2 * Copyright © 2012 Mike Dunn <mikedunn@newsguy.com>
4 * mtd nand driver for M-Systems DiskOnChip G4
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * Tested on the Palm Treo 680. The G4 is also present on Toshiba Portege, Asus
12 * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others.
13 * Should work on these as well. Let me know!
17 * Mechanism for management of password-protected areas
19 * Hamming ecc when reading oob only
21 * According to the M-Sys documentation, this device is also available in a
22 * "dual-die" configuration having a 256MB capacity, but no mechanism for
23 * detecting this variant is documented. Currently this driver assumes 128MB
26 * Support for multiple cascaded devices ("floors"). Not sure which gadgets
27 * contain multiple G4s in a cascaded configuration, if any.
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/string.h>
35 #include <linux/sched.h>
36 #include <linux/delay.h>
37 #include <linux/module.h>
38 #include <linux/export.h>
39 #include <linux/platform_device.h>
41 #include <linux/bitops.h>
42 #include <linux/mtd/partitions.h>
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/nand.h>
45 #include <linux/bch.h>
46 #include <linux/bitrev.h>
47 #include <linux/jiffies.h>
50 * In "reliable mode" consecutive 2k pages are used in parallel (in some
51 * fashion) to store the same data. The data can be read back from the
52 * even-numbered pages in the normal manner; odd-numbered pages will appear to
53 * contain junk. Systems that boot from the docg4 typically write the secondary
54 * program loader (SPL) code in this mode. The SPL is loaded by the initial
55 * program loader (IPL, stored in the docg4's 2k NOR-like region that is mapped
56 * to the reset vector address). This module parameter enables you to use this
57 * driver to write the SPL. When in this mode, no more than 2k of data can be
58 * written at a time, because the addresses do not increment in the normal
59 * manner, and the starting offset must be within an even-numbered 2k region;
60 * i.e., invalid starting offsets are 0x800, 0xa00, 0xc00, 0xe00, 0x1800,
61 * 0x1a00, ... Reliable mode is a special case and should not be used unless
62 * you know what you're doing.
64 static bool reliable_mode
;
65 module_param(reliable_mode
, bool, 0);
66 MODULE_PARM_DESC(reliable_mode
, "pages are programmed in reliable mode");
69 * You'll want to ignore badblocks if you're reading a partition that contains
70 * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since
71 * it does not use mtd nand's method for marking bad blocks (using oob area).
72 * This will also skip the check of the "page written" flag.
74 static bool ignore_badblocks
;
75 module_param(ignore_badblocks
, bool, 0);
76 MODULE_PARM_DESC(ignore_badblocks
, "no badblock checking performed");
81 void __iomem
*virtadr
;
91 struct bch_control
*bch
;
95 * Defines prefixed with DOCG4 are unique to the diskonchip G4. All others are
96 * shared with other diskonchip devices (P3, G3 at least).
98 * Functions with names prefixed with docg4_ are mtd / nand interface functions
99 * (though they may also be called internally). All others are internal.
102 #define DOC_IOSPACE_DATA 0x0800
104 /* register offsets */
105 #define DOC_CHIPID 0x1000
106 #define DOC_DEVICESELECT 0x100a
107 #define DOC_ASICMODE 0x100c
108 #define DOC_DATAEND 0x101e
109 #define DOC_NOP 0x103e
111 #define DOC_FLASHSEQUENCE 0x1032
112 #define DOC_FLASHCOMMAND 0x1034
113 #define DOC_FLASHADDRESS 0x1036
114 #define DOC_FLASHCONTROL 0x1038
115 #define DOC_ECCCONF0 0x1040
116 #define DOC_ECCCONF1 0x1042
117 #define DOC_HAMMINGPARITY 0x1046
118 #define DOC_BCH_SYNDROM(idx) (0x1048 + idx)
120 #define DOC_ASICMODECONFIRM 0x1072
121 #define DOC_CHIPID_INV 0x1074
122 #define DOC_POWERMODE 0x107c
124 #define DOCG4_MYSTERY_REG 0x1050
126 /* apparently used only to write oob bytes 6 and 7 */
127 #define DOCG4_OOB_6_7 0x1052
129 /* DOC_FLASHSEQUENCE register commands */
130 #define DOC_SEQ_RESET 0x00
131 #define DOCG4_SEQ_PAGE_READ 0x03
132 #define DOCG4_SEQ_FLUSH 0x29
133 #define DOCG4_SEQ_PAGEWRITE 0x16
134 #define DOCG4_SEQ_PAGEPROG 0x1e
135 #define DOCG4_SEQ_BLOCKERASE 0x24
136 #define DOCG4_SEQ_SETMODE 0x45
138 /* DOC_FLASHCOMMAND register commands */
139 #define DOCG4_CMD_PAGE_READ 0x00
140 #define DOC_CMD_ERASECYCLE2 0xd0
141 #define DOCG4_CMD_FLUSH 0x70
142 #define DOCG4_CMD_READ2 0x30
143 #define DOC_CMD_PROG_BLOCK_ADDR 0x60
144 #define DOCG4_CMD_PAGEWRITE 0x80
145 #define DOC_CMD_PROG_CYCLE2 0x10
146 #define DOCG4_CMD_FAST_MODE 0xa3 /* functionality guessed */
147 #define DOC_CMD_RELIABLE_MODE 0x22
148 #define DOC_CMD_RESET 0xff
150 /* DOC_POWERMODE register bits */
151 #define DOC_POWERDOWN_READY 0x80
153 /* DOC_FLASHCONTROL register bits */
154 #define DOC_CTRL_CE 0x10
155 #define DOC_CTRL_UNKNOWN 0x40
156 #define DOC_CTRL_FLASHREADY 0x01
158 /* DOC_ECCCONF0 register bits */
159 #define DOC_ECCCONF0_READ_MODE 0x8000
160 #define DOC_ECCCONF0_UNKNOWN 0x2000
161 #define DOC_ECCCONF0_ECC_ENABLE 0x1000
162 #define DOC_ECCCONF0_DATA_BYTES_MASK 0x07ff
164 /* DOC_ECCCONF1 register bits */
165 #define DOC_ECCCONF1_BCH_SYNDROM_ERR 0x80
166 #define DOC_ECCCONF1_ECC_ENABLE 0x07
167 #define DOC_ECCCONF1_PAGE_IS_WRITTEN 0x20
169 /* DOC_ASICMODE register bits */
170 #define DOC_ASICMODE_RESET 0x00
171 #define DOC_ASICMODE_NORMAL 0x01
172 #define DOC_ASICMODE_POWERDOWN 0x02
173 #define DOC_ASICMODE_MDWREN 0x04
174 #define DOC_ASICMODE_BDETCT_RESET 0x08
175 #define DOC_ASICMODE_RSTIN_RESET 0x10
176 #define DOC_ASICMODE_RAM_WE 0x20
178 /* good status values read after read/write/erase operations */
179 #define DOCG4_PROGSTATUS_GOOD 0x51
180 #define DOCG4_PROGSTATUS_GOOD_2 0xe0
183 * On read operations (page and oob-only), the first byte read from I/O reg is a
184 * status. On error, it reads 0x73; otherwise, it reads either 0x71 (first read
185 * after reset only) or 0x51, so bit 1 is presumed to be an error indicator.
