2 * Copyright © 2008-2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
30 #include <linux/log2.h>
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
37 /* Rough estimate of the typical request size, performing a flush,
38 * set-context and then emitting the batch.
40 #define LEGACY_REQUEST_SIZE 200
42 int __intel_ring_space(int head
, int tail
, int size
)
44 int space
= head
- tail
;
47 return space
- I915_RING_FREE_SPACE
;
50 void intel_ring_update_space(struct intel_ring
*ring
)
52 if (ring
->last_retired_head
!= -1) {
53 ring
->head
= ring
->last_retired_head
;
54 ring
->last_retired_head
= -1;
57 ring
->space
= __intel_ring_space(ring
->head
& HEAD_ADDR
,
58 ring
->tail
, ring
->size
);
61 static void __intel_engine_submit(struct intel_engine_cs
*engine
)
63 struct intel_ring
*ring
= engine
->buffer
;
65 ring
->tail
&= ring
->size
- 1;
66 engine
->write_tail(engine
, ring
->tail
);
70 gen2_render_ring_flush(struct drm_i915_gem_request
*req
,
71 u32 invalidate_domains
,
74 struct intel_ring
*ring
= req
->ring
;
79 if (((invalidate_domains
|flush_domains
) & I915_GEM_DOMAIN_RENDER
) == 0)
80 cmd
|= MI_NO_WRITE_FLUSH
;
82 if (invalidate_domains
& I915_GEM_DOMAIN_SAMPLER
)
85 ret
= intel_ring_begin(req
, 2);
89 intel_ring_emit(ring
, cmd
);
90 intel_ring_emit(ring
, MI_NOOP
);
91 intel_ring_advance(ring
);
97 gen4_render_ring_flush(struct drm_i915_gem_request
*req
,
98 u32 invalidate_domains
,
101 struct intel_ring
*ring
= req
->ring
;
108 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
109 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
110 * also flushed at 2d versus 3d pipeline switches.
114 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
115 * MI_READ_FLUSH is set, and is always flushed on 965.
117 * I915_GEM_DOMAIN_COMMAND may not exist?
119 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
120 * invalidated when MI_EXE_FLUSH is set.
122 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
123 * invalidated with every MI_FLUSH.
127 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
128 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
129 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
130 * are flushed at any MI_FLUSH.
134 if (invalidate_domains
) {
136 if (IS_G4X(req
->i915
) || IS_GEN5(req
->i915
))
137 cmd
|= MI_INVALIDATE_ISP
;
140 ret
= intel_ring_begin(req
, 2);
144 intel_ring_emit(ring
, cmd
);
145 intel_ring_emit(ring
, MI_NOOP
);
146 intel_ring_advance(ring
);
152 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
153 * implementing two workarounds on gen6. From section 1.4.7.1
154 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
156 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
157 * produced by non-pipelined state commands), software needs to first
158 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
161 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
162 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
164 * And the workaround for these two requires this workaround first:
166 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
167 * BEFORE the pipe-control with a post-sync op and no write-cache
170 * And this last workaround is tricky because of the requirements on
171 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
174 * "1 of the following must also be set:
175 * - Render Target Cache Flush Enable ([12] of DW1)
176 * - Depth Cache Flush Enable ([0] of DW1)
177 * - Stall at Pixel Scoreboard ([1] of DW1)
178 * - Depth Stall ([13] of DW1)
179 * - Post-Sync Operation ([13] of DW1)
180 * - Notify Enable ([8] of DW1)"
182 * The cache flushes require the workaround flush that triggered this
183 * one, so we can't use it. Depth stall would trigger the same.
184 * Post-sync nonzero is what triggered this second workaround, so we
185 * can't use that one either. Notify enable is IRQs, which aren't
186 * really our business. That leaves only stall at scoreboard.
189 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request
*req
)
191 struct intel_ring
*ring
= req
->ring
;
193 req
->engine
->scratch
.gtt_offset
+ 2 * CACHELINE_BYTES
;
196 ret
= intel_ring_begin(req
, 6);
200 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(5));
201 intel_ring_emit(ring
, PIPE_CONTROL_CS_STALL
|
202 PIPE_CONTROL_STALL_AT_SCOREBOARD
);
203 intel_ring_emit(ring
, scratch_addr
| PIPE_CONTROL_GLOBAL_GTT
);
204 intel_ring_emit(ring
, 0); /* low dword */
205 intel_ring_emit(ring
, 0); /* high dword */
206 intel_ring_emit(ring
, MI_NOOP
);
207 intel_ring_advance(ring
);
209 ret
= intel_ring_begin(req
, 6);
213 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(5));
214 intel_ring_emit(ring
, PIPE_CONTROL_QW_WRITE
);
215 intel_ring_emit(ring
, scratch_addr
| PIPE_CONTROL_GLOBAL_GTT
);
216 intel_ring_emit(ring
, 0);
217 intel_ring_emit(ring
, 0);
218 intel_ring_emit(ring
, MI_NOOP
);
219 intel_ring_advance(ring
);
225 gen6_render_ring_flush(struct drm_i915_gem_request
*req
,
226 u32 invalidate_domains
, u32 flush_domains
)
228 struct intel_ring
*ring
= req
->ring
;
230 req
->engine
->scratch
.gtt_offset
+ 2 * CACHELINE_BYTES
;
234 /* Force SNB workarounds for PIPE_CONTROL flushes */
235 ret
= intel_emit_post_sync_nonzero_flush(req
);
239 /* Just flush everything. Experiments have shown that reducing the
240 * number of bits based on the write domains has little performance
244 flags
|= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH
;
245 flags
|= PIPE_CONTROL_DEPTH_CACHE_FLUSH
;
247 * Ensure that any following seqno writes only happen
248 * when the render cache is indeed flushed.
250 flags
|= PIPE_CONTROL_CS_STALL
;
252 if (invalidate_domains
) {
253 flags
|= PIPE_CONTROL_TLB_INVALIDATE
;
254 flags
|= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE
;
255 flags
|= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE
;
256 flags
|= PIPE_CONTROL_VF_CACHE_INVALIDATE
;
257 flags
|= PIPE_CONTROL_CONST_CACHE_INVALIDATE
;
258 flags
|= PIPE_CONTROL_STATE_CACHE_INVALIDATE
;
260 * TLB invalidate requires a post-sync write.
262 flags
|= PIPE_CONTROL_QW_WRITE
| PIPE_CONTROL_CS_STALL
;
265 ret
= intel_ring_begin(req
, 4);
269 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(4));
270 intel_ring_emit(ring
, flags
);
271 intel_ring_emit(ring
, scratch_addr
| PIPE_CONTROL_GLOBAL_GTT
);
272 intel_ring_emit(ring
, 0);
273 intel_ring_advance(ring
);
279 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request
*req
)
281 struct intel_ring
*ring
= req
->ring
;
284 ret
= intel_ring_begin(req
, 4);
288 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(4));
289 intel_ring_emit(ring
,
290 PIPE_CONTROL_CS_STALL
|
291 PIPE_CONTROL_STALL_AT_SCOREBOARD
);
292 intel_ring_emit(ring
, 0);
293 intel_ring_emit(ring
, 0);
294 intel_ring_advance(ring
);
300 gen7_render_ring_flush(struct drm_i915_gem_request
*req
,
301 u32 invalidate_domains
, u32 flush_domains
)
303 struct intel_ring
*ring
= req
->ring
;
305 req
->engine
->scratch
.gtt_offset
+ 2 * CACHELINE_BYTES
;
310 * Ensure that any following seqno writes only happen when the render
311 * cache is indeed flushed.
313 * Workaround: 4th PIPE_CONTROL command (except the ones with only
314 * read-cache invalidate bits set) must have the CS_STALL bit set. We
315 * don't try to be clever and just set it unconditionally.
317 flags
|= PIPE_CONTROL_CS_STALL
;
319 /* Just flush everything. Experiments have shown that reducing the
320 * number of bits based on the write domains has little performance
324 flags
|= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH
;
325 flags
|= PIPE_CONTROL_DEPTH_CACHE_FLUSH
;
326 flags
|= PIPE_CONTROL_DC_FLUSH_ENABLE
;
327 flags
|= PIPE_CONTROL_FLUSH_ENABLE
;
329 if (invalidate_domains
) {
330 flags
|= PIPE_CONTROL_TLB_INVALIDATE
;
331 flags
|= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE
;
332 flags
|= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE
;
333 flags
|= PIPE_CONTROL_VF_CACHE_INVALIDATE
;
334 flags
|= PIPE_CONTROL_CONST_CACHE_INVALIDATE
;
335 flags
|= PIPE_CONTROL_STATE_CACHE_INVALIDATE
;
336 flags
|= PIPE_CONTROL_MEDIA_STATE_CLEAR
;
338 * TLB invalidate requires a post-sync write.
340 flags
|= PIPE_CONTROL_QW_WRITE
;
341 flags
|= PIPE_CONTROL_GLOBAL_GTT_IVB
;
343 flags
|= PIPE_CONTROL_STALL_AT_SCOREBOARD
;
345 /* Workaround: we must issue a pipe_control with CS-stall bit
346 * set before a pipe_control command that has the state cache
347 * invalidate bit set. */
348 gen7_render_ring_cs_stall_wa(req
);
351 ret
= intel_ring_begin(req
, 4);
355 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(4));
356 intel_ring_emit(ring
, flags
);
357 intel_ring_emit(ring
, scratch_addr
);
358 intel_ring_emit(ring
, 0);
359 intel_ring_advance(ring
);
365 gen8_emit_pipe_control(struct drm_i915_gem_request
*req
,
366 u32 flags
, u32 scratch_addr
)
368 struct intel_ring
*ring
= req
->ring
;
371 ret
= intel_ring_begin(req
, 6);
375 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(6));
376 intel_ring_emit(ring
, flags
);
377 intel_ring_emit(ring
, scratch_addr
);
378 intel_ring_emit(ring
, 0);
379 intel_ring_emit(ring
, 0);
380 intel_ring_emit(ring
, 0);
381 intel_ring_advance(ring
);
387 gen8_render_ring_flush(struct drm_i915_gem_request
*req
,
388 u32 invalidate_domains
, u32 flush_domains
)
390 u32 scratch_addr
= req
->engine
->scratch
.gtt_offset
+ 2 * CACHELINE_BYTES
;
394 flags
|= PIPE_CONTROL_CS_STALL
;
397 flags
|= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH
;
398 flags
|= PIPE_CONTROL_DEPTH_CACHE_FLUSH
;
399 flags
|= PIPE_CONTROL_DC_FLUSH_ENABLE
;
400 flags
|= PIPE_CONTROL_FLUSH_ENABLE
;
402 if (invalidate_domains
) {
403 flags
|= PIPE_CONTROL_TLB_INVALIDATE
;
404 flags
|= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE
;
405 flags
|= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE
;
406 flags
|= PIPE_CONTROL_VF_CACHE_INVALIDATE
;
407 flags
|= PIPE_CONTROL_CONST_CACHE_INVALIDATE
;
408 flags
|= PIPE_CONTROL_STATE_CACHE_INVALIDATE
;
409 flags
|= PIPE_CONTROL_QW_WRITE
;
410 flags
|= PIPE_CONTROL_GLOBAL_GTT_IVB
;
412 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
413 ret
= gen8_emit_pipe_control(req
,
414 PIPE_CONTROL_CS_STALL
|
415 PIPE_CONTROL_STALL_AT_SCOREBOARD
,
421 return gen8_emit_pipe_control(req
, flags
, scratch_addr
);
424 static void ring_write_tail(struct intel_engine_cs
*engine
,
427 struct drm_i915_private
*dev_priv
= engine
->i915
;
428 I915_WRITE_TAIL(engine
, value
);
431 u64
intel_engine_get_active_head(struct intel_engine_cs
*engine
)
433 struct drm_i915_private
*dev_priv
= engine
->i915
;
436 if (INTEL_GEN(dev_priv
) >= 8)
437 acthd
= I915_READ64_2x32(RING_ACTHD(engine
->mmio_base
),
438 RING_ACTHD_UDW(engine
->mmio_base
));
439 else if (INTEL_GEN(dev_priv
) >= 4)
440 acthd
= I915_READ(RING_ACTHD(engine
->mmio_base
));
442 acthd
= I915_READ(ACTHD
);
447 static void ring_setup_phys_status_page(struct intel_engine_cs
*engine
)
449 struct drm_i915_private
*dev_priv
= engine
->i915
;
452 addr
= dev_priv
->status_page_dmah
->busaddr
;
453 if (INTEL_GEN(dev_priv
) >= 4)
454 addr
|= (dev_priv
->status_page_dmah
->busaddr
>> 28) & 0xf0;
455 I915_WRITE(HWS_PGA
, addr
);
458 static void intel_ring_setup_status_page(struct intel_engine_cs
*engine
)
460 struct drm_i915_private
*dev_priv
= engine
->i915
;
463 /* The ring status page addresses are no longer next to the rest of
464 * the ring registers as of gen7.
