2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the version 2 of the GNU General Public License
8 * as published by the Free Software Foundation
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/netdevice.h>
23 #include <linux/if_arp.h>
24 #include <linux/can.h>
25 #include <linux/can/dev.h>
26 #include <linux/can/skb.h>
27 #include <linux/can/netlink.h>
28 #include <linux/can/led.h>
29 #include <net/rtnetlink.h>
31 #define MOD_DESC "CAN device driver interface"
33 MODULE_DESCRIPTION(MOD_DESC
);
34 MODULE_LICENSE("GPL v2");
35 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
37 /* CAN DLC to real data length conversion helpers */
39 static const u8 dlc2len
[] = {0, 1, 2, 3, 4, 5, 6, 7,
40 8, 12, 16, 20, 24, 32, 48, 64};
42 /* get data length from can_dlc with sanitized can_dlc */
43 u8
can_dlc2len(u8 can_dlc
)
45 return dlc2len
[can_dlc
& 0x0F];
47 EXPORT_SYMBOL_GPL(can_dlc2len
);
49 static const u8 len2dlc
[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */
50 9, 9, 9, 9, /* 9 - 12 */
51 10, 10, 10, 10, /* 13 - 16 */
52 11, 11, 11, 11, /* 17 - 20 */
53 12, 12, 12, 12, /* 21 - 24 */
54 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */
55 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */
56 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */
57 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */
58 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */
60 /* map the sanitized data length to an appropriate data length code */
61 u8
can_len2dlc(u8 len
)
63 if (unlikely(len
> 64))
68 EXPORT_SYMBOL_GPL(can_len2dlc
);
70 #ifdef CONFIG_CAN_CALC_BITTIMING
71 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
74 * Bit-timing calculation derived from:
76 * Code based on LinCAN sources and H8S2638 project
77 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
78 * Copyright 2005 Stanislav Marek
79 * email: pisa@cmp.felk.cvut.cz
81 * Calculates proper bit-timing parameters for a specified bit-rate
82 * and sample-point, which can then be used to set the bit-timing
83 * registers of the CAN controller. You can find more information
84 * in the header file linux/can/netlink.h.
86 static int can_update_spt(const struct can_bittiming_const
*btc
,
87 int sampl_pt
, int tseg
, int *tseg1
, int *tseg2
)
89 *tseg2
= tseg
+ 1 - (sampl_pt
* (tseg
+ 1)) / 1000;
90 if (*tseg2
< btc
->tseg2_min
)
91 *tseg2
= btc
->tseg2_min
;
92 if (*tseg2
> btc
->tseg2_max
)
93 *tseg2
= btc
->tseg2_max
;
94 *tseg1
= tseg
- *tseg2
;
95 if (*tseg1
> btc
->tseg1_max
) {
96 *tseg1
= btc
->tseg1_max
;
97 *tseg2
= tseg
- *tseg1
;
99 return 1000 * (tseg
+ 1 - *tseg2
) / (tseg
+ 1);
102 static int can_calc_bittiming(struct net_device
*dev
, struct can_bittiming
*bt
,
103 const struct can_bittiming_const
*btc
)
105 struct can_priv
*priv
= netdev_priv(dev
);
106 long best_error
= 1000000000, error
= 0;
107 int best_tseg
= 0, best_brp
= 0, brp
= 0;
108 int tsegall
, tseg
= 0, tseg1
= 0, tseg2
= 0;
109 int spt_error
= 1000, spt
= 0, sampl_pt
;
113 /* Use CiA recommended sample points */
114 if (bt
->sample_point
) {
115 sampl_pt
= bt
->sample_point
;
117 if (bt
->bitrate
> 800000)
119 else if (bt
->bitrate
> 500000)
125 /* tseg even = round down, odd = round up */
126 for (tseg
= (btc
->tseg1_max
+ btc
->tseg2_max
) * 2 + 1;
127 tseg
>= (btc
->tseg1_min
+ btc
->tseg2_min
) * 2; tseg
--) {
128 tsegall
= 1 + tseg