187 #define DOCG4_READ_ERROR 0x02 /* bit 1 indicates read error */
189 /* anatomy of the device */
190 #define DOCG4_CHIP_SIZE 0x8000000
191 #define DOCG4_PAGE_SIZE 0x200
192 #define DOCG4_PAGES_PER_BLOCK 0x200
193 #define DOCG4_BLOCK_SIZE (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE)
194 #define DOCG4_NUMBLOCKS (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE)
195 #define DOCG4_OOB_SIZE 0x10
196 #define DOCG4_CHIP_SHIFT 27 /* log_2(DOCG4_CHIP_SIZE) */
197 #define DOCG4_PAGE_SHIFT 9 /* log_2(DOCG4_PAGE_SIZE) */
198 #define DOCG4_ERASE_SHIFT 18 /* log_2(DOCG4_BLOCK_SIZE) */
200 /* all but the last byte is included in ecc calculation */
201 #define DOCG4_BCH_SIZE (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1)
203 #define DOCG4_USERDATA_LEN 520 /* 512 byte page plus 8 oob avail to user */
205 /* expected values from the ID registers */
206 #define DOCG4_IDREG1_VALUE 0x0400
207 #define DOCG4_IDREG2_VALUE 0xfbff
209 /* primitive polynomial used to build the Galois field used by hw ecc gen */
210 #define DOCG4_PRIMITIVE_POLY 0x4443
212 #define DOCG4_M 14 /* Galois field is of order 2^14 */
213 #define DOCG4_T 4 /* BCH alg corrects up to 4 bit errors */
215 #define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */
216 #define DOCG4_REDUNDANT_BBT_PAGE 24 /* page where redundant factory bbt lives */
219 * Bytes 0, 1 are used as badblock marker.
220 * Bytes 2 - 6 are available to the user.
221 * Byte 7 is hamming ecc for first 7 oob bytes only.
222 * Bytes 8 - 14 are hw-generated ecc covering entire page + oob bytes 0 - 14.
223 * Byte 15 (the last) is used by the driver as a "page written" flag.
225 static struct nand_ecclayout docg4_oobinfo
= {
227 .eccpos
= {7, 8, 9, 10, 11, 12, 13, 14, 15},
229 .oobfree
= { {.offset
= 2, .length
= 5} }
233 * The device has a nop register which M-Sys claims is for the purpose of
234 * inserting precise delays. But beware; at least some operations fail if the
235 * nop writes are replaced with a generic delay!
237 static inline void write_nop(void __iomem
*docptr
)
239 writew(0, docptr
+ DOC_NOP
);
242 static void docg4_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
245 struct nand_chip
*nand
= mtd
->priv
;
246 uint16_t *p
= (uint16_t *) buf
;
249 for (i
= 0; i
< len
; i
++)
250 p
[i
] = readw(nand
->IO_ADDR_R
);
253 static void docg4_write_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
256 struct nand_chip
*nand
= mtd
->priv
;
257 uint16_t *p
= (uint16_t *) buf
;
260 for (i
= 0; i
< len
; i
++)
261 writew(p
[i
], nand
->IO_ADDR_W
);
264 static int poll_status(struct docg4_priv
*doc
)
267 * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL
268 * register. Operations known to take a long time (e.g., block erase)
269 * should sleep for a while before calling this.
272 uint16_t flash_status
;
274 void __iomem
*docptr
= doc
->virtadr
;
276 dev_dbg(doc
->dev
, "%s...\n", __func__
);
278 /* hardware quirk requires reading twice initially */
279 flash_status
= readw(docptr
+ DOC_FLASHCONTROL
);
281 timeo
= jiffies
+ msecs_to_jiffies(200); /* generous timeout */
284 flash_status
= readb(docptr
+ DOC_FLASHCONTROL
);
285 } while (!(flash_status
& DOC_CTRL_FLASHREADY
) &&
286 time_before(jiffies
, timeo
));
288 if (unlikely(!(flash_status
& DOC_CTRL_FLASHREADY
))) {
289 dev_err(doc
->dev
, "%s: timed out!\n", __func__
);
290 return NAND_STATUS_FAIL
;
297 static int docg4_wait(struct mtd_info
*mtd
, struct nand_chip
*nand
)
300 struct docg4_priv
*doc
= nand
->priv
;
301 int status
= NAND_STATUS_WP
; /* inverse logic?? */
302 dev_dbg(doc
->dev
, "%s...\n", __func__
);
304 /* report any previously unreported error */
306 status
|= doc
->status
;
311 status
|= poll_status(doc
);
315 static void docg4_select_chip(struct mtd_info
*mtd
, int chip
)
318 * Select among multiple cascaded chips ("floors"). Multiple floors are
319 * not yet supported, so the only valid non-negative value is 0.
