ARM: dts: add 'dr_mode' property to hsotg devices for exynos boards
[linux/fpc-iii.git] / drivers / net / ethernet / freescale / fec_ptp.c
blob992c8c3db5536d431284d1569f18ea579594ecaa
1 /*
2 * Fast Ethernet Controller (ENET) PTP driver for MX6x.
4 * Copyright (C) 2012 Freescale Semiconductor, Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/string.h>
25 #include <linux/ptrace.h>
26 #include <linux/errno.h>
27 #include <linux/ioport.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/pci.h>
31 #include <linux/delay.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/spinlock.h>
36 #include <linux/workqueue.h>
37 #include <linux/bitops.h>
38 #include <linux/io.h>
39 #include <linux/irq.h>
40 #include <linux/clk.h>
41 #include <linux/platform_device.h>
42 #include <linux/phy.h>
43 #include <linux/fec.h>
44 #include <linux/of.h>
45 #include <linux/of_device.h>
46 #include <linux/of_gpio.h>
47 #include <linux/of_net.h>
49 #include "fec.h"
51 /* FEC 1588 register bits */
52 #define FEC_T_CTRL_SLAVE 0x00002000
53 #define FEC_T_CTRL_CAPTURE 0x00000800
54 #define FEC_T_CTRL_RESTART 0x00000200
55 #define FEC_T_CTRL_PERIOD_RST 0x00000030
56 #define FEC_T_CTRL_PERIOD_EN 0x00000010
57 #define FEC_T_CTRL_ENABLE 0x00000001
59 #define FEC_T_INC_MASK 0x0000007f
60 #define FEC_T_INC_OFFSET 0
61 #define FEC_T_INC_CORR_MASK 0x00007f00
62 #define FEC_T_INC_CORR_OFFSET 8
64 #define FEC_T_CTRL_PINPER 0x00000080
65 #define FEC_T_TF0_MASK 0x00000001
66 #define FEC_T_TF0_OFFSET 0
67 #define FEC_T_TF1_MASK 0x00000002
68 #define FEC_T_TF1_OFFSET 1
69 #define FEC_T_TF2_MASK 0x00000004
70 #define FEC_T_TF2_OFFSET 2
71 #define FEC_T_TF3_MASK 0x00000008
72 #define FEC_T_TF3_OFFSET 3
73 #define FEC_T_TDRE_MASK 0x00000001
74 #define FEC_T_TDRE_OFFSET 0
75 #define FEC_T_TMODE_MASK 0x0000003C
76 #define FEC_T_TMODE_OFFSET 2
77 #define FEC_T_TIE_MASK 0x00000040
78 #define FEC_T_TIE_OFFSET 6
79 #define FEC_T_TF_MASK 0x00000080
80 #define FEC_T_TF_OFFSET 7
82 #define FEC_ATIME_CTRL 0x400
83 #define FEC_ATIME 0x404
84 #define FEC_ATIME_EVT_OFFSET 0x408
85 #define FEC_ATIME_EVT_PERIOD 0x40c
86 #define FEC_ATIME_CORR 0x410
87 #define FEC_ATIME_INC 0x414
88 #define FEC_TS_TIMESTAMP 0x418
90 #define FEC_TGSR 0x604
91 #define FEC_TCSR(n) (0x608 + n * 0x08)
92 #define FEC_TCCR(n) (0x60C + n * 0x08)
93 #define MAX_TIMER_CHANNEL 3
94 #define FEC_TMODE_TOGGLE 0x05
95 #define FEC_HIGH_PULSE 0x0F
97 #define FEC_CC_MULT (1 << 31)
98 #define FEC_COUNTER_PERIOD (1 << 31)
99 #define PPS_OUPUT_RELOAD_PERIOD NSEC_PER_SEC
100 #define FEC_CHANNLE_0 0
101 #define DEFAULT_PPS_CHANNEL FEC_CHANNLE_0
104 * fec_ptp_enable_pps
105 * @fep: the fec_enet_private structure handle
106 * @enable: enable the channel pps output
108 * This function enble the PPS ouput on the timer channel.
110 static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
112 unsigned long flags;
113 u32 val, tempval;
114 int inc;
115 struct timespec ts;
116 u64 ns;
117 u32 remainder;
118 val = 0;
120 if (!(fep->hwts_tx_en || fep->hwts_rx_en)) {
121 dev_err(&fep->pdev->dev, "No ptp stack is running\n");
122 return -EINVAL;
125 if (fep->pps_enable == enable)
126 return 0;
128 fep->pps_channel = DEFAULT_PPS_CHANNEL;
129 fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
130 inc = fep->ptp_inc;
132 spin_lock_irqsave(&fep->tmreg_lock, flags);
134 if (enable) {
135 /* clear capture or output compare interrupt status if have.
137 writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
139 /* It is recommended to doulbe check the TMODE field in the
140 * TCSR register to be cleared before the first compare counter
141 * is written into TCCR register. Just add a double check.
143 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
144 do {
145 val &= ~(FEC_T_TMODE_MASK);
146 writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
147 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
148 } while (val & FEC_T_TMODE_MASK);
150 /* Dummy read counter to update the counter */
151 timecounter_read(&fep->tc);
152 /* We want to find the first compare event in the next
153 * second point. So we need to know what the ptp time
154 * is now and how many nanoseconds is ahead to get next second.
155 * The remaining nanosecond ahead before the next second would be
156 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
157 * to current timer would be next second.
159 tempval = readl(fep->hwp + FEC_ATIME_CTRL);
160 tempval |= FEC_T_CTRL_CAPTURE;
161 writel(tempval, fep->hwp + FEC_ATIME_CTRL);
163 tempval = readl(fep->hwp + FEC_ATIME);
164 /* Convert the ptp local counter to 1588 timestamp */
165 ns = timecounter_cyc2time(&fep->tc, tempval);
166 ts.tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
167 ts.tv_nsec = remainder;
169 /* The tempval is less than 3 seconds, and so val is less than
170 * 4 seconds. No overflow for 32bit calculation.
172 val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
174 /* Need to consider the situation that the current time is
175 * very close to the second point, which means NSEC_PER_SEC
176 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
177 * is still running when we calculate the first compare event, it is
178 * possible that the remaining nanoseonds run out before the compare
179 * counter is calculated and written into TCCR register. To avoid
180 * this possibility, we will set the compare event to be the next
181 * of next second. The current setting is 31-bit timer and wrap
182 * around over 2 seconds. So it is okay to set the next of next
183 * seond for the timer.
185 val += NSEC_PER_SEC;
187 /* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
188 * ptp counter, which maybe cause 32-bit wrap. Since the
189 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
190 * We can ensure the wrap will not cause issue. If the offset
191 * is bigger than fep->cc.mask would be a error.
193 val &= fep->cc.mask;
194 writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
196 /* Calculate the second the compare event timestamp */
197 fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
199 /* * Enable compare event when overflow */
200 val = readl(fep->hwp + FEC_ATIME_CTRL);
201 val |= FEC_T_CTRL_PINPER;
202 writel(val, fep->hwp + FEC_ATIME_CTRL);
204 /* Compare channel setting. */
205 val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
206 val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
207 val &= ~(1 << FEC_T_TDRE_OFFSET);
208 val &= ~(FEC_T_TMODE_MASK);
209 val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
210 writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
212 /* Write the second compare event timestamp and calculate
213 * the third timestamp. Refer the TCCR register detail in the spec.
215 writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
216 fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
217 } else {
218 writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
221 fep->pps_enable = enable;
222 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
224 return 0;
228 * fec_ptp_read - read raw cycle counter (to be used by time counter)
229 * @cc: the cyclecounter structure
231 * this function reads the cyclecounter registers and is called by the
232 * cyclecounter structure used to construct a ns counter from the
233 * arbitrary fixed point registers
235 static cycle_t fec_ptp_read(const struct cyclecounter *cc)
237 struct fec_enet_private *fep =
238 container_of(cc, struct fec_enet_private, cc);
239 const struct platform_device_id *id_entry =
240 platform_get_device_id(fep->pdev);
241 u32 tempval;
243 tempval = readl(fep->hwp + FEC_ATIME_CTRL);
244 tempval |= FEC_T_CTRL_CAPTURE;
245 writel(tempval, fep->hwp + FEC_ATIME_CTRL);
247 if (id_entry->driver_data & FEC_QUIRK_BUG_CAPTURE)
248 udelay(1);
250 return readl(fep->hwp + FEC_ATIME);
254 * fec_ptp_start_cyclecounter - create the cycle counter from hw
255 * @ndev: network device
257 * this function initializes the timecounter and cyclecounter
258 * structures for use in generated a ns counter from the arbitrary
259 * fixed point cycles registers in the hardware.
261 void fec_ptp_start_cyclecounter(struct net_device *ndev)
263 struct fec_enet_private *fep = netdev_priv(ndev);
264 unsigned long flags;
265 int inc;
267 inc = 1000000000 / fep->cycle_speed;
269 /* grab the ptp lock */
270 spin_lock_irqsave(&fep->tmreg_lock, flags);
272 /* 1ns counter */
273 writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
275 /* use 31-bit timer counter */
276 writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
278 writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
279 fep->hwp + FEC_ATIME_CTRL);
281 memset(&fep->cc, 0, sizeof(fep->cc));
282 fep->cc.read = fec_ptp_read;
283 fep->cc.mask = CLOCKSOURCE_MASK(31);
284 fep->cc.shift = 31;
285 fep->cc.mult = FEC_CC_MULT;
287 /* reset the ns time counter */
288 timecounter_init(&fep->tc, &fep->cc, ktime_to_ns(ktime_get_real()));
290 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
294 * fec_ptp_adjfreq - adjust ptp cycle frequency
295 * @ptp: the ptp clock structure
296 * @ppb: parts per billion adjustment from base
298 * Adjust the frequency of the ptp cycle counter by the
299 * indicated ppb from the base frequency.
301 * Because ENET hardware frequency adjust is complex,
302 * using software method to do that.
304 static int fec_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
306 unsigned long flags;
307 int neg_adj = 0;
308 u32 i, tmp;
309 u32 corr_inc, corr_period;
310 u32 corr_ns;
311 u64 lhs, rhs;
313 struct fec_enet_private *fep =
314 container_of(ptp, struct fec_enet_private, ptp_caps);
316 if (ppb == 0)
317 return 0;
319 if (ppb < 0) {
320 ppb = -ppb;
321 neg_adj = 1;
324 /* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
325 * Try to find the corr_inc between 1 to fep->ptp_inc to
326 * meet adjustment requirement.
328 lhs = NSEC_PER_SEC;
329 rhs = (u64)ppb * (u64)fep->ptp_inc;
330 for (i = 1; i <= fep->ptp_inc; i++) {
331 if (lhs >= rhs) {
332 corr_inc = i;
333 corr_period = div_u64(lhs, rhs);
334 break;
336 lhs += NSEC_PER_SEC;
338 /* Not found? Set it to high value - double speed
339 * correct in every clock step.
341 if (i > fep->ptp_inc) {
342 corr_inc = fep->ptp_inc;
343 corr_period = 1;
346 if (neg_adj)
347 corr_ns = fep->ptp_inc - corr_inc;
348 else
349 corr_ns = fep->ptp_inc + corr_inc;
351 spin_lock_irqsave(&fep->tmreg_lock, flags);
353 tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
354 tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
355 writel(tmp, fep->hwp + FEC_ATIME_INC);
356 writel(corr_period, fep->hwp + FEC_ATIME_CORR);
357 /* dummy read to update the timer. */
358 timecounter_read(&fep->tc);
360 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
362 return 0;
366 * fec_ptp_adjtime
367 * @ptp: the ptp clock structure
368 * @delta: offset to adjust the cycle counter by
370 * adjust the timer by resetting the timecounter structure.