/ 2;
129 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
130 brp
= priv
->clock
.freq
/ (tsegall
* bt
->bitrate
) + tseg
% 2;
131 /* chose brp step which is possible in system */
132 brp
= (brp
/ btc
->brp_inc
) * btc
->brp_inc
;
133 if ((brp
< btc
->brp_min
) || (brp
> btc
->brp_max
))
135 rate
= priv
->clock
.freq
/ (brp
* tsegall
);
136 error
= bt
->bitrate
- rate
;
137 /* tseg brp biterror */
140 if (error
> best_error
)
144 spt
= can_update_spt(btc
, sampl_pt
, tseg
/ 2,
146 error
= sampl_pt
- spt
;
149 if (error
> spt_error
)
153 best_tseg
= tseg
/ 2;
160 /* Error in one-tenth of a percent */
161 error
= (best_error
* 1000) / bt
->bitrate
;
162 if (error
> CAN_CALC_MAX_ERROR
) {
164 "bitrate error %ld.%ld%% too high\n",
165 error
/ 10, error
% 10);
168 netdev_warn(dev
, "bitrate error %ld.%ld%%\n",
169 error
/ 10, error
% 10);
173 /* real sample point */
174 bt
->sample_point
= can_update_spt(btc
, sampl_pt
, best_tseg
,
177 v64
= (u64
)best_brp
* 1000000000UL;
178 do_div(v64
, priv
->clock
.freq
);
180 bt
->prop_seg
= tseg1
/ 2;
181 bt
->phase_seg1
= tseg1
- bt
->prop_seg
;
182 bt
->phase_seg2
= tseg2
;
184 /* check for sjw user settings */
185 if (!bt
->sjw
|| !btc
->sjw_max
)
188 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
189 if (bt
->sjw
> btc
->sjw_max
)
190 bt
->sjw
= btc
->sjw_max
;
191 /* bt->sjw must not be higher than tseg2 */
198 bt
->bitrate
= priv
->clock
.freq
/ (bt
->brp
* (tseg1
+ tseg2
+ 1));
202 #else /* !CONFIG_CAN_CALC_BITTIMING */
203 static int can_calc_bittiming(struct net_device
*dev
, struct can_bittiming
*bt
,
204 const struct can_bittiming_const
*btc
)
206 netdev_err(dev
, "bit-timing calculation not available\n");
209 #endif /* CONFIG_CAN_CALC_BITTIMING */
212 * Checks the validity of the specified bit-timing parameters prop_seg,
213 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
214 * prescaler value brp. You can find more information in the header
215 * file linux/can/netlink.h.
217 static int can_fixup_bittiming(struct net_device
*dev
, struct can_bittiming
*bt
,
218 const struct can_bittiming_const
*btc
)
220 struct can_priv
*priv
= netdev_priv(dev
);
224 tseg1
= bt
->prop_seg
+ bt
->phase_seg1
;
227 if (bt
->sjw
> btc
->sjw_max
||
228 tseg1
< btc
->tseg1_min
|| tseg1
> btc
->tseg1_max
||
229 bt
->phase_seg2
< btc
->tseg2_min
|| bt
->phase_seg2
> btc
->tseg2_max
)
232 brp64
= (u64
)priv
->clock
.freq
* (u64
)bt
->tq
;
233 if (btc
->brp_inc
> 1)
234 do_div(brp64
, btc
->brp_inc
);
235 brp64
+= 500000000UL - 1;
236 do_div(brp64
, 1000000000UL); /* the practicable BRP */
237 if (btc
->brp_inc
> 1)
238 brp64
*= btc
->brp_inc
;
239 bt
->brp
= (u32
)brp64
;
241 if (bt
->brp
< btc
->brp_min
|| bt
->brp
> btc
->brp_max
)
244 alltseg
= bt
->prop_seg
+ bt
->phase_seg1
+ bt
->phase_seg2
+ 1;
245 bt
->bitrate
= priv
->clock
.freq
/ (bt
->brp
* alltseg
);
246 bt
->sample_point
= ((tseg1
+ 1) * 1000) / alltseg
;
251 static int can_get_bittiming(struct net_device
*dev
, struct can_bittiming
*bt
,
252 const struct can_bittiming_const
*btc
)
256 /* Check if the CAN device has bit-timing parameters */
261 * Depending on the given can_bittiming parameter structure the CAN
262 * timing parameters are calculated based on the provided bitrate OR
263 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
264 * provided directly which are then checked and fixed up.