321 struct nand_chip
*nand
= mtd
->priv
;
322 struct docg4_priv
*doc
= nand
->priv
;
323 void __iomem
*docptr
= doc
->virtadr
;
325 dev_dbg(doc
->dev
, "%s: chip %d\n", __func__
, chip
);
328 return; /* deselected */
331 dev_warn(doc
->dev
, "multiple floors currently unsupported\n");
333 writew(0, docptr
+ DOC_DEVICESELECT
);
336 static void reset(struct mtd_info
*mtd
)
338 /* full device reset */
340 struct nand_chip
*nand
= mtd
->priv
;
341 struct docg4_priv
*doc
= nand
->priv
;
342 void __iomem
*docptr
= doc
->virtadr
;
344 writew(DOC_ASICMODE_RESET
| DOC_ASICMODE_MDWREN
,
345 docptr
+ DOC_ASICMODE
);
346 writew(~(DOC_ASICMODE_RESET
| DOC_ASICMODE_MDWREN
),
347 docptr
+ DOC_ASICMODECONFIRM
);
350 writew(DOC_ASICMODE_NORMAL
| DOC_ASICMODE_MDWREN
,
351 docptr
+ DOC_ASICMODE
);
352 writew(~(DOC_ASICMODE_NORMAL
| DOC_ASICMODE_MDWREN
),
353 docptr
+ DOC_ASICMODECONFIRM
);
355 writew(DOC_ECCCONF1_ECC_ENABLE
, docptr
+ DOC_ECCCONF1
);
360 static void read_hw_ecc(void __iomem
*docptr
, uint8_t *ecc_buf
)
362 /* read the 7 hw-generated ecc bytes */
365 for (i
= 0; i
< 7; i
++) { /* hw quirk; read twice */
366 ecc_buf
[i
] = readb(docptr
+ DOC_BCH_SYNDROM(i
));
367 ecc_buf
[i
] = readb(docptr
+ DOC_BCH_SYNDROM(i
));
371 static int correct_data(struct mtd_info
*mtd
, uint8_t *buf
, int page
)
374 * Called after a page read when hardware reports bitflips.
375 * Up to four bitflips can be corrected.
378 struct nand_chip
*nand
= mtd
->priv
;
379 struct docg4_priv
*doc
= nand
->priv
;
380 void __iomem
*docptr
= doc
->virtadr
;
381 int i
, numerrs
, errpos
[4];
382 const uint8_t blank_read_hwecc
[8] = {
383 0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 };
385 read_hw_ecc(docptr
, doc
->ecc_buf
); /* read 7 hw-generated ecc bytes */
387 /* check if read error is due to a blank page */
388 if (!memcmp(doc
->ecc_buf
, blank_read_hwecc
, 7))
391 /* skip additional check of "written flag" if ignore_badblocks */
392 if (ignore_badblocks
== false) {
395 * If the hw ecc bytes are not those of a blank page, there's
396 * still a chance that the page is blank, but was read with
397 * errors. Check the "written flag" in last oob byte, which
398 * is set to zero when a page is written. If more than half
399 * the bits are set, assume a blank page. Unfortunately, the
400 * bit flips(s) are not reported in stats.
403 if (nand
->oob_poi
[15]) {
404 int bit
, numsetbits
= 0;
405 unsigned long written_flag
= nand
->oob_poi
[15];
406 for_each_set_bit(bit
, &written_flag
, 8)
408 if (numsetbits
> 4) { /* assume blank */
410 "error(s) in blank page "
412 page
* DOCG4_PAGE_SIZE
);
419 * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch
420 * algorithm is used to decode this. However the hw operates on page
421 * data in a bit order that is the reverse of that of the bch alg,
422 * requiring that the bits be reversed on the result. Thanks to Ivan
423 * Djelic for his analysis!
425 for (i
= 0; i
< 7; i
++)
426 doc
->ecc_buf
[i
] = bitrev8(doc
->ecc_buf
[i
]);
428 numerrs
= decode_bch(doc
->bch
, NULL
, DOCG4_USERDATA_LEN
, NULL
,
429 doc
->ecc_buf
, NULL
, errpos
);
431 if (numerrs
== -EBADMSG
) {
432 dev_warn(doc
->dev
, "uncorrectable errors at offset %08x\n",
433 page
* DOCG4_PAGE_SIZE
);
437 BUG_ON(numerrs
< 0); /* -EINVAL, or anything other than -EBADMSG */
439 /* undo last step in BCH alg (modulo mirroring not needed) */
440 for (i
= 0; i
< numerrs
; i
++)
441 errpos
[i
] = (errpos
[i
] & ~7)|(7-(errpos
[i
] & 7));
444 for (i
= 0; i
< numerrs
; i
++) {
446 /* ignore if error within oob ecc bytes */
447 if (errpos
[i
] > DOCG4_USERDATA_LEN
* 8)
450 /* if error within oob area preceeding ecc bytes... */
451 if (errpos
[i
] > DOCG4_PAGE_SIZE
* 8)
452 change_bit(errpos
[i
] - DOCG4_PAGE_SIZE
* 8,
453 (unsigned long *)nand
->oob_poi
);
455 else /* error in page data */
456 change_bit(errpos
[i
], (unsigned long *)buf
);
459 dev_notice(doc
->dev
, "%d error(s) corrected at offset %08x\n",
460 numerrs
, page
* DOCG4_PAGE_SIZE
);
465 static uint8_t docg4_read_byte(struct mtd_info
*mtd
)
467 struct nand_chip
*nand
= mtd
->priv
;
468 struct docg4_priv
*doc
= nand
->priv
;
470 dev_dbg(doc
->dev
, "%s\n", __func__
);
472 if (doc
->last_command
.command
== NAND_CMD_STATUS
) {
476 * Previous nand command was status request, so nand
477 * infrastructure code expects to read the status here. If an
478 * error occurred in a previous operation, report it.
480 doc
->last_command
.command
= 0;
483 status
= doc
->status
;
487 /* why is NAND_STATUS_WP inverse logic?? */
489 status
= NAND_STATUS_WP
| NAND_STATUS_READY
;
494 dev_warn(doc
->dev
, "unexpected call to read_byte()\n");
499 static void write_addr(struct docg4_priv
*doc
, uint32_t docg4_addr
)
501 /* write the four address bytes packed in docg4_addr to the device */
503 void __iomem
*docptr
= doc
->virtadr
;
504 writeb(docg4_addr
& 0xff, docptr
+ DOC_FLASHADDRESS
);
506 writeb(docg4_addr
& 0xff, docptr
+ DOC_FLASHADDRESS
);
508 writeb(docg4_addr
& 0xff, docptr
+ DOC_FLASHADDRESS
);
510 writeb(docg4_addr
& 0xff, docptr
+ DOC_FLASHADDRESS
);
513 static int read_progstatus(struct docg4_priv
*doc
)
516 * This apparently checks the status of programming. Done after an
517 * erasure, and after page data is written. On error, the status is
518 * saved, to be later retrieved by the nand infrastructure code.