372 static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
374 struct fec_enet_private *fep =
375 container_of(ptp, struct fec_enet_private, ptp_caps);
376 unsigned long flags;
377 u64 now;
378 u32 counter;
380 spin_lock_irqsave(&fep->tmreg_lock, flags);
382 now = timecounter_read(&fep->tc);
383 now += delta;
385 /* Get the timer value based on adjusted timestamp.
386 * Update the counter with the masked value.
388 counter = now & fep->cc.mask;
389 writel(counter, fep->hwp + FEC_ATIME);
391 /* reset the timecounter */
392 timecounter_init(&fep->tc, &fep->cc, now);
394 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
396 return 0;
400 * fec_ptp_gettime
401 * @ptp: the ptp clock structure
402 * @ts: timespec structure to hold the current time value
404 * read the timecounter and return the correct value on ns,
405 * after converting it into a struct timespec.
407 static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
409 struct fec_enet_private *adapter =
410 container_of(ptp, struct fec_enet_private, ptp_caps);
411 u64 ns;
412 u32 remainder;
413 unsigned long flags;
415 spin_lock_irqsave(&adapter->tmreg_lock, flags);
416 ns = timecounter_read(&adapter->tc);
417 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
419 ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
420 ts->tv_nsec = remainder;
422 return 0;
426 * fec_ptp_settime
427 * @ptp: the ptp clock structure
428 * @ts: the timespec containing the new time for the cycle counter
430 * reset the timecounter to use a new base value instead of the kernel
431 * wall timer value.
433 static int fec_ptp_settime(struct ptp_clock_info *ptp,
434 const struct timespec *ts)
436 struct fec_enet_private *fep =
437 container_of(ptp, struct fec_enet_private, ptp_caps);
439 u64 ns;
440 unsigned long flags;
441 u32 counter;
443 mutex_lock(&fep->ptp_clk_mutex);
444 /* Check the ptp clock */
445 if (!fep->ptp_clk_on) {
446 mutex_unlock(&fep->ptp_clk_mutex);
447 return -EINVAL;
450 ns = ts->tv_sec * 1000000000ULL;
451 ns += ts->tv_nsec;
452 /* Get the timer value based on timestamp.
453 * Update the counter with the masked value.
455 counter = ns & fep->cc.mask;
457 spin_lock_irqsave(&fep->tmreg_lock, flags);
458 writel(counter, fep->hwp + FEC_ATIME);
459 timecounter_init(&fep->tc, &fep->cc, ns);
460 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
461 mutex_unlock(&fep->ptp_clk_mutex);
462 return 0;
466 * fec_ptp_enable
467 * @ptp: the ptp clock structure
468 * @rq: the requested feature to change
469 * @on: whether to enable or disable the feature
472 static int fec_ptp_enable(struct ptp_clock_info *ptp,
473 struct ptp_clock_request *rq, int on)
475 struct fec_enet_private *fep =
476 container_of(ptp, struct fec_enet_private, ptp_caps);
477 int ret = 0;
479 if (rq->type == PTP_CLK_REQ_PPS) {
480 ret = fec_ptp_enable_pps(fep, on);
482 return ret;
484 return -EOPNOTSUPP;
488 * fec_ptp_hwtstamp_ioctl - control hardware time stamping
489 * @ndev: pointer to net_device
490 * @ifreq: ioctl data
491 * @cmd: particular ioctl requested
493 int fec_ptp_set(struct net_device *ndev, struct ifreq *ifr)
495 struct fec_enet_private *fep = netdev_priv(ndev);
497 struct hwtstamp_config config;
499 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
500 return -EFAULT;
502 /* reserved for future extensions */
503 if (config.flags)
504 return -EINVAL;
506 switch (config.tx_type) {
507 case HWTSTAMP_TX_OFF:
508 fep->hwts_tx_en = 0;
509 break;
510 case HWTSTAMP_TX_ON:
511 fep->hwts_tx_en = 1;
512 break;
513 default:
514 return -ERANGE;
517 switch (config.rx_filter) {
518 case HWTSTAMP_FILTER_NONE:
519 if (fep->hwts_rx_en)
520 fep->hwts_rx_en = 0;
521 config.rx_filter = HWTSTAMP_FILTER_NONE;
522 break;
524 default:
526 * register RXMTRL must be set in order to do V1 packets,
527 * therefore it is not possible to time stamp both V1 Sync and
528 * Delay_Req messages and hardware does not support
529 * timestamping all packets => return error
531 fep->hwts_rx_en = 1;
532 config.rx_filter = HWTSTAMP_FILTER_ALL;
533 break;
536 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
537 -EFAULT : 0;
540 int fec_ptp_get(struct net_device *ndev, struct ifreq *ifr)
542 struct fec_enet_private *fep = netdev_priv(ndev);
543 struct hwtstamp_config config;
545 config.flags = 0;
546 config.tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
547 config.rx_filter = (fep->hwts_rx_en ?
548 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
550 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
551 -EFAULT : 0;
555 * fec_time_keep - call timecounter_read every second to avoid timer overrun
556 * because ENET just support 32bit counter, will timeout in 4s
558 static void fec_time_keep(struct work_struct *work)
560 struct delayed_work *dwork = to_delayed_work(work);
561 struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
562 u64 ns;
563 unsigned long flags;
565 mutex_lock(&fep->ptp_clk_mutex);
566 if (fep->ptp_clk_on) {
567 spin_lock_irqsave(&fep->tmreg_lock, flags);
568 ns = timecounter_read(&fep->tc);
569 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
571 mutex_unlock(&fep->ptp_clk_mutex);
573 schedule_delayed_work(&fep->time_keep, HZ);
577 * fec_ptp_init
578 * @ndev: The FEC network adapter
580 * This function performs the required steps for enabling ptp
581 * support. If ptp support has already been loaded it simply calls the
582 * cyclecounter init routine and exits.
585 void fec_ptp_init(struct platform_device *pdev)
587 struct net_device *ndev = platform_get_drvdata(pdev);
588 struct fec_enet_private *fep = netdev_priv(ndev);
590 fep->ptp_caps.owner = THIS_MODULE;
591 snprintf(fep->ptp_caps.name, 16, "fec ptp");
593 fep->ptp_caps.max_adj = 250000000;
594 fep->ptp_caps.n_alarm = 0;
595 fep->ptp_caps.n_ext_ts = 0;
596 fep->ptp_caps.n_per_out = 0;
597 fep->ptp_caps.n_pins = 0;
598 fep->ptp_caps.pps = 1;
599 fep->ptp_caps.adjfreq = fec_ptp_adjfreq;
600 fep->ptp_caps.adjtime = fec_ptp_adjtime;
601 fep->ptp_caps.gettime = fec_ptp_gettime;
602 fep->ptp_caps.settime = fec_ptp_settime;
603 fep->ptp_caps.enable = fec_ptp_enable;
605 fep->cycle_speed = clk_get_rate(fep->clk_ptp);
606 fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
608 spin_lock_init(&fep->tmreg_lock);
610 fec_ptp_start_cyclecounter(ndev);
612 INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
614 fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
615 if (IS_ERR(fep->ptp_clock)) {
616 fep->ptp_clock = NULL;
617 pr_err("ptp_clock_register failed\n");
620 schedule_delayed_work(&fep->time_keep, HZ);
624 * fec_ptp_check_pps_event
625 * @fep: the fec_enet_private structure handle
627 * This function check the pps event and reload the timer compare counter.
629 uint fec_ptp_check_pps_event(struct fec_enet_private *fep)
631 u32 val;
632 u8 channel = fep->pps_channel;
633 struct ptp_clock_event event;
635 val = readl(fep->hwp + FEC_TCSR(channel));
636 if (val & FEC_T_TF_MASK) {
637 /* Write the next next compare(not the next according the spec)
638 * value to the register
640 writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
641 do {
642 writel(val, fep->hwp + FEC_TCSR(channel));
643 } while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
645 /* Update the counter; */
646 fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
648 event.type = PTP_CLOCK_PPS;
649 ptp_clock_event(fep->ptp_clock, &event);
650 return 1;
653 return 0;