266 if (!bt
->tq
&& bt
->bitrate
)
267 err
= can_calc_bittiming(dev
, bt
, btc
);
268 else if (bt
->tq
&& !bt
->bitrate
)
269 err
= can_fixup_bittiming(dev
, bt
, btc
);
276 static void can_update_state_error_stats(struct net_device
*dev
,
277 enum can_state new_state
)
279 struct can_priv
*priv
= netdev_priv(dev
);
281 if (new_state
<= priv
->state
)
285 case CAN_STATE_ERROR_WARNING
:
286 priv
->can_stats
.error_warning
++;
288 case CAN_STATE_ERROR_PASSIVE
:
289 priv
->can_stats
.error_passive
++;
291 case CAN_STATE_BUS_OFF
:
297 static int can_tx_state_to_frame(struct net_device
*dev
, enum can_state state
)
300 case CAN_STATE_ERROR_ACTIVE
:
301 return CAN_ERR_CRTL_ACTIVE
;
302 case CAN_STATE_ERROR_WARNING
:
303 return CAN_ERR_CRTL_TX_WARNING
;
304 case CAN_STATE_ERROR_PASSIVE
:
305 return CAN_ERR_CRTL_TX_PASSIVE
;
311 static int can_rx_state_to_frame(struct net_device
*dev
, enum can_state state
)
314 case CAN_STATE_ERROR_ACTIVE
:
315 return CAN_ERR_CRTL_ACTIVE
;
316 case CAN_STATE_ERROR_WARNING
:
317 return CAN_ERR_CRTL_RX_WARNING
;
318 case CAN_STATE_ERROR_PASSIVE
:
319 return CAN_ERR_CRTL_RX_PASSIVE
;
325 void can_change_state(struct net_device
*dev
, struct can_frame
*cf
,
326 enum can_state tx_state
, enum can_state rx_state
)
328 struct can_priv
*priv
= netdev_priv(dev
);
329 enum can_state new_state
= max(tx_state
, rx_state
);
331 if (unlikely(new_state
== priv
->state
)) {
332 netdev_warn(dev
, "%s: oops, state did not change", __func__
);
336 netdev_dbg(dev
, "New error state: %d\n", new_state
);
338 can_update_state_error_stats(dev
, new_state
);
339 priv
->state
= new_state
;
341 if (unlikely(new_state
== CAN_STATE_BUS_OFF
)) {
342 cf
->can_id
|= CAN_ERR_BUSOFF
;
346 cf
->can_id
|= CAN_ERR_CRTL
;
347 cf
->data
[1] |= tx_state
>= rx_state
?
348 can_tx_state_to_frame(dev
, tx_state
) : 0;
349 cf
->data
[1] |= tx_state
<= rx_state
?
350 can_rx_state_to_frame(dev
, rx_state
) : 0;
352 EXPORT_SYMBOL_GPL(can_change_state
);
355 * Local echo of CAN messages
357 * CAN network devices *should* support a local echo functionality
358 * (see Documentation/networking/can.txt). To test the handling of CAN
359 * interfaces that do not support the local echo both driver types are
360 * implemented. In the case that the driver does not support the echo
361 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
362 * to perform the echo as a fallback solution.
364 static void can_flush_echo_skb(struct net_device
*dev
)
366 struct can_priv
*priv
= netdev_priv(dev
);
367 struct net_device_stats
*stats
= &dev
->stats
;
370 for (i
= 0; i
< priv
->echo_skb_max
; i
++) {
371 if (priv
->echo_skb
[i
]) {
372 kfree_skb(priv
->echo_skb
[i
]);
373 priv
->echo_skb
[i
] = NULL
;
375 stats
->tx_aborted_errors
++;
381 * Put the skb on the stack to be looped backed locally lateron
383 * The function is typically called in the start_xmit function
384 * of the device driver. The driver must protect access to
385 * priv->echo_skb, if necessary.
387 void can_put_echo_skb(struct sk_buff
*skb
, struct net_device
*dev
,
390 struct can_priv
*priv
= netdev_priv(dev
);
392 BUG_ON(idx
>= priv
->echo_skb_max
);
394 /* check flag whether this packet has to be looped back */
395 if (!(dev
->flags
& IFF_ECHO
) || skb
->pkt_type
!= PACKET_LOOPBACK
||
396 (skb
->protocol
!= htons(ETH_P_CAN
) &&
397 skb
->protocol
!= htons(ETH_P_CANFD
))) {
402 if (!priv
->echo_skb
[idx
]) {
404 skb
= can_create_echo_skb(skb
);
408 /* make settings for echo to reduce code in irq context */
409 skb
->pkt_type
= PACKET_BROADCAST
;
410 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
413 /* save this skb for tx interrupt echo handling */
414 priv
->echo_skb
[idx
] = skb
;
416 /* locking problem with netif_stop_queue() ?? */
417 netdev_err(dev
, "%s: BUG! echo_skb is occupied!\n", __func__
);
421 EXPORT_SYMBOL_GPL(can_put_echo_skb
);
424 * Get the skb from the stack and loop it back locally
426 * The function is typically called when the TX done interrupt
427 * is handled in the device driver. The driver must protect
428 * access to priv->echo_skb, if necessary.
430 unsigned int can_get_echo_skb(struct net_device
*dev
, unsigned int idx
)
432 struct can_priv
*priv
= netdev_priv(dev
);
434 BUG_ON(idx
>= priv
->echo_skb_max
);
436 if (priv
->echo_skb
[idx
]) {
437 struct sk_buff
*skb
= priv
->echo_skb
[idx
];
438 struct can_frame
*cf
= (struct can_frame
*)skb
->data
;
439 u8 dlc
= cf
->can_dlc
;
441 netif_rx(priv
->echo_skb
[idx
]);
442 priv
->echo_skb
[idx
] = NULL
;
449 EXPORT_SYMBOL_GPL(can_get_echo_skb
);
452 * Remove the skb from the stack and free it.
454 * The function is typically called when TX failed.
456 void can_free_echo_skb(struct net_device
*dev
, unsigned int idx
)
458 struct can_priv
*priv
= netdev_priv(dev
);
460 BUG_ON(idx
>= priv
->echo_skb_max
);
462 if (priv
->echo_skb
[idx
]) {
463 dev_kfree_skb_any(priv
->echo_skb
[idx
]);
464 priv
->echo_skb
[idx
] = NULL
;
467 EXPORT_SYMBOL_GPL(can_free_echo_skb
);
470 * CAN device restart for bus-off recovery
472 static void can_restart(unsigned long data
)
474 struct net_device
*dev
= (struct net_device
*)data
;
475 struct can_priv
*priv
= netdev_priv(dev
);
476 struct net_device_stats
*stats
= &dev
->stats
;
478 struct can_frame
*cf
;
481 BUG_ON(netif_carrier_ok(dev
));
484 * No synchronization needed because the device is bus-off and
485 * no messages can come in or go out.
487 can_flush_echo_skb(dev
);
489 /* send restart message upstream */
490 skb
= alloc_can_err_skb(dev
, &cf
);
495 cf
->can_id
|= CAN_ERR_RESTARTED
;
500 stats
->rx_bytes
+= cf
->can_dlc
;
503 netdev_dbg(dev
, "restarted\n");
504 priv
->can_stats
.restarts
++;
506 /* Now restart the device */
507 err
= priv
->do_set_mode(dev
, CAN_MODE_START
);
509 netif_carrier_on(dev
);
511 netdev_err(dev
, "Error %d during restart", err
);
514 int can_restart_now(struct net_device
*dev
)
516 struct can_priv
*priv
= netdev_priv(dev
);
519 * A manual restart is only permitted if automatic restart is
520 * disabled and the device is in the bus-off state
522 if (priv
->restart_ms
)
524 if (priv
->state
!= CAN_STATE_BUS_OFF
)
527 /* Runs as soon as possible in the timer context */
528 mod_timer(&priv
->restart_timer
, jiffies
);
536 * This functions should be called when the device goes bus-off to
537 * tell the netif layer that no more packets can be sent or received.
538 * If enabled, a timer is started to trigger bus-off recovery.
540 void can_bus_off(struct net_device
*dev
)
542 struct can_priv
*priv
= netdev_priv(dev
);
544 netdev_dbg(dev
, "bus-off\n");
546 netif_carrier_off(dev
);
547 priv
->can_stats
.bus_off
++;
549 if (priv
->restart_ms
)
550 mod_timer(&priv
->restart_timer
,
551 jiffies
+ (priv
->restart_ms
* HZ
) / 1000);
553 EXPORT_SYMBOL_GPL(can_bus_off
);
555 static void can_setup(struct net_device
*dev
)
557 dev
->type
= ARPHRD_CAN
;
559 dev
->hard_header_len
= 0;
561 dev
->tx_queue_len
= 10;
563 /* New-style flags. */
564 dev
->flags
= IFF_NOARP
;
565 dev
->features
= NETIF_F_HW_CSUM
;
568 struct sk_buff
*alloc_can_skb(struct net_device
*dev
, struct can_frame
**cf
)
572 skb
= netdev_alloc_skb(dev
, sizeof(struct can_skb_priv
) +
573 sizeof(struct can_frame
));
577 skb
->protocol
= htons(ETH_P_CAN
);
578 skb
->pkt_type
= PACKET_BROADCAST
;
579 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
581 can_skb_reserve(skb
);
582 can_skb_prv(skb
)->ifindex
= dev
->ifindex
;
584 *cf
= (struct can_frame
*)skb_put(skb
, sizeof(struct can_frame
));
585 memset(*cf
, 0, sizeof(struct can_frame
));
589 EXPORT_SYMBOL_GPL(alloc_can_skb
);
591 struct sk_buff
*alloc_canfd_skb(struct net_device
*dev
,
592 struct canfd_frame
**cfd
)
596 skb
= netdev_alloc_skb(dev
, sizeof(struct can_skb_priv
) +
597 sizeof(struct canfd_frame
));
601 skb
->protocol
= htons(ETH_P_CANFD
);
602 skb
->pkt_type
= PACKET_BROADCAST
;
603 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
605 can_skb_reserve(skb
);
606 can_skb_prv(skb
)->ifindex
= dev
->ifindex
;
608 *cfd
= (struct canfd_frame
*)skb_put(skb
, sizeof(struct canfd_frame
));
609 memset(*cfd
, 0, sizeof(struct canfd_frame
));
613 EXPORT_SYMBOL_GPL(alloc_canfd_skb
);
615 struct sk_buff
*alloc_can_err_skb(struct net_device
*dev
, struct can_frame
**cf
)
619 skb
= alloc_can_skb(dev
, cf
);
623 (*cf
)->can_id
= CAN_ERR_FLAG
;
624 (*cf
)->can_dlc
= CAN_ERR_DLC
;
628 EXPORT_SYMBOL_GPL(alloc_can_err_skb
);
631 * Allocate and setup space for the CAN network device
633 struct net_device
*alloc_candev(int sizeof_priv
, unsigned int echo_skb_max
)
635 struct net_device
*dev
;
636 struct can_priv
*priv
;
640 size
= ALIGN(sizeof_priv
, sizeof(struct sk_buff
*)) +
641 echo_skb_max
* sizeof(struct sk_buff
*);
645 dev
= alloc_netdev(size
, "can%d", NET_NAME_UNKNOWN
, can_setup
);
649 priv
= netdev_priv(dev
);
652 priv
->echo_skb_max
= echo_skb_max
;
653 priv
->echo_skb
= (void *)priv
+
654 ALIGN(sizeof_priv
, sizeof(struct sk_buff
*));
657 priv
->state
= CAN_STATE_STOPPED
;
659 init_timer(&priv
->restart_timer
);
663 EXPORT_SYMBOL_GPL(alloc_candev
);
666 * Free space of the CAN network device
668 void free_candev(struct net_device
*dev
)
672 EXPORT_SYMBOL_GPL(free_candev
);
675 * changing MTU and control mode for CAN/CANFD devices
677 int can_change_mtu(struct net_device
*dev
, int new_mtu
)
679 struct can_priv
*priv
= netdev_priv(dev
);
681 /* Do not allow changing the MTU while running */
682 if (dev
->flags
& IFF_UP
)
685 /* allow change of MTU according to the CANFD ability of the device */
688 priv
->ctrlmode
&= ~CAN_CTRLMODE_FD
;
692 if (!(priv
->ctrlmode_supported
& CAN_CTRLMODE_FD
))
695 priv
->ctrlmode
|= CAN_CTRLMODE_FD
;
705 EXPORT_SYMBOL_GPL(can_change_mtu
);
708 * Common open function when the device gets opened.
710 * This function should be called in the open function of the device
713 int open_candev(struct net_device
*dev
)
715 struct can_priv
*priv
= netdev_priv(dev
);
717 if (!priv
->bittiming
.bitrate
) {
718 netdev_err(dev
, "bit-timing not yet defined\n");
722 /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
723 if ((priv
->ctrlmode
& CAN_CTRLMODE_FD
) &&
724 (!priv
->data_bittiming
.bitrate
||
725 (priv
->data_bittiming
.bitrate
< priv
->bittiming
.bitrate
))) {
726 netdev_err(dev
, "incorrect/missing data bit-timing\n");
730 /* Switch carrier on if device was stopped while in bus-off state */
731 if (!netif_carrier_ok(dev
))
732 netif_carrier_on(dev
);
734 setup_timer(&priv
->restart_timer
, can_restart
, (unsigned long)dev
);
738 EXPORT_SYMBOL_GPL(open_candev
);
741 * Common close function for cleanup before the device gets closed.
743 * This function should be called in the close function of the device
746 void close_candev(struct net_device
*dev
)
748 struct can_priv
*priv
= netdev_priv(dev
);
750 del_timer_sync(&priv
->restart_timer
);
751 can_flush_echo_skb(dev
);
753 EXPORT_SYMBOL_GPL(close_candev
);
756 * CAN netlink interface
758 static const struct nla_policy can_policy
[IFLA_CAN_MAX
+ 1] = {
759 [IFLA_CAN_STATE
] = { .type
= NLA_U32
},
760 [IFLA_CAN_CTRLMODE
] = { .len
= sizeof(struct can_ctrlmode
) },
761 [IFLA_CAN_RESTART_MS
] = { .type
= NLA_U32
},
762 [IFLA_CAN_RESTART
] = { .type
= NLA_U32
},
763 [IFLA_CAN_BITTIMING
] = { .len
= sizeof(struct can_bittiming
) },
764 [IFLA_CAN_BITTIMING_CONST
]
765 = { .len
= sizeof(struct can_bittiming_const
) },
766 [IFLA_CAN_CLOCK
] = { .len
= sizeof(struct can_clock
) },
767 [IFLA_CAN_BERR_COUNTER
] = { .len
= sizeof(struct can_berr_counter
) },
768 [IFLA_CAN_DATA_BITTIMING
]
769 = { .len
= sizeof(struct can_bittiming
) },
770 [IFLA_CAN_DATA_BITTIMING_CONST
]
771 = { .len
= sizeof(struct can_bittiming_const
) },
774 static int can_changelink(struct net_device
*dev
,
775 struct nlattr
*tb
[], struct nlattr
*data
[])
777 struct can_priv
*priv
= netdev_priv(dev
);
780 /* We need synchronization with dev->stop() */
783 if (data
[IFLA_CAN_BITTIMING
]) {
784 struct can_bittiming bt
;
786 /* Do not allow changing bittiming while running */
787 if (dev
->flags
& IFF_UP
)
789 memcpy(&bt
, nla_data(data
[IFLA_CAN_BITTIMING
]), sizeof(bt
));
790 err
= can_get_bittiming(dev
, &bt
, priv
->bittiming_const
);
793 memcpy(&priv
->bittiming
, &bt
, sizeof(bt
));
795 if (priv
->do_set_bittiming
) {
796 /* Finally, set the bit-timing registers */
797 err
= priv
->do_set_bittiming(dev
);
803 if (data
[IFLA_CAN_CTRLMODE
]) {
804 struct can_ctrlmode
*cm
;
806 /* Do not allow changing controller mode while running */
807 if (dev
->flags
& IFF_UP
)
809 cm
= nla_data(data
[IFLA_CAN_CTRLMODE
]);
810 if (cm
->flags
& ~priv
->ctrlmode_supported
)
812 priv
->ctrlmode
&= ~cm
->mask
;
813 priv
->ctrlmode
|= cm
->flags
;
815 /* CAN_CTRLMODE_FD can only be set when driver supports FD */
816 if (priv
->ctrlmode
& CAN_CTRLMODE_FD
)
817 dev
->mtu
= CANFD_MTU
;
822 if (data
[IFLA_CAN_RESTART_MS
]) {
823 /* Do not allow changing restart delay while running */
824 if (dev
->flags
& IFF_UP
)
826 priv
->restart_ms
= nla_get_u32(data
[IFLA_CAN_RESTART_MS
]);
829 if (data
[IFLA_CAN_RESTART
]) {
830 /* Do not allow a restart while not running */
831 if (!(dev
->flags
& IFF_UP
))
833 err
= can_restart_now(dev
);
838 if (data
[IFLA_CAN_DATA_BITTIMING
]) {
839 struct can_bittiming dbt
;
841 /* Do not allow changing bittiming while running */
842 if (dev
->flags
& IFF_UP
)
844 memcpy(&dbt
, nla_data(data
[IFLA_CAN_DATA_BITTIMING
]),
846 err
= can_get_bittiming(dev
, &dbt
, priv
->data_bittiming_const
);
849 memcpy(&priv
->data_bittiming
, &dbt
, sizeof(dbt
));
851 if (priv
->do_set_data_bittiming
) {
852 /* Finally, set the bit-timing registers */
853 err
= priv
->do_set_data_bittiming(dev
);
862 static size_t can_get_size(const struct net_device
*dev
)
864 struct can_priv
*priv
= netdev_priv(dev
);
867 if (priv
->bittiming
.bitrate
) /* IFLA_CAN_BITTIMING */
868 size
+= nla_total_size(sizeof(struct can_bittiming
));
869 if (priv
->bittiming_const
) /* IFLA_CAN_BITTIMING_CONST */
870 size
+= nla_total_size(sizeof(struct can_bittiming_const
));
871 size
+= nla_total_size(sizeof(struct can_clock
)); /* IFLA_CAN_CLOCK */
872 size
+= nla_total_size(sizeof(u32
)); /* IFLA_CAN_STATE */
873 size
+= nla_total_size(sizeof(struct can_ctrlmode
)); /* IFLA_CAN_CTRLMODE */
874 size
+= nla_total_size(sizeof(u32
)); /* IFLA_CAN_RESTART_MS */
875 if (priv
->do_get_berr_counter
) /* IFLA_CAN_BERR_COUNTER */
876 size
+= nla_total_size(sizeof(struct can_berr_counter
));
877 if (priv
->data_bittiming
.bitrate
) /* IFLA_CAN_DATA_BITTIMING */
878 size
+= nla_total_size(sizeof(struct can_bittiming
));
879 if (priv
->data_bittiming_const
) /* IFLA_CAN_DATA_BITTIMING_CONST */
880 size
+= nla_total_size(sizeof(struct can_bittiming_const
));
885 static int can_fill_info(struct sk_buff
*skb
, const struct net_device
*dev
)
887 struct can_priv
*priv
= netdev_priv(dev
);
888 struct can_ctrlmode cm
= {.flags
= priv
->ctrlmode
};
889 struct can_berr_counter bec
;
890 enum can_state state
= priv
->state
;
892 if (priv
->do_get_state
)
893 priv
->do_get_state(dev
, &state
);
895 if ((priv
->bittiming
.bitrate
&&
896 nla_put(skb
, IFLA_CAN_BITTIMING
,
897 sizeof(priv
->bittiming
), &priv
->bittiming
)) ||
899 (priv
->bittiming_const
&&
900 nla_put(skb
, IFLA_CAN_BITTIMING_CONST
,
901 sizeof(*priv
->bittiming_const
), priv
->bittiming_const
)) ||
903 nla_put(skb
, IFLA_CAN_CLOCK
, sizeof(cm
), &priv
->clock
) ||
904 nla_put_u32(skb
, IFLA_CAN_STATE
, state
) ||
905 nla_put(skb
, IFLA_CAN_CTRLMODE
, sizeof(cm
), &cm
) ||
906 nla_put_u32(skb
, IFLA_CAN_RESTART_MS
, priv
->restart_ms
) ||
908 (priv
->do_get_berr_counter
&&
909 !priv
->do_get_berr_counter(dev
, &bec
) &&
910 nla_put(skb
, IFLA_CAN_BERR_COUNTER
, sizeof(bec
), &bec
)) ||
912 (priv
->data_bittiming
.bitrate
&&
913 nla_put(skb
, IFLA_CAN_DATA_BITTIMING
,
914 sizeof(priv
->data_bittiming
), &priv
->data_bittiming
)) ||
916 (priv
->data_bittiming_const
&&
917 nla_put(skb
, IFLA_CAN_DATA_BITTIMING_CONST
,
918 sizeof(*priv
->data_bittiming_const
),
919 priv
->data_bittiming_const
)))
925 static size_t can_get_xstats_size(const struct net_device
*dev
)
927 return sizeof(struct can_device_stats
);
930 static int can_fill_xstats(struct sk_buff
*skb
, const struct net_device
*dev
)
932 struct can_priv
*priv
= netdev_priv(dev
);
934 if (nla_put(skb
, IFLA_INFO_XSTATS
,
935 sizeof(priv
->can_stats
), &priv
->can_stats
))
936 goto nla_put_failure
;
943 static int can_newlink(struct net
*src_net
, struct net_device
*dev
,
944 struct nlattr
*tb
[], struct nlattr
*data
[])
949 static struct rtnl_link_ops can_link_ops __read_mostly
= {
951 .maxtype
= IFLA_CAN_MAX
,
952 .policy
= can_policy
,
954 .newlink
= can_newlink
,
955 .changelink
= can_changelink
,
956 .get_size
= can_get_size
,
957 .fill_info
= can_fill_info
,
958 .get_xstats_size
= can_get_xstats_size
,
959 .fill_xstats
= can_fill_xstats
,
963 * Register the CAN network device
965 int register_candev(struct net_device
*dev
)
967 dev
->rtnl_link_ops
= &can_link_ops
;
968 return register_netdev(dev
);
970 EXPORT_SYMBOL_GPL(register_candev
);
973 * Unregister the CAN network device
975 void unregister_candev(struct net_device
*dev
)
977 unregister_netdev(dev
);
979 EXPORT_SYMBOL_GPL(unregister_candev
);
982 * Test if a network device is a candev based device
983 * and return the can_priv* if so.
985 struct can_priv
*safe_candev_priv(struct net_device
*dev
)
987 if ((dev
->type
!= ARPHRD_CAN
) || (dev
->rtnl_link_ops
!= &can_link_ops
))
990 return netdev_priv(dev
);
992 EXPORT_SYMBOL_GPL(safe_candev_priv
);
994 static __init
int can_dev_init(void)
998 can_led_notifier_init();
1000 err
= rtnl_link_register(&can_link_ops
);
1002 printk(KERN_INFO MOD_DESC
"\n");
1006 module_init(can_dev_init
);
1008 static __exit
void can_dev_exit(void)
1010 rtnl_link_unregister(&can_link_ops
);
1012 can_led_notifier_exit();
1014 module_exit(can_dev_exit
);
1016 MODULE_ALIAS_RTNL_LINK("can");