520 void __iomem
*docptr
= doc
->virtadr
;
522 /* status is read from the I/O reg */
523 uint16_t status1
= readw(docptr
+ DOC_IOSPACE_DATA
);
524 uint16_t status2
= readw(docptr
+ DOC_IOSPACE_DATA
);
525 uint16_t status3
= readw(docptr
+ DOCG4_MYSTERY_REG
);
527 dev_dbg(doc
->dev
, "docg4: %s: %02x %02x %02x\n",
528 __func__
, status1
, status2
, status3
);
530 if (status1
!= DOCG4_PROGSTATUS_GOOD
531 || status2
!= DOCG4_PROGSTATUS_GOOD_2
532 || status3
!= DOCG4_PROGSTATUS_GOOD_2
) {
533 doc
->status
= NAND_STATUS_FAIL
;
534 dev_warn(doc
->dev
, "read_progstatus failed: "
535 "%02x, %02x, %02x\n", status1
, status2
, status3
);
541 static int pageprog(struct mtd_info
*mtd
)
544 * Final step in writing a page. Writes the contents of its
545 * internal buffer out to the flash array, or some such.
548 struct nand_chip
*nand
= mtd
->priv
;
549 struct docg4_priv
*doc
= nand
->priv
;
550 void __iomem
*docptr
= doc
->virtadr
;
553 dev_dbg(doc
->dev
, "docg4: %s\n", __func__
);
555 writew(DOCG4_SEQ_PAGEPROG
, docptr
+ DOC_FLASHSEQUENCE
);
556 writew(DOC_CMD_PROG_CYCLE2
, docptr
+ DOC_FLASHCOMMAND
);
560 /* Just busy-wait; usleep_range() slows things down noticeably. */
563 writew(DOCG4_SEQ_FLUSH
, docptr
+ DOC_FLASHSEQUENCE
);
564 writew(DOCG4_CMD_FLUSH
, docptr
+ DOC_FLASHCOMMAND
);
565 writew(DOC_ECCCONF0_READ_MODE
| 4, docptr
+ DOC_ECCCONF0
);
572 retval
= read_progstatus(doc
);
573 writew(0, docptr
+ DOC_DATAEND
);
581 static void sequence_reset(struct mtd_info
*mtd
)
583 /* common starting sequence for all operations */
585 struct nand_chip
*nand
= mtd
->priv
;
586 struct docg4_priv
*doc
= nand
->priv
;
587 void __iomem
*docptr
= doc
->virtadr
;
589 writew(DOC_CTRL_UNKNOWN
| DOC_CTRL_CE
, docptr
+ DOC_FLASHCONTROL
);
590 writew(DOC_SEQ_RESET
, docptr
+ DOC_FLASHSEQUENCE
);
591 writew(DOC_CMD_RESET
, docptr
+ DOC_FLASHCOMMAND
);
598 static void read_page_prologue(struct mtd_info
*mtd
, uint32_t docg4_addr
)
600 /* first step in reading a page */
602 struct nand_chip
*nand
= mtd
->priv
;
603 struct docg4_priv
*doc
= nand
->priv
;
604 void __iomem
*docptr
= doc
->virtadr
;
607 "docg4: %s: g4 page %08x\n", __func__
, docg4_addr
);
611 writew(DOCG4_SEQ_PAGE_READ
, docptr
+ DOC_FLASHSEQUENCE
);
612 writew(DOCG4_CMD_PAGE_READ
, docptr
+ DOC_FLASHCOMMAND
);
615 write_addr(doc
, docg4_addr
);
618 writew(DOCG4_CMD_READ2
, docptr
+ DOC_FLASHCOMMAND
);
625 static void write_page_prologue(struct mtd_info
*mtd
, uint32_t docg4_addr
)
627 /* first step in writing a page */
629 struct nand_chip
*nand
= mtd
->priv
;
630 struct docg4_priv
*doc
= nand
->priv
;
631 void __iomem
*docptr
= doc
->virtadr
;
634 "docg4: %s: g4 addr: %x\n", __func__
, docg4_addr
);
637 if (unlikely(reliable_mode
)) {
638 writew(DOCG4_SEQ_SETMODE
, docptr
+ DOC_FLASHSEQUENCE
);
639 writew(DOCG4_CMD_FAST_MODE
, docptr
+ DOC_FLASHCOMMAND
);
640 writew(DOC_CMD_RELIABLE_MODE
, docptr
+ DOC_FLASHCOMMAND
);
644 writew(DOCG4_SEQ_PAGEWRITE
, docptr
+ DOC_FLASHSEQUENCE
);
645 writew(DOCG4_CMD_PAGEWRITE
, docptr
+ DOC_FLASHCOMMAND
);
647 write_addr(doc
, docg4_addr
);
653 static uint32_t mtd_to_docg4_address(int page
, int column
)
656 * Convert mtd address to format used by the device, 32 bit packed.
658 * Some notes on G4 addressing... The M-Sys documentation on this device
659 * claims that pages are 2K in length, and indeed, the format of the
660 * address used by the device reflects that. But within each page are
661 * four 512 byte "sub-pages", each with its own oob data that is
662 * read/written immediately after the 512 bytes of page data. This oob
663 * data contains the ecc bytes for the preceeding 512 bytes.
665 * Rather than tell the mtd nand infrastructure that page size is 2k,
666 * with four sub-pages each, we engage in a little subterfuge and tell
667 * the infrastructure code that pages are 512 bytes in size. This is
668 * done because during the course of reverse-engineering the device, I
669 * never observed an instance where an entire 2K "page" was read or
670 * written as a unit. Each "sub-page" is always addressed individually,
671 * its data read/written, and ecc handled before the next "sub-page" is
674 * This requires us to convert addresses passed by the mtd nand
675 * infrastructure code to those used by the device.
