
> umax_val
) {
4339 /* Taint dst register if offset had invalid bounds derived from
4340 * e.g. dead branches.
4342 __mark_reg_unknown(dst_reg
);
4346 if (BPF_CLASS(insn
->code
) != BPF_ALU64
) {
4347 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
4349 "R%d 32-bit pointer arithmetic prohibited\n",
4354 switch (ptr_reg
->type
) {
4355 case PTR_TO_MAP_VALUE_OR_NULL
:
4356 verbose(env
, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
4357 dst
, reg_type_str
[ptr_reg
->type
]);
4359 case CONST_PTR_TO_MAP
:
4360 case PTR_TO_PACKET_END
:
4362 case PTR_TO_SOCKET_OR_NULL
:
4363 case PTR_TO_SOCK_COMMON
:
4364 case PTR_TO_SOCK_COMMON_OR_NULL
:
4365 case PTR_TO_TCP_SOCK
:
4366 case PTR_TO_TCP_SOCK_OR_NULL
:
4367 case PTR_TO_XDP_SOCK
:
4368 verbose(env
, "R%d pointer arithmetic on %s prohibited\n",
4369 dst
, reg_type_str
[ptr_reg
->type
]);
4371 case PTR_TO_MAP_VALUE
:
4372 if (!env
->allow_ptr_leaks
&& !known
&& (smin_val
< 0) != (smax_val
< 0)) {
4373 verbose(env
, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
4374 off_reg
== dst_reg
? dst
: src
);
4382 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
4383 * The id may be overwritten later if we create a new variable offset.
4385 dst_reg
->type
= ptr_reg
->type
;
4386 dst_reg
->id
= ptr_reg
->id
;
4388 if (!check_reg_sane_offset(env
, off_reg
, ptr_reg
->type
) ||
4389 !check_reg_sane_offset(env
, ptr_reg
, ptr_reg
->type
))
4394 ret
= sanitize_ptr_alu(env
, insn
, ptr_reg
, dst_reg
, smin_val
< 0);
4396 verbose(env
, "R%d tried to add from different maps or paths\n", dst
);
4399 /* We can take a fixed offset as long as it doesn't overflow
4400 * the s32 'off' field
4402 if (known
&& (ptr_reg
->off
+ smin_val
==
4403 (s64
)(s32
)(ptr_reg
->off
+ smin_val
))) {
4404 /* pointer += K. Accumulate it into fixed offset */
4405 dst_reg
->smin_value
= smin_ptr
;
4406 dst_reg
->smax_value
= smax_ptr
;
4407 dst_reg
->umin_value
= umin_ptr
;
4408 dst_reg
->umax_value
= umax_ptr
;
4409 dst_reg
->var_off
= ptr_reg
->var_off
;
4410 dst_reg
->off
= ptr_reg
->off
+ smin_val
;
4411 dst_reg
->raw
= ptr_reg
->raw
;
4414 /* A new variable offset is created. Note that off_reg->off
4415 * == 0, since it's a scalar.
4416 * dst_reg gets the pointer type and since some positive
4417 * integer value was added to the pointer, give it a new 'id'
4418 * if it's a PTR_TO_PACKET.
4419 * this creates a new 'base' pointer, off_reg (variable) gets
4420 * added into the variable offset, and we copy the fixed offset
4423 if (signed_add_overflows(smin_ptr
, smin_val
) ||
4424 signed_add_overflows(smax_ptr
, smax_val
)) {
4425 dst_reg
->smin_value
= S64_MIN
;
4426 dst_reg
->smax_value
= S64_MAX
;
4428 dst_reg
->smin_value
= smin_ptr
+ smin_val
;
4429 dst_reg
->smax_value
= smax_ptr
+ smax_val
;
4431 if (umin_ptr
+ umin_val
< umin_ptr
||
4432 umax_ptr
+ umax_val
< umax_ptr
) {
4433 dst_reg
->umin_value
= 0;
4434 dst_reg
->umax_value
= U64_MAX
;
4436 dst_reg
->umin_value
= umin_ptr
+ umin_val
;
4437 dst_reg
->umax_value
= umax_ptr
+ umax_val
;
4439 dst_reg
->var_off
= tnum_add(ptr_reg
->var_off
, off_reg
->var_off
);
4440 dst_reg
->off
= ptr_reg
->off
;
4441 dst_reg
->raw
= ptr_reg
->raw
;
4442 if (reg_is_pkt_pointer(ptr_reg
)) {
4443 dst_reg
->id
= ++env
->id_gen
;
4444 /* something was added to pkt_ptr, set range to zero */
4449 ret
= sanitize_ptr_alu(env
, insn
, ptr_reg
, dst_reg
, smin_val
< 0);
4451 verbose(env
, "R%d tried to sub from different maps or paths\n", dst
);
4454 if (dst_reg
== off_reg
) {
4455 /* scalar -= pointer. Creates an unknown scalar */
4456 verbose(env
, "R%d tried to subtract pointer from scalar\n",
4460 /* We don't allow subtraction from FP, because (according to
4461 * test_verifier.c test "invalid fp arithmetic", JITs might not
4462 * be able to deal with it.
4464 if (ptr_reg
->type
== PTR_TO_STACK
) {
4465 verbose(env
, "R%d subtraction from stack pointer prohibited\n",
4469 if (known
&& (ptr_reg
->off
- smin_val
==
4470 (s64
)(s32
)(ptr_reg
->off
- smin_val
))) {
4471 /* pointer -= K. Subtract it from fixed offset */
4472 dst_reg
->smin_value
= smin_ptr
;
4473 dst_reg
->smax_value
= smax_ptr
;
4474 dst_reg
->umin_value
= umin_ptr
;
4475 dst_reg
->umax_value
= umax_ptr
;
4476 dst_reg
->var_off
= ptr_reg
->var_off
;
4477 dst_reg
->id
= ptr_reg
->id
;
4478 dst_reg
->off
= ptr_reg
->off
- smin_val
;
4479 dst_reg
->raw
= ptr_reg
->raw
;
4482 /* A new variable offset is created. If the subtrahend is known
4483 * nonnegative, then any reg->range we had before is still good.
4485 if (signed_sub_overflows(smin_ptr
, smax_val
) ||
4486 signed_sub_overflows(smax_ptr
, smin_val
)) {
4487 /* Overflow possible, we know nothing */
4488 dst_reg
->smin_value
= S64_MIN
;
4489 dst_reg
->smax_value
= S64_MAX
;
4491 dst_reg
->smin_value
= smin_ptr
- smax_val
;
4492 dst_reg
->smax_value
= smax_ptr
- smin_val
;
4494 if (umin_ptr
< umax_val
) {
4495 /* Overflow possible, we know nothing */
4496 dst_reg
->umin_value
= 0;
4497 dst_reg
->umax_value
= U64_MAX
;
4499 /* Cannot overflow (as long as bounds are consistent) */
4500 dst_reg
->umin_value
= umin_ptr
- umax_val
;
4501 dst_reg
->umax_value
= umax_ptr
- umin_val
;
4503 dst_reg
->var_off
= tnum_sub(ptr_reg
->var_off
, off_reg
->var_off
);
4504 dst_reg
->off
= ptr_reg
->off
;
4505 dst_reg
->raw
= ptr_reg
->raw
;
4506 if (reg_is_pkt_pointer(ptr_reg
)) {
4507 dst_reg
->id
= ++env
->id_gen
;
4508 /* something was added to pkt_ptr, set range to zero */
4516 /* bitwise ops on pointers are troublesome, prohibit. */
4517 verbose(env
, "R%d bitwise operator %s on pointer prohibited\n",
4518 dst
, bpf_alu_string
[opcode
>> 4]);
4521 /* other operators (e.g. MUL,LSH) produce non-pointer results */
4522 verbose(env
, "R%d pointer arithmetic with %s operator prohibited\n",
4523 dst
, bpf_alu_string
[opcode
>> 4]);
4527 if (!check_reg_sane_offset(env
, dst_reg
, ptr_reg
->type
))
4530 __update_reg_bounds(dst_reg
);
4531 __reg_deduce_bounds(dst_reg
);
4532 __reg_bound_offset(dst_reg
);
4534 /* For unprivileged we require that resulting offset must be in bounds
4535 * in order to be able to sanitize access later on.
4537 if (!env
->allow_ptr_leaks
) {
4538 if (dst_reg
->type
== PTR_TO_MAP_VALUE
&&
4539 check_map_access(env
, dst
, dst_reg
->off
, 1, false)) {
4540 verbose(env
, "R%d pointer arithmetic of map value goes out of range, "
4541 "prohibited for !root\n", dst
);
4543 } else if (dst_reg
->type
== PTR_TO_STACK
&&
4544 check_stack_access(env
, dst_reg
, dst_reg
->off
+
4545 dst_reg
->var_off
.value
, 1)) {
4546 verbose(env
, "R%d stack pointer arithmetic goes out of range, "
4547 "prohibited for !root\n", dst
);
4555 /* WARNING: This function does calculations on 64-bit values, but the actual
4556 * execution may occur on 32-bit values. Therefore, things like bitshifts
4557 * need extra checks in the 32-bit case.
4559 static int adjust_scalar_min_max_vals(struct bpf_verifier_env
*env
,
4560 struct bpf_insn
*insn
,
4561 struct bpf_reg_state
*dst_reg
,
4562 struct bpf_reg_state src_reg
)
4564 struct bpf_reg_state
*regs
= cur_regs(env
);
4565 u8 opcode
= BPF_OP(insn
->code
);
4566 bool src_known
, dst_known
;
4567 s64 smin_val
, smax_val
;
4568 u64 umin_val
, umax_val
;
4569 u64 insn_bitness
= (BPF_CLASS(insn
->code
) == BPF_ALU64
) ? 64 : 32;
4570 u32 dst
= insn
->dst_reg
;
4573 if (insn_bitness
== 32) {
4574 /* Relevant for 32-bit RSH: Information can propagate towards
4575 * LSB, so it isn't sufficient to only truncate the output to
4578 coerce_reg_to_size(dst_reg
, 4);
4579 coerce_reg_to_size(&src_reg
, 4);
4582 smin_val
= src_reg
.smin_value
;
4583 smax_val
= src_reg
.smax_value
;
4584 umin_val
= src_reg
.umin_value
;
4585 umax_val
= src_reg
.umax_value
;
4586 src_known
= tnum_is_const(src_reg
.var_off
);
4587 dst_known
= tnum_is_const(dst_reg
->var_off
);
4589 if ((src_known
&& (smin_val
!= smax_val
|| umin_val
!= umax_val
)) ||
4590 smin_val
> smax_val
|| umin_val
> umax_val
) {
4591 /* Taint dst register if offset had invalid bounds derived from
4592 * e.g. dead branches.
4594 __mark_reg_unknown(dst_reg
);
4599 opcode
!= BPF_ADD
&& opcode
!= BPF_SUB
&& opcode
!= BPF_AND
) {
4600 __mark_reg_unknown(dst_reg
);
4606 ret
= sanitize_val_alu(env
, insn
);
4608 verbose(env
, "R%d tried to add from different pointers or scalars\n", dst
);
4611 if (signed_add_overflows(dst_reg
->smin_value
, smin_val
) ||
4612 signed_add_overflows(dst_reg
->smax_value
, smax_val
)) {
4613 dst_reg
->smin_value
= S64_MIN
;
4614 dst_reg
->smax_value
= S64_MAX
;
4616 dst_reg
->smin_value
+= smin_val
;
4617 dst_reg
->smax_value
+= smax_val
;
4619 if (dst_reg
->umin_value
+ umin_val
< umin_val
||
4620 dst_reg
->umax_value
+ umax_val
< umax_val
) {
4621 dst_reg
->umin_value
= 0;
4622 dst_reg
->umax_value
= U64_MAX
;
4624 dst_reg
->umin_value
+= umin_val
;
4625 dst_reg
->umax_value
+= umax_val
;
4627 dst_reg
->var_off
= tnum_add(dst_reg
->var_off
, src_reg
.var_off
);
4630 ret
= sanitize_val_alu(env
, insn
);
4632 verbose(env
, "R%d tried to sub from different pointers or scalars\n", dst
);
4635 if (signed_sub_overflows(dst_reg
->smin_value
, smax_val
) ||
4636 signed_sub_overflows(dst_reg
->smax_value
, smin_val
)) {
4637 /* Overflow possible, we know nothing */
4638 dst_reg
->smin_value
= S64_MIN
;
4639 dst_reg
->smax_value
= S64_MAX
;
4641 dst_reg
->smin_value
-= smax_val
;
4642 dst_reg
->smax_value
-= smin_val
;
4644 if (dst_reg
->umin_value
< umax_val
) {
4645 /* Overflow possible, we know nothing */
4646 dst_reg
->umin_value
= 0;
4647 dst_reg
->umax_value
= U64_MAX
;
4649 /* Cannot overflow (as long as bounds are consistent) */
4650 dst_reg
->umin_value
-= umax_val
;
4651 dst_reg
->umax_value
-= umin_val
;
4653 dst_reg
->var_off
= tnum_sub(dst_reg
->var_off
, src_reg
.var_off
);
4656 dst_reg
->var_off
= tnum_mul(dst_reg
->var_off
, src_reg
.var_off
);
4657 if (smin_val
< 0 || dst_reg
->smin_value
< 0) {
4658 /* Ain't nobody got time to multiply that sign */
4659 __mark_reg_unbounded(dst_reg
);
4660 __update_reg_bounds(dst_reg
);
4663 /* Both values are positive, so we can work with unsigned and
4664 * copy the result to signed (unless it exceeds S64_MAX).
4666 if (umax_val
> U32_MAX
|| dst_reg
->umax_value
> U32_MAX
) {
4667 /* Potential overflow, we know nothing */
4668 __mark_reg_unbounded(dst_reg
);
4669 /* (except what we can learn from the var_off) */
4670 __update_reg_bounds(dst_reg
);
4673 dst_reg
->umin_value
*= umin_val
;
4674 dst_reg
->umax_value
*= umax_val
;
4675 if (dst_reg
->umax_value
> S64_MAX
) {
4676 /* Overflow possible, we know nothing */
4677 dst_reg
->smin_value
= S64_MIN
;
4678 dst_reg
->smax_value
= S64_MAX
;
4680 dst_reg
->smin_value
= dst_reg
->umin_value
;
4681 dst_reg
->smax_value
= dst_reg
->umax_value
;
4685 if (src_known
&& dst_known
) {
4686 __mark_reg_known(dst_reg
, dst_reg
->var_off
.value
&
4687 src_reg
.var_off
.value
);
4690 /* We get our minimum from the var_off, since that's inherently
4691 * bitwise. Our maximum is the minimum of the operands' maxima.
4693 dst_reg
->var_off
= tnum_and(dst_reg
->var_off
, src_reg
.var_off
);
4694 dst_reg
->umin_value
= dst_reg
->var_off
.value
;
4695 dst_reg
->umax_value
= min(dst_reg
->umax_value
, umax_val
);
4696 if (dst_reg
->smin_value
< 0 || smin_val
< 0) {
4697 /* Lose signed bounds when ANDing negative numbers,
4698 * ain't nobody got time for that.
4700 dst_reg
->smin_value
= S64_MIN
;
4701 dst_reg
->smax_value
= S64_MAX
;
4703 /* ANDing two positives gives a positive, so safe to
4704 * cast result into s64.
4706 dst_reg
->smin_value
= dst_reg
->umin_value
;
4707 dst_reg
->smax_value
= dst_reg
->umax_value
;
4709 /* We may learn something more from the var_off */
4710 __update_reg_bounds(dst_reg
);
4713 if (src_known
&& dst_known
) {
4714 __mark_reg_known(dst_reg
, dst_reg
->var_off
.value
|
4715 src_reg
.var_off
.value
);
4718 /* We get our maximum from the var_off, and our minimum is the
4719 * maximum of the operands' minima
4721 dst_reg
->var_off
= tnum_or(dst_reg
->var_off
, src_reg
.var_off
);
4722 dst_reg
->umin_value
= max(dst_reg
->umin_value
, umin_val
);
4723 dst_reg
->umax_value
= dst_reg
->var_off
.value
|
4724 dst_reg
->var_off
.mask
;
4725 if (dst_reg
->smin_value
< 0 || smin_val
< 0) {
4726 /* Lose signed bounds when ORing negative numbers,
4727 * ain't nobody got time for that.
4729 dst_reg
->smin_value
= S64_MIN
;
4730 dst_reg
->smax_value
= S64_MAX
;
4732 /* ORing two positives gives a positive, so safe to
4733 * cast result into s64.
4735 dst_reg
->smin_value
= dst_reg
->umin_value
;
4736 dst_reg
->smax_value
= dst_reg
->umax_value
;
4738 /* We may learn something more from the var_off */
4739 __update_reg_bounds(dst_reg
);
4742 if (umax_val
>= insn_bitness
) {
4743 /* Shifts greater than 31 or 63 are undefined.
4744 * This includes shifts by a negative number.
4746 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
4749 /* We lose all sign bit information (except what we can pick
4752 dst_reg
->smin_value
= S64_MIN
;
4753 dst_reg
->smax_value
= S64_MAX
;
4754 /* If we might shift our top bit out, then we know nothing */
4755 if (dst_reg
->umax_value
> 1ULL << (63 - umax_val
)) {
4756 dst_reg
->umin_value
= 0;
4757 dst_reg
->umax_value
= U64_MAX
;
4759 dst_reg
->umin_value
<<= umin_val
;
4760 dst_reg
->umax_value
<<= umax_val
;
4762 dst_reg
->var_off
= tnum_lshift(dst_reg
->var_off
, umin_val
);
4763 /* We may learn something more from the var_off */
4764 __update_reg_bounds(dst_reg
);
4767 if (umax_val
>= insn_bitness
) {
4768 /* Shifts greater than 31 or 63 are undefined.
4769 * This includes shifts by a negative number.
4771 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
4774 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
4775 * be negative, then either:
4776 * 1) src_reg might be zero, so the sign bit of the result is
4777 * unknown, so we lose our signed bounds
4778 * 2) it's known negative, thus the unsigned bounds capture the
4780 * 3) the signed bounds cross zero, so they tell us nothing
4782 * If the value in dst_reg is known nonnegative, then again the
4783 * unsigned bounts capture the signed bounds.
4784 * Thus, in all cases it suffices to blow away our signed bounds
4785 * and rely on inferring new ones from the unsigned bounds and
4786 * var_off of the result.
4788 dst_reg
->smin_value
= S64_MIN
;
4789 dst_reg
->smax_value
= S64_MAX
;
4790 dst_reg
->var_off
= tnum_rshift(dst_reg
->var_off
, umin_val
);
4791 dst_reg
->umin_value
>>= umax_val
;
4792 dst_reg
->umax_value
>>= umin_val
;
4793 /* We may learn something more from the var_off */
4794 __update_reg_bounds(dst_reg
);
4797 if (umax_val
>= insn_bitness
) {
4798 /* Shifts greater than 31 or 63 are undefined.
4799 * This includes shifts by a negative number.
4801 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
4805 /* Upon reaching here, src_known is true and
4806 * umax_val is equal to umin_val.
4808 dst_reg
->smin_value
>>= umin_val
;
4809 dst_reg
->smax_value
>>= umin_val
;
4810 dst_reg
->var_off
= tnum_arshift(dst_reg
->var_off
, umin_val
);
4812 /* blow away the dst_reg umin_value/umax_value and rely on
4813 * dst_reg var_off to refine the result.
4815 dst_reg
->umin_value
= 0;
4816 dst_reg
->umax_value
= U64_MAX
;
4817 __update_reg_bounds(dst_reg
);
4820 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
4824 if (BPF_CLASS(insn
->code
) != BPF_ALU64
) {
4825 /* 32-bit ALU ops are (32,32)->32 */
4826 coerce_reg_to_size(dst_reg
, 4);
4829 __reg_deduce_bounds(dst_reg
);
4830 __reg_bound_offset(dst_reg
);
4834 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
4837 static int adjust_reg_min_max_vals(struct bpf_verifier_env
*env
,
4838 struct bpf_insn
*insn
)
4840 struct bpf_verifier_state
*vstate
= env
->cur_state
;
4841 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
4842 struct bpf_reg_state
*regs
= state
->regs
, *dst_reg
, *src_reg
;
4843 struct bpf_reg_state
*ptr_reg
= NULL
, off_reg
= {0};
4844 u8 opcode
= BPF_OP(insn
->code
);
4847 dst_reg
= ®s
[insn
->dst_reg
];
4849 if (dst_reg
->type
!= SCALAR_VALUE
)
4851 if (BPF_SRC(insn
->code
) == BPF_X
) {
4852 src_reg
= ®s
[insn
->src_reg
];
4853 if (src_reg
->type
!= SCALAR_VALUE
) {
4854 if (dst_reg
->type
!= SCALAR_VALUE
) {
4855 /* Combining two pointers by any ALU op yields
4856 * an arbitrary scalar. Disallow all math except
4857 * pointer subtraction
4859 if (opcode
== BPF_SUB
&& env
->allow_ptr_leaks
) {
4860 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
4863 verbose(env
, "R%d pointer %s pointer prohibited\n",
4865 bpf_alu_string
[opcode
>> 4]);
4868 /* scalar += pointer
4869 * This is legal, but we have to reverse our
4870 * src/dest handling in computing the range
4872 err
= mark_chain_precision(env
, insn
->dst_reg
);
4875 return adjust_ptr_min_max_vals(env
, insn
,
4878 } else if (ptr_reg
) {
4879 /* pointer += scalar */
4880 err
= mark_chain_precision(env
, insn
->src_reg
);
4883 return adjust_ptr_min_max_vals(env
, insn
,
4887 /* Pretend the src is a reg with a known value, since we only
4888 * need to be able to read from this state.