466 if (IS_GEN7(dev_priv
)) {
467 switch (engine
->id
) {
469 mmio
= RENDER_HWS_PGA_GEN7
;
472 mmio
= BLT_HWS_PGA_GEN7
;
475 * VCS2 actually doesn't exist on Gen7. Only shut up
476 * gcc switch check warning
480 mmio
= BSD_HWS_PGA_GEN7
;
483 mmio
= VEBOX_HWS_PGA_GEN7
;
486 } else if (IS_GEN6(dev_priv
)) {
487 mmio
= RING_HWS_PGA_GEN6(engine
->mmio_base
);
489 /* XXX: gen8 returns to sanity */
490 mmio
= RING_HWS_PGA(engine
->mmio_base
);
493 I915_WRITE(mmio
, (u32
)engine
->status_page
.gfx_addr
);
497 * Flush the TLB for this page
499 * FIXME: These two bits have disappeared on gen8, so a question
500 * arises: do we still need this and if so how should we go about
501 * invalidating the TLB?
503 if (IS_GEN(dev_priv
, 6, 7)) {
504 i915_reg_t reg
= RING_INSTPM(engine
->mmio_base
);
506 /* ring should be idle before issuing a sync flush*/
507 WARN_ON((I915_READ_MODE(engine
) & MODE_IDLE
) == 0);
510 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE
|
512 if (intel_wait_for_register(dev_priv
,
513 reg
, INSTPM_SYNC_FLUSH
, 0,
515 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
520 static bool stop_ring(struct intel_engine_cs
*engine
)
522 struct drm_i915_private
*dev_priv
= engine
->i915
;
524 if (!IS_GEN2(dev_priv
)) {
525 I915_WRITE_MODE(engine
, _MASKED_BIT_ENABLE(STOP_RING
));
526 if (intel_wait_for_register(dev_priv
,
527 RING_MI_MODE(engine
->mmio_base
),
531 DRM_ERROR("%s : timed out trying to stop ring\n",
533 /* Sometimes we observe that the idle flag is not
534 * set even though the ring is empty. So double
535 * check before giving up.
537 if (I915_READ_HEAD(engine
) != I915_READ_TAIL(engine
))
542 I915_WRITE_CTL(engine
, 0);
543 I915_WRITE_HEAD(engine
, 0);
544 engine
->write_tail(engine
, 0);
546 if (!IS_GEN2(dev_priv
)) {
547 (void)I915_READ_CTL(engine
);
548 I915_WRITE_MODE(engine
, _MASKED_BIT_DISABLE(STOP_RING
));
551 return (I915_READ_HEAD(engine
) & HEAD_ADDR
) == 0;
554 static int init_ring_common(struct intel_engine_cs
*engine
)
556 struct drm_i915_private
*dev_priv
= engine
->i915
;
557 struct intel_ring
*ring
= engine
->buffer
;
558 struct drm_i915_gem_object
*obj
= ring
->obj
;
561 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
563 if (!stop_ring(engine
)) {
564 /* G45 ring initialization often fails to reset head to zero */
565 DRM_DEBUG_KMS("%s head not reset to zero "
566 "ctl %08x head %08x tail %08x start %08x\n",
568 I915_READ_CTL(engine
),
569 I915_READ_HEAD(engine
),
570 I915_READ_TAIL(engine
),
571 I915_READ_START(engine
));
573 if (!stop_ring(engine
)) {
574 DRM_ERROR("failed to set %s head to zero "
575 "ctl %08x head %08x tail %08x start %08x\n",
577 I915_READ_CTL(engine
),
578 I915_READ_HEAD(engine
),
579 I915_READ_TAIL(engine
),
580 I915_READ_START(engine
));
586 if (I915_NEED_GFX_HWS(dev_priv
))
587 intel_ring_setup_status_page(engine
);
589 ring_setup_phys_status_page(engine
);
591 /* Enforce ordering by reading HEAD register back */
592 I915_READ_HEAD(engine
);
594 /* Initialize the ring. This must happen _after_ we've cleared the ring
595 * registers with the above sequence (the readback of the HEAD registers
596 * also enforces ordering), otherwise the hw might lose the new ring
597 * register values. */
598 I915_WRITE_START(engine
, i915_gem_obj_ggtt_offset(obj
));
600 /* WaClearRingBufHeadRegAtInit:ctg,elk */
601 if (I915_READ_HEAD(engine
))
602 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
603 engine
->name
, I915_READ_HEAD(engine
));
604 I915_WRITE_HEAD(engine
, 0);
605 (void)I915_READ_HEAD(engine
);
607 I915_WRITE_CTL(engine
,
608 ((ring
->size
- PAGE_SIZE
) & RING_NR_PAGES
)
611 /* If the head is still not zero, the ring is dead */
612 if (wait_for((I915_READ_CTL(engine
) & RING_VALID
) != 0 &&
613 I915_READ_START(engine
) == i915_gem_obj_ggtt_offset(obj
) &&
614 (I915_READ_HEAD(engine
) & HEAD_ADDR
) == 0, 50)) {
615 DRM_ERROR("%s initialization failed "
616 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
618 I915_READ_CTL(engine
),
619 I915_READ_CTL(engine
) & RING_VALID
,
620 I915_READ_HEAD(engine
), I915_READ_TAIL(engine
),
621 I915_READ_START(engine
),
622 (unsigned long)i915_gem_obj_ggtt_offset(obj
));
627 ring
->last_retired_head
= -1;
628 ring
->head
= I915_READ_HEAD(engine
);
629 ring
->tail
= I915_READ_TAIL(engine
) & TAIL_ADDR
;
630 intel_ring_update_space(ring
);
632 intel_engine_init_hangcheck(engine
);
635 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
640 void intel_fini_pipe_control(struct intel_engine_cs
*engine
)
642 if (engine
->scratch
.obj
== NULL
)
645 i915_gem_object_ggtt_unpin(engine
->scratch
.obj
);
646 i915_gem_object_put(engine
->scratch
.obj
);
647 engine
->scratch
.obj
= NULL
;
650 int intel_init_pipe_control(struct intel_engine_cs
*engine
, int size
)
652 struct drm_i915_gem_object
*obj
;
655 WARN_ON(engine
->scratch
.obj
);
657 obj
= i915_gem_object_create_stolen(&engine
->i915
->drm
, size
);
659 obj
= i915_gem_object_create(&engine
->i915
->drm
, size
);
661 DRM_ERROR("Failed to allocate scratch page\n");
666 ret
= i915_gem_obj_ggtt_pin(obj
, 4096, PIN_HIGH
);
670 engine
->scratch
.obj
= obj
;
671 engine
->scratch
.gtt_offset
= i915_gem_obj_ggtt_offset(obj
);
672 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
673 engine
->name
, engine
->scratch
.gtt_offset
);
677 i915_gem_object_put(engine
->scratch
.obj
);
682 static int intel_ring_workarounds_emit(struct drm_i915_gem_request
*req
)
684 struct intel_ring
*ring
= req
->ring
;
685 struct i915_workarounds
*w
= &req
->i915
->workarounds
;
691 req
->engine
->gpu_caches_dirty
= true;
692 ret
= intel_engine_flush_all_caches(req
);
696 ret
= intel_ring_begin(req
, (w
->count
* 2 + 2));
700 intel_ring_emit(ring
, MI_LOAD_REGISTER_IMM(w
->count
));
701 for (i
= 0; i
< w
->count
; i
++) {
702 intel_ring_emit_reg(ring
, w
->reg
[i
].addr
);
703 intel_ring_emit(ring
, w
->reg
[i
].value
);
705 intel_ring_emit(ring
, MI_NOOP
);
707 intel_ring_advance(ring
);
709 req
->engine
->gpu_caches_dirty
= true;
710 ret
= intel_engine_flush_all_caches(req
);
714 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w
->count
);
719 static int intel_rcs_ctx_init(struct drm_i915_gem_request
*req
)
723 ret
= intel_ring_workarounds_emit(req
);
727 ret
= i915_gem_render_state_init(req
);
734 static int wa_add(struct drm_i915_private
*dev_priv
,
736 const u32 mask
, const u32 val
)
738 const u32 idx
= dev_priv
->workarounds
.count
;
740 if (WARN_ON(idx
>= I915_MAX_WA_REGS
))
743 dev_priv
->workarounds
.reg
[idx
].addr
= addr
;
744 dev_priv
->workarounds
.reg
[idx
].value
= val
;
745 dev_priv
->workarounds
.reg
[idx
].mask
= mask
;
747 dev_priv
->workarounds
.count
++;
752 #define WA_REG(addr, mask, val) do { \
753 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
758 #define WA_SET_BIT_MASKED(addr, mask) \
759 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
761 #define WA_CLR_BIT_MASKED(addr, mask) \
762 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
764 #define WA_SET_FIELD_MASKED(addr, mask, value) \
765 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
767 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
768 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
770 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
772 static int wa_ring_whitelist_reg(struct intel_engine_cs
*engine
,
775 struct drm_i915_private
*dev_priv
= engine
->i915
;
776 struct i915_workarounds
*wa
= &dev_priv
->workarounds
;
777 const uint32_t index
= wa
->hw_whitelist_count
[engine
->id
];
779 if (WARN_ON(index
>= RING_MAX_NONPRIV_SLOTS
))
782 WA_WRITE(RING_FORCE_TO_NONPRIV(engine
->mmio_base
, index
),
783 i915_mmio_reg_offset(reg
));
784 wa
->hw_whitelist_count
[engine
->id
]++;
789 static int gen8_init_workarounds(struct intel_engine_cs
*engine
)
791 struct drm_i915_private
*dev_priv
= engine
->i915
;
793 WA_SET_BIT_MASKED(INSTPM
, INSTPM_FORCE_ORDERING
);
795 /* WaDisableAsyncFlipPerfMode:bdw,chv */
796 WA_SET_BIT_MASKED(MI_MODE
, ASYNC_FLIP_PERF_DISABLE
);
798 /* WaDisablePartialInstShootdown:bdw,chv */
799 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN
,
800 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE
);
802 /* Use Force Non-Coherent whenever executing a 3D context. This is a
803 * workaround for for a possible hang in the unlikely event a TLB
804 * invalidation occurs during a PSD flush.
806 /* WaForceEnableNonCoherent:bdw,chv */
807 /* WaHdcDisableFetchWhenMasked:bdw,chv */
808 WA_SET_BIT_MASKED(HDC_CHICKEN0
,
809 HDC_DONOT_FETCH_MEM_WHEN_MASKED
|
810 HDC_FORCE_NON_COHERENT
);
812 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
813 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
814 * polygons in the same 8x4 pixel/sample area to be processed without
815 * stalling waiting for the earlier ones to write to Hierarchical Z
818 * This optimization is off by default for BDW and CHV; turn it on.
820 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7
, HIZ_RAW_STALL_OPT_DISABLE
);
822 /* Wa4x4STCOptimizationDisable:bdw,chv */
823 WA_SET_BIT_MASKED(CACHE_MODE_1
, GEN8_4x4_STC_OPTIMIZATION_DISABLE
);
826 * BSpec recommends 8x4 when MSAA is used,
827 * however in practice 16x4 seems fastest.