677 * The address that is written to the device consists of four bytes: the
678 * first two are the 2k page number, and the second is the index into
679 * the page. The index is in terms of 16-bit half-words and includes
680 * the preceeding oob data, so e.g., the index into the second
681 * "sub-page" is 0x108, and the full device address of the start of mtd
682 * page 0x201 is 0x00800108.
684 int g4_page
= page
/ 4; /* device's 2K page */
685 int g4_index
= (page
% 4) * 0x108 + column
/2; /* offset into page */
686 return (g4_page
<< 16) | g4_index
; /* pack */
689 static void docg4_command(struct mtd_info
*mtd
, unsigned command
, int column
,
692 /* handle standard nand commands */
694 struct nand_chip
*nand
= mtd
->priv
;
695 struct docg4_priv
*doc
= nand
->priv
;
696 uint32_t g4_addr
= mtd_to_docg4_address(page_addr
, column
);
698 dev_dbg(doc
->dev
, "%s %x, page_addr=%x, column=%x\n",
699 __func__
, command
, page_addr
, column
);
702 * Save the command and its arguments. This enables emulation of
703 * standard flash devices, and also some optimizations.
705 doc
->last_command
.command
= command
;
706 doc
->last_command
.column
= column
;
707 doc
->last_command
.page
= page_addr
;
716 read_page_prologue(mtd
, g4_addr
);
719 case NAND_CMD_STATUS
:
720 /* next call to read_byte() will expect a status */
724 if (unlikely(reliable_mode
)) {
725 uint16_t g4_page
= g4_addr
>> 16;
727 /* writes to odd-numbered 2k pages are invalid */
730 "invalid reliable mode address\n");
733 write_page_prologue(mtd
, g4_addr
);
735 /* hack for deferred write of oob bytes */
736 if (doc
->oob_page
== page_addr
)
737 memcpy(nand
->oob_poi
, doc
->oob_buf
, 16);
740 case NAND_CMD_PAGEPROG
:
744 /* we don't expect these, based on review of nand_base.c */
745 case NAND_CMD_READOOB
:
746 case NAND_CMD_READID
:
747 case NAND_CMD_ERASE1
:
748 case NAND_CMD_ERASE2
:
749 dev_warn(doc
->dev
, "docg4_command: "
750 "unexpected nand command 0x%x\n", command
);
756 static int read_page(struct mtd_info
*mtd
, struct nand_chip
*nand
,
757 uint8_t *buf
, int page
, bool use_ecc
)
759 struct docg4_priv
*doc
= nand
->priv
;
760 void __iomem
*docptr
= doc
->virtadr
;
761 uint16_t status
, edc_err
, *buf16
;
762 int bits_corrected
= 0;
764 dev_dbg(doc
->dev
, "%s: page %08x\n", __func__
, page
);
766 writew(DOC_ECCCONF0_READ_MODE
|
767 DOC_ECCCONF0_ECC_ENABLE
|
768 DOC_ECCCONF0_UNKNOWN
|
770 docptr
+ DOC_ECCCONF0
);
777 /* the 1st byte from the I/O reg is a status; the rest is page data */
778 status
= readw(docptr
+ DOC_IOSPACE_DATA
);
779 if (status
& DOCG4_READ_ERROR
) {
781 "docg4_read_page: bad status: 0x%02x\n", status
);
782 writew(0, docptr
+ DOC_DATAEND
);
786 dev_dbg(doc
->dev
, "%s: status = 0x%x\n", __func__
, status
);
788 docg4_read_buf(mtd
, buf
, DOCG4_PAGE_SIZE
); /* read the page data */
790 /* this device always reads oob after page data */
791 /* first 14 oob bytes read from I/O reg */
792 docg4_read_buf(mtd
, nand
->oob_poi
, 14);
794 /* last 2 read from another reg */
795 buf16
= (uint16_t *)(nand
->oob_poi
+ 14);
796 *buf16
= readw(docptr
+ DOCG4_MYSTERY_REG
);
800 if (likely(use_ecc
== true)) {
802 /* read the register that tells us if bitflip(s) detected */
803 edc_err
= readw(docptr
+ DOC_ECCCONF1
);
804 edc_err
= readw(docptr
+ DOC_ECCCONF1
);
805 dev_dbg(doc
->dev
, "%s: edc_err = 0x%02x\n", __func__
, edc_err
);
807 /* If bitflips are reported, attempt to correct with ecc */
808 if (edc_err
& DOC_ECCCONF1_BCH_SYNDROM_ERR
) {
809 bits_corrected
= correct_data(mtd
, buf
, page
);
810 if (bits_corrected
== -EBADMSG
)
811 mtd
->ecc_stats
.failed
++;
813 mtd
->ecc_stats
.corrected
+= bits_corrected
;
817 writew(0, docptr
+ DOC_DATAEND
);
818 if (bits_corrected
== -EBADMSG
) /* uncorrectable errors */
820 return bits_corrected
;
824 static int docg4_read_page_raw(struct mtd_info
*mtd
, struct nand_chip
*nand
,
825 uint8_t *buf
, int oob_required
, int page
)
827 return read_page(mtd
, nand
, buf
, page
, false);
830 static int docg4_read_page(struct mtd_info
*mtd
, struct nand_chip
*nand
,
831 uint8_t *buf
, int oob_required
, int page
)
833 return read_page(mtd
, nand
, buf
, page
, true);
836 static int docg4_read_oob(struct mtd_info
*mtd
, struct nand_chip
*nand
,
839 struct docg4_priv
*doc
= nand
->priv
;
840 void __iomem
*docptr
= doc
->virtadr
;
843 dev_dbg(doc
->dev
, "%s: page %x\n", __func__
, page
);
845 docg4_command(mtd
, NAND_CMD_READ0
, nand
->ecc
.size
, page
);
847 writew(DOC_ECCCONF0_READ_MODE
| DOCG4_OOB_SIZE
, docptr
+ DOC_ECCCONF0
);
854 /* the 1st byte from the I/O reg is a status; the rest is oob data */
855 status
= readw(docptr
+ DOC_IOSPACE_DATA
);
856 if (status
& DOCG4_READ_ERROR
) {
858 "docg4_read_oob failed: status = 0x%02x\n", status
);
862 dev_dbg(doc
->dev
, "%s: status = 0x%x\n", __func__