4890 off_reg
.type
= SCALAR_VALUE
;
4891 __mark_reg_known(&off_reg
, insn
->imm
);
4893 if (ptr_reg
) /* pointer += K */
4894 return adjust_ptr_min_max_vals(env
, insn
,
4898 /* Got here implies adding two SCALAR_VALUEs */
4899 if (WARN_ON_ONCE(ptr_reg
)) {
4900 print_verifier_state(env
, state
);
4901 verbose(env
, "verifier internal error: unexpected ptr_reg\n");
4904 if (WARN_ON(!src_reg
)) {
4905 print_verifier_state(env
, state
);
4906 verbose(env
, "verifier internal error: no src_reg\n");
4909 return adjust_scalar_min_max_vals(env
, insn
, dst_reg
, *src_reg
);
4912 /* check validity of 32-bit and 64-bit arithmetic operations */
4913 static int check_alu_op(struct bpf_verifier_env
*env
, struct bpf_insn
*insn
)
4915 struct bpf_reg_state
*regs
= cur_regs(env
);
4916 u8 opcode
= BPF_OP(insn
->code
);
4919 if (opcode
== BPF_END
|| opcode
== BPF_NEG
) {
4920 if (opcode
== BPF_NEG
) {
4921 if (BPF_SRC(insn
->code
) != 0 ||
4922 insn
->src_reg
!= BPF_REG_0
||
4923 insn
->off
!= 0 || insn
->imm
!= 0) {
4924 verbose(env
, "BPF_NEG uses reserved fields\n");
4928 if (insn
->src_reg
!= BPF_REG_0
|| insn
->off
!= 0 ||
4929 (insn
->imm
!= 16 && insn
->imm
!= 32 && insn
->imm
!= 64) ||
4930 BPF_CLASS(insn
->code
) == BPF_ALU64
) {
4931 verbose(env
, "BPF_END uses reserved fields\n");
4936 /* check src operand */
4937 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
4941 if (is_pointer_value(env
, insn
->dst_reg
)) {
4942 verbose(env
, "R%d pointer arithmetic prohibited\n",
4947 /* check dest operand */
4948 err
= check_reg_arg(env
, insn
->dst_reg
, DST_OP
);
4952 } else if (opcode
== BPF_MOV
) {
4954 if (BPF_SRC(insn
->code
) == BPF_X
) {
4955 if (insn
->imm
!= 0 || insn
->off
!= 0) {
4956 verbose(env
, "BPF_MOV uses reserved fields\n");
4960 /* check src operand */
4961 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
4965 if (insn
->src_reg
!= BPF_REG_0
|| insn
->off
!= 0) {
4966 verbose(env
, "BPF_MOV uses reserved fields\n");
4971 /* check dest operand, mark as required later */
4972 err
= check_reg_arg(env
, insn
->dst_reg
, DST_OP_NO_MARK
);
4976 if (BPF_SRC(insn
->code
) == BPF_X
) {
4977 struct bpf_reg_state
*src_reg
= regs
+ insn
->src_reg
;
4978 struct bpf_reg_state
*dst_reg
= regs
+ insn
->dst_reg
;
4980 if (BPF_CLASS(insn
->code
) == BPF_ALU64
) {
4982 * copy register state to dest reg
4984 *dst_reg
= *src_reg
;
4985 dst_reg
->live
|= REG_LIVE_WRITTEN
;
4986 dst_reg
->subreg_def
= DEF_NOT_SUBREG
;
4989 if (is_pointer_value(env
, insn
->src_reg
)) {
4991 "R%d partial copy of pointer\n",
4994 } else if (src_reg
->type
== SCALAR_VALUE
) {
4995 *dst_reg
= *src_reg
;
4996 dst_reg
->live
|= REG_LIVE_WRITTEN
;
4997 dst_reg
->subreg_def
= env
->insn_idx
+ 1;
4999 mark_reg_unknown(env
, regs
,
5002 coerce_reg_to_size(dst_reg
, 4);
5006 * remember the value we stored into this reg
5008 /* clear any state __mark_reg_known doesn't set */
5009 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
5010 regs
[insn
->dst_reg
].type
= SCALAR_VALUE
;
5011 if (BPF_CLASS(insn
->code
) == BPF_ALU64
) {
5012 __mark_reg_known(regs
+ insn
->dst_reg
,
5015 __mark_reg_known(regs
+ insn
->dst_reg
,
5020 } else if (opcode
> BPF_END
) {
5021 verbose(env
, "invalid BPF_ALU opcode %x\n", opcode
);
5024 } else { /* all other ALU ops: and, sub, xor, add, ... */
5026 if (BPF_SRC(insn
->code
) == BPF_X
) {
5027 if (insn
->imm
!= 0 || insn
->off
!= 0) {
5028 verbose(env
, "BPF_ALU uses reserved fields\n");
5031 /* check src1 operand */
5032 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
5036 if (insn
->src_reg
!= BPF_REG_0
|| insn
->off
!= 0) {
5037 verbose(env
, "BPF_ALU uses reserved fields\n");
5042 /* check src2 operand */
5043 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
5047 if ((opcode
== BPF_MOD
|| opcode
== BPF_DIV
) &&
5048 BPF_SRC(insn
->code
) == BPF_K
&& insn
->imm
== 0) {
5049 verbose(env
, "div by zero\n");
5053 if ((opcode
== BPF_LSH
|| opcode
== BPF_RSH
||
5054 opcode
== BPF_ARSH
) && BPF_SRC(insn
->code
) == BPF_K
) {
5055 int size
= BPF_CLASS(insn
->code
) == BPF_ALU64
? 64 : 32;
5057 if (insn
->imm
< 0 || insn
->imm
>= size
) {
5058 verbose(env
, "invalid shift %d\n", insn
->imm
);
5063 /* check dest operand */
5064 err
= check_reg_arg(env
, insn
->dst_reg
, DST_OP_NO_MARK
);
5068 return adjust_reg_min_max_vals(env
, insn
);
5074 static void __find_good_pkt_pointers(struct bpf_func_state
*state
,
5075 struct bpf_reg_state
*dst_reg
,
5076 enum bpf_reg_type type
, u16 new_range
)
5078 struct bpf_reg_state
*reg
;
5081 for (i
= 0; i
< MAX_BPF_REG
; i
++) {
5082 reg
= &state
->regs
[i
];
5083 if (reg
->type
== type
&& reg
->id
== dst_reg
->id
)
5084 /* keep the maximum range already checked */
5085 reg
->range
= max(reg
->range
, new_range
);
5088 bpf_for_each_spilled_reg(i
, state
, reg
) {
5091 if (reg
->type
== type
&& reg
->id
== dst_reg
->id
)
5092 reg
->range
= max(reg
->range
, new_range
);
5096 static void find_good_pkt_pointers(struct bpf_verifier_state
*vstate
,
5097 struct bpf_reg_state
*dst_reg
,
5098 enum bpf_reg_type type
,
5099 bool range_right_open
)
5104 if (dst_reg
->off
< 0 ||
5105 (dst_reg
->off
== 0 && range_right_open
))
5106 /* This doesn't give us any range */
5109 if (dst_reg
->umax_value
> MAX_PACKET_OFF
||
5110 dst_reg
->umax_value
+ dst_reg
->off
> MAX_PACKET_OFF
)
5111 /* Risk of overflow. For instance, ptr + (1<<63) may be less
5112 * than pkt_end, but that's because it's also less than pkt.
5116 new_range
= dst_reg
->off
;
5117 if (range_right_open
)
5120 /* Examples for register markings:
5122 * pkt_data in dst register:
5126 * if (r2 > pkt_end) goto <handle exception>
5131 * if (r2 < pkt_end) goto <access okay>
5132 * <handle exception>
5135 * r2 == dst_reg, pkt_end == src_reg
5136 * r2=pkt(id=n,off=8,r=0)
5137 * r3=pkt(id=n,off=0,r=0)
5139 * pkt_data in src register:
5143 * if (pkt_end >= r2) goto <access okay>
5144 * <handle exception>
5148 * if (pkt_end <= r2) goto <handle exception>
5152 * pkt_end == dst_reg, r2 == src_reg
5153 * r2=pkt(id=n,off=8,r=0)
5154 * r3=pkt(id=n,off=0,r=0)
5156 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
5157 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
5158 * and [r3, r3 + 8-1) respectively is safe to access depending on
5162 /* If our ids match, then we must have the same max_value. And we
5163 * don't care about the other reg's fixed offset, since if it's too big
5164 * the range won't allow anything.
5165 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
5167 for (i
= 0; i
<= vstate
->curframe
; i
++)
5168 __find_good_pkt_pointers(vstate
->frame
[i
], dst_reg
, type
,
5172 /* compute branch direction of the expression "if (reg opcode val) goto target;"
5174 * 1 - branch will be taken and "goto target" will be executed
5175 * 0 - branch will not be taken and fall-through to next insn
5176 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
5178 static int is_branch_taken(struct bpf_reg_state
*reg
, u64 val
, u8 opcode
,
5181 struct bpf_reg_state reg_lo
;
5184 if (__is_pointer_value(false, reg
))
5190 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size
5191 * could truncate high bits and update umin/umax according to
5192 * information of low bits.
5194 coerce_reg_to_size(reg
, 4);
5195 /* smin/smax need special handling. For example, after coerce,
5196 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
5197 * used as operand to JMP32. It is a negative number from s32's
5198 * point of view, while it is a positive number when seen as
5199 * s64. The smin/smax are kept as s64, therefore, when used with
5200 * JMP32, they need to be transformed into s32, then sign
5201 * extended back to s64.
5203 * Also, smin/smax were copied from umin/umax. If umin/umax has
5204 * different sign bit, then min/max relationship doesn't
5205 * maintain after casting into s32, for this case, set smin/smax
5208 if ((reg
->umax_value
^ reg
->umin_value
) &
5210 reg
->smin_value
= S32_MIN
;
5211 reg
->smax_value
= S32_MAX
;
5213 reg
->smin_value
= (s64
)(s32
)reg
->smin_value
;
5214 reg
->smax_value
= (s64
)(s32
)reg
->smax_value
;
5217 sval
= (s64
)(s32
)val
;
5224 if (tnum_is_const(reg
->var_off
))
5225 return !!tnum_equals_const(reg
->var_off
, val
);
5228 if (tnum_is_const(reg
->var_off
))
5229 return !tnum_equals_const(reg
->var_off
, val
);
5232 if ((~reg
->var_off
.mask
& reg
->var_off
.value
) & val
)
5234 if (!((reg
->var_off
.mask
| reg
->var_off
.value
) & val
))
5238 if (reg
->umin_value
> val
)
5240 else if (reg
->umax_value
<= val
)
5244 if (reg
->smin_value
> sval
)
5246 else if (reg
->smax_value
< sval
)
5250 if (reg
->umax_value
< val
)
5252 else if (reg
->umin_value
>= val
)
5256 if (reg
->smax_value
< sval
)
5258 else if (reg
->smin_value
>= sval
)
5262 if (reg
->umin_value
>= val
)
5264 else if (reg
->umax_value
< val
)
5268 if (reg
->smin_value
>= sval
)
5270 else if (reg
->smax_value
< sval
)
5274 if (reg
->umax_value
<= val
)
5276 else if (reg
->umin_value
> val
)
5280 if (reg
->smax_value
<= sval
)
5282 else if (reg
->smin_value
> sval
)
5290 /* Generate min value of the high 32-bit from TNUM info. */
5291 static u64
gen_hi_min(struct tnum var
)
5293 return var
.value
& ~0xffffffffULL
;
5296 /* Generate max value of the high 32-bit from TNUM info. */
5297 static u64
gen_hi_max(struct tnum var
)
5299 return (var
.value
| var
.mask
) & ~0xffffffffULL
;
5302 /* Return true if VAL is compared with a s64 sign extended from s32, and they
5303 * are with the same signedness.
5305 static bool cmp_val_with_extended_s64(s64 sval
, struct bpf_reg_state
*reg
)
5307 return ((s32
)sval
>= 0 &&
5308 reg
->smin_value
>= 0 && reg
->smax_value
<= S32_MAX
) ||
5310 reg
->smax_value
<= 0 && reg
->smin_value
>= S32_MIN
);
5313 /* Adjusts the register min/max values in the case that the dst_reg is the
5314 * variable register that we are working on, and src_reg is a constant or we're
5315 * simply doing a BPF_K check.
5316 * In JEQ/JNE cases we also adjust the var_off values.
5318 static void reg_set_min_max(struct bpf_reg_state
*true_reg
,
5319 struct bpf_reg_state
*false_reg
, u64 val
,
5320 u8 opcode
, bool is_jmp32
)
5324 /* If the dst_reg is a pointer, we can't learn anything about its
5325 * variable offset from the compare (unless src_reg were a pointer into
5326 * the same object, but we don't bother with that.
5327 * Since false_reg and true_reg have the same type by construction, we
5328 * only need to check one of them for pointerness.
5330 if (__is_pointer_value(false, false_reg
))
5333 val
= is_jmp32
? (u32
)val
: val
;
5334 sval
= is_jmp32
? (s64
)(s32
)val
: (s64
)val
;
5340 struct bpf_reg_state
*reg
=
5341 opcode
== BPF_JEQ
? true_reg
: false_reg
;
5343 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
5344 * if it is true we know the value for sure. Likewise for
5348 u64 old_v
= reg
->var_off
.value
;
5349 u64 hi_mask
= ~0xffffffffULL
;
5351 reg
->var_off
.value
= (old_v
& hi_mask
) | val
;
5352 reg
->var_off
.mask
&= hi_mask
;
5354 __mark_reg_known(reg
, val
);
5359 false_reg
->var_off
= tnum_and(false_reg
->var_off
,
5361 if (is_power_of_2(val
))
5362 true_reg
->var_off
= tnum_or(true_reg
->var_off
,
5368 u64 false_umax
= opcode
== BPF_JGT
? val
: val
- 1;
5369 u64 true_umin
= opcode
== BPF_JGT
? val
+ 1 : val
;
5372 false_umax
+= gen_hi_max(false_reg
->var_off
);
5373 true_umin
+= gen_hi_min(true_reg
->var_off
);
5375 false_reg
->umax_value
= min(false_reg
->umax_value
, false_umax
);
5376 true_reg
->umin_value
= max(true_reg
->umin_value
, true_umin
);
5382 s64 false_smax
= opcode
== BPF_JSGT
? sval
: sval
- 1;
5383 s64 true_smin
= opcode
== BPF_JSGT
? sval
+ 1 : sval
;
5385 /* If the full s64 was not sign-extended from s32 then don't
5386 * deduct further info.
5388 if (is_jmp32
&& !cmp_val_with_extended_s64(sval
, false_reg
))
5390 false_reg
->smax_value
= min(false_reg
->smax_value
, false_smax
);
5391 true_reg
->smin_value
= max(true_reg
->smin_value
, true_smin
);
5397 u64 false_umin
= opcode
== BPF_JLT
? val
: val
+ 1;
5398 u64 true_umax
= opcode
== BPF_JLT
? val
- 1 : val
;
5401 false_umin
+= gen_hi_min(false_reg
->var_off
);
5402 true_umax
+= gen_hi_max(true_reg
->var_off
);
5404 false_reg
->umin_value
= max(false_reg
->umin_value
, false_umin
);
5405 true_reg
->umax_value
= min(true_reg
->umax_value
, true_umax
);
5411 s64 false_smin
= opcode
== BPF_JSLT
? sval
: sval
+ 1;
5412 s64 true_smax
= opcode
== BPF_JSLT
? sval
- 1 : sval
;
5414 if (is_jmp32
&& !cmp_val_with_extended_s64(sval
, false_reg
))
5416 false_reg
->smin_value
= max(false_reg
->smin_value
, false_smin
);
5417 true_reg
->smax_value
= min(true_reg
->smax_value
, true_smax
);
5424 __reg_deduce_bounds(false_reg
);
5425 __reg_deduce_bounds(true_reg
);
5426 /* We might have learned some bits from the bounds. */
5427 __reg_bound_offset(false_reg
);
5428 __reg_bound_offset(true_reg
);
5429 /* Intersecting with the old var_off might have improved our bounds
5430 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5431 * then new var_off is (0; 0x7f...fc) which improves our umax.
5433 __update_reg_bounds(false_reg
);
5434 __update_reg_bounds(true_reg
);
5437 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
5440 static void reg_set_min_max_inv(struct bpf_reg_state
*true_reg
,
5441 struct bpf_reg_state
*false_reg
, u64 val
,
5442 u8 opcode
, bool is_jmp32
)
5446 if (__is_pointer_value(false, false_reg
))
5449 val
= is_jmp32
? (u32
)val
: val
;
5450 sval
= is_jmp32
? (s64
)(s32
)val
: (s64
)val
;
5456 struct bpf_reg_state
*reg
=
5457 opcode
== BPF_JEQ
? true_reg
: false_reg
;
5460 u64 old_v
= reg
->var_off
.value
;
5461 u64 hi_mask
= ~0xffffffffULL
;
5463 reg
->var_off
.value
= (old_v
& hi_mask
) | val
;
5464 reg
->var_off
.mask
&= hi_mask
;
5466 __mark_reg_known(reg
, val
);
5471 false_reg
->var_off
= tnum_and(false_reg
->var_off
,
5473 if (is_power_of_2(val
))
5474 true_reg
->var_off
= tnum_or(true_reg
->var_off
,
5480 u64 false_umin
= opcode
== BPF_JGT
? val
: val
+ 1;
5481 u64 true_umax
= opcode
== BPF_JGT
? val
- 1 : val
;
5484 false_umin
+= gen_hi_min(false_reg
->var_off
);
5485 true_umax
+= gen_hi_max(true_reg
->var_off
);
5487 false_reg
->umin_value
= max(false_reg
->umin_value
, false_umin
);
5488 true_reg
->umax_value
= min(true_reg
->umax_value
, true_umax
);
5494 s64 false_smin
= opcode
== BPF_JSGT
? sval
: sval
+ 1;
5495 s64 true_smax
= opcode
== BPF_JSGT
? sval
- 1 : sval
;
5497 if (is_jmp32
&& !cmp_val_with_extended_s64(sval
, false_reg
))
5499 false_reg
->smin_value
= max(false_reg
->smin_value
, false_smin
);
5500 true_reg
->smax_value
= min(true_reg
->smax_value
, true_smax
);
5506 u64 false_umax
= opcode
== BPF_JLT
? val
: val
- 1;
5507 u64 true_umin
= opcode
== BPF_JLT
? val
+ 1 : val
;
5510 false_umax
+= gen_hi_max(false_reg
->var_off
);
5511 true_umin
+= gen_hi_min(true_reg
->var_off
);
5513 false_reg
->umax_value
= min(false_reg
->umax_value
, false_umax
);
5514 true_reg
->umin_value
= max(true_reg
->umin_value
, true_umin
);
5520 s64 false_smax
= opcode
== BPF_JSLT
? sval
: sval
- 1;
5521 s64 true_smin
= opcode
== BPF_JSLT
? sval
+ 1 : sval
;
5523 if (is_jmp32
&& !cmp_val_with_extended_s64(sval
, false_reg
))
5525 false_reg
->smax_value
= min(false_reg
->smax_value
, false_smax
);
5526 true_reg
->smin_value
= max(true_reg
->smin_value
, true_smin
);
5533 __reg_deduce_bounds(false_reg
);
5534 __reg_deduce_bounds(true_reg
);
5535 /* We might have learned some bits from the bounds. */
5536 __reg_bound_offset(false_reg
);
5537 __reg_bound_offset(true_reg
);
5538 /* Intersecting with the old var_off might have improved our bounds
5539 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5540 * then new var_off is (0; 0x7f...fc) which improves our umax.
5542 __update_reg_bounds(false_reg
);
5543 __update_reg_bounds(true_reg
);
5546 /* Regs are known to be equal, so intersect their min/max/var_off */
5547 static void __reg_combine_min_max(struct bpf_reg_state
*src_reg
,
5548 struct bpf_reg_state
*dst_reg
)
5550 src_reg
->umin_value
= dst_reg
->umin_value
= max(src_reg
->umin_value
,
5551 dst_reg
->umin_value
);
5552 src_reg
->umax_value
= dst_reg
->umax_value
= min(src_reg
->umax_value
,
5553 dst_reg
->umax_value
);
5554 src_reg
->smin_value
= dst_reg
->smin_value
= max(src_reg
->smin_value
,
5555 dst_reg
->smin_value
);
5556 src_reg
->smax_value
= dst_reg
->smax_value
= min(src_reg
->smax_value
,
5557 dst_reg
->smax_value
);
5558 src_reg
->var_off
= dst_reg
->var_off
= tnum_intersect(src_reg
->var_off
,
5560 /* We might have learned new bounds from the var_off. */
5561 __update_reg_bounds(src_reg
);
5562 __update_reg_bounds(dst_reg
);
5563 /* We might have learned something about the sign bit. */
5564 __reg_deduce_bounds(src_reg
);
5565 __reg_deduce_bounds(dst_reg
);
5566 /* We might have learned some bits from the bounds. */
5567 __reg_bound_offset(src_reg
);
5568 __reg_bound_offset(dst_reg
);
5569 /* Intersecting with the old var_off might have improved our bounds
5570 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5571 * then new var_off is (0; 0x7f...fc) which improves our umax.