829 * Note that PS/WM thread counts depend on the WIZ hashing
830 * disable bit, which we don't touch here, but it's good
831 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
833 WA_SET_FIELD_MASKED(GEN7_GT_MODE
,
834 GEN6_WIZ_HASHING_MASK
,
835 GEN6_WIZ_HASHING_16x4
);
840 static int bdw_init_workarounds(struct intel_engine_cs
*engine
)
842 struct drm_i915_private
*dev_priv
= engine
->i915
;
845 ret
= gen8_init_workarounds(engine
);
849 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
850 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN
, STALL_DOP_GATING_DISABLE
);
852 /* WaDisableDopClockGating:bdw */
853 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2
,
854 DOP_CLOCK_GATING_DISABLE
);
856 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3
,
857 GEN8_SAMPLER_POWER_BYPASS_DIS
);
859 WA_SET_BIT_MASKED(HDC_CHICKEN0
,
860 /* WaForceContextSaveRestoreNonCoherent:bdw */
861 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT
|
862 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
863 (IS_BDW_GT3(dev_priv
) ? HDC_FENCE_DEST_SLM_DISABLE
: 0));
868 static int chv_init_workarounds(struct intel_engine_cs
*engine
)
870 struct drm_i915_private
*dev_priv
= engine
->i915
;
873 ret
= gen8_init_workarounds(engine
);
877 /* WaDisableThreadStallDopClockGating:chv */
878 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN
, STALL_DOP_GATING_DISABLE
);
880 /* Improve HiZ throughput on CHV. */
881 WA_SET_BIT_MASKED(HIZ_CHICKEN
, CHV_HZ_8X8_MODE_IN_1X
);
886 static int gen9_init_workarounds(struct intel_engine_cs
*engine
)
888 struct drm_i915_private
*dev_priv
= engine
->i915
;
891 /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
892 I915_WRITE(GEN9_CSFE_CHICKEN1_RCS
, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE
));
894 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
895 I915_WRITE(BDW_SCRATCH1
, I915_READ(BDW_SCRATCH1
) |
896 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE
);
898 /* WaDisableKillLogic:bxt,skl,kbl */
899 I915_WRITE(GAM_ECOCHK
, I915_READ(GAM_ECOCHK
) |
902 /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
903 /* WaDisablePartialInstShootdown:skl,bxt,kbl */
904 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN
,
905 FLOW_CONTROL_ENABLE
|
906 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE
);
908 /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
909 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3
,
910 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC
);
912 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
913 if (IS_SKL_REVID(dev_priv
, 0, SKL_REVID_B0
) ||
914 IS_BXT_REVID(dev_priv
, 0, BXT_REVID_A1
))
915 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5
,
916 GEN9_DG_MIRROR_FIX_ENABLE
);
918 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
919 if (IS_SKL_REVID(dev_priv
, 0, SKL_REVID_B0
) ||
920 IS_BXT_REVID(dev_priv
, 0, BXT_REVID_A1
)) {
921 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1
,
922 GEN9_RHWO_OPTIMIZATION_DISABLE
);
924 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
925 * but we do that in per ctx batchbuffer as there is an issue
926 * with this register not getting restored on ctx restore
930 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
931 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
932 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7
,
933 GEN9_ENABLE_YV12_BUGFIX
|
934 GEN9_ENABLE_GPGPU_PREEMPTION
);
936 /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
937 /* WaDisablePartialResolveInVc:skl,bxt,kbl */
938 WA_SET_BIT_MASKED(CACHE_MODE_1
, (GEN8_4x4_STC_OPTIMIZATION_DISABLE
|
939 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE
));
941 /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
942 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5
,
943 GEN9_CCS_TLB_PREFETCH_ENABLE
);
945 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
946 if (IS_SKL_REVID(dev_priv
, SKL_REVID_C0
, SKL_REVID_C0
) ||
947 IS_BXT_REVID(dev_priv
, 0, BXT_REVID_A1
))
948 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0
,
949 PIXEL_MASK_CAMMING_DISABLE
);
951 /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
952 WA_SET_BIT_MASKED(HDC_CHICKEN0
,
953 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT
|
954 HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE
);
956 /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
957 * both tied to WaForceContextSaveRestoreNonCoherent
958 * in some hsds for skl. We keep the tie for all gen9. The
959 * documentation is a bit hazy and so we want to get common behaviour,
960 * even though there is no clear evidence we would need both on kbl/bxt.
961 * This area has been source of system hangs so we play it safe
962 * and mimic the skl regardless of what bspec says.
964 * Use Force Non-Coherent whenever executing a 3D context. This
965 * is a workaround for a possible hang in the unlikely event
966 * a TLB invalidation occurs during a PSD flush.
969 /* WaForceEnableNonCoherent:skl,bxt,kbl */
970 WA_SET_BIT_MASKED(HDC_CHICKEN0
,
971 HDC_FORCE_NON_COHERENT
);
973 /* WaDisableHDCInvalidation:skl,bxt,kbl */
974 I915_WRITE(GAM_ECOCHK
, I915_READ(GAM_ECOCHK
) |
975 BDW_DISABLE_HDC_INVALIDATION
);
977 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
978 if (IS_SKYLAKE(dev_priv
) ||
979 IS_KABYLAKE(dev_priv
) ||
980 IS_BXT_REVID(dev_priv
, 0, BXT_REVID_B0
))
981 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3
,
982 GEN8_SAMPLER_POWER_BYPASS_DIS
);
984 /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
985 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2
, GEN8_ST_PO_DISABLE
);
987 /* WaOCLCoherentLineFlush:skl,bxt,kbl */
988 I915_WRITE(GEN8_L3SQCREG4
, (I915_READ(GEN8_L3SQCREG4
) |
989 GEN8_LQSC_FLUSH_COHERENT_LINES
));
991 /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
992 ret
= wa_ring_whitelist_reg(engine
, GEN9_CTX_PREEMPT_REG
);
996 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
997 ret
= wa_ring_whitelist_reg(engine
, GEN8_CS_CHICKEN1
);
1001 /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
1002 ret
= wa_ring_whitelist_reg(engine
, GEN8_HDC_CHICKEN1
);
1009 static int skl_tune_iz_hashing(struct intel_engine_cs
*engine
)
1011 struct drm_i915_private
*dev_priv
= engine
->i915
;
1012 u8 vals
[3] = { 0, 0, 0 };
1015 for (i
= 0; i
< 3; i
++) {
1019 * Only consider slices where one, and only one, subslice has 7
1022 if (!is_power_of_2(dev_priv
->info
.subslice_7eu
[i
]))
1026 * subslice_7eu[i] != 0 (because of the check above) and
1027 * ss_max == 4 (maximum number of subslices possible per slice)
1031 ss
= ffs(dev_priv
->info
.subslice_7eu
[i
]) - 1;
1035 if (vals
[0] == 0 && vals
[1] == 0 && vals
[2] == 0)
1038 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1039 WA_SET_FIELD_MASKED(GEN7_GT_MODE
,
1040 GEN9_IZ_HASHING_MASK(2) |
1041 GEN9_IZ_HASHING_MASK(1) |
1042 GEN9_IZ_HASHING_MASK(0),
1043 GEN9_IZ_HASHING(2, vals
[2]) |
1044 GEN9_IZ_HASHING(1, vals
[1]) |
1045 GEN9_IZ_HASHING(0, vals
[0]));
1050 static int skl_init_workarounds(struct intel_engine_cs
*engine
)
1052 struct drm_i915_private
*dev_priv
= engine
->i915
;
1055 ret
= gen9_init_workarounds(engine
);
1060 * Actual WA is to disable percontext preemption granularity control
1061 * until D0 which is the default case so this is equivalent to
1062 * !WaDisablePerCtxtPreemptionGranularityControl:skl
1064 if (IS_SKL_REVID(dev_priv
, SKL_REVID_E0
, REVID_FOREVER
)) {
1065 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1
,
1066 _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL
));
1069 if (IS_SKL_REVID(dev_priv
, 0, SKL_REVID_E0
)) {
1070 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1071 I915_WRITE(FF_SLICE_CS_CHICKEN2
,
1072 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE
));
1075 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1076 * involving this register should also be added to WA batch as required.
1078 if (IS_SKL_REVID(dev_priv
, 0, SKL_REVID_E0
))
1079 /* WaDisableLSQCROPERFforOCL:skl */
1080 I915_WRITE(GEN8_L3SQCREG4
, I915_READ(GEN8_L3SQCREG4
) |
1081 GEN8_LQSC_RO_PERF_DIS
);
1083 /* WaEnableGapsTsvCreditFix:skl */
1084 if (IS_SKL_REVID(dev_priv
, SKL_REVID_C0
, REVID_FOREVER
)) {
1085 I915_WRITE(GEN8_GARBCNTL
, (I915_READ(GEN8_GARBCNTL
) |
1086 GEN9_GAPS_TSV_CREDIT_DISABLE
));
1089 /* WaDisablePowerCompilerClockGating:skl */
1090 if (IS_SKL_REVID(dev_priv
, SKL_REVID_B0
, SKL_REVID_B0
))
1091 WA_SET_BIT_MASKED(HIZ_CHICKEN
,
1092 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE
);
1094 /* WaBarrierPerformanceFixDisable:skl */
1095 if (IS_SKL_REVID(dev_priv
, SKL_REVID_C0
, SKL_REVID_D0
))
1096 WA_SET_BIT_MASKED(HDC_CHICKEN0
,
1097 HDC_FENCE_DEST_SLM_DISABLE
|
1098 HDC_BARRIER_PERFORMANCE_DISABLE
);
1100 /* WaDisableSbeCacheDispatchPortSharing:skl */
1101 if (IS_SKL_REVID(dev_priv
, 0, SKL_REVID_F0
))
1103 GEN7_HALF_SLICE_CHICKEN1
,
1104 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE
);
1106 /* WaDisableGafsUnitClkGating:skl */
1107 WA_SET_BIT(GEN7_UCGCTL4
, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE
);
1109 /* WaInPlaceDecompressionHang:skl */
1110 if (IS_SKL_REVID(dev_priv
, SKL_REVID_H0
, REVID_FOREVER
))
1111 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA
,
1112 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS
);
1114 /* WaDisableLSQCROPERFforOCL:skl */
1115 ret
= wa_ring_whitelist_reg(engine
, GEN8_L3SQCREG4
);
1119 return skl_tune_iz_hashing(engine
);
1122 static int bxt_init_workarounds(struct intel_engine_cs
*engine
)
1124 struct drm_i915_private
*dev_priv
= engine
->i915
;
1127 ret
= gen9_init_workarounds(engine
);
1131 /* WaStoreMultiplePTEenable:bxt */
1132 /* This is a requirement according to Hardware specification */
1133 if (IS_BXT_REVID(dev_priv
, 0, BXT_REVID_A1
))
1134 I915_WRITE(TILECTL
, I915_READ(TILECTL
) | TILECTL_TLBPF
);
1136 /* WaSetClckGatingDisableMedia:bxt */
1137 if (IS_BXT_REVID(dev_priv
, 0, BXT_REVID_A1
)) {
1138 I915_WRITE(GEN7_MISCCPCTL
, (I915_READ(GEN7_MISCCPCTL
) &
1139 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE
));
1142 /* WaDisableThreadStallDopClockGating:bxt */
1143 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN
,
1144 STALL_DOP_GATING_DISABLE
);
1146 /* WaDisablePooledEuLoadBalancingFix:bxt */
1147 if (IS_BXT_REVID(dev_priv
, BXT_REVID_B0
, REVID_FOREVER
)) {
1148 WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2
,
1149 GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE
);
1152 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1153 if (IS_BXT_REVID(dev_priv
, 0, BXT_REVID_B0
)) {
1155 GEN7_HALF_SLICE_CHICKEN1
,
1156 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE
);
1159 /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1160 /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1161 /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1162 /* WaDisableLSQCROPERFforOCL:bxt */
1163 if (IS_BXT_REVID(dev_priv
, 0, BXT_REVID_A1
)) {
1164 ret
= wa_ring_whitelist_reg(engine
, GEN9_CS_DEBUG_MODE1
);
1168 ret
= wa_ring_whitelist_reg(engine
, GEN8_L3SQCREG4
);
1173 /* WaProgramL3SqcReg1DefaultForPerf:bxt */
1174 if (IS_BXT_REVID(dev_priv
, BXT_REVID_B0
, REVID_FOREVER
))
1175 I915_WRITE(GEN8_L3SQCREG1
, L3_GENERAL_PRIO_CREDITS(62) |
1176 L3_HIGH_PRIO_CREDITS(2));
1178 /* WaInsertDummyPushConstPs:bxt */
1179 if (IS_BXT_REVID(dev_priv
, 0, BXT_REVID_B0
))
1180 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2
,
1181 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION
);
1183 /* WaInPlaceDecompressionHang:bxt */
1184 if (IS_BXT_REVID(dev_priv
, BXT_REVID_C0
, REVID_FOREVER
))
1185 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA
,
1186 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS
);
1191 static int kbl_init_workarounds(struct intel_engine_cs
*engine
)
1193 struct drm_i915_private
*dev_priv
= engine
->i915
;
1196 ret
= gen9_init_workarounds(engine
);
1200 /* WaEnableGapsTsvCreditFix:kbl */
1201 I915_WRITE(GEN8_GARBCNTL
, (I915_READ(GEN8_GARBCNTL
) |
1202 GEN9_GAPS_TSV_CREDIT_DISABLE
));
1204 /* WaDisableDynamicCreditSharing:kbl */
1205 if (IS_KBL_REVID(dev_priv
, 0, KBL_REVID_B0
))
1206 WA_SET_BIT(GAMT_CHKN_BIT_REG
,
1207 GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING
);
1209 /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1210 if (IS_KBL_REVID(dev_priv
, KBL_REVID_A0
, KBL_REVID_A0
))
1211 WA_SET_BIT_MASKED(HDC_CHICKEN0
,
1212 HDC_FENCE_DEST_SLM_DISABLE
);
1214 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1215 * involving this register should also be added to WA batch as required.