, status
);
864 docg4_read_buf(mtd
, nand
->oob_poi
, 16);
869 writew(0, docptr
+ DOC_DATAEND
);
875 static int docg4_erase_block(struct mtd_info
*mtd
, int page
)
877 struct nand_chip
*nand
= mtd
->priv
;
878 struct docg4_priv
*doc
= nand
->priv
;
879 void __iomem
*docptr
= doc
->virtadr
;
882 dev_dbg(doc
->dev
, "%s: page %04x\n", __func__
, page
);
886 writew(DOCG4_SEQ_BLOCKERASE
, docptr
+ DOC_FLASHSEQUENCE
);
887 writew(DOC_CMD_PROG_BLOCK_ADDR
, docptr
+ DOC_FLASHCOMMAND
);
890 /* only 2 bytes of address are written to specify erase block */
891 g4_page
= (uint16_t)(page
/ 4); /* to g4's 2k page addressing */
892 writeb(g4_page
& 0xff, docptr
+ DOC_FLASHADDRESS
);
894 writeb(g4_page
& 0xff, docptr
+ DOC_FLASHADDRESS
);
897 /* start the erasure */
898 writew(DOC_CMD_ERASECYCLE2
, docptr
+ DOC_FLASHCOMMAND
);
902 usleep_range(500, 1000); /* erasure is long; take a snooze */
904 writew(DOCG4_SEQ_FLUSH
, docptr
+ DOC_FLASHSEQUENCE
);
905 writew(DOCG4_CMD_FLUSH
, docptr
+ DOC_FLASHCOMMAND
);
906 writew(DOC_ECCCONF0_READ_MODE
| 4, docptr
+ DOC_ECCCONF0
);
913 read_progstatus(doc
);
915 writew(0, docptr
+ DOC_DATAEND
);
920 return nand
->waitfunc(mtd
, nand
);
923 static int write_page(struct mtd_info
*mtd
, struct nand_chip
*nand
,
924 const uint8_t *buf
, bool use_ecc
)
926 struct docg4_priv
*doc
= nand
->priv
;
927 void __iomem
*docptr
= doc
->virtadr
;
930 dev_dbg(doc
->dev
, "%s...\n", __func__
);
932 writew(DOC_ECCCONF0_ECC_ENABLE
|
933 DOC_ECCCONF0_UNKNOWN
|
935 docptr
+ DOC_ECCCONF0
);
938 /* write the page data */
939 docg4_write_buf16(mtd
, buf
, DOCG4_PAGE_SIZE
);
941 /* oob bytes 0 through 5 are written to I/O reg */
942 docg4_write_buf16(mtd
, nand
->oob_poi
, 6);
944 /* oob byte 6 written to a separate reg */
945 writew(nand
->oob_poi
[6], docptr
+ DOCG4_OOB_6_7
);
950 /* write hw-generated ecc bytes to oob */
951 if (likely(use_ecc
== true)) {
952 /* oob byte 7 is hamming code */
953 uint8_t hamming
= readb(docptr
+ DOC_HAMMINGPARITY
);
954 hamming
= readb(docptr
+ DOC_HAMMINGPARITY
); /* 2nd read */
955 writew(hamming
, docptr
+ DOCG4_OOB_6_7
);
958 /* read the 7 bch bytes from ecc regs */
959 read_hw_ecc(docptr
, ecc_buf
);
960 ecc_buf
[7] = 0; /* clear the "page written" flag */
963 /* write user-supplied bytes to oob */
965 writew(nand
->oob_poi
[7], docptr
+ DOCG4_OOB_6_7
);
967 memcpy(ecc_buf
, &nand
->oob_poi
[8], 8);
970 docg4_write_buf16(mtd
, ecc_buf
, 8);
973 writew(0, docptr
+ DOC_DATAEND
);
979 static int docg4_write_page_raw(struct mtd_info
*mtd
, struct nand_chip
*nand
,
980 const uint8_t *buf
, int oob_required
)
982 return write_page(mtd
, nand
, buf
, false);
985 static int docg4_write_page(struct mtd_info
*mtd
, struct nand_chip
*nand
,
986 const uint8_t *buf
, int oob_required
)
988 return write_page(mtd
, nand
, buf
, true);
991 static int docg4_write_oob(struct mtd_info
*mtd
, struct nand_chip
*nand
,
995 * Writing oob-only is not really supported, because MLC nand must write
996 * oob bytes at the same time as page data. Nonetheless, we save the
997 * oob buffer contents here, and then write it along with the page data
998 * if the same page is subsequently written. This allows user space
999 * utilities that write the oob data prior to the page data to work
1000 * (e.g., nandwrite). The disdvantage is that, if the intention was to
1001 * write oob only, the operation is quietly ignored. Also, oob can get
1002 * corrupted if two concurrent processes are running nandwrite.
1005 /* note that bytes 7..14 are hw generated hamming/ecc and overwritten */
1006 struct docg4_priv
*doc
= nand
->priv
;
1007 doc
->oob_page
= page
;
1008 memcpy(doc
->oob_buf
, nand
->oob_poi
, 16);
1012 static int __init
read_factory_bbt(struct mtd_info
*mtd
)
1015 * The device contains a read-only factory bad block table. Read it and
1016 * update the memory-based bbt accordingly.
1019 struct nand_chip
*nand
= mtd
->priv
;
1020 struct docg4_priv
*doc
= nand
->priv
;
1021 uint32_t g4_addr
= mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE
, 0);
1024 __u32 eccfailed_stats
= mtd
->ecc_stats
.failed
;
1026 buf
= kzalloc(DOCG4_PAGE_SIZE
, GFP_KERNEL
);
1030 read_page_prologue(mtd
, g4_addr
);
1031 docg4_read_page(mtd
, nand
, buf
, 0, DOCG4_FACTORY_BBT_PAGE
);
1034 * If no memory-based bbt was created, exit. This will happen if module
1035 * parameter ignore_badblocks is set. Then why even call this function?
1036 * For an unknown reason, block erase always fails if it's the first
1037 * operation after device power-up. The above read ensures it never is.
1040 if (nand
->bbt
== NULL
) /* no memory-based bbt */
1043 if (mtd
->ecc_stats
.failed
> eccfailed_stats
) {
1045 * Whoops, an ecc failure ocurred reading the factory bbt.
1046 * It is stored redundantly, so we get another chance.