5573 __update_reg_bounds(src_reg
);
5574 __update_reg_bounds(dst_reg
);
5577 static void reg_combine_min_max(struct bpf_reg_state
*true_src
,
5578 struct bpf_reg_state
*true_dst
,
5579 struct bpf_reg_state
*false_src
,
5580 struct bpf_reg_state
*false_dst
,
5585 __reg_combine_min_max(true_src
, true_dst
);
5588 __reg_combine_min_max(false_src
, false_dst
);
5593 static void mark_ptr_or_null_reg(struct bpf_func_state
*state
,
5594 struct bpf_reg_state
*reg
, u32 id
,
5597 if (reg_type_may_be_null(reg
->type
) && reg
->id
== id
) {
5598 /* Old offset (both fixed and variable parts) should
5599 * have been known-zero, because we don't allow pointer
5600 * arithmetic on pointers that might be NULL.
5602 if (WARN_ON_ONCE(reg
->smin_value
|| reg
->smax_value
||
5603 !tnum_equals_const(reg
->var_off
, 0) ||
5605 __mark_reg_known_zero(reg
);
5609 reg
->type
= SCALAR_VALUE
;
5610 } else if (reg
->type
== PTR_TO_MAP_VALUE_OR_NULL
) {
5611 if (reg
->map_ptr
->inner_map_meta
) {
5612 reg
->type
= CONST_PTR_TO_MAP
;
5613 reg
->map_ptr
= reg
->map_ptr
->inner_map_meta
;
5614 } else if (reg
->map_ptr
->map_type
==
5615 BPF_MAP_TYPE_XSKMAP
) {
5616 reg
->type
= PTR_TO_XDP_SOCK
;
5618 reg
->type
= PTR_TO_MAP_VALUE
;
5620 } else if (reg
->type
== PTR_TO_SOCKET_OR_NULL
) {
5621 reg
->type
= PTR_TO_SOCKET
;
5622 } else if (reg
->type
== PTR_TO_SOCK_COMMON_OR_NULL
) {
5623 reg
->type
= PTR_TO_SOCK_COMMON
;
5624 } else if (reg
->type
== PTR_TO_TCP_SOCK_OR_NULL
) {
5625 reg
->type
= PTR_TO_TCP_SOCK
;
5628 /* We don't need id and ref_obj_id from this point
5629 * onwards anymore, thus we should better reset it,
5630 * so that state pruning has chances to take effect.
5633 reg
->ref_obj_id
= 0;
5634 } else if (!reg_may_point_to_spin_lock(reg
)) {
5635 /* For not-NULL ptr, reg->ref_obj_id will be reset
5636 * in release_reg_references().
5638 * reg->id is still used by spin_lock ptr. Other
5639 * than spin_lock ptr type, reg->id can be reset.
5646 static void __mark_ptr_or_null_regs(struct bpf_func_state
*state
, u32 id
,
5649 struct bpf_reg_state
*reg
;
5652 for (i
= 0; i
< MAX_BPF_REG
; i
++)
5653 mark_ptr_or_null_reg(state
, &state
->regs
[i
], id
, is_null
);
5655 bpf_for_each_spilled_reg(i
, state
, reg
) {
5658 mark_ptr_or_null_reg(state
, reg
, id
, is_null
);
5662 /* The logic is similar to find_good_pkt_pointers(), both could eventually
5663 * be folded together at some point.
5665 static void mark_ptr_or_null_regs(struct bpf_verifier_state
*vstate
, u32 regno
,
5668 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
5669 struct bpf_reg_state
*regs
= state
->regs
;
5670 u32 ref_obj_id
= regs
[regno
].ref_obj_id
;
5671 u32 id
= regs
[regno
].id
;
5674 if (ref_obj_id
&& ref_obj_id
== id
&& is_null
)
5675 /* regs[regno] is in the " == NULL" branch.
5676 * No one could have freed the reference state before
5677 * doing the NULL check.
5679 WARN_ON_ONCE(release_reference_state(state
, id
));
5681 for (i
= 0; i
<= vstate
->curframe
; i
++)
5682 __mark_ptr_or_null_regs(vstate
->frame
[i
], id
, is_null
);
5685 static bool try_match_pkt_pointers(const struct bpf_insn
*insn
,
5686 struct bpf_reg_state
*dst_reg
,
5687 struct bpf_reg_state
*src_reg
,
5688 struct bpf_verifier_state
*this_branch
,
5689 struct bpf_verifier_state
*other_branch
)
5691 if (BPF_SRC(insn
->code
) != BPF_X
)
5694 /* Pointers are always 64-bit. */
5695 if (BPF_CLASS(insn
->code
) == BPF_JMP32
)
5698 switch (BPF_OP(insn
->code
)) {
5700 if ((dst_reg
->type
== PTR_TO_PACKET
&&
5701 src_reg
->type
== PTR_TO_PACKET_END
) ||
5702 (dst_reg
->type
== PTR_TO_PACKET_META
&&
5703 reg_is_init_pkt_pointer(src_reg
, PTR_TO_PACKET
))) {
5704 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
5705 find_good_pkt_pointers(this_branch
, dst_reg
,
5706 dst_reg
->type
, false);
5707 } else if ((dst_reg
->type
== PTR_TO_PACKET_END
&&
5708 src_reg
->type
== PTR_TO_PACKET
) ||
5709 (reg_is_init_pkt_pointer(dst_reg
, PTR_TO_PACKET
) &&
5710 src_reg
->type
== PTR_TO_PACKET_META
)) {
5711 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
5712 find_good_pkt_pointers(other_branch
, src_reg
,
5713 src_reg
->type
, true);
5719 if ((dst_reg
->type
== PTR_TO_PACKET
&&
5720 src_reg
->type
== PTR_TO_PACKET_END
) ||
5721 (dst_reg
->type
== PTR_TO_PACKET_META
&&
5722 reg_is_init_pkt_pointer(src_reg
, PTR_TO_PACKET
))) {
5723 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
5724 find_good_pkt_pointers(other_branch
, dst_reg
,
5725 dst_reg
->type
, true);
5726 } else if ((dst_reg
->type
== PTR_TO_PACKET_END
&&
5727 src_reg
->type
== PTR_TO_PACKET
) ||
5728 (reg_is_init_pkt_pointer(dst_reg
, PTR_TO_PACKET
) &&
5729 src_reg
->type
== PTR_TO_PACKET_META
)) {
5730 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
5731 find_good_pkt_pointers(this_branch
, src_reg
,
5732 src_reg
->type
, false);
5738 if ((dst_reg
->type
== PTR_TO_PACKET
&&
5739 src_reg
->type
== PTR_TO_PACKET_END
) ||
5740 (dst_reg
->type
== PTR_TO_PACKET_META
&&
5741 reg_is_init_pkt_pointer(src_reg
, PTR_TO_PACKET
))) {
5742 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
5743 find_good_pkt_pointers(this_branch
, dst_reg
,
5744 dst_reg
->type
, true);
5745 } else if ((dst_reg
->type
== PTR_TO_PACKET_END
&&
5746 src_reg
->type
== PTR_TO_PACKET
) ||
5747 (reg_is_init_pkt_pointer(dst_reg
, PTR_TO_PACKET
) &&
5748 src_reg
->type
== PTR_TO_PACKET_META
)) {
5749 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
5750 find_good_pkt_pointers(other_branch
, src_reg
,
5751 src_reg
->type
, false);
5757 if ((dst_reg
->type
== PTR_TO_PACKET
&&
5758 src_reg
->type
== PTR_TO_PACKET_END
) ||
5759 (dst_reg
->type
== PTR_TO_PACKET_META
&&
5760 reg_is_init_pkt_pointer(src_reg
, PTR_TO_PACKET
))) {
5761 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
5762 find_good_pkt_pointers(other_branch
, dst_reg
,
5763 dst_reg
->type
, false);
5764 } else if ((dst_reg
->type
== PTR_TO_PACKET_END
&&
5765 src_reg
->type
== PTR_TO_PACKET
) ||
5766 (reg_is_init_pkt_pointer(dst_reg
, PTR_TO_PACKET
) &&
5767 src_reg
->type
== PTR_TO_PACKET_META
)) {
5768 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
5769 find_good_pkt_pointers(this_branch
, src_reg
,
5770 src_reg
->type
, true);
5782 static int check_cond_jmp_op(struct bpf_verifier_env
*env
,
5783 struct bpf_insn
*insn
, int *insn_idx
)
5785 struct bpf_verifier_state
*this_branch
= env
->cur_state
;
5786 struct bpf_verifier_state
*other_branch
;
5787 struct bpf_reg_state
*regs
= this_branch
->frame
[this_branch
->curframe
]->regs
;
5788 struct bpf_reg_state
*dst_reg
, *other_branch_regs
, *src_reg
= NULL
;
5789 u8 opcode
= BPF_OP(insn
->code
);
5794 /* Only conditional jumps are expected to reach here. */
5795 if (opcode
== BPF_JA
|| opcode
> BPF_JSLE
) {
5796 verbose(env
, "invalid BPF_JMP/JMP32 opcode %x\n", opcode
);
5800 if (BPF_SRC(insn
->code
) == BPF_X
) {
5801 if (insn
->imm
!= 0) {
5802 verbose(env
, "BPF_JMP/JMP32 uses reserved fields\n");
5806 /* check src1 operand */
5807 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
5811 if (is_pointer_value(env
, insn
->src_reg
)) {
5812 verbose(env
, "R%d pointer comparison prohibited\n",
5816 src_reg
= ®s
[insn
->src_reg
];
5818 if (insn
->src_reg
!= BPF_REG_0
) {
5819 verbose(env
, "BPF_JMP/JMP32 uses reserved fields\n");
5824 /* check src2 operand */
5825 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
5829 dst_reg
= ®s
[insn
->dst_reg
];
5830 is_jmp32
= BPF_CLASS(insn
->code
) == BPF_JMP32
;
5832 if (BPF_SRC(insn
->code
) == BPF_K
)
5833 pred
= is_branch_taken(dst_reg
, insn
->imm
,
5835 else if (src_reg
->type
== SCALAR_VALUE
&&
5836 tnum_is_const(src_reg
->var_off
))
5837 pred
= is_branch_taken(dst_reg
, src_reg
->var_off
.value
,
5840 err
= mark_chain_precision(env
, insn
->dst_reg
);
5841 if (BPF_SRC(insn
->code
) == BPF_X
&& !err
)
5842 err
= mark_chain_precision(env
, insn
->src_reg
);
5847 /* only follow the goto, ignore fall-through */
5848 *insn_idx
+= insn
->off
;
5850 } else if (pred
== 0) {
5851 /* only follow fall-through branch, since
5852 * that's where the program will go
5857 other_branch
= push_stack(env
, *insn_idx
+ insn
->off
+ 1, *insn_idx
,
5861 other_branch_regs
= other_branch
->frame
[other_branch
->curframe
]->regs
;
5863 /* detect if we are comparing against a constant value so we can adjust
5864 * our min/max values for our dst register.
5865 * this is only legit if both are scalars (or pointers to the same
5866 * object, I suppose, but we don't support that right now), because
5867 * otherwise the different base pointers mean the offsets aren't
5870 if (BPF_SRC(insn
->code
) == BPF_X
) {
5871 struct bpf_reg_state
*src_reg
= ®s
[insn
->src_reg
];
5872 struct bpf_reg_state lo_reg0
= *dst_reg
;
5873 struct bpf_reg_state lo_reg1
= *src_reg
;
5874 struct bpf_reg_state
*src_lo
, *dst_lo
;
5878 coerce_reg_to_size(dst_lo
, 4);
5879 coerce_reg_to_size(src_lo
, 4);
5881 if (dst_reg
->type
== SCALAR_VALUE
&&
5882 src_reg
->type
== SCALAR_VALUE
) {
5883 if (tnum_is_const(src_reg
->var_off
) ||
5884 (is_jmp32
&& tnum_is_const(src_lo
->var_off
)))
5885 reg_set_min_max(&other_branch_regs
[insn
->dst_reg
],
5888 ? src_lo
->var_off
.value
5889 : src_reg
->var_off
.value
,
5891 else if (tnum_is_const(dst_reg
->var_off
) ||
5892 (is_jmp32
&& tnum_is_const(dst_lo
->var_off
)))
5893 reg_set_min_max_inv(&other_branch_regs
[insn
->src_reg
],
5896 ? dst_lo
->var_off
.value
5897 : dst_reg
->var_off
.value
,
5899 else if (!is_jmp32
&&
5900 (opcode
== BPF_JEQ
|| opcode
== BPF_JNE
))
5901 /* Comparing for equality, we can combine knowledge */
5902 reg_combine_min_max(&other_branch_regs
[insn
->src_reg
],
5903 &other_branch_regs
[insn
->dst_reg
],
5904 src_reg
, dst_reg
, opcode
);
5906 } else if (dst_reg
->type
== SCALAR_VALUE
) {
5907 reg_set_min_max(&other_branch_regs
[insn
->dst_reg
],
5908 dst_reg
, insn
->imm
, opcode
, is_jmp32
);
5911 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
5912 * NOTE: these optimizations below are related with pointer comparison
5913 * which will never be JMP32.
5915 if (!is_jmp32
&& BPF_SRC(insn
->code
) == BPF_K
&&
5916 insn
->imm
== 0 && (opcode
== BPF_JEQ
|| opcode
== BPF_JNE
) &&
5917 reg_type_may_be_null(dst_reg
->type
)) {
5918 /* Mark all identical registers in each branch as either
5919 * safe or unknown depending R == 0 or R != 0 conditional.
5921 mark_ptr_or_null_regs(this_branch
, insn
->dst_reg
,
5923 mark_ptr_or_null_regs(other_branch
, insn
->dst_reg
,
5925 } else if (!try_match_pkt_pointers(insn
, dst_reg
, ®s
[insn
->src_reg
],
5926 this_branch
, other_branch
) &&
5927 is_pointer_value(env
, insn
->dst_reg
)) {
5928 verbose(env
, "R%d pointer comparison prohibited\n",
5932 if (env
->log
.level
& BPF_LOG_LEVEL
)
5933 print_verifier_state(env
, this_branch
->frame
[this_branch
->curframe
]);
5937 /* verify BPF_LD_IMM64 instruction */
5938 static int check_ld_imm(struct bpf_verifier_env
*env
, struct bpf_insn
*insn
)
5940 struct bpf_insn_aux_data
*aux
= cur_aux(env
);
5941 struct bpf_reg_state
*regs
= cur_regs(env
);
5942 struct bpf_map
*map
;
5945 if (BPF_SIZE(insn
->code
) != BPF_DW
) {
5946 verbose(env
, "invalid BPF_LD_IMM insn\n");
5949 if (insn
->off
!= 0) {
5950 verbose(env
, "BPF_LD_IMM64 uses reserved fields\n");
5954 err
= check_reg_arg(env
, insn
->dst_reg
, DST_OP
);
5958 if (insn
->src_reg
== 0) {
5959 u64 imm
= ((u64
)(insn
+ 1)->imm
<< 32) | (u32
)insn
->imm
;
5961 regs
[insn
->dst_reg
].type
= SCALAR_VALUE
;
5962 __mark_reg_known(®s
[insn
->dst_reg
], imm
);
5966 map
= env
->used_maps
[aux
->map_index
];
5967 mark_reg_known_zero(env
, regs
, insn
->dst_reg
);
5968 regs
[insn
->dst_reg
].map_ptr
= map
;
5970 if (insn
->src_reg
== BPF_PSEUDO_MAP_VALUE
) {
5971 regs
[insn
->dst_reg
].type
= PTR_TO_MAP_VALUE
;
5972 regs
[insn
->dst_reg
].off
= aux
->map_off
;
5973 if (map_value_has_spin_lock(map
))
5974 regs
[insn
->dst_reg
].id
= ++env
->id_gen
;
5975 } else if (insn
->src_reg
== BPF_PSEUDO_MAP_FD
) {
5976 regs
[insn
->dst_reg
].type
= CONST_PTR_TO_MAP
;
5978 verbose(env
, "bpf verifier is misconfigured\n");
5985 static bool may_access_skb(enum bpf_prog_type type
)
5988 case BPF_PROG_TYPE_SOCKET_FILTER
:
5989 case BPF_PROG_TYPE_SCHED_CLS
:
5990 case BPF_PROG_TYPE_SCHED_ACT
:
5997 /* verify safety of LD_ABS|LD_IND instructions:
5998 * - they can only appear in the programs where ctx == skb
5999 * - since they are wrappers of function calls, they scratch R1-R5 registers,
6000 * preserve R6-R9, and store return value into R0
6003 * ctx == skb == R6 == CTX
6006 * SRC == any register
6007 * IMM == 32-bit immediate
6010 * R0 - 8/16/32-bit skb data converted to cpu endianness
6012 static int check_ld_abs(struct bpf_verifier_env
*env
, struct bpf_insn
*insn
)
6014 struct bpf_reg_state
*regs
= cur_regs(env
);
6015 u8 mode
= BPF_MODE(insn
->code
);
6018 if (!may_access_skb(env
->prog
->type
)) {
6019 verbose(env
, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
6023 if (!env
->ops
->gen_ld_abs
) {
6024 verbose(env
, "bpf verifier is misconfigured\n");
6028 if (env
->subprog_cnt
> 1) {
6029 /* when program has LD_ABS insn JITs and interpreter assume
6030 * that r1 == ctx == skb which is not the case for callees
6031 * that can have arbitrary arguments. It's problematic
6032 * for main prog as well since JITs would need to analyze
6033 * all functions in order to make proper register save/restore
6034 * decisions in the main prog. Hence disallow LD_ABS with calls
6036 verbose(env
, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
6040 if (insn
->dst_reg
!= BPF_REG_0
|| insn
->off
!= 0 ||
6041 BPF_SIZE(insn
->code
) == BPF_DW
||
6042 (mode
== BPF_ABS
&& insn
->src_reg
!= BPF_REG_0
)) {
6043 verbose(env
, "BPF_LD_[ABS|IND] uses reserved fields\n");
6047 /* check whether implicit source operand (register R6) is readable */
6048 err
= check_reg_arg(env
, BPF_REG_6
, SRC_OP
);
6052 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
6053 * gen_ld_abs() may terminate the program at runtime, leading to
6056 err
= check_reference_leak(env
);
6058 verbose(env
, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
6062 if (env
->cur_state
->active_spin_lock
) {
6063 verbose(env
, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
6067 if (regs
[BPF_REG_6
].type
!= PTR_TO_CTX
) {
6069 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
6073 if (mode
== BPF_IND
) {
6074 /* check explicit source operand */
6075 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
6080 /* reset caller saved regs to unreadable */
6081 for (i
= 0; i
< CALLER_SAVED_REGS
; i
++) {
6082 mark_reg_not_init(env
, regs
, caller_saved
[i
]);
6083 check_reg_arg(env
, caller_saved
[i
], DST_OP_NO_MARK
);
6086 /* mark destination R0 register as readable, since it contains
6087 * the value fetched from the packet.
6088 * Already marked as written above.
6090 mark_reg_unknown(env
, regs
, BPF_REG_0
);
6091 /* ld_abs load up to 32-bit skb data. */
6092 regs
[BPF_REG_0
].subreg_def
= env
->insn_idx
+ 1;
6096 static int check_return_code(struct bpf_verifier_env
*env
)
6098 struct tnum enforce_attach_type_range
= tnum_unknown
;
6099 struct bpf_reg_state
*reg
;
6100 struct tnum range
= tnum_range(0, 1);
6102 switch (env
->prog
->type
) {
6103 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR
:
6104 if (env
->prog
->expected_attach_type
== BPF_CGROUP_UDP4_RECVMSG
||
6105 env
->prog
->expected_attach_type
== BPF_CGROUP_UDP6_RECVMSG
)
6106 range
= tnum_range(1, 1);
6108 case BPF_PROG_TYPE_CGROUP_SKB
:
6109 if (env
->prog
->expected_attach_type
== BPF_CGROUP_INET_EGRESS
) {
6110 range
= tnum_range(0, 3);
6111 enforce_attach_type_range
= tnum_range(2, 3);
6114 case BPF_PROG_TYPE_CGROUP_SOCK
:
6115 case BPF_PROG_TYPE_SOCK_OPS
:
6116 case BPF_PROG_TYPE_CGROUP_DEVICE
:
6117 case BPF_PROG_TYPE_CGROUP_SYSCTL
:
6118 case BPF_PROG_TYPE_CGROUP_SOCKOPT
:
6124 reg
= cur_regs(env
) + BPF_REG_0
;
6125 if (reg
->type
!= SCALAR_VALUE
) {
6126 verbose(env
, "At program exit the register R0 is not a known value (%s)\n",
6127 reg_type_str
[reg
->type
]);
6131 if (!tnum_in(range
, reg
->var_off
)) {
6134 verbose(env
, "At program exit the register R0 ");
6135 if (!tnum_is_unknown(reg
->var_off
)) {
6136 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
6137 verbose(env
, "has value %s", tn_buf
);
6139 verbose(env
, "has unknown scalar value");
6141 tnum_strn(tn_buf
, sizeof(tn_buf
), range
);
6142 verbose(env
, " should have been in %s\n", tn_buf
);
6146 if (!tnum_is_unknown(enforce_attach_type_range
) &&
6147 tnum_in(enforce_attach_type_range
, reg
->var_off
))
6148 env
->prog
->enforce_expected_attach_type
= 1;
6152 /* non-recursive DFS pseudo code
6153 * 1 procedure DFS-iterative(G,v):
6154 * 2 label v as discovered
6155 * 3 let S be a stack
6157 * 5 while S is not empty
6159 * 7 if t is what we're looking for:
6161 * 9 for all edges e in G.adjacentEdges(t) do
6162 * 10 if edge e is already labelled
6163 * 11 continue with the next edge
6164 * 12 w <- G.adjacentVertex(t,e)
6165 * 13 if vertex w is not discovered and not explored
6166 * 14 label e as tree-edge
6167 * 15 label w as discovered
6170 * 18 else if vertex w is discovered
6171 * 19 label e as back-edge
6173 * 21 // vertex w is explored
6174 * 22 label e as forward- or cross-edge
6175 * 23 label t as explored
6180 * 0x11 - discovered and fall-through edge labelled
6181 * 0x12 - discovered and fall-through and branch edges labelled
6192 static u32
state_htab_size(struct bpf_verifier_env
*env
)
6194 return env
->prog
->len
;
6197 static struct bpf_verifier_state_list
**explored_state(
6198 struct bpf_verifier_env
*env
,
6201 struct bpf_verifier_state
*cur
= env
->cur_state
;
6202 struct bpf_func_state
*state
= cur
->frame
[cur
->curframe
];
6204 return &env
->explored_states
[(idx
^ state
->callsite
) % state_htab_size(env
)];
6207 static void init_explored_state(struct bpf_verifier_env
*env
, int idx
)
6209 env
->insn_aux_data
[idx
].prune_point
= true;
6212 /* t, w, e - match pseudo-code above:
6213 * t - index of current instruction
6214 * w - next instruction
6217 static int push_insn(int t
, int w
, int e
, struct bpf_verifier_env
*env
,
6220 int *insn_stack
= env
->cfg
.insn_stack
;
6221 int *insn_state
= env
->cfg
.insn_state
;
6223 if (e
== FALLTHROUGH
&& insn_state
[t
] >= (DISCOVERED
| FALLTHROUGH
))
6226 if (e
== BRANCH
&& insn_state
[t
] >= (DISCOVERED
| BRANCH
))
6229 if (w
< 0 || w
>= env
->prog
->len
) {
6230 verbose_linfo(env
, t
, "%d: ", t
);
6231 verbose(env
, "jump out of range from insn %d to %d\n", t
, w
);
6236 /* mark branch target for state pruning */
6237 init_explored_state(env
, w
);
6239 if (insn_state
[w
] == 0) {
6241 insn_state
[t
] = DISCOVERED
| e
;
6242 insn_state
[w
] = DISCOVERED
;
6243 if (env
->cfg
.cur_stack
>= env
->prog
->len
)
6245 insn_stack
[env
->cfg
.cur_stack
++] = w
;
6247 } else if ((insn_state
[w
] & 0xF0) == DISCOVERED
) {
6248 if (loop_ok
&& env
->allow_ptr_leaks
)
6250 verbose_linfo(env
, t
, "%d: ", t
);
6251 verbose_linfo(env
, w
, "%d: ", w
);
6252 verbose(env
, "back-edge from insn %d to %d\n", t
, w
);
6254 } else if (insn_state
[w
] == EXPLORED
) {
6255 /* forward- or cross-edge */
6256 insn_state
[t
] = DISCOVERED
| e
;
6258 verbose(env
, "insn state internal bug\n");
6264 /* non-recursive depth-first-search to detect loops in BPF program
6265 * loop == back-edge in directed graph
6267 static int check_cfg(struct bpf_verifier_env
*env
)
6269 struct bpf_insn
*insns
= env
->prog
->insnsi
;
6270 int insn_cnt
= env
->prog
->len
;
6271 int *insn_stack
, *insn_state
;
6275 insn_state
= env
->cfg
.insn_state
= kvcalloc(insn_cnt
, sizeof(int), GFP_KERNEL
);
6279 insn_stack
= env
->cfg
.insn_stack
= kvcalloc(insn_cnt
, sizeof(int), GFP_KERNEL
);
6285 insn_state
[0] = DISCOVERED
; /* mark 1st insn as discovered */
6286 insn_stack
[0] = 0; /* 0 is the first instruction */
6287 env
->cfg
.cur_stack
= 1;
6290 if (env
->cfg
.cur_stack
== 0)
6292 t
= insn_stack
[env
->cfg
.cur_stack
- 1];
6294 if (BPF_CLASS(insns
[t
].code
) == BPF_JMP
||
6295 BPF_CLASS(insns
[t
].code
) == BPF_JMP32
) {
6296 u8 opcode
= BPF_OP(insns
[t
].code
);
6298 if (opcode
== BPF_EXIT
) {
6300 } else if (opcode
== BPF_CALL
) {
6301 ret
= push_insn(t
, t
+ 1, FALLTHROUGH
, env
, false);
6306 if (t
+ 1 < insn_cnt
)
6307 init_explored_state(env
, t
+ 1);
6308 if (insns
[t
].src_reg
== BPF_PSEUDO_CALL
) {
6309 init_explored_state(env
, t
);
6310 ret
= push_insn(t
, t
+ insns
[t
].imm
+ 1, BRANCH
,
6317 } else if (opcode
== BPF_JA
) {
6318 if (BPF_SRC(insns
[t
].code
) != BPF_K
) {
6322 /* unconditional jump with single edge */
6323 ret
= push_insn(t
, t
+ insns
[t
].off
+ 1,
6324 FALLTHROUGH
, env
, true);
6329 /* unconditional jmp is not a good pruning point,
6330 * but it's marked, since backtracking needs
6331 * to record jmp history in is_state_visited().
6333 init_explored_state(env
, t
+ insns
[t
].off
+ 1);
6334 /* tell verifier to check for equivalent states
6335 * after every call and jump
6337 if (t
+ 1 < insn_cnt
)
6338 init_explored_state(env
, t
+ 1);
6340 /* conditional jump with two edges */
6341 init_explored_state(env
, t
);
6342 ret
= push_insn(t
, t
+ 1, FALLTHROUGH
, env
, true);
6348 ret
= push_insn(t
, t
+ insns
[t
].off
+ 1, BRANCH
, env
, true);
6355 /* all other non-branch instructions with single
6358 ret
= push_insn(t
, t
+ 1, FALLTHROUGH
, env
, false);
6366 insn_state
[t
] = EXPLORED
;
6367 if (env
->cfg
.cur_stack
-- <= 0) {
6368 verbose(env
, "pop stack internal bug\n");
6375 for (i
= 0; i
< insn_cnt
; i
++) {
6376 if (insn_state
[i
] != EXPLORED
) {
6377 verbose(env
, "unreachable insn %d\n", i
);
6382 ret
= 0; /* cfg looks good */
6387 env
->cfg
.insn_state
= env
->cfg
.insn_stack
= NULL
;
6391 /* The minimum supported BTF func info size */
6392 #define MIN_BPF_FUNCINFO_SIZE 8
6393 #define MAX_FUNCINFO_REC_SIZE 252
6395 static int check_btf_func(struct bpf_verifier_env
*env
,
6396 const union bpf_attr
*attr
,
6397 union bpf_attr __user
*uattr
)
6399 u32 i
, nfuncs
, urec_size
, min_size
;
6400 u32 krec_size
= sizeof(struct bpf_func_info
);
6401 struct bpf_func_info
*krecord
;
6402 const struct btf_type
*type
;
6403 struct bpf_prog
*prog
;
6404 const struct btf
*btf
;
6405 void __user
*urecord
;
6406 u32 prev_offset
= 0;
6409 nfuncs
= attr
->func_info_cnt
;
6413 if (nfuncs
!= env
->subprog_cnt
) {
6414 verbose(env
, "number of funcs in func_info doesn't match number of subprogs\n");
6418 urec_size
= attr
->func_info_rec_size
;
6419 if (urec_size
< MIN_BPF_FUNCINFO_SIZE
||
6420 urec_size
> MAX_FUNCINFO_REC_SIZE
||
6421 urec_size
% sizeof(u32
)) {
6422 verbose(env
, "invalid func info rec size %u\n", urec_size
);
6427 btf
= prog
->aux
->btf
;
6429 urecord
= u64_to_user_ptr(attr
->func_info
);
6430 min_size
= min_t(u32
, krec_size
, urec_size
);
6432 krecord
= kvcalloc(nfuncs
, krec_size
, GFP_KERNEL
| __GFP_NOWARN
);
6436 for (i
= 0; i
< nfuncs
; i
++) {
6437 ret
= bpf_check_uarg_tail_zero(urecord
, krec_size
, urec_size
);
6439 if (ret
== -E2BIG
) {
6440 verbose(env
, "nonzero tailing record in func info");
6441 /* set the size kernel expects so loader can zero
6442 * out the rest of the record.
6444 if (put_user(min_size
, &uattr
->func_info_rec_size
))
6450 if (copy_from_user(&krecord
[i
], urecord
, min_size
)) {
6455 /* check insn_off */
6457 if (krecord
[i
].insn_off
) {
6459 "nonzero insn_off %u for the first func info record",
6460 krecord
[i
].insn_off
);
6464 } else if (krecord
[i
].insn_off
<= prev_offset
) {
6466 "same or smaller insn offset (%u) than previous func info record (%u)",
6467 krecord
[i
].insn_off
, prev_offset
);
6472 if (env
->subprog_info
[i
].start
!= krecord
[i
].insn_off
) {
6473 verbose(env
, "func_info BTF section doesn't match subprog layout in BPF program\n");
6479 type
= btf_type_by_id(btf
, krecord
[i
].type_id
);
6480 if (!type
|| BTF_INFO_KIND(type
->info
) != BTF_KIND_FUNC
) {
6481 verbose(env
, "invalid type id %d in func info",
6482 krecord
[i
].type_id
);
6487 prev_offset
= krecord
[i
].insn_off
;
6488 urecord
+= urec_size
;
6491 prog
->aux
->func_info
= krecord
;
6492 prog
->aux
->func_info_cnt
= nfuncs
;
6500 static void adjust_btf_func(struct bpf_verifier_env
*env
)
6504 if (!env
->prog
->aux
->func_info
)
6507 for (i
= 0; i
< env
->subprog_cnt
; i
++)
6508 env
->prog
->aux
->func_info
[i
].insn_off
= env
->subprog_info
[i
].start
;
6511 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
6512 sizeof(((struct bpf_line_info *)(0))->line_col))
6513 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
6515 static int check_btf_line(struct bpf_verifier_env
*env
,
6516 const union bpf_attr
*attr
,
6517 union bpf_attr __user
*uattr
)
6519 u32 i
, s
, nr_linfo
, ncopy
, expected_size
, rec_size
, prev_offset
= 0;
6520 struct bpf_subprog_info
*sub
;
6521 struct bpf_line_info
*linfo
;
6522 struct bpf_prog
*prog
;
6523 const struct btf
*btf
;
6524 void __user
*ulinfo
;
6527 nr_linfo
= attr
->line_info_cnt
;
6531 rec_size
= attr
->line_info_rec_size
;
6532 if (rec_size
< MIN_BPF_LINEINFO_SIZE
||
6533 rec_size
> MAX_LINEINFO_REC_SIZE
||
6534 rec_size
& (sizeof(u32
) - 1))
6537 /* Need to zero it in case the userspace may
6538 * pass in a smaller bpf_line_info object.
6540 linfo
= kvcalloc(nr_linfo
, sizeof(struct bpf_line_info
),
6541 GFP_KERNEL
| __GFP_NOWARN
);
6546 btf
= prog
->aux
->btf
;
6549 sub
= env
->subprog_info
;
6550 ulinfo
= u64_to_user_ptr(attr
->line_info
);
6551 expected_size
= sizeof(struct bpf_line_info
);
6552 ncopy
= min_t(u32
, expected_size
, rec_size
);
6553 for (i
= 0; i
< nr_linfo
; i
++) {
6554 err
= bpf_check_uarg_tail_zero(ulinfo
, expected_size
, rec_size
);
6556 if (err
== -E2BIG
) {
6557 verbose(env
, "nonzero tailing record in line_info");
6558 if (put_user(expected_size
,
6559 &uattr
->line_info_rec_size
))
6565 if (copy_from_user(&linfo
[i
], ulinfo
, ncopy
)) {
6571 * Check insn_off to ensure
6572 * 1) strictly increasing AND
6573 * 2) bounded by prog->len
6575 * The linfo[0].insn_off == 0 check logically falls into
6576 * the later "missing bpf_line_info for func..." case
6577 * because the first linfo[0].insn_off must be the
6578 * first sub also and the first sub must have
6579 * subprog_info[0].start == 0.
6581 if ((i
&& linfo
[i
].insn_off
<= prev_offset
) ||
6582 linfo
[i
].insn_off
>= prog
->len
) {
6583 verbose(env
, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
6584 i
, linfo
[i
].insn_off
, prev_offset
,
6590 if (!prog
->insnsi
[linfo
[i
].insn_off
].code
) {
6592 "Invalid insn code at line_info[%u].insn_off\n",
6598 if (!btf_name_by_offset(btf
, linfo
[i
].line_off
) ||
6599 !btf_name_by_offset(btf
, linfo
[i
].file_name_off
)) {
6600 verbose(env
, "Invalid line_info[%u].line_off or .file_name_off\n", i
);
6605 if (s
!= env
->subprog_cnt
) {
6606 if (linfo
[i
].insn_off
== sub
[s
].start
) {
6607 sub
[s
].linfo_idx
= i
;
6609 } else if (sub
[s
].start
< linfo
[i
].insn_off
) {
6610 verbose(env
, "missing bpf_line_info for func#%u\n", s
);
6616 prev_offset
= linfo
[i
].insn_off
;
6620 if (s
!= env
->subprog_cnt
) {
6621 verbose(env
, "missing bpf_line_info for %u funcs starting from func#%u\n",
6622 env
->subprog_cnt
- s
, s
);
6627 prog
->aux
->linfo
= linfo
;
6628 prog
->aux
->nr_linfo
= nr_linfo
;
6637 static int check_btf_info(struct bpf_verifier_env
*env
,
6638 const union bpf_attr
*attr
,
6639 union bpf_attr __user
*uattr
)
6644 if (!attr
->func_info_cnt
&& !attr
->line_info_cnt
)
6647 btf
= btf_get_by_fd(attr
->prog_btf_fd
);
6649 return PTR_ERR(btf
);
6650 env
->prog
->aux
->btf
= btf
;
6652 err
= check_btf_func(env
, attr
, uattr
);
6656 err
= check_btf_line(env
, attr
, uattr
);
6663 /* check %cur's range satisfies %old's */
6664 static bool range_within(struct bpf_reg_state
*old
,
6665 struct bpf_reg_state
*cur
)
6667 return old
->umin_value
<= cur
->umin_value
&&
6668 old
->umax_value
>= cur
->umax_value
&&
6669 old
->smin_value
<= cur
->smin_value
&&
6670 old
->smax_value
>= cur
->smax_value
;
6673 /* Maximum number of register states that can exist at once */
6674 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
6680 /* If in the old state two registers had the same id, then they need to have
6681 * the same id in the new state as well. But that id could be different from
6682 * the old state, so we need to track the mapping from old to new ids.
6683 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
6684 * regs with old id 5 must also have new id 9 for the new state to be safe. But
6685 * regs with a different old id could still have new id 9, we don't care about
6687 * So we look through our idmap to see if this old id has been seen before. If
6688 * so, we require the new id to match; otherwise, we add the id pair to the map.
6690 static bool check_ids(u32 old_id
, u32 cur_id
, struct idpair
*idmap
)
6694 for (i
= 0; i
< ID_MAP_SIZE
; i
++) {
6695 if (!idmap
[i
].old
) {
6696 /* Reached an empty slot; haven't seen this id before */
6697 idmap
[i
].old
= old_id
;
6698 idmap
[i
].cur
= cur_id
;
6701 if (idmap
[i
].old
== old_id
)
6702 return idmap
[i
].cur
== cur_id
;
6704 /* We ran out of idmap slots, which should be impossible */
6709 static void clean_func_state(struct bpf_verifier_env
*env
,
6710 struct bpf_func_state
*st
)
6712 enum bpf_reg_liveness live
;
6715 for (i
= 0; i
< BPF_REG_FP
; i
++) {
6716 live
= st
->regs
[i
].live
;
6717 /* liveness must not touch this register anymore */
6718 st
->regs
[i
].live
|= REG_LIVE_DONE
;
6719 if (!(live
& REG_LIVE_READ
))
6720 /* since the register is unused, clear its state
6721 * to make further comparison simpler
6723 __mark_reg_not_init(&st
->regs
[i
]);
6726 for (i
= 0; i
< st
->allocated_stack
/ BPF_REG_SIZE
; i
++) {
6727 live
= st
->stack
[i
].spilled_ptr
.live
;
6728 /* liveness must not touch this stack slot anymore */
6729 st
->stack
[i
].spilled_ptr
.live
|= REG_LIVE_DONE
;
6730 if (!(live
& REG_LIVE_READ
)) {
6731 __mark_reg_not_init(&st
->stack
[i
].spilled_ptr
);
6732 for (j
= 0; j
< BPF_REG_SIZE
; j
++)
6733 st
->stack
[i
].slot_type
[j
] = STACK_INVALID
;
6738 static void clean_verifier_state(struct bpf_verifier_env
*env
,
6739 struct bpf_verifier_state
*st
)
6743 if (st
->frame
[0]->regs
[0].live
& REG_LIVE_DONE
)
6744 /* all regs in this state in all frames were already marked */
6747 for (i
= 0; i
<= st
->curframe
; i
++)
6748 clean_func_state(env
, st
->frame
[i
]);
6751 /* the parentage chains form a tree.
6752 * the verifier states are added to state lists at given insn and
6753 * pushed into state stack for future exploration.
6754 * when the verifier reaches bpf_exit insn some of the verifer states
6755 * stored in the state lists have their final liveness state already,
6756 * but a lot of states will get revised from liveness point of view when
6757 * the verifier explores other branches.
6760 * 2: if r1 == 100 goto pc+1
6763 * when the verifier reaches exit insn the register r0 in the state list of
6764 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
6765 * of insn 2 and goes exploring further. At the insn 4 it will walk the
6766 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
6768 * Since the verifier pushes the branch states as it sees them while exploring
6769 * the program the condition of walking the branch instruction for the second
6770 * time means that all states below this branch were already explored and
6771 * their final liveness markes are already propagated.
6772 * Hence when the verifier completes the search of state list in is_state_visited()
6773 * we can call this clean_live_states() function to mark all liveness states
6774 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
6776 * This function also clears the registers and stack for states that !READ
6777 * to simplify state merging.
6779 * Important note here that walking the same branch instruction in the callee
6780 * doesn't meant that the states are DONE. The verifier has to compare
6783 static void clean_live_states(struct bpf_verifier_env
*env
, int insn
,
6784 struct bpf_verifier_state
*cur
)
6786 struct bpf_verifier_state_list
*sl
;
6789 sl
= *explored_state(env
, insn
);
6791 if (sl
->state
.branches
)
6793 if (sl
->state
.insn_idx
!= insn
||
6794 sl
->state
.curframe
!= cur
->curframe
)
6796 for (i
= 0; i
<= cur
->curframe
; i
++)
6797 if (sl
->state
.frame
[i
]->callsite
!= cur
->frame
[i
]->callsite
)
6799 clean_verifier_state(env
, &sl
->state
);
6805 /* Returns true if (rold safe implies rcur safe) */
6806 static bool regsafe(struct bpf_reg_state
*rold
, struct bpf_reg_state
*rcur
,
6807 struct idpair
*idmap
)
6811 if (!(rold
->live
& REG_LIVE_READ
))
6812 /* explored state didn't use this */
6815 equal
= memcmp(rold
, rcur
, offsetof(struct bpf_reg_state
, parent
)) == 0;
6817 if (rold
->type
== PTR_TO_STACK
)
6818 /* two stack pointers are equal only if they're pointing to
6819 * the same stack frame, since fp-8 in foo != fp-8 in bar
6821 return equal
&& rold
->frameno
== rcur
->frameno
;
6826 if (rold
->type
== NOT_INIT
)
6827 /* explored state can't have used this */
6829 if (rcur
->type
== NOT_INIT
)
6831 switch (rold
->type
) {
6833 if (rcur
->type
== SCALAR_VALUE
) {
6834 if (!rold
->precise
&& !rcur
->precise
)
6836 /* new val must satisfy old val knowledge */
6837 return range_within(rold
, rcur
) &&
6838 tnum_in(rold
->var_off
, rcur
->var_off
);
6840 /* We're trying to use a pointer in place of a scalar.
6841 * Even if the scalar was unbounded, this could lead to
6842 * pointer leaks because scalars are allowed to leak
6843 * while pointers are not. We could make this safe in
6844 * special cases if root is calling us, but it's
6845 * probably not worth the hassle.
6849 case PTR_TO_MAP_VALUE
:
6850 /* If the new min/max/var_off satisfy the old ones and
6851 * everything else matches, we are OK.