1217 if (IS_KBL_REVID(dev_priv
, 0, KBL_REVID_E0
))
1218 /* WaDisableLSQCROPERFforOCL:kbl */
1219 I915_WRITE(GEN8_L3SQCREG4
, I915_READ(GEN8_L3SQCREG4
) |
1220 GEN8_LQSC_RO_PERF_DIS
);
1222 /* WaInsertDummyPushConstPs:kbl */
1223 if (IS_KBL_REVID(dev_priv
, 0, KBL_REVID_B0
))
1224 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2
,
1225 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION
);
1227 /* WaDisableGafsUnitClkGating:kbl */
1228 WA_SET_BIT(GEN7_UCGCTL4
, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE
);
1230 /* WaDisableSbeCacheDispatchPortSharing:kbl */
1232 GEN7_HALF_SLICE_CHICKEN1
,
1233 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE
);
1235 /* WaInPlaceDecompressionHang:kbl */
1236 WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA
,
1237 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS
);
1239 /* WaDisableLSQCROPERFforOCL:kbl */
1240 ret
= wa_ring_whitelist_reg(engine
, GEN8_L3SQCREG4
);
1247 int init_workarounds_ring(struct intel_engine_cs
*engine
)
1249 struct drm_i915_private
*dev_priv
= engine
->i915
;
1251 WARN_ON(engine
->id
!= RCS
);
1253 dev_priv
->workarounds
.count
= 0;
1254 dev_priv
->workarounds
.hw_whitelist_count
[RCS
] = 0;
1256 if (IS_BROADWELL(dev_priv
))
1257 return bdw_init_workarounds(engine
);
1259 if (IS_CHERRYVIEW(dev_priv
))
1260 return chv_init_workarounds(engine
);
1262 if (IS_SKYLAKE(dev_priv
))
1263 return skl_init_workarounds(engine
);
1265 if (IS_BROXTON(dev_priv
))
1266 return bxt_init_workarounds(engine
);
1268 if (IS_KABYLAKE(dev_priv
))
1269 return kbl_init_workarounds(engine
);
1274 static int init_render_ring(struct intel_engine_cs
*engine
)
1276 struct drm_i915_private
*dev_priv
= engine
->i915
;
1277 int ret
= init_ring_common(engine
);
1281 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1282 if (IS_GEN(dev_priv
, 4, 6))
1283 I915_WRITE(MI_MODE
, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH
));
1285 /* We need to disable the AsyncFlip performance optimisations in order
1286 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1287 * programmed to '1' on all products.
1289 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1291 if (IS_GEN(dev_priv
, 6, 7))
1292 I915_WRITE(MI_MODE
, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE
));
1294 /* Required for the hardware to program scanline values for waiting */
1295 /* WaEnableFlushTlbInvalidationMode:snb */
1296 if (IS_GEN6(dev_priv
))
1297 I915_WRITE(GFX_MODE
,
1298 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT
));
1300 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1301 if (IS_GEN7(dev_priv
))
1302 I915_WRITE(GFX_MODE_GEN7
,
1303 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT
) |
1304 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE
));
1306 if (IS_GEN6(dev_priv
)) {
1307 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1308 * "If this bit is set, STCunit will have LRA as replacement
1309 * policy. [...] This bit must be reset. LRA replacement
1310 * policy is not supported."
1312 I915_WRITE(CACHE_MODE_0
,
1313 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB
));
1316 if (IS_GEN(dev_priv
, 6, 7))
1317 I915_WRITE(INSTPM
, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING
));
1319 if (INTEL_INFO(dev_priv
)->gen
>= 6)
1320 I915_WRITE_IMR(engine
, ~engine
->irq_keep_mask
);
1322 return init_workarounds_ring(engine
);
1325 static void render_ring_cleanup(struct intel_engine_cs
*engine
)
1327 struct drm_i915_private
*dev_priv
= engine
->i915
;
1329 if (dev_priv
->semaphore_obj
) {
1330 i915_gem_object_ggtt_unpin(dev_priv
->semaphore_obj
);
1331 i915_gem_object_put(dev_priv
->semaphore_obj
);
1332 dev_priv
->semaphore_obj
= NULL
;
1335 intel_fini_pipe_control(engine
);
1338 static int gen8_rcs_signal(struct drm_i915_gem_request
*signaller_req
,
1339 unsigned int num_dwords
)
1341 #define MBOX_UPDATE_DWORDS 8
1342 struct intel_ring
*signaller
= signaller_req
->ring
;
1343 struct drm_i915_private
*dev_priv
= signaller_req
->i915
;
1344 struct intel_engine_cs
*waiter
;
1345 enum intel_engine_id id
;
1348 num_rings
= hweight32(INTEL_INFO(dev_priv
)->ring_mask
);
1349 num_dwords
+= (num_rings
-1) * MBOX_UPDATE_DWORDS
;
1350 #undef MBOX_UPDATE_DWORDS
1352 ret
= intel_ring_begin(signaller_req
, num_dwords
);
1356 for_each_engine_id(waiter
, dev_priv
, id
) {
1358 signaller_req
->engine
->semaphore
.signal_ggtt
[id
];
1359 if (gtt_offset
== MI_SEMAPHORE_SYNC_INVALID
)
1362 intel_ring_emit(signaller
, GFX_OP_PIPE_CONTROL(6));
1363 intel_ring_emit(signaller
,
1364 PIPE_CONTROL_GLOBAL_GTT_IVB
|
1365 PIPE_CONTROL_QW_WRITE
|
1366 PIPE_CONTROL_CS_STALL
);
1367 intel_ring_emit(signaller
, lower_32_bits(gtt_offset
));
1368 intel_ring_emit(signaller
, upper_32_bits(gtt_offset
));
1369 intel_ring_emit(signaller
, signaller_req
->fence
.seqno
);
1370 intel_ring_emit(signaller
, 0);
1371 intel_ring_emit(signaller
,
1372 MI_SEMAPHORE_SIGNAL
|
1373 MI_SEMAPHORE_TARGET(waiter
->hw_id
));
1374 intel_ring_emit(signaller
, 0);
1380 static int gen8_xcs_signal(struct drm_i915_gem_request
*signaller_req
,
1381 unsigned int num_dwords
)
1383 #define MBOX_UPDATE_DWORDS 6
1384 struct intel_ring
*signaller
= signaller_req
->ring
;
1385 struct drm_i915_private
*dev_priv
= signaller_req
->i915
;
1386 struct intel_engine_cs
*waiter
;
1387 enum intel_engine_id id
;
1390 num_rings
= hweight32(INTEL_INFO(dev_priv
)->ring_mask
);
1391 num_dwords
+= (num_rings
-1) * MBOX_UPDATE_DWORDS
;
1392 #undef MBOX_UPDATE_DWORDS
1394 ret
= intel_ring_begin(signaller_req
, num_dwords
);
1398 for_each_engine_id(waiter
, dev_priv
, id
) {
1400 signaller_req
->engine
->semaphore
.signal_ggtt
[id
];
1401 if (gtt_offset
== MI_SEMAPHORE_SYNC_INVALID
)
1404 intel_ring_emit(signaller
,
1405 (MI_FLUSH_DW
+ 1) | MI_FLUSH_DW_OP_STOREDW
);
1406 intel_ring_emit(signaller
,
1407 lower_32_bits(gtt_offset
) |
1408 MI_FLUSH_DW_USE_GTT
);
1409 intel_ring_emit(signaller
, upper_32_bits(gtt_offset
));
1410 intel_ring_emit(signaller
, signaller_req
->fence
.seqno
);
1411 intel_ring_emit(signaller
,
1412 MI_SEMAPHORE_SIGNAL
|
1413 MI_SEMAPHORE_TARGET(waiter
->hw_id
));
1414 intel_ring_emit(signaller
, 0);
1420 static int gen6_signal(struct drm_i915_gem_request
*signaller_req
,
1421 unsigned int num_dwords
)
1423 struct intel_ring
*signaller
= signaller_req
->ring
;
1424 struct drm_i915_private
*dev_priv
= signaller_req
->i915
;
1425 struct intel_engine_cs
*useless
;
1426 enum intel_engine_id id
;
1429 #define MBOX_UPDATE_DWORDS 3
1430 num_rings
= hweight32(INTEL_INFO(dev_priv
)->ring_mask
);
1431 num_dwords
+= round_up((num_rings
-1) * MBOX_UPDATE_DWORDS
, 2);
1432 #undef MBOX_UPDATE_DWORDS
1434 ret
= intel_ring_begin(signaller_req
, num_dwords
);
1438 for_each_engine_id(useless
, dev_priv
, id
) {
1439 i915_reg_t mbox_reg
=
1440 signaller_req
->engine
->semaphore
.mbox
.signal
[id
];
1442 if (i915_mmio_reg_valid(mbox_reg
)) {
1443 intel_ring_emit(signaller
, MI_LOAD_REGISTER_IMM(1));
1444 intel_ring_emit_reg(signaller
, mbox_reg
);
1445 intel_ring_emit(signaller
, signaller_req
->fence
.seqno
);
1449 /* If num_dwords was rounded, make sure the tail pointer is correct */
1450 if (num_rings
% 2 == 0)
1451 intel_ring_emit(signaller
, MI_NOOP
);
1457 * gen6_add_request - Update the semaphore mailbox registers
1459 * @request - request to write to the ring
1461 * Update the mailbox registers in the *other* rings with the current seqno.
1462 * This acts like a signal in the canonical semaphore.
1465 gen6_add_request(struct drm_i915_gem_request
*req
)
1467 struct intel_engine_cs
*engine
= req
->engine
;
1468 struct intel_ring
*ring
= req
->ring
;
1471 if (engine
->semaphore
.signal
)
1472 ret
= engine
->semaphore
.signal(req
, 4);
1474 ret
= intel_ring_begin(req
, 4);
1479 intel_ring_emit(ring
, MI_STORE_DWORD_INDEX
);
1480 intel_ring_emit(ring
, I915_GEM_HWS_INDEX
<< MI_STORE_DWORD_INDEX_SHIFT
);
1481 intel_ring_emit(ring
, req
->fence
.seqno
);
1482 intel_ring_emit(ring
, MI_USER_INTERRUPT
);
1483 __intel_engine_submit(engine
);
1489 gen8_render_add_request(struct drm_i915_gem_request
*req
)
1491 struct intel_engine_cs
*engine
= req
->engine
;
1492 struct intel_ring
*ring
= req
->ring
;
1495 if (engine
->semaphore
.signal
)
1496 ret
= engine
->semaphore
.signal(req
, 8);
1498 ret
= intel_ring_begin(req
, 8);
1502 intel_ring_emit(ring
, GFX_OP_PIPE_CONTROL(6));
1503 intel_ring_emit(ring
, (PIPE_CONTROL_GLOBAL_GTT_IVB
|
1504 PIPE_CONTROL_CS_STALL
|
1505 PIPE_CONTROL_QW_WRITE
));
1506 intel_ring_emit(ring
, intel_hws_seqno_address(engine
));
1507 intel_ring_emit(ring
, 0);
1508 intel_ring_emit(ring
, i915_gem_request_get_seqno(req
));
1509 /* We're thrashing one dword of HWS. */
1510 intel_ring_emit(ring
, 0);
1511 intel_ring_emit(ring
, MI_USER_INTERRUPT
);
1512 intel_ring_emit(ring
, MI_NOOP
);
1513 __intel_engine_submit(engine
);
1518 static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private
*dev_priv
,
1521 return dev_priv
->last_seqno
< seqno
;
1525 * intel_ring_sync - sync the waiter to the signaller on seqno
1527 * @waiter - ring that is waiting
1528 * @signaller - ring which has, or will signal
1529 * @seqno - seqno which the waiter will block on
1533 gen8_ring_sync(struct drm_i915_gem_request
*waiter_req
,
1534 struct intel_engine_cs
*signaller
,
1537 struct intel_ring
*waiter
= waiter_req
->ring
;
1538 struct drm_i915_private
*dev_priv
= waiter_req
->i915
;
1539 u64 offset
= GEN8_WAIT_OFFSET(waiter_req
->engine
, signaller
->id
);
1540 struct i915_hw_ppgtt
*ppgtt
;
1543 ret
= intel_ring_begin(waiter_req
, 4);
1547 intel_ring_emit(waiter
, MI_SEMAPHORE_WAIT
|
1548 MI_SEMAPHORE_GLOBAL_GTT
|
1549 MI_SEMAPHORE_SAD_GTE_SDD
);
1550 intel_ring_emit(waiter
, seqno
);
1551 intel_ring_emit(waiter
, lower_32_bits(offset
));
1552 intel_ring_emit(waiter
, upper_32_bits(offset
));
1553 intel_ring_advance(waiter
);
1555 /* When the !RCS engines idle waiting upon a semaphore, they lose their
1556 * pagetables and we must reload them before executing the batch.
1557 * We do this on the i915_switch_context() following the wait and
1558 * before the dispatch.
1560 ppgtt
= waiter_req
->ctx
->ppgtt
;
1561 if (ppgtt
&& waiter_req
->engine
->id
!= RCS
)
1562 ppgtt
->pd_dirty_rings
|= intel_engine_flag(waiter_req
->engine
);
1567 gen6_ring_sync(struct drm_i915_gem_request
*waiter_req
,
1568 struct intel_engine_cs
*signaller
,
1571 struct intel_ring
*waiter
= waiter_req
->ring
;
1572 u32 dw1
= MI_SEMAPHORE_MBOX
|
1573 MI_SEMAPHORE_COMPARE
|
1574 MI_SEMAPHORE_REGISTER
;
1575 u32 wait_mbox
= signaller
->semaphore
.mbox
.wait
[waiter_req
->engine
->id
];
1578 /* Throughout all of the GEM code, seqno passed implies our current
1579 * seqno is >= the last seqno executed. However for hardware the
1580 * comparison is strictly greater than.
1584 WARN_ON(wait_mbox
== MI_SEMAPHORE_SYNC_INVALID
);
1586 ret
= intel_ring_begin(waiter_req
, 4);
1590 /* If seqno wrap happened, omit the wait with no-ops */
1591 if (likely(!i915_gem_has_seqno_wrapped(waiter_req
->i915
, seqno
))) {
1592 intel_ring_emit(waiter
, dw1
| wait_mbox
);
1593 intel_ring_emit(waiter
, seqno
);
1594 intel_ring_emit(waiter
, 0);
1595 intel_ring_emit(waiter
, MI_NOOP
);
1597 intel_ring_emit(waiter
, MI_NOOP
);
1598 intel_ring_emit(waiter
, MI_NOOP
);
1599 intel_ring_emit(waiter
, MI_NOOP
);
1600 intel_ring_emit(waiter
, MI_NOOP
);
1602 intel_ring_advance(waiter
);
1608 gen5_seqno_barrier(struct intel_engine_cs
*engine
)
1610 /* MI_STORE are internally buffered by the GPU and not flushed
1611 * either by MI_FLUSH or SyncFlush or any other combination of
1614 * "Only the submission of the store operation is guaranteed.
1615 * The write result will be complete (coherent) some time later
1616 * (this is practically a finite period but there is no guaranteed
1619 * Empirically, we observe that we need a delay of at least 75us to
1620 * be sure that the seqno write is visible by the CPU.
1622 usleep_range(125, 250);
1626 gen6_seqno_barrier(struct intel_engine_cs
*engine
)
1628 struct drm_i915_private
*dev_priv
= engine
->i915
;
1630 /* Workaround to force correct ordering between irq and seqno writes on
1631 * ivb (and maybe also on snb) by reading from a CS register (like
1632 * ACTHD) before reading the status page.
1634 * Note that this effectively stalls the read by the time it takes to
1635 * do a memory transaction, which more or less ensures that the write
1636 * from the GPU has sufficient time to invalidate the CPU cacheline.
1637 * Alternatively we could delay the interrupt from the CS ring to give
1638 * the write time to land, but that would incur a delay after every
1639 * batch i.e. much more frequent than a delay when waiting for the
1640 * interrupt (with the same net latency).
1642 * Also note that to prevent whole machine hangs on gen7, we have to
1643 * take the spinlock to guard against concurrent cacheline access.
1645 spin_lock_irq(&dev_priv
->uncore
.lock
);
1646 POSTING_READ_FW(RING_ACTHD(engine
->mmio_base
));
1647 spin_unlock_irq(&dev_priv
->uncore
.lock
);
1651 gen5_irq_enable(struct intel_engine_cs
*engine
)
1653 gen5_enable_gt_irq(engine
->i915
, engine
->irq_enable_mask
);
1657 gen5_irq_disable(struct intel_engine_cs
*engine
)
1659 gen5_disable_gt_irq(engine
->i915
, engine
->irq_enable_mask
);
1663 i9xx_irq_enable(struct intel_engine_cs
*engine
)
1665 struct drm_i915_private
*dev_priv
= engine
->i915
;
1667 dev_priv
->irq_mask
&= ~engine
->irq_enable_mask
;
1668 I915_WRITE(IMR
, dev_priv
->irq_mask
);
1669 POSTING_READ_FW(RING_IMR(engine
->mmio_base
));
1673 i9xx_irq_disable(struct intel_engine_cs
*engine
)
1675 struct drm_i915_private
*dev_priv
= engine
->i915
;
1677 dev_priv
->irq_mask
|= engine
->irq_enable_mask
;
1678 I915_WRITE(IMR
, dev_priv
->irq_mask
);
1682 i8xx_irq_enable(struct intel_engine_cs
*engine
)
1684 struct drm_i915_private
*dev_priv
= engine
->i915
;
1686 dev_priv
->irq_mask
&= ~engine
->irq_enable_mask
;
1687 I915_WRITE16(IMR
, dev_priv
->irq_mask
);
1688 POSTING_READ16(RING_IMR(engine
->mmio_base
));
1692 i8xx_irq_disable(struct intel_engine_cs
*engine
)
1694 struct drm_i915_private
*dev_priv
= engine
->i915
;
1696 dev_priv
->irq_mask
|= engine
->irq_enable_mask
;
1697 I915_WRITE16(IMR
, dev_priv
->irq_mask
);
1701 bsd_ring_flush(struct drm_i915_gem_request
*req
,
1702 u32 invalidate_domains
,
1705 struct intel_ring
*ring
= req
->ring
;
1708 ret
= intel_ring_begin(req
, 2);
1712 intel_ring_emit(ring
, MI_FLUSH
);
1713 intel_ring_emit(ring
, MI_NOOP
);
1714 intel_ring_advance(ring
);
1719 i9xx_add_request(struct drm_i915_gem_request
*req
)
1721 struct intel_ring
*ring
= req
->ring
;
1724 ret
= intel_ring_begin(req
, 4);
1728 intel_ring_emit(ring
, MI_STORE_DWORD_INDEX
);
1729 intel_ring_emit(ring
, I915_GEM_HWS_INDEX
<< MI_STORE_DWORD_INDEX_SHIFT
);
1730 intel_ring_emit(ring
, req
->fence
.seqno
);
1731 intel_ring_emit(ring
, MI_USER_INTERRUPT
);
1732 __intel_engine_submit(req
->engine
);
1738 gen6_irq_enable(struct intel_engine_cs
*engine
)
1740 struct drm_i915_private
*dev_priv
= engine
->i915
;
1742 I915_WRITE_IMR(engine
,
1743 ~(engine
->irq_enable_mask
|
1744 engine
->irq_keep_mask
));
1745 gen5_enable_gt_irq(dev_priv
, engine
->irq_enable_mask
);
1749 gen6_irq_disable(struct intel_engine_cs
*engine
)
1751 struct drm_i915_private
*dev_priv
= engine
->i915
;
1753 I915_WRITE_IMR(engine
, ~engine
->irq_keep_mask
);
1754 gen5_disable_gt_irq(dev_priv
, engine
->irq_enable_mask
);
1758 hsw_vebox_irq_enable(struct intel_engine_cs
*engine
)
1760 struct drm_i915_private
*dev_priv
= engine
->i915
;
1762 I915_WRITE_IMR(engine
, ~engine
->irq_enable_mask
);
1763 gen6_enable_pm_irq(dev_priv
, engine
->irq_enable_mask
);
1767 hsw_vebox_irq_disable(struct intel_engine_cs
*engine
)
1769 struct drm_i915_private
*dev_priv
= engine
->i915
;
1771 I915_WRITE_IMR(engine
, ~0);
1772 gen6_disable_pm_irq(dev_priv
, engine
->irq_enable_mask
);
1776 gen8_irq_enable(struct intel_engine_cs
*engine
)
1778 struct drm_i915_private
*dev_priv
= engine
->i915
;
1780 I915_WRITE_IMR(engine
,
1781 ~(engine
->irq_enable_mask
|
1782 engine
->irq_keep_mask
));
1783 POSTING_READ_FW(RING_IMR(engine
->mmio_base
));
1787 gen8_irq_disable(struct intel_engine_cs
*engine
)
1789 struct drm_i915_private
*dev_priv
= engine
->i915
;
1791 I915_WRITE_IMR(engine
, ~engine
->irq_keep_mask
);
1795 i965_dispatch_execbuffer(struct drm_i915_gem_request
*req
,
1796 u64 offset
, u32 length
,
1797 unsigned dispatch_flags
)
1799 struct intel_ring
*ring
= req
->ring
;
1802 ret
= intel_ring_begin(req
, 2);
1806 intel_ring_emit(ring
,
1807 MI_BATCH_BUFFER_START
|
1809 (dispatch_flags
& I915_DISPATCH_SECURE
?
1810 0 : MI_BATCH_NON_SECURE_I965
));
1811 intel_ring_emit(ring
, offset
);
1812 intel_ring_advance(ring
);
1817 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1818 #define I830_BATCH_LIMIT (256*1024)
1819 #define I830_TLB_ENTRIES (2)
1820 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1822 i830_dispatch_execbuffer(struct drm_i915_gem_request
*req
,
1823 u64 offset
, u32 len
,
1824 unsigned dispatch_flags
)
1826 struct intel_ring
*ring
= req
->ring
;
1827 u32 cs_offset
= req
->engine
->scratch
.gtt_offset
;
1830 ret
= intel_ring_begin(req
, 6);
1834 /* Evict the invalid PTE TLBs */
1835 intel_ring_emit(ring
, COLOR_BLT_CMD
| BLT_WRITE_RGBA
);
1836 intel_ring_emit(ring
, BLT_DEPTH_32
| BLT_ROP_COLOR_COPY
| 4096);
1837 intel_ring_emit(ring
, I830_TLB_ENTRIES
<< 16 | 4); /* load each page */
1838 intel_ring_emit(ring
, cs_offset
);
1839 intel_ring_emit(ring
, 0xdeadbeef);
1840 intel_ring_emit(ring
, MI_NOOP
);
1841 intel_ring_advance(ring
);
1843 if ((dispatch_flags
& I915_DISPATCH_PINNED
) == 0) {
1844 if (len
> I830_BATCH_LIMIT
)
1847 ret
= intel_ring_begin(req
, 6 + 2);
1851 /* Blit the batch (which has now all relocs applied) to the
1852 * stable batch scratch bo area (so that the CS never
1853 * stumbles over its tlb invalidation bug) ...
1855 intel_ring_emit(ring
, SRC_COPY_BLT_CMD
| BLT_WRITE_RGBA
);
1856 intel_ring_emit(ring
,
1857 BLT_DEPTH_32
| BLT_ROP_SRC_COPY
| 4096);
1858 intel_ring_emit(ring
, DIV_ROUND_UP(len
, 4096) << 16 | 4096);
1859 intel_ring_emit(ring
, cs_offset
);
1860 intel_ring_emit(ring
, 4096);
1861 intel_ring_emit(ring
, offset
);
1863 intel_ring_emit(ring
, MI_FLUSH
);
1864 intel_ring_emit(ring
, MI_NOOP
);
1865 intel_ring_advance(ring
);
1867 /* ... and execute it. */
1871 ret
= intel_ring_begin(req
, 2);
1875 intel_ring_emit(ring
, MI_BATCH_BUFFER_START
| MI_BATCH_GTT
);
1876 intel_ring_emit(ring
, offset
| (dispatch_flags
& I915_DISPATCH_SECURE
?
1877 0 : MI_BATCH_NON_SECURE
));
1878 intel_ring_advance(ring
);
1884 i915_dispatch_execbuffer(struct drm_i915_gem_request
*req
,
1885 u64 offset
, u32 len
,
1886 unsigned dispatch_flags
)
1888 struct intel_ring
*ring
= req
->ring
;
1891 ret
= intel_ring_begin(req
, 2);
1895 intel_ring_emit(ring
, MI_BATCH_BUFFER_START
| MI_BATCH_GTT
);
1896 intel_ring_emit(ring
, offset
| (dispatch_flags
& I915_DISPATCH_SECURE
?
1897 0 : MI_BATCH_NON_SECURE
));
1898 intel_ring_advance(ring
);
1903 static void cleanup_phys_status_page(struct intel_engine_cs
*engine
)
1905 struct drm_i915_private
*dev_priv
= engine
->i915
;
1907 if (!dev_priv
->status_page_dmah
)
1910 drm_pci_free(&dev_priv
->drm
, dev_priv
->status_page_dmah
);
1911 engine
->status_page
.page_addr
= NULL
;
1914 static void cleanup_status_page(struct intel_engine_cs
*engine
)
1916 struct drm_i915_gem_object
*obj
;
1918 obj
= engine
->status_page
.obj
;
1922 kunmap(sg_page(obj
->pages
->sgl
));
1923 i915_gem_object_ggtt_unpin(obj
);
1924 i915_gem_object_put(obj
);
1925 engine
->status_page
.obj
= NULL
;
1928 static int init_status_page(struct intel_engine_cs
*engine
)
1930 struct drm_i915_gem_object
*obj
= engine
->status_page
.obj
;
1936 obj
= i915_gem_object_create(&engine
->i915
->drm
, 4096);
1938 DRM_ERROR("Failed to allocate status page\n");
1939 return PTR_ERR(obj
);
1942 ret
= i915_gem_object_set_cache_level(obj
, I915_CACHE_LLC
);
1947 if (!HAS_LLC(engine
->i915
))
1948 /* On g33, we cannot place HWS above 256MiB, so
1949 * restrict its pinning to the low mappable arena.
1950 * Though this restriction is not documented for
1951 * gen4, gen5, or byt, they also behave similarly
1952 * and hang if the HWS is placed at the top of the
1953 * GTT. To generalise, it appears that all !llc
1954 * platforms have issues with us placing the HWS
1955 * above the mappable region (even though we never
1958 flags
|= PIN_MAPPABLE
;
1959 ret
= i915_gem_obj_ggtt_pin(obj
, 4096, flags
);
1962 i915_gem_object_put(obj
);
1966 engine
->status_page
.obj
= obj
;
1969 engine
->status_page
.gfx_addr
= i915_gem_obj_ggtt_offset(obj
);
1970 engine
->status_page
.page_addr
= kmap(sg_page(obj
->pages
->sgl
));
1971 memset(engine
->status_page
.page_addr
, 0, PAGE_SIZE
);
1973 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1974 engine
->name
, engine
->status_page
.gfx_addr
);
1979 static int init_phys_status_page(struct intel_engine_cs
*engine
)
1981 struct drm_i915_private
*dev_priv
= engine
->i915
;
1983 if (!dev_priv
->status_page_dmah
) {
1984 dev_priv
->status_page_dmah
=
1985 drm_pci_alloc(&dev_priv
->drm
, PAGE_SIZE
, PAGE_SIZE
);
1986 if (!dev_priv
->status_page_dmah
)
1990 engine
->status_page
.page_addr
= dev_priv
->status_page_dmah
->vaddr
;
1991 memset(engine
->status_page
.page_addr
, 0, PAGE_SIZE
);
1996 void intel_unpin_ring(struct intel_ring
*ring
)
1998 GEM_BUG_ON(!ring
->vma
);
1999 GEM_BUG_ON(!ring
->vaddr
);
2001 if (HAS_LLC(ring
->obj
->base
.dev
) && !ring
->obj
->stolen
)
2002 i915_gem_object_unpin_map(ring
->obj
);
2004 i915_vma_unpin_iomap(ring
->vma
);
2007 i915_gem_object_ggtt_unpin(ring
->obj
);
2011 int intel_pin_and_map_ring(struct drm_i915_private
*dev_priv
,
2012 struct intel_ring
*ring
)
2014 struct drm_i915_gem_object
*obj
= ring
->obj
;
2015 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2016 unsigned flags
= PIN_OFFSET_BIAS
| 4096;
2020 if (HAS_LLC(dev_priv
) && !obj
->stolen
) {
2021 ret
= i915_gem_obj_ggtt_pin(obj
, PAGE_SIZE
, flags
);
2025 ret
= i915_gem_object_set_to_cpu_domain(obj
, true);
2029 addr
= i915_gem_object_pin_map(obj
);
2031 ret
= PTR_ERR(addr
);
2035 ret
= i915_gem_obj_ggtt_pin(obj
, PAGE_SIZE
,
2036 flags
| PIN_MAPPABLE
);
2040 ret
= i915_gem_object_set_to_gtt_domain(obj
, true);
2044 /* Access through the GTT requires the device to be awake. */
2045 assert_rpm_wakelock_held(dev_priv
);
2047 addr
= (void __force
*)
2048 i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj
));
2050 ret
= PTR_ERR(addr
);
2056 ring
->vma
= i915_gem_obj_to_ggtt(obj
);
2060 i915_gem_object_ggtt_unpin(obj
);
2064 static void intel_destroy_ringbuffer_obj(struct intel_ring
*ring
)
2066 i915_gem_object_put(ring
->obj
);
2070 static int intel_alloc_ringbuffer_obj(struct drm_device
*dev
,
2071 struct intel_ring
*ring
)
2073 struct drm_i915_gem_object
*obj
;
2077 obj
= i915_gem_object_create_stolen(dev
, ring
->size
);
2079 obj
= i915_gem_object_create(dev
, ring
->size
);
2081 return PTR_ERR(obj
);
2083 /* mark ring buffers as read-only from GPU side by default */
2092 intel_engine_create_ring(struct intel_engine_cs
*engine
, int size
)
2094 struct intel_ring
*ring
;
2097 ring
= kzalloc(sizeof(*ring
), GFP_KERNEL
);
2099 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2101 return ERR_PTR(-ENOMEM
);
2104 ring
->engine
= engine
;
2105 list_add(&ring
->link
, &engine
->buffers
);
2108 /* Workaround an erratum on the i830 which causes a hang if
2109 * the TAIL pointer points to within the last 2 cachelines
2112 ring
->effective_size
= size
;
2113 if (IS_I830(engine
->i915
) || IS_845G(engine
->i915
))
2114 ring
->effective_size
-= 2 * CACHELINE_BYTES
;
2116 ring
->last_retired_head
= -1;
2117 intel_ring_update_space(ring
);
2119 ret
= intel_alloc_ringbuffer_obj(&engine
->i915
->drm
, ring
);
2121 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2123 list_del(&ring
->link
);
2125 return ERR_PTR(ret
);
2132 intel_ring_free(struct intel_ring
*ring
)
2134 intel_destroy_ringbuffer_obj(ring
);
2135 list_del(&ring
->link
);
2139 static int intel_ring_context_pin(struct i915_gem_context
*ctx
,
2140 struct intel_engine_cs
*engine
)
2142 struct intel_context
*ce
= &ctx
->engine
[engine
->id
];
2145 lockdep_assert_held(&ctx
->i915
->drm
.struct_mutex
);
2147 if (ce
->pin_count
++)
2151 ret
= i915_gem_obj_ggtt_pin(ce
->state
, ctx
->ggtt_alignment
, 0);
2156 /* The kernel context is only used as a placeholder for flushing the
2157 * active context. It is never used for submitting user rendering and
2158 * as such never requires the golden render context, and so we can skip
2159 * emitting it when we switch to the kernel context. This is required
2160 * as during eviction we cannot allocate and pin the renderstate in
2161 * order to initialise the context.
2163 if (ctx
== ctx
->i915
->kernel_context
)
2164 ce
->initialised
= true;
2166 i915_gem_context_get(ctx
);
2174 static void intel_ring_context_unpin(struct i915_gem_context
*ctx
,
2175 struct intel_engine_cs
*engine
)
2177 struct intel_context
*ce
= &ctx
->engine
[engine
->id
];
2179 lockdep_assert_held(&ctx
->i915
->drm
.struct_mutex
);
2181 if (--ce
->pin_count
)
2185 i915_gem_object_ggtt_unpin(ce
->state
);
2187 i915_gem_context_put(ctx
);
2190 static int intel_init_ring_buffer(struct intel_engine_cs
*engine
)
2192 struct drm_i915_private
*dev_priv
= engine
->i915
;
2193 struct intel_ring
*ring
;
2196 WARN_ON(engine
->buffer
);
2198 intel_engine_setup_common(engine
);
2200 memset(engine
->semaphore
.sync_seqno
, 0,
2201 sizeof(engine
->semaphore
.sync_seqno
));
2203 ret
= intel_engine_init_common(engine
);
2207 /* We may need to do things with the shrinker which
2208 * require us to immediately switch back to the default
2209 * context. This can cause a problem as pinning the
2210 * default context also requires GTT space which may not
2211 * be available. To avoid this we always pin the default
2214 ret
= intel_ring_context_pin(dev_priv
->kernel_context
, engine
);
2218 ring
= intel_engine_create_ring(engine
, 32 * PAGE_SIZE
);
2220 ret
= PTR_ERR(ring
);
2223 engine
->buffer
= ring
;
2225 if (I915_NEED_GFX_HWS(dev_priv
)) {
2226 ret
= init_status_page(engine
);
2230 WARN_ON(engine
->id
!= RCS
);
2231 ret
= init_phys_status_page(engine
);
2236 ret
= intel_pin_and_map_ring(dev_priv
, ring
);
2238 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2240 intel_destroy_ringbuffer_obj(ring
);
2247 intel_engine_cleanup(engine
);
2251 void intel_engine_cleanup(struct intel_engine_cs
*engine
)
2253 struct drm_i915_private
*dev_priv
;
2255 if (!intel_engine_initialized(engine
))
2258 dev_priv
= engine
->i915
;
2260 if (engine
->buffer
) {
2261 intel_engine_stop(engine
);
2262 WARN_ON(!IS_GEN2(dev_priv
) && (I915_READ_MODE(engine
) & MODE_IDLE
) == 0);
2264 intel_unpin_ring(engine
->buffer
);
2265 intel_ring_free(engine
->buffer
);
2266 engine
->buffer
= NULL
;
2269 if (engine
->cleanup
)
2270 engine
->cleanup(engine
);
2272 if (I915_NEED_GFX_HWS(dev_priv
)) {
2273 cleanup_status_page(engine
);
2275 WARN_ON(engine
->id
!= RCS
);
2276 cleanup_phys_status_page(engine
);
2279 intel_engine_cleanup_cmd_parser(engine
);
2280 i915_gem_batch_pool_fini(&engine
->batch_pool
);
2281 intel_engine_fini_breadcrumbs(engine
);
2283 intel_ring_context_unpin(dev_priv
->kernel_context
, engine
);
2285 engine
->i915
= NULL
;
2288 int intel_engine_idle(struct intel_engine_cs
*engine
)
2290 struct drm_i915_gem_request
*req
;
2292 /* Wait upon the last request to be completed */
2293 if (list_empty(&engine
->request_list
))
2296 req
= list_entry(engine
->request_list
.prev
,
2297 struct drm_i915_gem_request
,
2300 /* Make sure we do not trigger any retires */
2301 return __i915_wait_request(req
,
2302 req
->i915
->mm
.interruptible
,
2306 int intel_ring_alloc_request_extras(struct drm_i915_gem_request
*request
)
2310 /* Flush enough space to reduce the likelihood of waiting after
2311 * we start building the request - in which case we will just
2312 * have to repeat work.
2314 request
->reserved_space
+= LEGACY_REQUEST_SIZE
;
2316 request
->ring
= request
->engine
->buffer
;
2318 ret
= intel_ring_begin(request
, 0);
2322 request
->reserved_space
-= LEGACY_REQUEST_SIZE
;
2326 static int wait_for_space(struct drm_i915_gem_request
*req
, int bytes
)
2328 struct intel_ring
*ring
= req
->ring
;
2329 struct intel_engine_cs
*engine
= req
->engine
;
2330 struct drm_i915_gem_request
*target
;
2332 intel_ring_update_space(ring
);
2333 if (ring
->space
>= bytes
)
2337 * Space is reserved in the ringbuffer for finalising the request,
2338 * as that cannot be allowed to fail. During request finalisation,
2339 * reserved_space is set to 0 to stop the overallocation and the
2340 * assumption is that then we never need to wait (which has the
2341 * risk of failing with EINTR).
2343 * See also i915_gem_request_alloc() and i915_add_request().
2345 GEM_BUG_ON(!req
->reserved_space
);
2347 list_for_each_entry(target
, &engine
->request_list
, list
) {
2351 * The request queue is per-engine, so can contain requests
2352 * from multiple ringbuffers. Here, we must ignore any that
2353 * aren't from the ringbuffer we're considering.
2355 if (target
->ring
!= ring
)
2358 /* Would completion of this request free enough space? */
2359 space
= __intel_ring_space(target
->postfix
, ring
->tail
,
2365 if (WARN_ON(&target
->list
== &engine
->request_list
))
2368 return i915_wait_request(target
);
2371 int intel_ring_begin(struct drm_i915_gem_request
*req
, int num_dwords
)
2373 struct intel_ring
*ring
= req
->ring
;
2374 int remain_actual
= ring
->size
- ring
->tail
;
2375 int remain_usable
= ring
->effective_size
- ring
->tail
;
2376 int bytes
= num_dwords
* sizeof(u32
);
2377 int total_bytes
, wait_bytes
;
2378 bool need_wrap
= false;
2380 total_bytes
= bytes
+ req
->reserved_space
;
2382 if (unlikely(bytes
> remain_usable
)) {
2384 * Not enough space for the basic request. So need to flush
2385 * out the remainder and then wait for base + reserved.
2387 wait_bytes
= remain_actual
+ total_bytes
;
2389 } else if (unlikely(total_bytes
> remain_usable
)) {
2391 * The base request will fit but the reserved space
2392 * falls off the end. So we don't need an immediate wrap
2393 * and only need to effectively wait for the reserved
2394 * size space from the start of ringbuffer.
2396 wait_bytes
= remain_actual
+ req
->reserved_space
;
2398 /* No wrapping required, just waiting. */
2399 wait_bytes
= total_bytes
;
2402 if (wait_bytes
> ring
->space
) {
2403 int ret
= wait_for_space(req
, wait_bytes
);
2407 intel_ring_update_space(ring
);
2408 if (unlikely(ring
->space
< wait_bytes
))
2412 if (unlikely(need_wrap
)) {
2413 GEM_BUG_ON(remain_actual
> ring
->space
);
2414 GEM_BUG_ON(ring
->tail
+ remain_actual
> ring
->size
);
2416 /* Fill the tail with MI_NOOP */
2417 memset(ring
->vaddr
+ ring
->tail
, 0, remain_actual
);
2419 ring
->space
-= remain_actual
;
2422 ring
->space
-= bytes
;
2423 GEM_BUG_ON(ring
->space
< 0);
2427 /* Align the ring tail to a cacheline boundary */
2428 int intel_ring_cacheline_align(struct drm_i915_gem_request
*req
)
2430 struct intel_ring
*ring
= req
->ring
;
2432 (ring
->tail
& (CACHELINE_BYTES
- 1)) / sizeof(uint32_t);
2435 if (num_dwords
== 0)
2438 num_dwords
= CACHELINE_BYTES
/ sizeof(uint32_t) - num_dwords
;
2439 ret
= intel_ring_begin(req
, num_dwords
);
2443 while (num_dwords
--)
2444 intel_ring_emit(ring
, MI_NOOP
);
2446 intel_ring_advance(ring
);
2451 void intel_engine_init_seqno(struct intel_engine_cs
*engine
, u32 seqno
)
2453 struct drm_i915_private
*dev_priv
= engine
->i915
;
2455 /* Our semaphore implementation is strictly monotonic (i.e. we proceed
2456 * so long as the semaphore value in the register/page is greater
2457 * than the sync value), so whenever we reset the seqno,
2458 * so long as we reset the tracking semaphore value to 0, it will
2459 * always be before the next request's seqno. If we don't reset
2460 * the semaphore value, then when the seqno moves backwards all
2461 * future waits will complete instantly (causing rendering corruption).
2463 if (IS_GEN6(dev_priv
) || IS_GEN7(dev_priv
)) {
2464 I915_WRITE(RING_SYNC_0(engine
->mmio_base
), 0);
2465 I915_WRITE(RING_SYNC_1(engine
->mmio_base
), 0);
2466 if (HAS_VEBOX(dev_priv
))
2467 I915_WRITE(RING_SYNC_2(engine
->mmio_base
), 0);
2469 if (dev_priv
->semaphore_obj
) {
2470 struct drm_i915_gem_object
*obj
= dev_priv
->semaphore_obj
;
2471 struct page
*page
= i915_gem_object_get_dirty_page(obj
, 0);
2472 void *semaphores
= kmap(page
);
2473 memset(semaphores
+ GEN8_SEMAPHORE_OFFSET(engine
->id
, 0),
2474 0, I915_NUM_ENGINES
* gen8_semaphore_seqno_size
);
2477 memset(engine
->semaphore
.sync_seqno
, 0,
2478 sizeof(engine
->semaphore
.sync_seqno
));
2480 intel_write_status_page(engine
, I915_GEM_HWS_INDEX
, seqno
);
2481 if (engine
->irq_seqno_barrier
)
2482 engine
->irq_seqno_barrier(engine
);
2483 engine
->last_submitted_seqno
= seqno
;
2485 engine
->hangcheck
.seqno
= seqno
;
2487 /* After manually advancing the seqno, fake the interrupt in case
2488 * there are any waiters for that seqno.
2491 intel_engine_wakeup(engine
);
2495 static void gen6_bsd_ring_write_tail(struct intel_engine_cs
*engine
,
2498 struct drm_i915_private
*dev_priv
= engine
->i915
;
2500 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
2502 /* Every tail move must follow the sequence below */
2504 /* Disable notification that the ring is IDLE. The GT
2505 * will then assume that it is busy and bring it out of rc6.
2507 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL
,
2508 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE
));
2510 /* Clear the context id. Here be magic! */
2511 I915_WRITE64_FW(GEN6_BSD_RNCID
, 0x0);
2513 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2514 if (intel_wait_for_register_fw(dev_priv
,
2515 GEN6_BSD_SLEEP_PSMI_CONTROL
,
2516 GEN6_BSD_SLEEP_INDICATOR
,
2519 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2521 /* Now that the ring is fully powered up, update the tail */
2522 I915_WRITE_FW(RING_TAIL(engine
->mmio_base
), value
);
2523 POSTING_READ_FW(RING_TAIL(engine
->mmio_base
));
2525 /* Let the ring send IDLE messages to the GT again,
2526 * and so let it sleep to conserve power when idle.
2528 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL
,
2529 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE
));
2531 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
2534 static int gen6_bsd_ring_flush(struct drm_i915_gem_request
*req
,
2535 u32 invalidate
, u32 flush
)
2537 struct intel_ring
*ring
= req
->ring
;
2541 ret
= intel_ring_begin(req
, 4);
2546 if (INTEL_GEN(req
->i915
) >= 8)
2549 /* We always require a command barrier so that subsequent
2550 * commands, such as breadcrumb interrupts, are strictly ordered
2551 * wrt the contents of the write cache being flushed to memory
2552 * (and thus being coherent from the CPU).
2554 cmd
|= MI_FLUSH_DW_STORE_INDEX
| MI_FLUSH_DW_OP_STOREDW
;
2557 * Bspec vol 1c.5 - video engine command streamer:
2558 * "If ENABLED, all TLBs will be invalidated once the flush
2559 * operation is complete. This bit is only valid when the
2560 * Post-Sync Operation field is a value of 1h or 3h."
2562 if (invalidate
& I915_GEM_GPU_DOMAINS
)
2563 cmd
|= MI_INVALIDATE_TLB
| MI_INVALIDATE_BSD
;
2565 intel_ring_emit(ring
, cmd
);
2566 intel_ring_emit(ring
, I915_GEM_HWS_SCRATCH_ADDR
| MI_FLUSH_DW_USE_GTT
);
2567 if (INTEL_GEN(req
->i915
) >= 8) {
2568 intel_ring_emit(ring
, 0); /* upper addr */
2569 intel_ring_emit(ring
, 0); /* value */
2571 intel_ring_emit(ring
, 0);
2572 intel_ring_emit(ring
, MI_NOOP
);
2574 intel_ring_advance(ring
);
2579 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request
*req
,
2580 u64 offset
, u32 len
,
2581 unsigned dispatch_flags
)
2583 struct intel_ring
*ring
= req
->ring
;
2584 bool ppgtt
= USES_PPGTT(req
->i915
) &&
2585 !(dispatch_flags
& I915_DISPATCH_SECURE
);
2588 ret
= intel_ring_begin(req
, 4);
2592 /* FIXME(BDW): Address space and security selectors. */
2593 intel_ring_emit(ring
, MI_BATCH_BUFFER_START_GEN8
| (ppgtt
<<8) |
2594 (dispatch_flags
& I915_DISPATCH_RS
?
2595 MI_BATCH_RESOURCE_STREAMER
: 0));
2596 intel_ring_emit(ring
, lower_32_bits(offset
));
2597 intel_ring_emit(ring
, upper_32_bits(offset
));
2598 intel_ring_emit(ring
, MI_NOOP
);
2599 intel_ring_advance(ring
);
2605 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request
*req
,
2606 u64 offset
, u32 len
,
2607 unsigned dispatch_flags
)
2609 struct intel_ring
*ring
= req
->ring
;
2612 ret
= intel_ring_begin(req
, 2);
2616 intel_ring_emit(ring
,
2617 MI_BATCH_BUFFER_START
|
2618 (dispatch_flags
& I915_DISPATCH_SECURE
?
2619 0 : MI_BATCH_PPGTT_HSW
| MI_BATCH_NON_SECURE_HSW
) |
2620 (dispatch_flags
& I915_DISPATCH_RS
?
2621 MI_BATCH_RESOURCE_STREAMER
: 0));
2622 /* bit0-7 is the length on GEN6+ */
2623 intel_ring_emit(ring
, offset
);
2624 intel_ring_advance(ring
);
2630 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request
*req
,
2631 u64 offset
, u32 len
,
2632 unsigned dispatch_flags
)
2634 struct intel_ring
*ring
= req
->ring
;
2637 ret
= intel_ring_begin(req
, 2);
2641 intel_ring_emit(ring
,
2642 MI_BATCH_BUFFER_START
|
2643 (dispatch_flags
& I915_DISPATCH_SECURE
?
2644 0 : MI_BATCH_NON_SECURE_I965
));
2645 /* bit0-7 is the length on GEN6+ */
2646 intel_ring_emit(ring
, offset
);
2647 intel_ring_advance(ring
);
2652 /* Blitter support (SandyBridge+) */
2654 static int gen6_ring_flush(struct drm_i915_gem_request
*req
,
2655 u32 invalidate
, u32 flush
)
2657 struct intel_ring
*ring
= req
->ring
;
2661 ret
= intel_ring_begin(req
, 4);
2666 if (INTEL_GEN(req
->i915
) >= 8)
2669 /* We always require a command barrier so that subsequent
2670 * commands, such as breadcrumb interrupts, are strictly ordered
2671 * wrt the contents of the write cache being flushed to memory
2672 * (and thus being coherent from the CPU).
2674 cmd
|= MI_FLUSH_DW_STORE_INDEX
| MI_FLUSH_DW_OP_STOREDW
;
2677 * Bspec vol 1c.3 - blitter engine command streamer:
2678 * "If ENABLED, all TLBs will be invalidated once the flush
2679 * operation is complete. This bit is only valid when the
2680 * Post-Sync Operation field is a value of 1h or 3h."
2682 if (invalidate
& I915_GEM_DOMAIN_RENDER
)
2683 cmd
|= MI_INVALIDATE_TLB
;
2684 intel_ring_emit(ring
, cmd
);
2685 intel_ring_emit(ring
,
2686 I915_GEM_HWS_SCRATCH_ADDR
| MI_FLUSH_DW_USE_GTT
);
2687 if (INTEL_GEN(req
->i915
) >= 8) {
2688 intel_ring_emit(ring
, 0); /* upper addr */
2689 intel_ring_emit(ring
, 0); /* value */
2691 intel_ring_emit(ring
, 0);
2692 intel_ring_emit(ring
, MI_NOOP
);
2694 intel_ring_advance(ring
);
2699 static void intel_ring_init_semaphores(struct drm_i915_private
*dev_priv
,
2700 struct intel_engine_cs
*engine
)
2702 struct drm_i915_gem_object
*obj
;
2705 if (!i915
.semaphores
)
2708 if (INTEL_GEN(dev_priv
) >= 8 && !dev_priv
->semaphore_obj
) {
2709 obj
= i915_gem_object_create(&dev_priv
->drm
, 4096);
2711 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2712 i915
.semaphores
= 0;
2714 i915_gem_object_set_cache_level(obj
, I915_CACHE_LLC
);
2715 ret
= i915_gem_obj_ggtt_pin(obj
, 0, PIN_NONBLOCK
);
2717 i915_gem_object_put(obj
);
2718 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2719 i915
.semaphores
= 0;
2721 dev_priv
->semaphore_obj
= obj
;
2726 if (!i915
.semaphores
)
2729 if (INTEL_GEN(dev_priv
) >= 8) {
2730 u64 offset
= i915_gem_obj_ggtt_offset(dev_priv
->semaphore_obj
);
2732 engine
->semaphore
.sync_to
= gen8_ring_sync
;
2733 engine
->semaphore
.signal
= gen8_xcs_signal
;
2735 for (i
= 0; i
< I915_NUM_ENGINES
; i
++) {
2738 if (i
!= engine
->id
)
2739 ring_offset
= offset
+ GEN8_SEMAPHORE_OFFSET(engine
->id
, i
);
2741 ring_offset
= MI_SEMAPHORE_SYNC_INVALID
;
2743 engine
->semaphore
.signal_ggtt
[i
] = ring_offset
;
2745 } else if (INTEL_GEN(dev_priv
) >= 6) {
2746 engine
->semaphore
.sync_to
= gen6_ring_sync
;
2747 engine
->semaphore
.signal
= gen6_signal
;
2750 * The current semaphore is only applied on pre-gen8
2751 * platform. And there is no VCS2 ring on the pre-gen8
2752 * platform. So the semaphore between RCS and VCS2 is
2753 * initialized as INVALID. Gen8 will initialize the
2754 * sema between VCS2 and RCS later.
2756 for (i
= 0; i
< I915_NUM_ENGINES
; i
++) {
2757 static const struct {
2759 i915_reg_t mbox_reg
;
2760 } sem_data
[I915_NUM_ENGINES
][I915_NUM_ENGINES
] = {
2762 [VCS
] = { .wait_mbox
= MI_SEMAPHORE_SYNC_RV
, .mbox_reg
= GEN6_VRSYNC
},
2763 [BCS
] = { .wait_mbox
= MI_SEMAPHORE_SYNC_RB
, .mbox_reg
= GEN6_BRSYNC
},
2764 [VECS
] = { .wait_mbox
= MI_SEMAPHORE_SYNC_RVE
, .mbox_reg
= GEN6_VERSYNC
},
2767 [RCS
] = { .wait_mbox
= MI_SEMAPHORE_SYNC_VR
, .mbox_reg
= GEN6_RVSYNC
},
2768 [BCS
] = { .wait_mbox
= MI_SEMAPHORE_SYNC_VB
, .mbox_reg
= GEN6_BVSYNC
},
2769 [VECS
] = { .wait_mbox
= MI_SEMAPHORE_SYNC_VVE
, .mbox_reg
= GEN6_VEVSYNC
},
2772 [RCS
] = { .wait_mbox
= MI_SEMAPHORE_SYNC_BR
, .mbox_reg
= GEN6_RBSYNC
},
2773 [VCS
] = { .wait_mbox
= MI_SEMAPHORE_SYNC_BV
, .mbox_reg
= GEN6_VBSYNC
},
2774 [VECS
] = { .wait_mbox
= MI_SEMAPHORE_SYNC_BVE
, .mbox_reg
= GEN6_VEBSYNC
},
2777 [RCS
] = { .wait_mbox
= MI_SEMAPHORE_SYNC_VER
, .mbox_reg
= GEN6_RVESYNC
},
2778 [VCS
] = { .wait_mbox
= MI_SEMAPHORE_SYNC_VEV
, .mbox_reg
= GEN6_VVESYNC
},
2779 [BCS
] = { .wait_mbox
= MI_SEMAPHORE_SYNC_VEB
, .mbox_reg
= GEN6_BVESYNC
},
2783 i915_reg_t mbox_reg
;
2785 if (i
== engine
->id
|| i
== VCS2
) {
2786 wait_mbox
= MI_SEMAPHORE_SYNC_INVALID
;
2787 mbox_reg
= GEN6_NOSYNC
;
2789 wait_mbox
= sem_data
[engine
->id
][i
].wait_mbox
;
2790 mbox_reg
= sem_data
[engine
->id
][i
].mbox_reg
;
2793 engine
->semaphore
.mbox
.wait
[i
] = wait_mbox
;
2794 engine
->semaphore
.mbox
.signal
[i
] = mbox_reg
;
2799 static void intel_ring_init_irq(struct drm_i915_private
*dev_priv
,
2800 struct intel_engine_cs
*engine
)
2802 engine
->irq_enable_mask
= GT_RENDER_USER_INTERRUPT
<< engine
->irq_shift
;
2804 if (INTEL_GEN(dev_priv
) >= 8) {
2805 engine
->irq_enable
= gen8_irq_enable
;
2806 engine
->irq_disable
= gen8_irq_disable
;
2807 engine
->irq_seqno_barrier
= gen6_seqno_barrier
;
2808 } else if (INTEL_GEN(dev_priv
) >= 6) {
2809 engine
->irq_enable
= gen6_irq_enable
;
2810 engine
->irq_disable
= gen6_irq_disable
;
2811 engine
->irq_seqno_barrier
= gen6_seqno_barrier
;
2812 } else if (INTEL_GEN(dev_priv
) >= 5) {
2813 engine
->irq_enable
= gen5_irq_enable
;
2814 engine
->irq_disable
= gen5_irq_disable
;
2815 engine
->irq_seqno_barrier
= gen5_seqno_barrier
;
2816 } else if (INTEL_GEN(dev_priv
) >= 3) {
2817 engine
->irq_enable
= i9xx_irq_enable
;
2818 engine
->irq_disable
= i9xx_irq_disable
;
2820 engine
->irq_enable
= i8xx_irq_enable
;
2821 engine
->irq_disable
= i8xx_irq_disable
;
2825 static void intel_ring_default_vfuncs(struct drm_i915_private
*dev_priv
,
2826 struct intel_engine_cs
*engine
)
2828 engine
->init_hw
= init_ring_common
;
2829 engine
->write_tail
= ring_write_tail
;
2831 engine
->add_request
= i9xx_add_request
;
2832 if (INTEL_GEN(dev_priv
) >= 6)
2833 engine
->add_request
= gen6_add_request
;
2835 if (INTEL_GEN(dev_priv
) >= 8)
2836 engine
->dispatch_execbuffer
= gen8_ring_dispatch_execbuffer
;
2837 else if (INTEL_GEN(dev_priv
) >= 6)
2838 engine
->dispatch_execbuffer
= gen6_ring_dispatch_execbuffer
;
2839 else if (INTEL_GEN(dev_priv
) >= 4)
2840 engine
->dispatch_execbuffer
= i965_dispatch_execbuffer
;
2841 else if (IS_I830(dev_priv
) || IS_845G(dev_priv
))
2842 engine
->dispatch_execbuffer
= i830_dispatch_execbuffer
;
2844 engine
->dispatch_execbuffer
= i915_dispatch_execbuffer
;
2846 intel_ring_init_irq(dev_priv
, engine
);
2847 intel_ring_init_semaphores(dev_priv
, engine
);
2850 int intel_init_render_ring_buffer(struct intel_engine_cs
*engine
)
2852 struct drm_i915_private
*dev_priv
= engine
->i915
;
2855 intel_ring_default_vfuncs(dev_priv
, engine
);
2857 if (HAS_L3_DPF(dev_priv
))
2858 engine
->irq_keep_mask
= GT_RENDER_L3_PARITY_ERROR_INTERRUPT
;
2860 if (INTEL_GEN(dev_priv
) >= 8) {
2861 engine
->init_context
= intel_rcs_ctx_init
;
2862 engine
->add_request
= gen8_render_add_request
;
2863 engine
->flush
= gen8_render_ring_flush
;
2864 if (i915
.semaphores
)
2865 engine
->semaphore
.signal
= gen8_rcs_signal
;
2866 } else if (INTEL_GEN(dev_priv
) >= 6) {
2867 engine
->init_context
= intel_rcs_ctx_init
;
2868 engine
->flush
= gen7_render_ring_flush
;
2869 if (IS_GEN6(dev_priv
))
2870 engine
->flush
= gen6_render_ring_flush
;
2871 } else if (IS_GEN5(dev_priv
)) {
2872 engine
->flush
= gen4_render_ring_flush
;
2874 if (INTEL_GEN(dev_priv
) < 4)
2875 engine
->flush
= gen2_render_ring_flush
;
2877 engine
->flush
= gen4_render_ring_flush
;
2878 engine
->irq_enable_mask
= I915_USER_INTERRUPT
;
2881 if (IS_HASWELL(dev_priv
))
2882 engine
->dispatch_execbuffer
= hsw_ring_dispatch_execbuffer
;
2884 engine
->init_hw
= init_render_ring
;
2885 engine
->cleanup
= render_ring_cleanup
;
2887 ret
= intel_init_ring_buffer(engine
);
2891 if (INTEL_GEN(dev_priv
) >= 6) {
2892 ret
= intel_init_pipe_control(engine
, 4096);
2895 } else if (HAS_BROKEN_CS_TLB(dev_priv
)) {
2896 ret
= intel_init_pipe_control(engine
, I830_WA_SIZE
);
2904 int intel_init_bsd_ring_buffer(struct intel_engine_cs
*engine
)
2906 struct drm_i915_private
*dev_priv
= engine
->i915
;
2908 intel_ring_default_vfuncs(dev_priv
, engine
);
2910 if (INTEL_GEN(dev_priv
) >= 6) {
2911 /* gen6 bsd needs a special wa for tail updates */
2912 if (IS_GEN6(dev_priv
))
2913 engine
->write_tail
= gen6_bsd_ring_write_tail
;
2914 engine
->flush
= gen6_bsd_ring_flush
;
2915 if (INTEL_GEN(dev_priv
) < 8)
2916 engine
->irq_enable_mask
= GT_BSD_USER_INTERRUPT
;
2918 engine
->mmio_base
= BSD_RING_BASE
;
2919 engine
->flush
= bsd_ring_flush
;
2920 if (IS_GEN5(dev_priv
))
2921 engine
->irq_enable_mask
= ILK_BSD_USER_INTERRUPT
;
2923 engine
->irq_enable_mask
= I915_BSD_USER_INTERRUPT
;
2926 return intel_init_ring_buffer(engine
);
2930 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2932 int intel_init_bsd2_ring_buffer(struct intel_engine_cs
*engine
)
2934 struct drm_i915_private
*dev_priv
= engine
->i915
;
2936 intel_ring_default_vfuncs(dev_priv
, engine
);
2938 engine
->flush
= gen6_bsd_ring_flush
;
2940 return intel_init_ring_buffer(engine
);
2943 int intel_init_blt_ring_buffer(struct intel_engine_cs
*engine
)
2945 struct drm_i915_private
*dev_priv
= engine
->i915
;
2947 intel_ring_default_vfuncs(dev_priv
, engine
);
2949 engine
->flush
= gen6_ring_flush
;
2950 if (INTEL_GEN(dev_priv
) < 8)
2951 engine
->irq_enable_mask
= GT_BLT_USER_INTERRUPT
;
2953 return intel_init_ring_buffer(engine
);
2956 int intel_init_vebox_ring_buffer(struct intel_engine_cs
*engine
)
2958 struct drm_i915_private
*dev_priv
= engine
->i915
;
2960 intel_ring_default_vfuncs(dev_priv
, engine
);
2962 engine
->flush
= gen6_ring_flush
;
2964 if (INTEL_GEN(dev_priv
) < 8) {
2965 engine
->irq_enable_mask
= PM_VEBOX_USER_INTERRUPT
;
2966 engine
->irq_enable
= hsw_vebox_irq_enable
;
2967 engine
->irq_disable
= hsw_vebox_irq_disable
;
2970 return intel_init_ring_buffer(engine
);
2974 intel_engine_flush_all_caches(struct drm_i915_gem_request
*req
)
2976 struct intel_engine_cs
*engine
= req
->engine
;
2979 if (!engine
->gpu_caches_dirty
)
2982 ret
= engine
->flush(req
, 0, I915_GEM_GPU_DOMAINS
);
2986 trace_i915_gem_ring_flush(req
, 0, I915_GEM_GPU_DOMAINS
);
2988 engine
->gpu_caches_dirty
= false;
2993 intel_engine_invalidate_all_caches(struct drm_i915_gem_request
*req
)
2995 struct intel_engine_cs
*engine
= req
->engine
;
2996 uint32_t flush_domains
;
3000 if (engine
->gpu_caches_dirty
)
3001 flush_domains
= I915_GEM_GPU_DOMAINS
;
3003 ret
= engine
->flush(req
, I915_GEM_GPU_DOMAINS
, flush_domains
);
3007 trace_i915_gem_ring_flush(req
, I915_GEM_GPU_DOMAINS
, flush_domains
);
3009 engine
->gpu_caches_dirty
= false;
3013 void intel_engine_stop(struct intel_engine_cs
*engine
)
3017 if (!intel_engine_initialized(engine
))
3020 ret
= intel_engine_idle(engine
);
3022 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",