1048 eccfailed_stats
= mtd
->ecc_stats
.failed
;
1049 docg4_read_page(mtd
, nand
, buf
, 0, DOCG4_REDUNDANT_BBT_PAGE
);
1050 if (mtd
->ecc_stats
.failed
> eccfailed_stats
) {
1052 "The factory bbt could not be read!\n");
1058 * Parse factory bbt and update memory-based bbt. Factory bbt format is
1059 * simple: one bit per block, block numbers increase left to right (msb
1060 * to lsb). Bit clear means bad block.
1062 for (i
= block
= 0; block
< DOCG4_NUMBLOCKS
; block
+= 8, i
++) {
1064 unsigned long bits
= ~buf
[i
];
1065 for_each_set_bit(bitnum
, &bits
, 8) {
1066 int badblock
= block
+ 7 - bitnum
;
1067 nand
->bbt
[badblock
/ 4] |=
1068 0x03 << ((badblock
% 4) * 2);
1069 mtd
->ecc_stats
.badblocks
++;
1070 dev_notice(doc
->dev
, "factory-marked bad block: %d\n",
1079 static int docg4_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
1082 * Mark a block as bad. Bad blocks are marked in the oob area of the
1083 * first page of the block. The default scan_bbt() in the nand
1084 * infrastructure code works fine for building the memory-based bbt
1085 * during initialization, as does the nand infrastructure function that
1086 * checks if a block is bad by reading the bbt. This function replaces
1087 * the nand default because writes to oob-only are not supported.
1092 struct nand_chip
*nand
= mtd
->priv
;
1093 struct docg4_priv
*doc
= nand
->priv
;
1094 struct nand_bbt_descr
*bbtd
= nand
->badblock_pattern
;
1095 int page
= (int)(ofs
>> nand
->page_shift
);
1096 uint32_t g4_addr
= mtd_to_docg4_address(page
, 0);
1098 dev_dbg(doc
->dev
, "%s: %08llx\n", __func__
, ofs
);
1100 if (unlikely(ofs
& (DOCG4_BLOCK_SIZE
- 1)))
1101 dev_warn(doc
->dev
, "%s: ofs %llx not start of block!\n",
1104 /* allocate blank buffer for page data */
1105 buf
= kzalloc(DOCG4_PAGE_SIZE
, GFP_KERNEL
);
1109 /* write bit-wise negation of pattern to oob buffer */
1110 memset(nand
->oob_poi
, 0xff, mtd
->oobsize
);
1111 for (i
= 0; i
< bbtd
->len
; i
++)
1112 nand
->oob_poi
[bbtd
->offs
+ i
] = ~bbtd
->pattern
[i
];
1114 /* write first page of block */
1115 write_page_prologue(mtd
, g4_addr
);
1116 docg4_write_page(mtd
, nand
, buf
, 1);
1117 ret
= pageprog(mtd
);
1124 static int docg4_block_neverbad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
1126 /* only called when module_param ignore_badblocks is set */
1130 static int docg4_suspend(struct platform_device
*pdev
, pm_message_t state
)
1133 * Put the device into "deep power-down" mode. Note that CE# must be
1134 * deasserted for this to take effect. The xscale, e.g., can be
1135 * configured to float this signal when the processor enters power-down,
1136 * and a suitable pull-up ensures its deassertion.
1141 struct docg4_priv
*doc
= platform_get_drvdata(pdev
);
1142 void __iomem
*docptr
= doc
->virtadr
;
1144 dev_dbg(doc
->dev
, "%s...\n", __func__
);
1146 /* poll the register that tells us we're ready to go to sleep */
1147 for (i
= 0; i
< 10; i
++) {
1148 pwr_down
= readb(docptr
+ DOC_POWERMODE
);
1149 if (pwr_down
& DOC_POWERDOWN_READY
)
1151 usleep_range(1000, 4000);
1154 if (pwr_down
& DOC_POWERDOWN_READY
) {
1155 dev_err(doc
->dev
, "suspend failed; "
1156 "timeout polling DOC_POWERDOWN_READY\n");
1160 writew(DOC_ASICMODE_POWERDOWN
| DOC_ASICMODE_MDWREN
,
1161 docptr
+ DOC_ASICMODE
);
1162 writew(~(DOC_ASICMODE_POWERDOWN
| DOC_ASICMODE_MDWREN
),
1163 docptr
+ DOC_ASICMODECONFIRM
);
1170 static int docg4_resume(struct platform_device
*pdev
)
1174 * Exit power-down. Twelve consecutive reads of the address below
1175 * accomplishes this, assuming CE# has been asserted.
1178 struct docg4_priv
*doc
= platform_get_drvdata(pdev
);
1179 void __iomem
*docptr
= doc
->virtadr
;
1182 dev_dbg(doc
->dev
, "%s...\n", __func__
);
1184 for (i
= 0; i
< 12; i
++)
1185 readb(docptr
+ 0x1fff);
1190 static void __init
init_mtd_structs(struct mtd_info
*mtd
)
1192 /* initialize mtd and nand data structures */
1195 * Note that some of the following initializations are not usually
1196 * required within a nand driver because they are performed by the nand
1197 * infrastructure code as part of nand_scan(). In this case they need
1198 * to be initialized here because we skip call to nand_scan_ident() (the
1199 * first half of nand_scan()). The call to nand_scan_ident() is skipped
1200 * because for this device the chip id is not read in the manner of a
1201 * standard nand device. Unfortunately, nand_scan_ident() does other
1202 * things as well, such as call nand_set_defaults().