6852 * 'id' is not compared, since it's only used for maps with
6853 * bpf_spin_lock inside map element and in such cases if
6854 * the rest of the prog is valid for one map element then
6855 * it's valid for all map elements regardless of the key
6856 * used in bpf_map_lookup()
6858 return memcmp(rold
, rcur
, offsetof(struct bpf_reg_state
, id
)) == 0 &&
6859 range_within(rold
, rcur
) &&
6860 tnum_in(rold
->var_off
, rcur
->var_off
);
6861 case PTR_TO_MAP_VALUE_OR_NULL
:
6862 /* a PTR_TO_MAP_VALUE could be safe to use as a
6863 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
6864 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
6865 * checked, doing so could have affected others with the same
6866 * id, and we can't check for that because we lost the id when
6867 * we converted to a PTR_TO_MAP_VALUE.
6869 if (rcur
->type
!= PTR_TO_MAP_VALUE_OR_NULL
)
6871 if (memcmp(rold
, rcur
, offsetof(struct bpf_reg_state
, id
)))
6873 /* Check our ids match any regs they're supposed to */
6874 return check_ids(rold
->id
, rcur
->id
, idmap
);
6875 case PTR_TO_PACKET_META
:
6877 if (rcur
->type
!= rold
->type
)
6879 /* We must have at least as much range as the old ptr
6880 * did, so that any accesses which were safe before are
6881 * still safe. This is true even if old range < old off,
6882 * since someone could have accessed through (ptr - k), or
6883 * even done ptr -= k in a register, to get a safe access.
6885 if (rold
->range
> rcur
->range
)
6887 /* If the offsets don't match, we can't trust our alignment;
6888 * nor can we be sure that we won't fall out of range.
6890 if (rold
->off
!= rcur
->off
)
6892 /* id relations must be preserved */
6893 if (rold
->id
&& !check_ids(rold
->id
, rcur
->id
, idmap
))
6895 /* new val must satisfy old val knowledge */
6896 return range_within(rold
, rcur
) &&
6897 tnum_in(rold
->var_off
, rcur
->var_off
);
6899 case CONST_PTR_TO_MAP
:
6900 case PTR_TO_PACKET_END
:
6901 case PTR_TO_FLOW_KEYS
:
6903 case PTR_TO_SOCKET_OR_NULL
:
6904 case PTR_TO_SOCK_COMMON
:
6905 case PTR_TO_SOCK_COMMON_OR_NULL
:
6906 case PTR_TO_TCP_SOCK
:
6907 case PTR_TO_TCP_SOCK_OR_NULL
:
6908 case PTR_TO_XDP_SOCK
:
6909 /* Only valid matches are exact, which memcmp() above
6910 * would have accepted
6913 /* Don't know what's going on, just say it's not safe */
6917 /* Shouldn't get here; if we do, say it's not safe */
6922 static bool stacksafe(struct bpf_func_state
*old
,
6923 struct bpf_func_state
*cur
,
6924 struct idpair
*idmap
)
6928 /* walk slots of the explored stack and ignore any additional
6929 * slots in the current stack, since explored(safe) state
6932 for (i
= 0; i
< old
->allocated_stack
; i
++) {
6933 spi
= i
/ BPF_REG_SIZE
;
6935 if (!(old
->stack
[spi
].spilled_ptr
.live
& REG_LIVE_READ
)) {
6936 i
+= BPF_REG_SIZE
- 1;
6937 /* explored state didn't use this */
6941 if (old
->stack
[spi
].slot_type
[i
% BPF_REG_SIZE
] == STACK_INVALID
)
6944 /* explored stack has more populated slots than current stack
6945 * and these slots were used
6947 if (i
>= cur
->allocated_stack
)
6950 /* if old state was safe with misc data in the stack
6951 * it will be safe with zero-initialized stack.
6952 * The opposite is not true
6954 if (old
->stack
[spi
].slot_type
[i
% BPF_REG_SIZE
] == STACK_MISC
&&
6955 cur
->stack
[spi
].slot_type
[i
% BPF_REG_SIZE
] == STACK_ZERO
)
6957 if (old
->stack
[spi
].slot_type
[i
% BPF_REG_SIZE
] !=
6958 cur
->stack
[spi
].slot_type
[i
% BPF_REG_SIZE
])
6959 /* Ex: old explored (safe) state has STACK_SPILL in
6960 * this stack slot, but current has has STACK_MISC ->
6961 * this verifier states are not equivalent,
6962 * return false to continue verification of this path
6965 if (i
% BPF_REG_SIZE
)
6967 if (old
->stack
[spi
].slot_type
[0] != STACK_SPILL
)
6969 if (!regsafe(&old
->stack
[spi
].spilled_ptr
,
6970 &cur
->stack
[spi
].spilled_ptr
,
6972 /* when explored and current stack slot are both storing
6973 * spilled registers, check that stored pointers types
6974 * are the same as well.
6975 * Ex: explored safe path could have stored
6976 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
6977 * but current path has stored:
6978 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
6979 * such verifier states are not equivalent.
6980 * return false to continue verification of this path
6987 static bool refsafe(struct bpf_func_state
*old
, struct bpf_func_state
*cur
)
6989 if (old
->acquired_refs
!= cur
->acquired_refs
)
6991 return !memcmp(old
->refs
, cur
->refs
,
6992 sizeof(*old
->refs
) * old
->acquired_refs
);
6995 /* compare two verifier states
6997 * all states stored in state_list are known to be valid, since
6998 * verifier reached 'bpf_exit' instruction through them
7000 * this function is called when verifier exploring different branches of
7001 * execution popped from the state stack. If it sees an old state that has
7002 * more strict register state and more strict stack state then this execution
7003 * branch doesn't need to be explored further, since verifier already
7004 * concluded that more strict state leads to valid finish.
7006 * Therefore two states are equivalent if register state is more conservative
7007 * and explored stack state is more conservative than the current one.
7010 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
7011 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
7013 * In other words if current stack state (one being explored) has more
7014 * valid slots than old one that already passed validation, it means
7015 * the verifier can stop exploring and conclude that current state is valid too
7017 * Similarly with registers. If explored state has register type as invalid
7018 * whereas register type in current state is meaningful, it means that
7019 * the current state will reach 'bpf_exit' instruction safely
7021 static bool func_states_equal(struct bpf_func_state
*old
,
7022 struct bpf_func_state
*cur
)
7024 struct idpair
*idmap
;
7028 idmap
= kcalloc(ID_MAP_SIZE
, sizeof(struct idpair
), GFP_KERNEL
);
7029 /* If we failed to allocate the idmap, just say it's not safe */
7033 for (i
= 0; i
< MAX_BPF_REG
; i
++) {
7034 if (!regsafe(&old
->regs
[i
], &cur
->regs
[i
], idmap
))
7038 if (!stacksafe(old
, cur
, idmap
))
7041 if (!refsafe(old
, cur
))
7049 static bool states_equal(struct bpf_verifier_env
*env
,
7050 struct bpf_verifier_state
*old
,
7051 struct bpf_verifier_state
*cur
)
7055 if (old
->curframe
!= cur
->curframe
)
7058 /* Verification state from speculative execution simulation
7059 * must never prune a non-speculative execution one.
7061 if (old
->speculative
&& !cur
->speculative
)
7064 if (old
->active_spin_lock
!= cur
->active_spin_lock
)
7067 /* for states to be equal callsites have to be the same
7068 * and all frame states need to be equivalent
7070 for (i
= 0; i
<= old
->curframe
; i
++) {
7071 if (old
->frame
[i
]->callsite
!= cur
->frame
[i
]->callsite
)
7073 if (!func_states_equal(old
->frame
[i
], cur
->frame
[i
]))
7079 /* Return 0 if no propagation happened. Return negative error code if error
7080 * happened. Otherwise, return the propagated bit.
7082 static int propagate_liveness_reg(struct bpf_verifier_env
*env
,
7083 struct bpf_reg_state
*reg
,
7084 struct bpf_reg_state
*parent_reg
)
7086 u8 parent_flag
= parent_reg
->live
& REG_LIVE_READ
;
7087 u8 flag
= reg
->live
& REG_LIVE_READ
;
7090 /* When comes here, read flags of PARENT_REG or REG could be any of
7091 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
7092 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
7094 if (parent_flag
== REG_LIVE_READ64
||
7095 /* Or if there is no read flag from REG. */
7097 /* Or if the read flag from REG is the same as PARENT_REG. */
7098 parent_flag
== flag
)
7101 err
= mark_reg_read(env
, reg
, parent_reg
, flag
);
7108 /* A write screens off any subsequent reads; but write marks come from the
7109 * straight-line code between a state and its parent. When we arrive at an
7110 * equivalent state (jump target or such) we didn't arrive by the straight-line
7111 * code, so read marks in the state must propagate to the parent regardless
7112 * of the state's write marks. That's what 'parent == state->parent' comparison
7113 * in mark_reg_read() is for.
7115 static int propagate_liveness(struct bpf_verifier_env
*env
,
7116 const struct bpf_verifier_state
*vstate
,
7117 struct bpf_verifier_state
*vparent
)
7119 struct bpf_reg_state
*state_reg
, *parent_reg
;
7120 struct bpf_func_state
*state
, *parent
;
7121 int i
, frame
, err
= 0;
7123 if (vparent
->curframe
!= vstate
->curframe
) {
7124 WARN(1, "propagate_live: parent frame %d current frame %d\n",
7125 vparent
->curframe
, vstate
->curframe
);
7128 /* Propagate read liveness of registers... */
7129 BUILD_BUG_ON(BPF_REG_FP
+ 1 != MAX_BPF_REG
);
7130 for (frame
= 0; frame
<= vstate
->curframe
; frame
++) {
7131 parent
= vparent
->frame
[frame
];
7132 state
= vstate
->frame
[frame
];
7133 parent_reg
= parent
->regs
;
7134 state_reg
= state
->regs
;
7135 /* We don't need to worry about FP liveness, it's read-only */
7136 for (i
= frame
< vstate
->curframe
? BPF_REG_6
: 0; i
< BPF_REG_FP
; i
++) {
7137 err
= propagate_liveness_reg(env
, &state_reg
[i
],
7141 if (err
== REG_LIVE_READ64
)
7142 mark_insn_zext(env
, &parent_reg
[i
]);
7145 /* Propagate stack slots. */
7146 for (i
= 0; i
< state
->allocated_stack
/ BPF_REG_SIZE
&&
7147 i
< parent
->allocated_stack
/ BPF_REG_SIZE
; i
++) {
7148 parent_reg
= &parent
->stack
[i
].spilled_ptr
;
7149 state_reg
= &state
->stack
[i
].spilled_ptr
;
7150 err
= propagate_liveness_reg(env
, state_reg
,
7159 /* find precise scalars in the previous equivalent state and
7160 * propagate them into the current state
7162 static int propagate_precision(struct bpf_verifier_env
*env
,
7163 const struct bpf_verifier_state
*old
)
7165 struct bpf_reg_state
*state_reg
;
7166 struct bpf_func_state
*state
;
7169 state
= old
->frame
[old
->curframe
];
7170 state_reg
= state
->regs
;
7171 for (i
= 0; i
< BPF_REG_FP
; i
++, state_reg
++) {
7172 if (state_reg
->type
!= SCALAR_VALUE
||
7173 !state_reg
->precise
)
7175 if (env
->log
.level
& BPF_LOG_LEVEL2
)
7176 verbose(env
, "propagating r%d\n", i
);
7177 err
= mark_chain_precision(env
, i
);
7182 for (i
= 0; i
< state
->allocated_stack
/ BPF_REG_SIZE
; i
++) {
7183 if (state
->stack
[i
].slot_type
[0] != STACK_SPILL
)
7185 state_reg
= &state
->stack
[i
].spilled_ptr
;
7186 if (state_reg
->type
!= SCALAR_VALUE
||
7187 !state_reg
->precise
)
7189 if (env
->log
.level
& BPF_LOG_LEVEL2
)
7190 verbose(env
, "propagating fp%d\n",
7191 (-i
- 1) * BPF_REG_SIZE
);
7192 err
= mark_chain_precision_stack(env
, i
);
7199 static bool states_maybe_looping(struct bpf_verifier_state
*old
,
7200 struct bpf_verifier_state
*cur
)
7202 struct bpf_func_state
*fold
, *fcur
;
7203 int i
, fr
= cur
->curframe
;
7205 if (old
->curframe
!= fr
)
7208 fold
= old
->frame
[fr
];
7209 fcur
= cur
->frame
[fr
];
7210 for (i
= 0; i
< MAX_BPF_REG
; i
++)
7211 if (memcmp(&fold
->regs
[i
], &fcur
->regs
[i
],
7212 offsetof(struct bpf_reg_state
, parent
)))
7218 static int is_state_visited(struct bpf_verifier_env
*env
, int insn_idx
)
7220 struct bpf_verifier_state_list
*new_sl
;
7221 struct bpf_verifier_state_list
*sl
, **pprev
;
7222 struct bpf_verifier_state
*cur
= env
->cur_state
, *new;
7223 int i
, j
, err
, states_cnt
= 0;
7224 bool add_new_state
= false;
7226 cur
->last_insn_idx
= env
->prev_insn_idx
;
7227 if (!env
->insn_aux_data
[insn_idx
].prune_point
)
7228 /* this 'insn_idx' instruction wasn't marked, so we will not
7229 * be doing state search here
7233 /* bpf progs typically have pruning point every 4 instructions
7234 * http://vger.kernel.org/bpfconf2019.html#session-1
7235 * Do not add new state for future pruning if the verifier hasn't seen
7236 * at least 2 jumps and at least 8 instructions.
7237 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
7238 * In tests that amounts to up to 50% reduction into total verifier
7239 * memory consumption and 20% verifier time speedup.
7241 if (env
->jmps_processed
- env
->prev_jmps_processed
>= 2 &&
7242 env
->insn_processed
- env
->prev_insn_processed
>= 8)
7243 add_new_state
= true;
7245 pprev
= explored_state(env
, insn_idx
);
7248 clean_live_states(env
, insn_idx
, cur
);
7252 if (sl
->state
.insn_idx
!= insn_idx
)
7254 if (sl
->state
.branches
) {
7255 if (states_maybe_looping(&sl
->state
, cur
) &&
7256 states_equal(env
, &sl
->state
, cur
)) {
7257 verbose_linfo(env
, insn_idx
, "; ");
7258 verbose(env
, "infinite loop detected at insn %d\n", insn_idx
);
7261 /* if the verifier is processing a loop, avoid adding new state
7262 * too often, since different loop iterations have distinct
7263 * states and may not help future pruning.
7264 * This threshold shouldn't be too low to make sure that
7265 * a loop with large bound will be rejected quickly.
7266 * The most abusive loop will be:
7268 * if r1 < 1000000 goto pc-2
7269 * 1M insn_procssed limit / 100 == 10k peak states.
7270 * This threshold shouldn't be too high either, since states
7271 * at the end of the loop are likely to be useful in pruning.
7273 if (env
->jmps_processed
- env
->prev_jmps_processed
< 20 &&
7274 env
->insn_processed
- env
->prev_insn_processed
< 100)
7275 add_new_state
= false;
7278 if (states_equal(env
, &sl
->state
, cur
)) {
7280 /* reached equivalent register/stack state,
7282 * Registers read by the continuation are read by us.
7283 * If we have any write marks in env->cur_state, they
7284 * will prevent corresponding reads in the continuation
7285 * from reaching our parent (an explored_state). Our
7286 * own state will get the read marks recorded, but
7287 * they'll be immediately forgotten as we're pruning
7288 * this state and will pop a new one.
7290 err
= propagate_liveness(env
, &sl
->state
, cur
);
7292 /* if previous state reached the exit with precision and
7293 * current state is equivalent to it (except precsion marks)
7294 * the precision needs to be propagated back in
7295 * the current state.
7297 err
= err
? : push_jmp_history(env
, cur
);
7298 err
= err
? : propagate_precision(env
, &sl
->state
);
7304 /* when new state is not going to be added do not increase miss count.
7305 * Otherwise several loop iterations will remove the state
7306 * recorded earlier. The goal of these heuristics is to have
7307 * states from some iterations of the loop (some in the beginning
7308 * and some at the end) to help pruning.
7312 /* heuristic to determine whether this state is beneficial
7313 * to keep checking from state equivalence point of view.
7314 * Higher numbers increase max_states_per_insn and verification time,
7315 * but do not meaningfully decrease insn_processed.
7317 if (sl
->miss_cnt
> sl
->hit_cnt
* 3 + 3) {
7318 /* the state is unlikely to be useful. Remove it to
7319 * speed up verification
7322 if (sl
->state
.frame
[0]->regs
[0].live
& REG_LIVE_DONE
) {
7323 u32 br
= sl
->state
.branches
;
7326 "BUG live_done but branches_to_explore %d\n",
7328 free_verifier_state(&sl
->state
, false);
7332 /* cannot free this state, since parentage chain may
7333 * walk it later. Add it for free_list instead to
7334 * be freed at the end of verification
7336 sl
->next
= env
->free_list
;
7337 env
->free_list
= sl
;
7347 if (env
->max_states_per_insn
< states_cnt
)
7348 env
->max_states_per_insn
= states_cnt
;
7350 if (!env
->allow_ptr_leaks
&& states_cnt
> BPF_COMPLEXITY_LIMIT_STATES
)
7351 return push_jmp_history(env
, cur
);
7354 return push_jmp_history(env
, cur
);
7356 /* There were no equivalent states, remember the current one.
7357 * Technically the current state is not proven to be safe yet,
7358 * but it will either reach outer most bpf_exit (which means it's safe)
7359 * or it will be rejected. When there are no loops the verifier won't be
7360 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
7361 * again on the way to bpf_exit.
7362 * When looping the sl->state.branches will be > 0 and this state
7363 * will not be considered for equivalence until branches == 0.
7365 new_sl
= kzalloc(sizeof(struct bpf_verifier_state_list
), GFP_KERNEL
);
7368 env
->total_states
++;
7370 env
->prev_jmps_processed
= env
->jmps_processed
;
7371 env
->prev_insn_processed
= env
->insn_processed
;
7373 /* add new state to the head of linked list */
7374 new = &new_sl
->state
;
7375 err
= copy_verifier_state(new, cur
);
7377 free_verifier_state(new, false);
7381 new->insn_idx
= insn_idx
;
7382 WARN_ONCE(new->branches
!= 1,
7383 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches
, insn_idx
);
7386 cur
->first_insn_idx
= insn_idx
;
7387 clear_jmp_history(cur
);
7388 new_sl
->next
= *explored_state(env
, insn_idx
);
7389 *explored_state(env
, insn_idx
) = new_sl
;
7390 /* connect new state to parentage chain. Current frame needs all
7391 * registers connected. Only r6 - r9 of the callers are alive (pushed
7392 * to the stack implicitly by JITs) so in callers' frames connect just
7393 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
7394 * the state of the call instruction (with WRITTEN set), and r0 comes
7395 * from callee with its full parentage chain, anyway.
7397 /* clear write marks in current state: the writes we did are not writes
7398 * our child did, so they don't screen off its reads from us.
7399 * (There are no read marks in current state, because reads always mark
7400 * their parent and current state never has children yet. Only
7401 * explored_states can get read marks.)
7403 for (j
= 0; j
<= cur
->curframe
; j
++) {
7404 for (i
= j
< cur
->curframe
? BPF_REG_6
: 0; i
< BPF_REG_FP
; i
++)
7405 cur
->frame
[j
]->regs
[i
].parent
= &new->frame
[j
]->regs
[i
];
7406 for (i
= 0; i
< BPF_REG_FP
; i
++)
7407 cur
->frame
[j
]->regs
[i
].live
= REG_LIVE_NONE
;
7410 /* all stack frames are accessible from callee, clear them all */
7411 for (j
= 0; j
<= cur
->curframe
; j
++) {
7412 struct bpf_func_state
*frame
= cur
->frame
[j
];
7413 struct bpf_func_state
*newframe
= new->frame
[j
];
7415 for (i
= 0; i
< frame
->allocated_stack
/ BPF_REG_SIZE
; i
++) {
7416 frame
->stack
[i
].spilled_ptr
.live
= REG_LIVE_NONE
;
7417 frame
->stack
[i
].spilled_ptr
.parent
=
7418 &newframe
->stack
[i
].spilled_ptr
;
7424 /* Return true if it's OK to have the same insn return a different type. */
7425 static bool reg_type_mismatch_ok(enum bpf_reg_type type
)
7430 case PTR_TO_SOCKET_OR_NULL
:
7431 case PTR_TO_SOCK_COMMON
:
7432 case PTR_TO_SOCK_COMMON_OR_NULL
:
7433 case PTR_TO_TCP_SOCK
:
7434 case PTR_TO_TCP_SOCK_OR_NULL
:
7435 case PTR_TO_XDP_SOCK
:
7442 /* If an instruction was previously used with particular pointer types, then we
7443 * need to be careful to avoid cases such as the below, where it may be ok
7444 * for one branch accessing the pointer, but not ok for the other branch:
7449 * R1 = some_other_valid_ptr;
7452 * R2 = *(u32 *)(R1 + 0);
7454 static bool reg_type_mismatch(enum bpf_reg_type src
, enum bpf_reg_type prev
)
7456 return src
!= prev
&& (!reg_type_mismatch_ok(src
) ||
7457 !reg_type_mismatch_ok(prev
));
7460 static int do_check(struct bpf_verifier_env
*env
)
7462 struct bpf_verifier_state
*state
;
7463 struct bpf_insn
*insns
= env
->prog
->insnsi
;
7464 struct bpf_reg_state
*regs
;
7465 int insn_cnt
= env
->prog
->len
;
7466 bool do_print_state
= false;
7467 int prev_insn_idx
= -1;
7469 env
->prev_linfo
= NULL
;
7471 state
= kzalloc(sizeof(struct bpf_verifier_state
), GFP_KERNEL
);
7474 state
->curframe
= 0;
7475 state
->speculative
= false;
7476 state
->branches
= 1;
7477 state
->frame
[0] = kzalloc(sizeof(struct bpf_func_state
), GFP_KERNEL
);
7478 if (!state
->frame
[0]) {
7482 env
->cur_state
= state
;
7483 init_func_state(env
, state
->frame
[0],
7484 BPF_MAIN_FUNC
/* callsite */,
7486 0 /* subprogno, zero == main subprog */);
7489 struct bpf_insn
*insn
;
7493 env
->prev_insn_idx
= prev_insn_idx
;
7494 if (env
->insn_idx
>= insn_cnt
) {
7495 verbose(env
, "invalid insn idx %d insn_cnt %d\n",
7496 env
->insn_idx
, insn_cnt
);
7500 insn
= &insns
[env
->insn_idx
];
7501 class = BPF_CLASS(insn
->code
);
7503 if (++env
->insn_processed
> BPF_COMPLEXITY_LIMIT_INSNS
) {
7505 "BPF program is too large. Processed %d insn\n",
7506 env
->insn_processed
);
7510 err
= is_state_visited(env
, env
->insn_idx
);
7514 /* found equivalent state, can prune the search */
7515 if (env
->log
.level
& BPF_LOG_LEVEL
) {
7517 verbose(env
, "\nfrom %d to %d%s: safe\n",
7518 env
->prev_insn_idx
, env
->insn_idx
,
7519 env
->cur_state
->speculative
?
7520 " (speculative execution)" : "");
7522 verbose(env
, "%d: safe\n", env
->insn_idx
);
7524 goto process_bpf_exit
;
7527 if (signal_pending(current
))
7533 if (env
->log
.level
& BPF_LOG_LEVEL2
||
7534 (env
->log
.level
& BPF_LOG_LEVEL
&& do_print_state
)) {
7535 if (env
->log
.level
& BPF_LOG_LEVEL2
)
7536 verbose(env
, "%d:", env
->insn_idx
);
7538 verbose(env
, "\nfrom %d to %d%s:",
7539 env
->prev_insn_idx
, env
->insn_idx
,
7540 env
->cur_state
->speculative
?
7541 " (speculative execution)" : "");
7542 print_verifier_state(env
, state
->frame
[state
->curframe
]);
7543 do_print_state
= false;
7546 if (env
->log
.level
& BPF_LOG_LEVEL
) {
7547 const struct bpf_insn_cbs cbs
= {
7548 .cb_print
= verbose
,
7549 .private_data
= env
,
7552 verbose_linfo(env
, env
->insn_idx
, "; ");
7553 verbose(env
, "%d: ", env
->insn_idx
);
7554 print_bpf_insn(&cbs
, insn
, env
->allow_ptr_leaks
);
7557 if (bpf_prog_is_dev_bound(env
->prog
->aux
)) {
7558 err
= bpf_prog_offload_verify_insn(env
, env
->insn_idx
,
7559 env
->prev_insn_idx
);
7564 regs
= cur_regs(env
);
7565 env
->insn_aux_data
[env
->insn_idx
].seen
= true;
7566 prev_insn_idx
= env
->insn_idx
;
7568 if (class == BPF_ALU
|| class == BPF_ALU64
) {
7569 err
= check_alu_op(env
, insn
);
7573 } else if (class == BPF_LDX
) {
7574 enum bpf_reg_type
*prev_src_type
, src_reg_type
;
7576 /* check for reserved fields is already done */
7578 /* check src operand */
7579 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
7583 err
= check_reg_arg(env
, insn
->dst_reg
, DST_OP_NO_MARK
);
7587 src_reg_type
= regs
[insn
->src_reg
].type
;
7589 /* check that memory (src_reg + off) is readable,
7590 * the state of dst_reg will be updated by this func
7592 err
= check_mem_access(env
, env
->insn_idx
, insn
->src_reg
,
7593 insn
->off
, BPF_SIZE(insn
->code
),
7594 BPF_READ
, insn
->dst_reg
, false);
7598 prev_src_type
= &env
->insn_aux_data
[env
->insn_idx
].ptr_type
;
7600 if (*prev_src_type
== NOT_INIT
) {
7602 * dst_reg = *(u32 *)(src_reg + off)
7603 * save type to validate intersecting paths
7605 *prev_src_type
= src_reg_type
;
7607 } else if (reg_type_mismatch(src_reg_type
, *prev_src_type
)) {
7608 /* ABuser program is trying to use the same insn
7609 * dst_reg = *(u32*) (src_reg + off)
7610 * with different pointer types:
7611 * src_reg == ctx in one branch and
7612 * src_reg == stack|map in some other branch.
7615 verbose(env
, "same insn cannot be used with different pointers\n");
7619 } else if (class == BPF_STX
) {
7620 enum bpf_reg_type
*prev_dst_type
, dst_reg_type
;
7622 if (BPF_MODE(insn
->code
) == BPF_XADD
) {
7623 err
= check_xadd(env
, env
->insn_idx
, insn
);
7630 /* check src1 operand */
7631 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
7634 /* check src2 operand */
7635 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
7639 dst_reg_type
= regs
[insn
->dst_reg
].type
;
7641 /* check that memory (dst_reg + off) is writeable */
7642 err
= check_mem_access(env
, env
->insn_idx
, insn
->dst_reg
,
7643 insn
->off
, BPF_SIZE(insn
->code
),
7644 BPF_WRITE
, insn
->src_reg
, false);
7648 prev_dst_type
= &env
->insn_aux_data
[env
->insn_idx
].ptr_type
;
7650 if (*prev_dst_type
== NOT_INIT
) {
7651 *prev_dst_type
= dst_reg_type
;
7652 } else if (reg_type_mismatch(dst_reg_type
, *prev_dst_type
)) {
7653 verbose(env
, "same insn cannot be used with different pointers\n");
7657 } else if (class == BPF_ST
) {
7658 if (BPF_MODE(insn
->code
) != BPF_MEM
||
7659 insn
->src_reg
!= BPF_REG_0
) {
7660 verbose(env
, "BPF_ST uses reserved fields\n");
7663 /* check src operand */
7664 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
7668 if (is_ctx_reg(env
, insn
->dst_reg
)) {
7669 verbose(env
, "BPF_ST stores into R%d %s is not allowed\n",
7671 reg_type_str
[reg_state(env
, insn
->dst_reg
)->type
]);
7675 /* check that memory (dst_reg + off) is writeable */
7676 err
= check_mem_access(env
, env
->insn_idx
, insn
->dst_reg
,
7677 insn
->off
, BPF_SIZE(insn
->code
),
7678 BPF_WRITE
, -1, false);
7682 } else if (class == BPF_JMP
|| class == BPF_JMP32
) {
7683 u8 opcode
= BPF_OP(insn
->code
);
7685 env
->jmps_processed
++;
7686 if (opcode
== BPF_CALL
) {
7687 if (BPF_SRC(insn
->code
) != BPF_K
||
7689 (insn
->src_reg
!= BPF_REG_0
&&
7690 insn
->src_reg
!= BPF_PSEUDO_CALL
) ||
7691 insn
->dst_reg
!= BPF_REG_0
||
7692 class == BPF_JMP32
) {
7693 verbose(env
, "BPF_CALL uses reserved fields\n");
7697 if (env
->cur_state
->active_spin_lock
&&
7698 (insn
->src_reg
== BPF_PSEUDO_CALL
||
7699 insn
->imm
!= BPF_FUNC_spin_unlock
)) {
7700 verbose(env
, "function calls are not allowed while holding a lock\n");
7703 if (insn
->src_reg
== BPF_PSEUDO_CALL
)
7704 err
= check_func_call(env
, insn
, &env
->insn_idx
);
7706 err
= check_helper_call(env
, insn
->imm
, env
->insn_idx
);
7710 } else if (opcode
== BPF_JA
) {
7711 if (BPF_SRC(insn
->code
) != BPF_K
||
7713 insn
->src_reg
!= BPF_REG_0
||
7714 insn
->dst_reg
!= BPF_REG_0
||
7715 class == BPF_JMP32
) {
7716 verbose(env
, "BPF_JA uses reserved fields\n");
7720 env
->insn_idx
+= insn
->off
+ 1;
7723 } else if (opcode
== BPF_EXIT
) {
7724 if (BPF_SRC(insn
->code
) != BPF_K
||
7726 insn
->src_reg
!= BPF_REG_0
||
7727 insn
->dst_reg
!= BPF_REG_0
||
7728 class == BPF_JMP32
) {
7729 verbose(env
, "BPF_EXIT uses reserved fields\n");
7733 if (env
->cur_state
->active_spin_lock
) {
7734 verbose(env
, "bpf_spin_unlock is missing\n");
7738 if (state
->curframe
) {
7739 /* exit from nested function */
7740 err
= prepare_func_exit(env
, &env
->insn_idx
);
7743 do_print_state
= true;
7747 err
= check_reference_leak(env
);
7751 /* eBPF calling convetion is such that R0 is used
7752 * to return the value from eBPF program.
7753 * Make sure that it's readable at this time
7754 * of bpf_exit, which means that program wrote
7755 * something into it earlier
7757 err
= check_reg_arg(env
, BPF_REG_0
, SRC_OP
);
7761 if (is_pointer_value(env
, BPF_REG_0
)) {
7762 verbose(env
, "R0 leaks addr as return value\n");
7766 err
= check_return_code(env
);
7770 update_branch_counts(env
, env
->cur_state
);
7771 err
= pop_stack(env
, &prev_insn_idx
,
7778 do_print_state
= true;
7782 err
= check_cond_jmp_op(env
, insn
, &env
->insn_idx
);
7786 } else if (class == BPF_LD
) {
7787 u8 mode
= BPF_MODE(insn
->code
);
7789 if (mode
== BPF_ABS
|| mode
== BPF_IND
) {
7790 err
= check_ld_abs(env
, insn
);
7794 } else if (mode
== BPF_IMM
) {
7795 err
= check_ld_imm(env
, insn
);
7800 env
->insn_aux_data
[env
->insn_idx
].seen
= true;
7802 verbose(env
, "invalid BPF_LD mode\n");
7806 verbose(env
, "unknown insn class %d\n", class);
7813 env
->prog
->aux
->stack_depth
= env
->subprog_info
[0].stack_depth
;
7817 static int check_map_prealloc(struct bpf_map
*map
)
7819 return (map
->map_type
!= BPF_MAP_TYPE_HASH
&&
7820 map
->map_type
!= BPF_MAP_TYPE_PERCPU_HASH
&&
7821 map
->map_type
!= BPF_MAP_TYPE_HASH_OF_MAPS
) ||
7822 !(map
->map_flags
& BPF_F_NO_PREALLOC
);
7825 static bool is_tracing_prog_type(enum bpf_prog_type type
)
7828 case BPF_PROG_TYPE_KPROBE
:
7829 case BPF_PROG_TYPE_TRACEPOINT
:
7830 case BPF_PROG_TYPE_PERF_EVENT
:
7831 case BPF_PROG_TYPE_RAW_TRACEPOINT
:
7838 static int check_map_prog_compatibility(struct bpf_verifier_env
*env
,
7839 struct bpf_map
*map
,
7840 struct bpf_prog
*prog
)
7843 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
7844 * preallocated hash maps, since doing memory allocation
7845 * in overflow_handler can crash depending on where nmi got
7848 if (prog
->type
== BPF_PROG_TYPE_PERF_EVENT
) {
7849 if (!check_map_prealloc(map
)) {
7850 verbose(env
, "perf_event programs can only use preallocated hash map\n");
7853 if (map
->inner_map_meta
&&
7854 !check_map_prealloc(map
->inner_map_meta
)) {
7855 verbose(env
, "perf_event programs can only use preallocated inner hash map\n");
7860 if ((is_tracing_prog_type(prog
->type
) ||
7861 prog
->type
== BPF_PROG_TYPE_SOCKET_FILTER
) &&
7862 map_value_has_spin_lock(map
)) {
7863 verbose(env
, "tracing progs cannot use bpf_spin_lock yet\n");
7867 if ((bpf_prog_is_dev_bound(prog
->aux
) || bpf_map_is_dev_bound(map
)) &&
7868 !bpf_offload_prog_map_match(prog
, map
)) {
7869 verbose(env
, "offload device mismatch between prog and map\n");
7876 static bool bpf_map_is_cgroup_storage(struct bpf_map
*map
)
7878 return (map
->map_type
== BPF_MAP_TYPE_CGROUP_STORAGE
||
7879 map
->map_type
== BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE
);
7882 /* look for pseudo eBPF instructions that access map FDs and
7883 * replace them with actual map pointers
7885 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env
*env
)
7887 struct bpf_insn
*insn
= env
->prog
->insnsi
;
7888 int insn_cnt
= env
->prog
->len
;
7891 err
= bpf_prog_calc_tag(env
->prog
);
7895 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
7896 if (BPF_CLASS(insn
->code
) == BPF_LDX
&&
7897 (BPF_MODE(insn
->code
) != BPF_MEM
|| insn
->imm
!= 0)) {
7898 verbose(env
, "BPF_LDX uses reserved fields\n");
7902 if (BPF_CLASS(insn
->code
) == BPF_STX
&&
7903 ((BPF_MODE(insn
->code
) != BPF_MEM
&&
7904 BPF_MODE(insn
->code
) != BPF_XADD
) || insn
->imm
!= 0)) {
7905 verbose(env
, "BPF_STX uses reserved fields\n");
7909 if (insn
[0].code
== (BPF_LD
| BPF_IMM
| BPF_DW
)) {
7910 struct bpf_insn_aux_data
*aux
;
7911 struct bpf_map
*map
;
7915 if (i
== insn_cnt
- 1 || insn
[1].code
!= 0 ||
7916 insn
[1].dst_reg
!= 0 || insn
[1].src_reg
!= 0 ||
7918 verbose(env
, "invalid bpf_ld_imm64 insn\n");
7922 if (insn
[0].src_reg
== 0)
7923 /* valid generic load 64-bit imm */
7926 /* In final convert_pseudo_ld_imm64() step, this is
7927 * converted into regular 64-bit imm load insn.
7929 if ((insn
[0].src_reg
!= BPF_PSEUDO_MAP_FD
&&
7930 insn
[0].src_reg
!= BPF_PSEUDO_MAP_VALUE
) ||
7931 (insn
[0].src_reg
== BPF_PSEUDO_MAP_FD
&&
7932 insn
[1].imm
!= 0)) {
7934 "unrecognized bpf_ld_imm64 insn\n");
7938 f
= fdget(insn
[0].imm
);
7939 map
= __bpf_map_get(f
);
7941 verbose(env
, "fd %d is not pointing to valid bpf_map\n",
7943 return PTR_ERR(map
);
7946 err
= check_map_prog_compatibility(env
, map
, env
->prog
);
7952 aux
= &env
->insn_aux_data
[i
];
7953 if (insn
->src_reg
== BPF_PSEUDO_MAP_FD
) {
7954 addr
= (unsigned long)map
;
7956 u32 off
= insn
[1].imm
;
7958 if (off
>= BPF_MAX_VAR_OFF
) {
7959 verbose(env
, "direct value offset of %u is not allowed\n", off
);
7964 if (!map
->ops
->map_direct_value_addr
) {
7965 verbose(env
, "no direct value access support for this map type\n");
7970 err
= map
->ops
->map_direct_value_addr(map
, &addr
, off
);
7972 verbose(env
, "invalid access to map value pointer, value_size=%u off=%u\n",
7973 map
->value_size
, off
);
7982 insn
[0].imm
= (u32
)addr
;
7983 insn
[1].imm
= addr
>> 32;
7985 /* check whether we recorded this map already */
7986 for (j
= 0; j
< env
->used_map_cnt
; j
++) {
7987 if (env
->used_maps
[j
] == map
) {
7994 if (env
->used_map_cnt
>= MAX_USED_MAPS
) {
7999 /* hold the map. If the program is rejected by verifier,
8000 * the map will be released by release_maps() or it
8001 * will be used by the valid program until it's unloaded
8002 * and all maps are released in free_used_maps()
8004 map
= bpf_map_inc(map
, false);
8007 return PTR_ERR(map
);
8010 aux
->map_index
= env
->used_map_cnt
;
8011 env
->used_maps
[env
->used_map_cnt
++] = map
;
8013 if (bpf_map_is_cgroup_storage(map
) &&
8014 bpf_cgroup_storage_assign(env
->prog
, map
)) {
8015 verbose(env
, "only one cgroup storage of each type is allowed\n");
8027 /* Basic sanity check before we invest more work here. */
8028 if (!bpf_opcode_in_insntable(insn
->code
)) {
8029 verbose(env
, "unknown opcode %02x\n", insn
->code
);
8034 /* now all pseudo BPF_LD_IMM64 instructions load valid
8035 * 'struct bpf_map *' into a register instead of user map_fd.
8036 * These pointers will be used later by verifier to validate map access.
8041 /* drop refcnt of maps used by the rejected program */
8042 static void release_maps(struct bpf_verifier_env
*env
)
8044 enum bpf_cgroup_storage_type stype
;
8047 for_each_cgroup_storage_type(stype
) {
8048 if (!env
->prog
->aux
->cgroup_storage
[stype
])
8050 bpf_cgroup_storage_release(env
->prog
,
8051 env
->prog
->aux
->cgroup_storage
[stype
]);
8054 for (i
= 0; i
< env
->used_map_cnt
; i
++)
8055 bpf_map_put(env
->used_maps
[i
]);
8058 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
8059 static void convert_pseudo_ld_imm64(struct bpf_verifier_env
*env
)
8061 struct bpf_insn
*insn
= env
->prog
->insnsi
;
8062 int insn_cnt
= env
->prog
->len
;
8065 for (i
= 0; i
< insn_cnt
; i
++, insn
++)
8066 if (insn
->code
== (BPF_LD
| BPF_IMM
| BPF_DW
))
8070 /* single env->prog->insni[off] instruction was replaced with the range
8071 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
8072 * [0, off) and [off, end) to new locations, so the patched range stays zero
8074 static int adjust_insn_aux_data(struct bpf_verifier_env
*env
,
8075 struct bpf_prog
*new_prog
, u32 off
, u32 cnt
)
8077 struct bpf_insn_aux_data
*new_data
, *old_data
= env
->insn_aux_data
;
8078 struct bpf_insn
*insn
= new_prog
->insnsi
;
8082 /* aux info at OFF always needs adjustment, no matter fast path
8083 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
8084 * original insn at old prog.
8086 old_data
[off
].zext_dst
= insn_has_def32(env
, insn
+ off
+ cnt
- 1);
8090 prog_len
= new_prog
->len
;
8091 new_data
= vzalloc(array_size(prog_len
,
8092 sizeof(struct bpf_insn_aux_data
)));
8095 memcpy(new_data
, old_data
, sizeof(struct bpf_insn_aux_data
) * off
);
8096 memcpy(new_data
+ off
+ cnt
- 1, old_data
+ off
,
8097 sizeof(struct bpf_insn_aux_data
) * (prog_len
- off
- cnt
+ 1));
8098 for (i
= off
; i
< off
+ cnt
- 1; i
++) {
8099 new_data
[i
].seen
= true;
8100 new_data
[i
].zext_dst
= insn_has_def32(env
, insn
+ i
);
8102 env
->insn_aux_data
= new_data
;
8107 static void adjust_subprog_starts(struct bpf_verifier_env
*env
, u32 off
, u32 len
)
8113 /* NOTE: fake 'exit' subprog should be updated as well. */
8114 for (i
= 0; i
<= env
->subprog_cnt
; i
++) {
8115 if (env
->subprog_info
[i
].start
<= off
)
8117 env
->subprog_info
[i
].start
+= len
- 1;
8121 static struct bpf_prog
*bpf_patch_insn_data(struct bpf_verifier_env
*env
, u32 off
,
8122 const struct bpf_insn
*patch
, u32 len
)
8124 struct bpf_prog
*new_prog
;
8126 new_prog
= bpf_patch_insn_single(env
->prog
, off
, patch
, len
);
8127 if (IS_ERR(new_prog
)) {
8128 if (PTR_ERR(new_prog
) == -ERANGE
)
8130 "insn %d cannot be patched due to 16-bit range\n",
8131 env
->insn_aux_data
[off
].orig_idx
);
8134 if (adjust_insn_aux_data(env
, new_prog
, off
, len
))
8136 adjust_subprog_starts(env
, off
, len
);
8140 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env
*env
,
8145 /* find first prog starting at or after off (first to remove) */
8146 for (i
= 0; i
< env
->subprog_cnt
; i
++)
8147 if (env
->subprog_info
[i
].start
>= off
)
8149 /* find first prog starting at or after off + cnt (first to stay) */
8150 for (j
= i
; j
< env
->subprog_cnt
; j
++)
8151 if (env
->subprog_info
[j
].start
>= off
+ cnt
)
8153 /* if j doesn't start exactly at off + cnt, we are just removing
8154 * the front of previous prog
8156 if (env
->subprog_info
[j
].start
!= off
+ cnt
)
8160 struct bpf_prog_aux
*aux
= env
->prog
->aux
;
8163 /* move fake 'exit' subprog as well */
8164 move
= env
->subprog_cnt
+ 1 - j
;
8166 memmove(env
->subprog_info
+ i
,
8167 env
->subprog_info
+ j
,
8168 sizeof(*env
->subprog_info
) * move
);
8169 env
->subprog_cnt
-= j
- i
;
8171 /* remove func_info */
8172 if (aux
->func_info
) {
8173 move
= aux
->func_info_cnt
- j
;
8175 memmove(aux
->func_info
+ i
,
8177 sizeof(*aux
->func_info
) * move
);
8178 aux
->func_info_cnt
-= j
- i
;
8179 /* func_info->insn_off is set after all code rewrites,
8180 * in adjust_btf_func() - no need to adjust
8184 /* convert i from "first prog to remove" to "first to adjust" */
8185 if (env
->subprog_info
[i
].start
== off
)
8189 /* update fake 'exit' subprog as well */
8190 for (; i
<= env
->subprog_cnt
; i
++)
8191 env
->subprog_info
[i
].start
-= cnt
;
8196 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env
*env
, u32 off
,
8199 struct bpf_prog
*prog
= env
->prog
;
8200 u32 i
, l_off
, l_cnt
, nr_linfo
;
8201 struct bpf_line_info
*linfo
;
8203 nr_linfo
= prog
->aux
->nr_linfo
;
8207 linfo
= prog
->aux
->linfo
;
8209 /* find first line info to remove, count lines to be removed */
8210 for (i
= 0; i
< nr_linfo
; i
++)
8211 if (linfo
[i
].insn_off
>= off
)
8216 for (; i
< nr_linfo
; i
++)
8217 if (linfo
[i
].insn_off
< off
+ cnt
)
8222 /* First live insn doesn't match first live linfo, it needs to "inherit"
8223 * last removed linfo. prog is already modified, so prog->len == off
8224 * means no live instructions after (tail of the program was removed).
8226 if (prog
->len
!= off
&& l_cnt
&&
8227 (i
== nr_linfo
|| linfo
[i
].insn_off
!= off
+ cnt
)) {
8229 linfo
[--i
].insn_off
= off
+ cnt
;
8232 /* remove the line info which refer to the removed instructions */
8234 memmove(linfo
+ l_off
, linfo
+ i
,
8235 sizeof(*linfo
) * (nr_linfo
- i
));
8237 prog
->aux
->nr_linfo
-= l_cnt
;
8238 nr_linfo
= prog
->aux
->nr_linfo
;
8241 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
8242 for (i
= l_off
; i
< nr_linfo
; i
++)
8243 linfo
[i
].insn_off
-= cnt
;
8245 /* fix up all subprogs (incl. 'exit') which start >= off */
8246 for (i
= 0; i
<= env
->subprog_cnt
; i
++)
8247 if (env
->subprog_info
[i
].linfo_idx
> l_off
) {
8248 /* program may have started in the removed region but
8249 * may not be fully removed
8251 if (env
->subprog_info
[i
].linfo_idx
>= l_off
+ l_cnt
)
8252 env
->subprog_info
[i
].linfo_idx
-= l_cnt
;
8254 env
->subprog_info
[i
].linfo_idx
= l_off
;
8260 static int verifier_remove_insns(struct bpf_verifier_env
*env
, u32 off
, u32 cnt
)
8262 struct bpf_insn_aux_data
*aux_data
= env
->insn_aux_data
;
8263 unsigned int orig_prog_len
= env
->prog
->len
;
8266 if (bpf_prog_is_dev_bound(env
->prog
->aux
))
8267 bpf_prog_offload_remove_insns(env
, off
, cnt
);
8269 err
= bpf_remove_insns(env
->prog
, off
, cnt
);
8273 err
= adjust_subprog_starts_after_remove(env
, off
, cnt
);
8277 err
= bpf_adj_linfo_after_remove(env
, off
, cnt
);
8281 memmove(aux_data
+ off
, aux_data
+ off
+ cnt
,
8282 sizeof(*aux_data
) * (orig_prog_len
- off
- cnt
));
8287 /* The verifier does more data flow analysis than llvm and will not
8288 * explore branches that are dead at run time. Malicious programs can
8289 * have dead code too. Therefore replace all dead at-run-time code
8292 * Just nops are not optimal, e.g. if they would sit at the end of the
8293 * program and through another bug we would manage to jump there, then
8294 * we'd execute beyond program memory otherwise. Returning exception
8295 * code also wouldn't work since we can have subprogs where the dead
8296 * code could be located.
8298 static void sanitize_dead_code(struct bpf_verifier_env
*env
)
8300 struct bpf_insn_aux_data
*aux_data
= env
->insn_aux_data
;
8301 struct bpf_insn trap
= BPF_JMP_IMM(BPF_JA
, 0, 0, -1);
8302 struct bpf_insn
*insn
= env
->prog
->insnsi
;
8303 const int insn_cnt
= env
->prog
->len
;
8306 for (i
= 0; i
< insn_cnt
; i
++) {
8307 if (aux_data
[i
].seen
)
8309 memcpy(insn
+ i
, &trap
, sizeof(trap
));
8313 static bool insn_is_cond_jump(u8 code
)
8317 if (BPF_CLASS(code
) == BPF_JMP32
)
8320 if (BPF_CLASS(code
) != BPF_JMP
)
8324 return op
!= BPF_JA
&& op
!= BPF_EXIT
&& op
!= BPF_CALL
;
8327 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env
*env
)
8329 struct bpf_insn_aux_data
*aux_data
= env
->insn_aux_data
;
8330 struct bpf_insn ja
= BPF_JMP_IMM(BPF_JA
, 0, 0, 0);
8331 struct bpf_insn
*insn
= env
->prog
->insnsi
;
8332 const int insn_cnt
= env
->prog
->len
;
8335 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
8336 if (!insn_is_cond_jump(insn
->code
))
8339 if (!aux_data
[i
+ 1].seen
)
8341 else if (!aux_data
[i
+ 1 + insn
->off
].seen
)
8346 if (bpf_prog_is_dev_bound(env
->prog
->aux
))
8347 bpf_prog_offload_replace_insn(env
, i
, &ja
);
8349 memcpy(insn
, &ja
, sizeof(ja
));
8353 static int opt_remove_dead_code(struct bpf_verifier_env
*env
)
8355 struct bpf_insn_aux_data
*aux_data
= env
->insn_aux_data
;
8356 int insn_cnt
= env
->prog
->len
;
8359 for (i
= 0; i
< insn_cnt
; i
++) {
8363 while (i
+ j
< insn_cnt
&& !aux_data
[i
+ j
].seen
)
8368 err
= verifier_remove_insns(env
, i
, j
);
8371 insn_cnt
= env
->prog
->len
;
8377 static int opt_remove_nops(struct bpf_verifier_env
*env
)
8379 const struct bpf_insn ja
= BPF_JMP_IMM(BPF_JA
, 0, 0, 0);
8380 struct bpf_insn
*insn
= env
->prog
->insnsi
;
8381 int insn_cnt
= env
->prog
->len
;
8384 for (i
= 0; i
< insn_cnt
; i
++) {
8385 if (memcmp(&insn
[i
], &ja
, sizeof(ja
)))
8388 err
= verifier_remove_insns(env
, i
, 1);
8398 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env
*env
,
8399 const union bpf_attr
*attr
)
8401 struct bpf_insn
*patch
, zext_patch
[2], rnd_hi32_patch
[4];
8402 struct bpf_insn_aux_data
*aux
= env
->insn_aux_data
;
8403 int i
, patch_len
, delta
= 0, len
= env
->prog
->len
;
8404 struct bpf_insn
*insns
= env
->prog
->insnsi
;
8405 struct bpf_prog
*new_prog
;
8408 rnd_hi32
= attr
->prog_flags
& BPF_F_TEST_RND_HI32
;
8409 zext_patch
[1] = BPF_ZEXT_REG(0);
8410 rnd_hi32_patch
[1] = BPF_ALU64_IMM(BPF_MOV
, BPF_REG_AX
, 0);
8411 rnd_hi32_patch
[2] = BPF_ALU64_IMM(BPF_LSH
, BPF_REG_AX
, 32);
8412 rnd_hi32_patch
[3] = BPF_ALU64_REG(BPF_OR
, 0, BPF_REG_AX
);
8413 for (i
= 0; i
< len
; i
++) {
8414 int adj_idx
= i
+ delta
;
8415 struct bpf_insn insn
;
8417 insn
= insns
[adj_idx
];
8418 if (!aux
[adj_idx
].zext_dst
) {
8426 class = BPF_CLASS(code
);
8427 if (insn_no_def(&insn
))
8430 /* NOTE: arg "reg" (the fourth one) is only used for
8431 * BPF_STX which has been ruled out in above
8432 * check, it is safe to pass NULL here.
8434 if (is_reg64(env
, &insn
, insn
.dst_reg
, NULL
, DST_OP
)) {
8435 if (class == BPF_LD
&&
8436 BPF_MODE(code
) == BPF_IMM
)
8441 /* ctx load could be transformed into wider load. */
8442 if (class == BPF_LDX
&&
8443 aux
[adj_idx
].ptr_type
== PTR_TO_CTX
)
8446 imm_rnd
= get_random_int();
8447 rnd_hi32_patch
[0] = insn
;
8448 rnd_hi32_patch
[1].imm
= imm_rnd
;
8449 rnd_hi32_patch
[3].dst_reg
= insn
.dst_reg
;
8450 patch
= rnd_hi32_patch
;
8452 goto apply_patch_buffer
;
8455 if (!bpf_jit_needs_zext())
8458 zext_patch
[0] = insn
;
8459 zext_patch
[1].dst_reg
= insn
.dst_reg
;
8460 zext_patch
[1].src_reg
= insn
.dst_reg
;
8464 new_prog
= bpf_patch_insn_data(env
, adj_idx
, patch
, patch_len
);
8467 env
->prog
= new_prog
;
8468 insns
= new_prog
->insnsi
;
8469 aux
= env
->insn_aux_data
;
8470 delta
+= patch_len
- 1;
8476 /* convert load instructions that access fields of a context type into a
8477 * sequence of instructions that access fields of the underlying structure:
8478 * struct __sk_buff -> struct sk_buff
8479 * struct bpf_sock_ops -> struct sock
8481 static int convert_ctx_accesses(struct bpf_verifier_env
*env
)
8483 const struct bpf_verifier_ops
*ops
= env
->ops
;
8484 int i
, cnt
, size
, ctx_field_size
, delta
= 0;
8485 const int insn_cnt
= env
->prog
->len
;
8486 struct bpf_insn insn_buf
[16], *insn
;
8487 u32 target_size
, size_default
, off
;
8488 struct bpf_prog
*new_prog
;
8489 enum bpf_access_type type
;
8490 bool is_narrower_load
;
8492 if (ops
->gen_prologue
|| env
->seen_direct_write
) {
8493 if (!ops
->gen_prologue
) {
8494 verbose(env
, "bpf verifier is misconfigured\n");
8497 cnt
= ops
->gen_prologue(insn_buf
, env
->seen_direct_write
,
8499 if (cnt
>= ARRAY_SIZE(insn_buf
)) {
8500 verbose(env
, "bpf verifier is misconfigured\n");
8503 new_prog
= bpf_patch_insn_data(env
, 0, insn_buf
, cnt
);
8507 env
->prog
= new_prog
;
8512 if (bpf_prog_is_dev_bound(env
->prog
->aux
))
8515 insn
= env
->prog
->insnsi
+ delta
;
8517 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
8518 bpf_convert_ctx_access_t convert_ctx_access
;
8520 if (insn
->code
== (BPF_LDX
| BPF_MEM
| BPF_B
) ||
8521 insn
->code
== (BPF_LDX
| BPF_MEM
| BPF_H
) ||
8522 insn
->code
== (BPF_LDX
| BPF_MEM
| BPF_W
) ||
8523 insn
->code
== (BPF_LDX
| BPF_MEM
| BPF_DW
))
8525 else if (insn
->code
== (BPF_STX
| BPF_MEM
| BPF_B
) ||
8526 insn
->code
== (BPF_STX
| BPF_MEM
| BPF_H
) ||
8527 insn
->code
== (BPF_STX
| BPF_MEM
| BPF_W
) ||
8528 insn
->code
== (BPF_STX
| BPF_MEM
| BPF_DW
))
8533 if (type
== BPF_WRITE
&&
8534 env
->insn_aux_data
[i
+ delta
].sanitize_stack_off
) {
8535 struct bpf_insn patch
[] = {
8536 /* Sanitize suspicious stack slot with zero.
8537 * There are no memory dependencies for this store,
8538 * since it's only using frame pointer and immediate
8541 BPF_ST_MEM(BPF_DW
, BPF_REG_FP
,
8542 env
->insn_aux_data
[i
+ delta
].sanitize_stack_off
,
8544 /* the original STX instruction will immediately
8545 * overwrite the same stack slot with appropriate value
8550 cnt
= ARRAY_SIZE(patch
);
8551 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, patch
, cnt
);
8556 env
->prog
= new_prog
;
8557 insn
= new_prog
->insnsi
+ i
+ delta
;
8561 switch (env
->insn_aux_data
[i
+ delta
].ptr_type
) {
8563 if (!ops
->convert_ctx_access
)
8565 convert_ctx_access
= ops
->convert_ctx_access
;
8568 case PTR_TO_SOCK_COMMON
:
8569 convert_ctx_access
= bpf_sock_convert_ctx_access
;
8571 case PTR_TO_TCP_SOCK
:
8572 convert_ctx_access
= bpf_tcp_sock_convert_ctx_access
;
8574 case PTR_TO_XDP_SOCK
:
8575 convert_ctx_access
= bpf_xdp_sock_convert_ctx_access
;
8581 ctx_field_size
= env
->insn_aux_data
[i
+ delta
].ctx_field_size
;
8582 size
= BPF_LDST_BYTES(insn
);
8584 /* If the read access is a narrower load of the field,
8585 * convert to a 4/8-byte load, to minimum program type specific
8586 * convert_ctx_access changes. If conversion is successful,
8587 * we will apply proper mask to the result.
8589 is_narrower_load
= size
< ctx_field_size
;
8590 size_default
= bpf_ctx_off_adjust_machine(ctx_field_size
);
8592 if (is_narrower_load
) {
8595 if (type
== BPF_WRITE
) {
8596 verbose(env
, "bpf verifier narrow ctx access misconfigured\n");
8601 if (ctx_field_size
== 4)
8603 else if (ctx_field_size
== 8)
8606 insn
->off
= off
& ~(size_default
- 1);
8607 insn
->code
= BPF_LDX
| BPF_MEM
| size_code
;
8611 cnt
= convert_ctx_access(type
, insn
, insn_buf
, env
->prog
,
8613 if (cnt
== 0 || cnt
>= ARRAY_SIZE(insn_buf
) ||
8614 (ctx_field_size
&& !target_size
)) {
8615 verbose(env
, "bpf verifier is misconfigured\n");
8619 if (is_narrower_load
&& size
< target_size
) {
8620 u8 shift
= bpf_ctx_narrow_load_shift(off
, size
,
8622 if (ctx_field_size
<= 4) {
8624 insn_buf
[cnt
++] = BPF_ALU32_IMM(BPF_RSH
,
8627 insn_buf
[cnt
++] = BPF_ALU32_IMM(BPF_AND
, insn
->dst_reg
,
8628 (1 << size
* 8) - 1);
8631 insn_buf
[cnt
++] = BPF_ALU64_IMM(BPF_RSH
,
8634 insn_buf
[cnt
++] = BPF_ALU64_IMM(BPF_AND
, insn
->dst_reg
,
8635 (1ULL << size
* 8) - 1);
8639 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, insn_buf
, cnt
);
8645 /* keep walking new program and skip insns we just inserted */
8646 env
->prog
= new_prog
;
8647 insn
= new_prog
->insnsi
+ i
+ delta
;
8653 static int jit_subprogs(struct bpf_verifier_env
*env
)
8655 struct bpf_prog
*prog
= env
->prog
, **func
, *tmp
;
8656 int i
, j
, subprog_start
, subprog_end
= 0, len
, subprog
;
8657 struct bpf_insn
*insn
;
8661 if (env
->subprog_cnt
<= 1)
8664 for (i
= 0, insn
= prog
->insnsi
; i
< prog
->len
; i
++, insn
++) {
8665 if (insn
->code
!= (BPF_JMP
| BPF_CALL
) ||
8666 insn
->src_reg
!= BPF_PSEUDO_CALL
)
8668 /* Upon error here we cannot fall back to interpreter but
8669 * need a hard reject of the program. Thus -EFAULT is
8670 * propagated in any case.
8672 subprog
= find_subprog(env
, i
+ insn
->imm
+ 1);
8674 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
8678 /* temporarily remember subprog id inside insn instead of
8679 * aux_data, since next loop will split up all insns into funcs
8681 insn
->off
= subprog
;
8682 /* remember original imm in case JIT fails and fallback
8683 * to interpreter will be needed
8685 env
->insn_aux_data
[i
].call_imm
= insn
->imm
;
8686 /* point imm to __bpf_call_base+1 from JITs point of view */
8690 err
= bpf_prog_alloc_jited_linfo(prog
);
8695 func
= kcalloc(env
->subprog_cnt
, sizeof(prog
), GFP_KERNEL
);
8699 for (i
= 0; i
< env
->subprog_cnt
; i
++) {
8700 subprog_start
= subprog_end
;
8701 subprog_end
= env
->subprog_info
[i
+ 1].start
;
8703 len
= subprog_end
- subprog_start
;
8704 /* BPF_PROG_RUN doesn't call subprogs directly,
8705 * hence main prog stats include the runtime of subprogs.
8706 * subprogs don't have IDs and not reachable via prog_get_next_id
8707 * func[i]->aux->stats will never be accessed and stays NULL
8709 func
[i
] = bpf_prog_alloc_no_stats(bpf_prog_size(len
), GFP_USER
);
8712 memcpy(func
[i
]->insnsi
, &prog
->insnsi
[subprog_start
],
8713 len
* sizeof(struct bpf_insn
));
8714 func
[i
]->type
= prog
->type
;
8716 if (bpf_prog_calc_tag(func
[i
]))
8718 func
[i
]->is_func
= 1;
8719 func
[i
]->aux
->func_idx
= i
;
8720 /* the btf and func_info will be freed only at prog->aux */
8721 func
[i
]->aux
->btf
= prog
->aux
->btf
;
8722 func
[i
]->aux
->func_info
= prog
->aux
->func_info
;
8724 /* Use bpf_prog_F_tag to indicate functions in stack traces.
8725 * Long term would need debug info to populate names
8727 func
[i
]->aux
->name
[0] = 'F';
8728 func
[i
]->aux
->stack_depth
= env
->subprog_info
[i
].stack_depth
;
8729 func
[i
]->jit_requested
= 1;
8730 func
[i
]->aux
->linfo
= prog
->aux
->linfo
;
8731 func
[i
]->aux
->nr_linfo
= prog
->aux
->nr_linfo
;
8732 func
[i
]->aux
->jited_linfo
= prog
->aux
->jited_linfo
;
8733 func
[i
]->aux
->linfo_idx
= env
->subprog_info
[i
].linfo_idx
;
8734 func
[i
] = bpf_int_jit_compile(func
[i
]);
8735 if (!func
[i
]->jited
) {
8741 /* at this point all bpf functions were successfully JITed
8742 * now populate all bpf_calls with correct addresses and
8743 * run last pass of JIT
8745 for (i
= 0; i
< env
->subprog_cnt
; i
++) {
8746 insn
= func
[i
]->insnsi
;
8747 for (j
= 0; j
< func
[i
]->len
; j
++, insn
++) {
8748 if (insn
->code
!= (BPF_JMP
| BPF_CALL
) ||
8749 insn
->src_reg
!= BPF_PSEUDO_CALL
)
8751 subprog
= insn
->off
;
8752 insn
->imm
= BPF_CAST_CALL(func
[subprog
]->bpf_func
) -
8756 /* we use the aux data to keep a list of the start addresses
8757 * of the JITed images for each function in the program
8759 * for some architectures, such as powerpc64, the imm field
8760 * might not be large enough to hold the offset of the start
8761 * address of the callee's JITed image from __bpf_call_base
8763 * in such cases, we can lookup the start address of a callee
8764 * by using its subprog id, available from the off field of
8765 * the call instruction, as an index for this list
8767 func
[i
]->aux
->func
= func
;
8768 func
[i
]->aux
->func_cnt
= env
->subprog_cnt
;
8770 for (i
= 0; i
< env
->subprog_cnt
; i
++) {
8771 old_bpf_func
= func
[i
]->bpf_func
;
8772 tmp
= bpf_int_jit_compile(func
[i
]);
8773 if (tmp
!= func
[i
] || func
[i
]->bpf_func
!= old_bpf_func
) {
8774 verbose(env
, "JIT doesn't support bpf-to-bpf calls\n");
8781 /* finally lock prog and jit images for all functions and
8784 for (i
= 0; i
< env
->subprog_cnt
; i
++) {
8785 bpf_prog_lock_ro(func
[i
]);
8786 bpf_prog_kallsyms_add(func
[i
]);
8789 /* Last step: make now unused interpreter insns from main
8790 * prog consistent for later dump requests, so they can
8791 * later look the same as if they were interpreted only.
8793 for (i
= 0, insn
= prog
->insnsi
; i
< prog
->len
; i
++, insn
++) {
8794 if (insn
->code
!= (BPF_JMP
| BPF_CALL
) ||
8795 insn
->src_reg
!= BPF_PSEUDO_CALL
)
8797 insn
->off
= env
->insn_aux_data
[i
].call_imm
;
8798 subprog
= find_subprog(env
, i
+ insn
->off
+ 1);
8799 insn
->imm
= subprog
;
8803 prog
->bpf_func
= func
[0]->bpf_func
;
8804 prog
->aux
->func
= func
;
8805 prog
->aux
->func_cnt
= env
->subprog_cnt
;
8806 bpf_prog_free_unused_jited_linfo(prog
);
8809 for (i
= 0; i
< env
->subprog_cnt
; i
++)
8811 bpf_jit_free(func
[i
]);
8814 /* cleanup main prog to be interpreted */
8815 prog
->jit_requested
= 0;
8816 for (i
= 0, insn
= prog
->insnsi
; i
< prog
->len
; i
++, insn
++) {
8817 if (insn
->code
!= (BPF_JMP
| BPF_CALL
) ||
8818 insn
->src_reg
!= BPF_PSEUDO_CALL
)
8821 insn
->imm
= env
->insn_aux_data
[i
].call_imm
;
8823 bpf_prog_free_jited_linfo(prog
);
8827 static int fixup_call_args(struct bpf_verifier_env
*env
)
8829 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
8830 struct bpf_prog
*prog
= env
->prog
;
8831 struct bpf_insn
*insn
= prog
->insnsi
;
8836 if (env
->prog
->jit_requested
&&
8837 !bpf_prog_is_dev_bound(env
->prog
->aux
)) {
8838 err
= jit_subprogs(env
);
8844 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
8845 for (i
= 0; i
< prog
->len
; i
++, insn
++) {
8846 if (insn
->code
!= (BPF_JMP
| BPF_CALL
) ||
8847 insn
->src_reg
!= BPF_PSEUDO_CALL
)
8849 depth
= get_callee_stack_depth(env
, insn
, i
);
8852 bpf_patch_call_args(insn
, depth
);
8859 /* fixup insn->imm field of bpf_call instructions
8860 * and inline eligible helpers as explicit sequence of BPF instructions
8862 * this function is called after eBPF program passed verification
8864 static int fixup_bpf_calls(struct bpf_verifier_env
*env
)
8866 struct bpf_prog
*prog
= env
->prog
;
8867 struct bpf_insn
*insn
= prog
->insnsi
;
8868 const struct bpf_func_proto
*fn
;
8869 const int insn_cnt
= prog
->len
;
8870 const struct bpf_map_ops
*ops
;
8871 struct bpf_insn_aux_data
*aux
;
8872 struct bpf_insn insn_buf
[16];
8873 struct bpf_prog
*new_prog
;
8874 struct bpf_map
*map_ptr
;
8875 int i
, cnt
, delta
= 0;
8877 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
8878 if (insn
->code
== (BPF_ALU64
| BPF_MOD
| BPF_X
) ||
8879 insn
->code
== (BPF_ALU64
| BPF_DIV
| BPF_X
) ||
8880 insn
->code
== (BPF_ALU
| BPF_MOD
| BPF_X
) ||
8881 insn
->code
== (BPF_ALU
| BPF_DIV
| BPF_X
)) {
8882 bool is64
= BPF_CLASS(insn
->code
) == BPF_ALU64
;
8883 struct bpf_insn mask_and_div
[] = {
8884 BPF_MOV32_REG(insn
->src_reg
, insn
->src_reg
),
8886 BPF_JMP_IMM(BPF_JNE
, insn
->src_reg
, 0, 2),
8887 BPF_ALU32_REG(BPF_XOR
, insn
->dst_reg
, insn
->dst_reg
),
8888 BPF_JMP_IMM(BPF_JA
, 0, 0, 1),
8891 struct bpf_insn mask_and_mod
[] = {
8892 BPF_MOV32_REG(insn
->src_reg
, insn
->src_reg
),
8893 /* Rx mod 0 -> Rx */
8894 BPF_JMP_IMM(BPF_JEQ
, insn
->src_reg
, 0, 1),
8897 struct bpf_insn
*patchlet
;
8899 if (insn
->code
== (BPF_ALU64
| BPF_DIV
| BPF_X
) ||
8900 insn
->code
== (BPF_ALU
| BPF_DIV
| BPF_X
)) {
8901 patchlet
= mask_and_div
+ (is64
? 1 : 0);
8902 cnt
= ARRAY_SIZE(mask_and_div
) - (is64
? 1 : 0);
8904 patchlet
= mask_and_mod
+ (is64
? 1 : 0);
8905 cnt
= ARRAY_SIZE(mask_and_mod
) - (is64
? 1 : 0);
8908 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, patchlet
, cnt
);
8913 env
->prog
= prog
= new_prog
;
8914 insn
= new_prog
->insnsi
+ i
+ delta
;
8918 if (BPF_CLASS(insn
->code
) == BPF_LD
&&
8919 (BPF_MODE(insn
->code
) == BPF_ABS
||
8920 BPF_MODE(insn
->code
) == BPF_IND
)) {
8921 cnt
= env
->ops
->gen_ld_abs(insn
, insn_buf
);
8922 if (cnt
== 0 || cnt
>= ARRAY_SIZE(insn_buf
)) {
8923 verbose(env
, "bpf verifier is misconfigured\n");
8927 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, insn_buf
, cnt
);
8932 env
->prog
= prog
= new_prog
;
8933 insn
= new_prog
->insnsi
+ i
+ delta
;
8937 if (insn
->code
== (BPF_ALU64
| BPF_ADD
| BPF_X
) ||
8938 insn
->code
== (BPF_ALU64
| BPF_SUB
| BPF_X
)) {
8939 const u8 code_add
= BPF_ALU64
| BPF_ADD
| BPF_X
;
8940 const u8 code_sub
= BPF_ALU64
| BPF_SUB
| BPF_X
;
8941 struct bpf_insn insn_buf
[16];
8942 struct bpf_insn
*patch
= &insn_buf
[0];
8946 aux
= &env
->insn_aux_data
[i
+ delta
];
8947 if (!aux
->alu_state
||
8948 aux
->alu_state
== BPF_ALU_NON_POINTER
)
8951 isneg
= aux
->alu_state
& BPF_ALU_NEG_VALUE
;
8952 issrc
= (aux
->alu_state
& BPF_ALU_SANITIZE
) ==
8953 BPF_ALU_SANITIZE_SRC
;
8955 off_reg
= issrc
? insn
->src_reg
: insn
->dst_reg
;
8957 *patch
++ = BPF_ALU64_IMM(BPF_MUL
, off_reg
, -1);
8958 *patch
++ = BPF_MOV32_IMM(BPF_REG_AX
, aux
->alu_limit
- 1);
8959 *patch
++ = BPF_ALU64_REG(BPF_SUB
, BPF_REG_AX
, off_reg
);
8960 *patch
++ = BPF_ALU64_REG(BPF_OR
, BPF_REG_AX
, off_reg
);
8961 *patch
++ = BPF_ALU64_IMM(BPF_NEG
, BPF_REG_AX
, 0);
8962 *patch
++ = BPF_ALU64_IMM(BPF_ARSH
, BPF_REG_AX
, 63);
8964 *patch
++ = BPF_ALU64_REG(BPF_AND
, BPF_REG_AX
,
8966 insn
->src_reg
= BPF_REG_AX
;
8968 *patch
++ = BPF_ALU64_REG(BPF_AND
, off_reg
,
8972 insn
->code
= insn
->code
== code_add
?
8973 code_sub
: code_add
;
8976 *patch
++ = BPF_ALU64_IMM(BPF_MUL
, off_reg
, -1);
8977 cnt
= patch
- insn_buf
;
8979 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, insn_buf
, cnt
);
8984 env
->prog
= prog
= new_prog
;
8985 insn
= new_prog
->insnsi
+ i
+ delta
;
8989 if (insn
->code
!= (BPF_JMP
| BPF_CALL
))
8991 if (insn
->src_reg
== BPF_PSEUDO_CALL
)
8994 if (insn
->imm
== BPF_FUNC_get_route_realm
)
8995 prog
->dst_needed
= 1;
8996 if (insn
->imm
== BPF_FUNC_get_prandom_u32
)
8997 bpf_user_rnd_init_once();
8998 if (insn
->imm
== BPF_FUNC_override_return
)
8999 prog
->kprobe_override
= 1;
9000 if (insn
->imm
== BPF_FUNC_tail_call
) {
9001 /* If we tail call into other programs, we
9002 * cannot make any assumptions since they can
9003 * be replaced dynamically during runtime in
9004 * the program array.
9006 prog
->cb_access
= 1;
9007 env
->prog
->aux
->stack_depth
= MAX_BPF_STACK
;
9008 env
->prog
->aux
->max_pkt_offset
= MAX_PACKET_OFF
;
9010 /* mark bpf_tail_call as different opcode to avoid
9011 * conditional branch in the interpeter for every normal
9012 * call and to prevent accidental JITing by JIT compiler
9013 * that doesn't support bpf_tail_call yet
9016 insn
->code
= BPF_JMP
| BPF_TAIL_CALL
;
9018 aux
= &env
->insn_aux_data
[i
+ delta
];
9019 if (!bpf_map_ptr_unpriv(aux
))
9022 /* instead of changing every JIT dealing with tail_call
9023 * emit two extra insns:
9024 * if (index >= max_entries) goto out;
9025 * index &= array->index_mask;
9026 * to avoid out-of-bounds cpu speculation
9028 if (bpf_map_ptr_poisoned(aux
)) {
9029 verbose(env
, "tail_call abusing map_ptr\n");
9033 map_ptr
= BPF_MAP_PTR(aux
->map_state
);
9034 insn_buf
[0] = BPF_JMP_IMM(BPF_JGE
, BPF_REG_3
,
9035 map_ptr
->max_entries
, 2);
9036 insn_buf
[1] = BPF_ALU32_IMM(BPF_AND
, BPF_REG_3
,
9037 container_of(map_ptr
,
9040 insn_buf
[2] = *insn
;
9042 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, insn_buf
, cnt
);
9047 env
->prog
= prog
= new_prog
;
9048 insn
= new_prog
->insnsi
+ i
+ delta
;
9052 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
9053 * and other inlining handlers are currently limited to 64 bit
9056 if (prog
->jit_requested
&& BITS_PER_LONG
== 64 &&
9057 (insn
->imm
== BPF_FUNC_map_lookup_elem
||
9058 insn
->imm
== BPF_FUNC_map_update_elem
||
9059 insn
->imm
== BPF_FUNC_map_delete_elem
||
9060 insn
->imm
== BPF_FUNC_map_push_elem
||
9061 insn
->imm
== BPF_FUNC_map_pop_elem
||
9062 insn
->imm
== BPF_FUNC_map_peek_elem
)) {
9063 aux
= &env
->insn_aux_data
[i
+ delta
];
9064 if (bpf_map_ptr_poisoned(aux
))
9065 goto patch_call_imm
;
9067 map_ptr
= BPF_MAP_PTR(aux
->map_state
);
9069 if (insn
->imm
== BPF_FUNC_map_lookup_elem
&&
9070 ops
->map_gen_lookup
) {
9071 cnt
= ops
->map_gen_lookup(map_ptr
, insn_buf
);
9072 if (cnt
== 0 || cnt
>= ARRAY_SIZE(insn_buf
)) {
9073 verbose(env
, "bpf verifier is misconfigured\n");
9077 new_prog
= bpf_patch_insn_data(env
, i
+ delta
,
9083 env
->prog
= prog
= new_prog
;
9084 insn
= new_prog
->insnsi
+ i
+ delta
;
9088 BUILD_BUG_ON(!__same_type(ops
->map_lookup_elem
,
9089 (void *(*)(struct bpf_map
*map
, void *key
))NULL
));
9090 BUILD_BUG_ON(!__same_type(ops
->map_delete_elem
,
9091 (int (*)(struct bpf_map
*map
, void *key
))NULL
));
9092 BUILD_BUG_ON(!__same_type(ops
->map_update_elem
,
9093 (int (*)(struct bpf_map
*map
, void *key
, void *value
,
9095 BUILD_BUG_ON(!__same_type(ops
->map_push_elem
,
9096 (int (*)(struct bpf_map
*map
, void *value
,
9098 BUILD_BUG_ON(!__same_type(ops
->map_pop_elem
,
9099 (int (*)(struct bpf_map
*map
, void *value
))NULL
));
9100 BUILD_BUG_ON(!__same_type(ops
->map_peek_elem
,
9101 (int (*)(struct bpf_map
*map
, void *value
))NULL
));
9103 switch (insn
->imm
) {
9104 case BPF_FUNC_map_lookup_elem
:
9105 insn
->imm
= BPF_CAST_CALL(ops
->map_lookup_elem
) -
9108 case BPF_FUNC_map_update_elem
:
9109 insn
->imm
= BPF_CAST_CALL(ops
->map_update_elem
) -
9112 case BPF_FUNC_map_delete_elem
:
9113 insn
->imm
= BPF_CAST_CALL(ops
->map_delete_elem
) -
9116 case BPF_FUNC_map_push_elem
:
9117 insn
->imm
= BPF_CAST_CALL(ops
->map_push_elem
) -
9120 case BPF_FUNC_map_pop_elem
:
9121 insn
->imm
= BPF_CAST_CALL(ops
->map_pop_elem
) -
9124 case BPF_FUNC_map_peek_elem
:
9125 insn
->imm
= BPF_CAST_CALL(ops
->map_peek_elem
) -
9130 goto patch_call_imm
;
9134 fn
= env
->ops
->get_func_proto(insn
->imm
, env
->prog
);
9135 /* all functions that have prototype and verifier allowed
9136 * programs to call them, must be real in-kernel functions
9140 "kernel subsystem misconfigured func %s#%d\n",
9141 func_id_name(insn
->imm
), insn
->imm
);
9144 insn
->imm
= fn
->func
- __bpf_call_base
;
9150 static void free_states(struct bpf_verifier_env
*env
)
9152 struct bpf_verifier_state_list
*sl
, *sln
;
9155 sl
= env
->free_list
;
9158 free_verifier_state(&sl
->state
, false);
9163 if (!env
->explored_states
)
9166 for (i
= 0; i
< state_htab_size(env
); i
++) {
9167 sl
= env
->explored_states
[i
];
9171 free_verifier_state(&sl
->state
, false);
9177 kvfree(env
->explored_states
);
9180 static void print_verification_stats(struct bpf_verifier_env
*env
)
9184 if (env
->log
.level
& BPF_LOG_STATS
) {
9185 verbose(env
, "verification time %lld usec\n",
9186 div_u64(env
->verification_time
, 1000));
9187 verbose(env
, "stack depth ");
9188 for (i
= 0; i
< env
->subprog_cnt
; i
++) {
9189 u32 depth
= env
->subprog_info
[i
].stack_depth
;
9191 verbose(env
, "%d", depth
);
9192 if (i
+ 1 < env
->subprog_cnt
)
9197 verbose(env
, "processed %d insns (limit %d) max_states_per_insn %d "
9198 "total_states %d peak_states %d mark_read %d\n",
9199 env
->insn_processed
, BPF_COMPLEXITY_LIMIT_INSNS
,
9200 env
->max_states_per_insn
, env
->total_states
,
9201 env
->peak_states
, env
->longest_mark_read_walk
);
9204 int bpf_check(struct bpf_prog
**prog
, union bpf_attr
*attr
,
9205 union bpf_attr __user
*uattr
)
9207 u64 start_time
= ktime_get_ns();
9208 struct bpf_verifier_env
*env
;
9209 struct bpf_verifier_log
*log
;
9210 int i
, len
, ret
= -EINVAL
;
9213 /* no program is valid */
9214 if (ARRAY_SIZE(bpf_verifier_ops
) == 0)
9217 /* 'struct bpf_verifier_env' can be global, but since it's not small,
9218 * allocate/free it every time bpf_check() is called
9220 env
= kzalloc(sizeof(struct bpf_verifier_env
), GFP_KERNEL
);
9226 env
->insn_aux_data
=
9227 vzalloc(array_size(sizeof(struct bpf_insn_aux_data
), len
));
9229 if (!env
->insn_aux_data
)
9231 for (i
= 0; i
< len
; i
++)
9232 env
->insn_aux_data
[i
].orig_idx
= i
;
9234 env
->ops
= bpf_verifier_ops
[env
->prog
->type
];
9235 is_priv
= capable(CAP_SYS_ADMIN
);
9237 /* grab the mutex to protect few globals used by verifier */
9239 mutex_lock(&bpf_verifier_lock
);
9241 if (attr
->log_level
|| attr
->log_buf
|| attr
->log_size
) {
9242 /* user requested verbose verifier output
9243 * and supplied buffer to store the verification trace
9245 log
->level
= attr
->log_level
;
9246 log
->ubuf
= (char __user
*) (unsigned long) attr
->log_buf
;
9247 log
->len_total
= attr
->log_size
;
9250 /* log attributes have to be sane */
9251 if (log
->len_total
< 128 || log
->len_total
> UINT_MAX
>> 2 ||
9252 !log
->level
|| !log
->ubuf
|| log
->level
& ~BPF_LOG_MASK
)
9256 env
->strict_alignment
= !!(attr
->prog_flags
& BPF_F_STRICT_ALIGNMENT
);
9257 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
))
9258 env
->strict_alignment
= true;
9259 if (attr
->prog_flags
& BPF_F_ANY_ALIGNMENT
)
9260 env
->strict_alignment
= false;
9262 env
->allow_ptr_leaks
= is_priv
;
9264 ret
= replace_map_fd_with_map_ptr(env
);
9266 goto skip_full_check
;
9268 if (bpf_prog_is_dev_bound(env
->prog
->aux
)) {
9269 ret
= bpf_prog_offload_verifier_prep(env
->prog
);
9271 goto skip_full_check
;
9274 env
->explored_states
= kvcalloc(state_htab_size(env
),
9275 sizeof(struct bpf_verifier_state_list
*),
9278 if (!env
->explored_states
)
9279 goto skip_full_check
;
9281 ret
= check_subprogs(env
);
9283 goto skip_full_check
;
9285 ret
= check_btf_info(env
, attr
, uattr
);
9287 goto skip_full_check
;
9289 ret
= check_cfg(env
);
9291 goto skip_full_check
;
9293 ret
= do_check(env
);
9294 if (env
->cur_state
) {
9295 free_verifier_state(env
->cur_state
, true);
9296 env
->cur_state
= NULL
;
9299 if (ret
== 0 && bpf_prog_is_dev_bound(env
->prog
->aux
))
9300 ret
= bpf_prog_offload_finalize(env
);
9303 while (!pop_stack(env
, NULL
, NULL
));
9307 ret
= check_max_stack_depth(env
);
9309 /* instruction rewrites happen after this point */
9312 opt_hard_wire_dead_code_branches(env
);
9314 ret
= opt_remove_dead_code(env
);
9316 ret
= opt_remove_nops(env
);
9319 sanitize_dead_code(env
);
9323 /* program is valid, convert *(u32*)(ctx + off) accesses */
9324 ret
= convert_ctx_accesses(env
);
9327 ret
= fixup_bpf_calls(env
);
9329 /* do 32-bit optimization after insn patching has done so those patched
9330 * insns could be handled correctly.
9332 if (ret
== 0 && !bpf_prog_is_dev_bound(env
->prog
->aux
)) {
9333 ret
= opt_subreg_zext_lo32_rnd_hi32(env
, attr
);
9334 env
->prog
->aux
->verifier_zext
= bpf_jit_needs_zext() ? !ret
9339 ret
= fixup_call_args(env
);
9341 env
->verification_time
= ktime_get_ns() - start_time
;
9342 print_verification_stats(env
);
9344 if (log
->level
&& bpf_verifier_log_full(log
))
9346 if (log
->level
&& !log
->ubuf
) {
9348 goto err_release_maps
;
9351 if (ret
== 0 && env
->used_map_cnt
) {
9352 /* if program passed verifier, update used_maps in bpf_prog_info */
9353 env
->prog
->aux
->used_maps
= kmalloc_array(env
->used_map_cnt
,
9354 sizeof(env
->used_maps
[0]),
9357 if (!env
->prog
->aux
->used_maps
) {
9359 goto err_release_maps
;
9362 memcpy(env
->prog
->aux
->used_maps
, env
->used_maps
,
9363 sizeof(env
->used_maps
[0]) * env
->used_map_cnt
);
9364 env
->prog
->aux
->used_map_cnt
= env
->used_map_cnt
;
9366 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
9367 * bpf_ld_imm64 instructions
9369 convert_pseudo_ld_imm64(env
);
9373 adjust_btf_func(env
);
9376 if (!env
->prog
->aux
->used_maps
)
9377 /* if we didn't copy map pointers into bpf_prog_info, release
9378 * them now. Otherwise free_used_maps() will release them.
9384 mutex_unlock(&bpf_verifier_lock
);
9385 vfree(env
->insn_aux_data
);