1205 struct nand_chip
*nand
= mtd
->priv
;
1206 struct docg4_priv
*doc
= nand
->priv
;
1208 mtd
->size
= DOCG4_CHIP_SIZE
;
1209 mtd
->name
= "Msys_Diskonchip_G4";
1210 mtd
->writesize
= DOCG4_PAGE_SIZE
;
1211 mtd
->erasesize
= DOCG4_BLOCK_SIZE
;
1212 mtd
->oobsize
= DOCG4_OOB_SIZE
;
1213 nand
->chipsize
= DOCG4_CHIP_SIZE
;
1214 nand
->chip_shift
= DOCG4_CHIP_SHIFT
;
1215 nand
->bbt_erase_shift
= nand
->phys_erase_shift
= DOCG4_ERASE_SHIFT
;
1216 nand
->chip_delay
= 20;
1217 nand
->page_shift
= DOCG4_PAGE_SHIFT
;
1218 nand
->pagemask
= 0x3ffff;
1219 nand
->badblockpos
= NAND_LARGE_BADBLOCK_POS
;
1220 nand
->badblockbits
= 8;
1221 nand
->ecc
.layout
= &docg4_oobinfo
;
1222 nand
->ecc
.mode
= NAND_ECC_HW_SYNDROME
;
1223 nand
->ecc
.size
= DOCG4_PAGE_SIZE
;
1224 nand
->ecc
.prepad
= 8;
1225 nand
->ecc
.bytes
= 8;
1226 nand
->ecc
.strength
= DOCG4_T
;
1227 nand
->options
= NAND_BUSWIDTH_16
| NAND_NO_SUBPAGE_WRITE
;
1228 nand
->IO_ADDR_R
= nand
->IO_ADDR_W
= doc
->virtadr
+ DOC_IOSPACE_DATA
;
1229 nand
->controller
= &nand
->hwcontrol
;
1230 spin_lock_init(&nand
->controller
->lock
);
1231 init_waitqueue_head(&nand
->controller
->wq
);
1234 nand
->cmdfunc
= docg4_command
;
1235 nand
->waitfunc
= docg4_wait
;
1236 nand
->select_chip
= docg4_select_chip
;
1237 nand
->read_byte
= docg4_read_byte
;
1238 nand
->block_markbad
= docg4_block_markbad
;
1239 nand
->read_buf
= docg4_read_buf
;
1240 nand
->write_buf
= docg4_write_buf16
;
1241 nand
->erase
= docg4_erase_block
;
1242 nand
->ecc
.read_page
= docg4_read_page
;
1243 nand
->ecc
.write_page
= docg4_write_page
;
1244 nand
->ecc
.read_page_raw
= docg4_read_page_raw
;
1245 nand
->ecc
.write_page_raw
= docg4_write_page_raw
;
1246 nand
->ecc
.read_oob
= docg4_read_oob
;
1247 nand
->ecc
.write_oob
= docg4_write_oob
;
1250 * The way the nand infrastructure code is written, a memory-based bbt
1251 * is not created if NAND_SKIP_BBTSCAN is set. With no memory bbt,
1252 * nand->block_bad() is used. So when ignoring bad blocks, we skip the
1253 * scan and define a dummy block_bad() which always returns 0.
1255 if (ignore_badblocks
) {
1256 nand
->options
|= NAND_SKIP_BBTSCAN
;
1257 nand
->block_bad
= docg4_block_neverbad
;
1262 static int __init
read_id_reg(struct mtd_info
*mtd
)
1264 struct nand_chip
*nand
= mtd
->priv
;
1265 struct docg4_priv
*doc
= nand
->priv
;
1266 void __iomem
*docptr
= doc
->virtadr
;
1269 /* check for presence of g4 chip by reading id registers */
1270 id1
= readw(docptr
+ DOC_CHIPID
);
1271 id1
= readw(docptr
+ DOCG4_MYSTERY_REG
);
1272 id2
= readw(docptr
+ DOC_CHIPID_INV
);
1273 id2
= readw(docptr
+ DOCG4_MYSTERY_REG
);
1275 if (id1
== DOCG4_IDREG1_VALUE
&& id2
== DOCG4_IDREG2_VALUE
) {
1277 "NAND device: 128MiB Diskonchip G4 detected\n");
1284 static char const *part_probes
[] = { "cmdlinepart", "saftlpart", NULL
};
1286 static int __init
probe_docg4(struct platform_device
*pdev
)
1288 struct mtd_info
*mtd
;
1289 struct nand_chip
*nand
;
1290 void __iomem
*virtadr
;
1291 struct docg4_priv
*doc
;
1294 struct device
*dev
= &pdev
->dev
;
1296 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1298 dev_err(dev
, "no io memory resource defined!\n");
1302 virtadr
= ioremap(r
->start
, resource_size(r
));
1304 dev_err(dev
, "Diskonchip ioremap failed: %pR\n", r
);
1308 len
= sizeof(struct mtd_info
) + sizeof(struct nand_chip
) +
1309 sizeof(struct docg4_priv
);
1310 mtd
= kzalloc(len
, GFP_KERNEL
);
1315 nand
= (struct nand_chip
*) (mtd
+ 1);
1316 doc
= (struct docg4_priv
*) (nand
+ 1);
1319 mtd
->owner
= THIS_MODULE
;
1320 doc
->virtadr
= virtadr
;
1323 init_mtd_structs(mtd
);
1325 /* initialize kernel bch algorithm */
1326 doc
->bch
= init_bch(DOCG4_M
, DOCG4_T
, DOCG4_PRIMITIVE_POLY
);
1327 if (doc
->bch
== NULL
) {
1332 platform_set_drvdata(pdev
, doc
);
1335 retval
= read_id_reg(mtd
);
1336 if (retval
== -ENODEV
) {
1337 dev_warn(dev
, "No diskonchip G4 device found.\n");
1341 retval
= nand_scan_tail(mtd
);
1345 retval
= read_factory_bbt(mtd
);
1349 retval
= mtd_device_parse_register(mtd
, part_probes
, NULL
, NULL
, 0);
1359 /* re-declarations avoid compiler warning */
1360 struct nand_chip
*nand
= mtd
->priv
;
1361 struct docg4_priv
*doc
= nand
->priv
;
1362 nand_release(mtd
); /* deletes partitions and mtd devices */
1370 static int __exit
cleanup_docg4(struct platform_device
*pdev
)
1372 struct docg4_priv
*doc
= platform_get_drvdata(pdev
);
1373 nand_release(doc
->mtd
);
1376 iounmap(doc
->virtadr
);
1380 static struct platform_driver docg4_driver
= {
1384 .suspend
= docg4_suspend
,
1385 .resume
= docg4_resume
,
1386 .remove
= __exit_p(cleanup_docg4
),
1389 module_platform_driver_probe(docg4_driver
, probe_docg4
);
1391 MODULE_LICENSE("GPL");
1392 MODULE_AUTHOR("Mike Dunn");
1393 MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver");