2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
4 * Copyright (C) 2012 Marvell
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/platform_device.h>
18 #include <linux/skbuff.h>
19 #include <linux/inetdevice.h>
20 #include <linux/mbus.h>
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/if_vlan.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_mdio.h>
31 #include <linux/of_net.h>
32 #include <linux/of_address.h>
33 #include <linux/phy.h>
34 #include <linux/clk.h>
37 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
38 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1)
39 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
40 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
41 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
42 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
43 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
44 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
45 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
46 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
47 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
48 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
49 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
50 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
51 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
52 #define MVNETA_PORT_RX_RESET 0x1cc0
53 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
54 #define MVNETA_PHY_ADDR 0x2000
55 #define MVNETA_PHY_ADDR_MASK 0x1f
56 #define MVNETA_MBUS_RETRY 0x2010
57 #define MVNETA_UNIT_INTR_CAUSE 0x2080
58 #define MVNETA_UNIT_CONTROL 0x20B0
59 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
60 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
61 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
62 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
63 #define MVNETA_BASE_ADDR_ENABLE 0x2290
64 #define MVNETA_PORT_CONFIG 0x2400
65 #define MVNETA_UNI_PROMISC_MODE BIT(0)
66 #define MVNETA_DEF_RXQ(q) ((q) << 1)
67 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
68 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
69 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
70 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
71 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
72 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
73 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
74 MVNETA_DEF_RXQ_ARP(q) | \
75 MVNETA_DEF_RXQ_TCP(q) | \
76 MVNETA_DEF_RXQ_UDP(q) | \
77 MVNETA_DEF_RXQ_BPDU(q) | \
78 MVNETA_TX_UNSET_ERR_SUM | \
79 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
80 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
81 #define MVNETA_MAC_ADDR_LOW 0x2414
82 #define MVNETA_MAC_ADDR_HIGH 0x2418
83 #define MVNETA_SDMA_CONFIG 0x241c
84 #define MVNETA_SDMA_BRST_SIZE_16 4
85 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
86 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
87 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
88 #define MVNETA_DESC_SWAP BIT(6)
89 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
90 #define MVNETA_PORT_STATUS 0x2444
91 #define MVNETA_TX_IN_PRGRS BIT(1)
92 #define MVNETA_TX_FIFO_EMPTY BIT(8)
93 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
94 #define MVNETA_SERDES_CFG 0x24A0
95 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
96 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
97 #define MVNETA_TYPE_PRIO 0x24bc
98 #define MVNETA_FORCE_UNI BIT(21)
99 #define MVNETA_TXQ_CMD_1 0x24e4
100 #define MVNETA_TXQ_CMD 0x2448
101 #define MVNETA_TXQ_DISABLE_SHIFT 8
102 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
103 #define MVNETA_ACC_MODE 0x2500
104 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
105 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
106 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
107 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
109 /* Exception Interrupt Port/Queue Cause register */
111 #define MVNETA_INTR_NEW_CAUSE 0x25a0
112 #define MVNETA_INTR_NEW_MASK 0x25a4
114 /* bits 0..7 = TXQ SENT, one bit per queue.
115 * bits 8..15 = RXQ OCCUP, one bit per queue.
116 * bits 16..23 = RXQ FREE, one bit per queue.
117 * bit 29 = OLD_REG_SUM, see old reg ?
118 * bit 30 = TX_ERR_SUM, one bit for 4 ports
119 * bit 31 = MISC_SUM, one bit for 4 ports
121 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
122 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
123 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
124 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
126 #define MVNETA_INTR_OLD_CAUSE 0x25a8
127 #define MVNETA_INTR_OLD_MASK 0x25ac
129 /* Data Path Port/Queue Cause Register */
130 #define MVNETA_INTR_MISC_CAUSE 0x25b0
131 #define MVNETA_INTR_MISC_MASK 0x25b4
133 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
134 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
135 #define MVNETA_CAUSE_PTP BIT(4)
137 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
138 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
139 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
140 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
141 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
142 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
143 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
144 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
146 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
147 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
148 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
150 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
151 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
152 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
154 #define MVNETA_INTR_ENABLE 0x25b8
155 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
156 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000 // note: neta says it's 0x000000FF
158 #define MVNETA_RXQ_CMD 0x2680
159 #define MVNETA_RXQ_DISABLE_SHIFT 8
160 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
161 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
162 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
163 #define MVNETA_GMAC_CTRL_0 0x2c00
164 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
165 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
166 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
167 #define MVNETA_GMAC_CTRL_2 0x2c08
168 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
169 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
170 #define MVNETA_GMAC2_PORT_RESET BIT(6)
171 #define MVNETA_GMAC_STATUS 0x2c10
172 #define MVNETA_GMAC_LINK_UP BIT(0)
173 #define MVNETA_GMAC_SPEED_1000 BIT(1)
174 #define MVNETA_GMAC_SPEED_100 BIT(2)
175 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
176 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
177 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
178 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
179 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
180 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
181 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
182 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
183 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
184 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
185 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
186 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
187 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
188 #define MVNETA_MIB_COUNTERS_BASE 0x3080
189 #define MVNETA_MIB_LATE_COLLISION 0x7c
190 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
191 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
192 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
193 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
194 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
195 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
196 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
197 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
198 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
199 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
200 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
201 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
202 #define MVNETA_PORT_TX_RESET 0x3cf0
203 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
204 #define MVNETA_TX_MTU 0x3e0c
205 #define MVNETA_TX_TOKEN_SIZE 0x3e14
206 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
207 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
208 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
210 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
212 /* Descriptor ring Macros */
213 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
214 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
216 /* Various constants */
219 #define MVNETA_TXDONE_COAL_PKTS 1
220 #define MVNETA_RX_COAL_PKTS 32
221 #define MVNETA_RX_COAL_USEC 100
223 /* The two bytes Marvell header. Either contains a special value used
224 * by Marvell switches when a specific hardware mode is enabled (not
225 * supported by this driver) or is filled automatically by zeroes on
226 * the RX side. Those two bytes being at the front of the Ethernet
227 * header, they allow to have the IP header aligned on a 4 bytes
228 * boundary automatically: the hardware skips those two bytes on its
231 #define MVNETA_MH_SIZE 2
233 #define MVNETA_VLAN_TAG_LEN 4
235 #define MVNETA_CPU_D_CACHE_LINE_SIZE 32
236 #define MVNETA_TX_CSUM_MAX_SIZE 9800
237 #define MVNETA_ACC_MODE_EXT 1
239 /* Timeout constants */
240 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
241 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
242 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
244 #define MVNETA_TX_MTU_MAX 0x3ffff
246 /* TSO header size */
247 #define TSO_HEADER_SIZE 128
249 /* Max number of Rx descriptors */
250 #define MVNETA_MAX_RXD 128
252 /* Max number of Tx descriptors */
253 #define MVNETA_MAX_TXD 532
255 /* Max number of allowed TCP segments for software TSO */
256 #define MVNETA_MAX_TSO_SEGS 100
258 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
260 /* descriptor aligned size */
261 #define MVNETA_DESC_ALIGNED_SIZE 32
263 #define MVNETA_RX_PKT_SIZE(mtu) \
264 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
265 ETH_HLEN + ETH_FCS_LEN, \
266 MVNETA_CPU_D_CACHE_LINE_SIZE)
268 #define IS_TSO_HEADER(txq, addr) \
269 ((addr >= txq->tso_hdrs_phys) && \
270 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
272 #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
274 struct mvneta_pcpu_stats
{
275 struct u64_stats_sync syncp
;
284 unsigned int frag_size
;
286 struct mvneta_rx_queue
*rxqs
;
287 struct mvneta_tx_queue
*txqs
;
288 struct net_device
*dev
;
291 struct napi_struct napi
;
298 struct mvneta_pcpu_stats
*stats
;
300 struct mii_bus
*mii_bus
;
301 struct phy_device
*phy_dev
;
302 phy_interface_t phy_interface
;
303 struct device_node
*phy_node
;
309 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
310 * layout of the transmit and reception DMA descriptors, and their
311 * layout is therefore defined by the hardware design
314 #define MVNETA_TX_L3_OFF_SHIFT 0
315 #define MVNETA_TX_IP_HLEN_SHIFT 8
316 #define MVNETA_TX_L4_UDP BIT(16)
317 #define MVNETA_TX_L3_IP6 BIT(17)
318 #define MVNETA_TXD_IP_CSUM BIT(18)
319 #define MVNETA_TXD_Z_PAD BIT(19)
320 #define MVNETA_TXD_L_DESC BIT(20)
321 #define MVNETA_TXD_F_DESC BIT(21)
322 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
323 MVNETA_TXD_L_DESC | \
325 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
326 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
328 #define MVNETA_RXD_ERR_CRC 0x0
329 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
330 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
331 #define MVNETA_RXD_ERR_LEN BIT(18)
332 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
333 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
334 #define MVNETA_RXD_L3_IP4 BIT(25)
335 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
336 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
338 #if defined(__LITTLE_ENDIAN)
339 struct mvneta_tx_desc
{
340 u32 command
; /* Options used by HW for packet transmitting.*/
341 u16 reserverd1
; /* csum_l4 (for future use) */
342 u16 data_size
; /* Data size of transmitted packet in bytes */
343 u32 buf_phys_addr
; /* Physical addr of transmitted buffer */
344 u32 reserved2
; /* hw_cmd - (for future use, PMT) */
345 u32 reserved3
[4]; /* Reserved - (for future use) */
348 struct mvneta_rx_desc
{
349 u32 status
; /* Info about received packet */
350 u16 reserved1
; /* pnc_info - (for future use, PnC) */
351 u16 data_size
; /* Size of received packet in bytes */
353 u32 buf_phys_addr
; /* Physical address of the buffer */
354 u32 reserved2
; /* pnc_flow_id (for future use, PnC) */
356 u32 buf_cookie
; /* cookie for access to RX buffer in rx path */
357 u16 reserved3
; /* prefetch_cmd, for future use */
358 u16 reserved4
; /* csum_l4 - (for future use, PnC) */
360 u32 reserved5
; /* pnc_extra PnC (for future use, PnC) */
361 u32 reserved6
; /* hw_cmd (for future use, PnC and HWF) */
364 struct mvneta_tx_desc
{
365 u16 data_size
; /* Data size of transmitted packet in bytes */
366 u16 reserverd1
; /* csum_l4 (for future use) */
367 u32 command
; /* Options used by HW for packet transmitting.*/
368 u32 reserved2
; /* hw_cmd - (for future use, PMT) */
369 u32 buf_phys_addr
; /* Physical addr of transmitted buffer */
370 u32 reserved3
[4]; /* Reserved - (for future use) */
373 struct mvneta_rx_desc
{
374 u16 data_size
; /* Size of received packet in bytes */
375 u16 reserved1
; /* pnc_info - (for future use, PnC) */
376 u32 status
; /* Info about received packet */
378 u32 reserved2
; /* pnc_flow_id (for future use, PnC) */
379 u32 buf_phys_addr
; /* Physical address of the buffer */
381 u16 reserved4
; /* csum_l4 - (for future use, PnC) */
382 u16 reserved3
; /* prefetch_cmd, for future use */
383 u32 buf_cookie
; /* cookie for access to RX buffer in rx path */
385 u32 reserved5
; /* pnc_extra PnC (for future use, PnC) */
386 u32 reserved6
; /* hw_cmd (for future use, PnC and HWF) */
390 struct mvneta_tx_queue
{
391 /* Number of this TX queue, in the range 0-7 */
394 /* Number of TX DMA descriptors in the descriptor ring */
397 /* Number of currently used TX DMA descriptor in the
401 int tx_stop_threshold
;
402 int tx_wake_threshold
;
404 /* Array of transmitted skb */
405 struct sk_buff
**tx_skb
;
407 /* Index of last TX DMA descriptor that was inserted */
410 /* Index of the TX DMA descriptor to be cleaned up */
415 /* Virtual address of the TX DMA descriptors array */
416 struct mvneta_tx_desc
*descs
;
418 /* DMA address of the TX DMA descriptors array */
419 dma_addr_t descs_phys
;
421 /* Index of the last TX DMA descriptor */
424 /* Index of the next TX DMA descriptor to process */
425 int next_desc_to_proc
;
427 /* DMA buffers for TSO headers */
430 /* DMA address of TSO headers */
431 dma_addr_t tso_hdrs_phys
;
434 struct mvneta_rx_queue
{
435 /* rx queue number, in the range 0-7 */
438 /* num of rx descriptors in the rx descriptor ring */
441 /* counter of times when mvneta_refill() failed */
447 /* Virtual address of the RX DMA descriptors array */
448 struct mvneta_rx_desc
*descs
;
450 /* DMA address of the RX DMA descriptors array */
451 dma_addr_t descs_phys
;
453 /* Index of the last RX DMA descriptor */
456 /* Index of the next RX DMA descriptor to process */
457 int next_desc_to_proc
;
460 /* The hardware supports eight (8) rx queues, but we are only allowing
461 * the first one to be used. Therefore, let's just allocate one queue.
463 static int rxq_number
= 1;
464 static int txq_number
= 8;
468 static int rx_copybreak __read_mostly
= 256;
470 #define MVNETA_DRIVER_NAME "mvneta"
471 #define MVNETA_DRIVER_VERSION "1.0"
473 /* Utility/helper methods */
475 /* Write helper method */
476 static void mvreg_write(struct mvneta_port
*pp
, u32 offset
, u32 data
)
478 writel(data
, pp
->base
+ offset
);
481 /* Read helper method */
482 static u32
mvreg_read(struct mvneta_port
*pp
, u32 offset
)
484 return readl(pp
->base
+ offset
);
487 /* Increment txq get counter */
488 static void mvneta_txq_inc_get(struct mvneta_tx_queue
*txq
)
490 txq
->txq_get_index
++;
491 if (txq
->txq_get_index
== txq
->size
)
492 txq
->txq_get_index
= 0;
495 /* Increment txq put counter */
496 static void mvneta_txq_inc_put(struct mvneta_tx_queue
*txq
)
498 txq
->txq_put_index
++;
499 if (txq
->txq_put_index
== txq
->size
)
500 txq
->txq_put_index
= 0;
504 /* Clear all MIB counters */
505 static void mvneta_mib_counters_clear(struct mvneta_port
*pp
)
510 /* Perform dummy reads from MIB counters */
511 for (i
= 0; i
< MVNETA_MIB_LATE_COLLISION
; i
+= 4)
512 dummy
= mvreg_read(pp
, (MVNETA_MIB_COUNTERS_BASE
+ i
));
515 /* Get System Network Statistics */
516 struct rtnl_link_stats64
*mvneta_get_stats64(struct net_device
*dev
,
517 struct rtnl_link_stats64
*stats
)
519 struct mvneta_port
*pp
= netdev_priv(dev
);
523 for_each_possible_cpu(cpu
) {
524 struct mvneta_pcpu_stats
*cpu_stats
;
530 cpu_stats
= per_cpu_ptr(pp
->stats
, cpu
);
532 start
= u64_stats_fetch_begin_irq(&cpu_stats
->syncp
);
533 rx_packets
= cpu_stats
->rx_packets
;
534 rx_bytes
= cpu_stats
->rx_bytes
;
535 tx_packets
= cpu_stats
->tx_packets
;
536 tx_bytes
= cpu_stats
->tx_bytes
;
537 } while (u64_stats_fetch_retry_irq(&cpu_stats
->syncp
, start
));
539 stats
->rx_packets
+= rx_packets
;
540 stats
->rx_bytes
+= rx_bytes
;
541 stats
->tx_packets
+= tx_packets
;
542 stats
->tx_bytes
+= tx_bytes
;
545 stats
->rx_errors
= dev
->stats
.rx_errors
;
546 stats
->rx_dropped
= dev
->stats
.rx_dropped
;
548 stats
->tx_dropped
= dev
->stats
.tx_dropped
;
553 /* Rx descriptors helper methods */
555 /* Checks whether the RX descriptor having this status is both the first
556 * and the last descriptor for the RX packet. Each RX packet is currently
557 * received through a single RX descriptor, so not having each RX
558 * descriptor with its first and last bits set is an error
560 static int mvneta_rxq_desc_is_first_last(u32 status
)
562 return (status
& MVNETA_RXD_FIRST_LAST_DESC
) ==
563 MVNETA_RXD_FIRST_LAST_DESC
;
566 /* Add number of descriptors ready to receive new packets */
567 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port
*pp
,
568 struct mvneta_rx_queue
*rxq
,
571 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
574 while (ndescs
> MVNETA_RXQ_ADD_NON_OCCUPIED_MAX
) {
575 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
),
576 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX
<<
577 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
));
578 ndescs
-= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX
;
581 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
),
582 (ndescs
<< MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
));
585 /* Get number of RX descriptors occupied by received packets */
586 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port
*pp
,
587 struct mvneta_rx_queue
*rxq
)
591 val
= mvreg_read(pp
, MVNETA_RXQ_STATUS_REG(rxq
->id
));
592 return val
& MVNETA_RXQ_OCCUPIED_ALL_MASK
;
595 /* Update num of rx desc called upon return from rx path or
596 * from mvneta_rxq_drop_pkts().
598 static void mvneta_rxq_desc_num_update(struct mvneta_port
*pp
,
599 struct mvneta_rx_queue
*rxq
,
600 int rx_done
, int rx_filled
)
604 if ((rx_done
<= 0xff) && (rx_filled
<= 0xff)) {
606 (rx_filled
<< MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
);
607 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
), val
);
611 /* Only 255 descriptors can be added at once */
612 while ((rx_done
> 0) || (rx_filled
> 0)) {
613 if (rx_done
<= 0xff) {
620 if (rx_filled
<= 0xff) {
621 val
|= rx_filled
<< MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
;
624 val
|= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT
;
627 mvreg_write(pp
, MVNETA_RXQ_STATUS_UPDATE_REG(rxq
->id
), val
);
631 /* Get pointer to next RX descriptor to be processed by SW */
632 static struct mvneta_rx_desc
*
633 mvneta_rxq_next_desc_get(struct mvneta_rx_queue
*rxq
)
635 int rx_desc
= rxq
->next_desc_to_proc
;
637 rxq
->next_desc_to_proc
= MVNETA_QUEUE_NEXT_DESC(rxq
, rx_desc
);
638 prefetch(rxq
->descs
+ rxq
->next_desc_to_proc
);
639 return rxq
->descs
+ rx_desc
;
642 /* Change maximum receive size of the port. */
643 static void mvneta_max_rx_size_set(struct mvneta_port
*pp
, int max_rx_size
)
647 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_0
);
648 val
&= ~MVNETA_GMAC_MAX_RX_SIZE_MASK
;
649 val
|= ((max_rx_size
- MVNETA_MH_SIZE
) / 2) <<
650 MVNETA_GMAC_MAX_RX_SIZE_SHIFT
;
651 mvreg_write(pp
, MVNETA_GMAC_CTRL_0
, val
);
655 /* Set rx queue offset */
656 static void mvneta_rxq_offset_set(struct mvneta_port
*pp
,
657 struct mvneta_rx_queue
*rxq
,
662 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
663 val
&= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK
;
666 val
|= MVNETA_RXQ_PKT_OFFSET_MASK(offset
>> 3);
667 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
671 /* Tx descriptors helper methods */
673 /* Update HW with number of TX descriptors to be sent */
674 static void mvneta_txq_pend_desc_add(struct mvneta_port
*pp
,
675 struct mvneta_tx_queue
*txq
,
680 /* Only 255 descriptors can be added at once ; Assume caller
681 * process TX desriptors in quanta less than 256
684 mvreg_write(pp
, MVNETA_TXQ_UPDATE_REG(txq
->id
), val
);
687 /* Get pointer to next TX descriptor to be processed (send) by HW */
688 static struct mvneta_tx_desc
*
689 mvneta_txq_next_desc_get(struct mvneta_tx_queue
*txq
)
691 int tx_desc
= txq
->next_desc_to_proc
;
693 txq
->next_desc_to_proc
= MVNETA_QUEUE_NEXT_DESC(txq
, tx_desc
);
694 return txq
->descs
+ tx_desc
;
697 /* Release the last allocated TX descriptor. Useful to handle DMA
698 * mapping failures in the TX path.
700 static void mvneta_txq_desc_put(struct mvneta_tx_queue
*txq
)
702 if (txq
->next_desc_to_proc
== 0)
703 txq
->next_desc_to_proc
= txq
->last_desc
- 1;
705 txq
->next_desc_to_proc
--;
708 /* Set rxq buf size */
709 static void mvneta_rxq_buf_size_set(struct mvneta_port
*pp
,
710 struct mvneta_rx_queue
*rxq
,
715 val
= mvreg_read(pp
, MVNETA_RXQ_SIZE_REG(rxq
->id
));
717 val
&= ~MVNETA_RXQ_BUF_SIZE_MASK
;
718 val
|= ((buf_size
>> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT
);
720 mvreg_write(pp
, MVNETA_RXQ_SIZE_REG(rxq
->id
), val
);
723 /* Disable buffer management (BM) */
724 static void mvneta_rxq_bm_disable(struct mvneta_port
*pp
,
725 struct mvneta_rx_queue
*rxq
)
729 val
= mvreg_read(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
));
730 val
&= ~MVNETA_RXQ_HW_BUF_ALLOC
;
731 mvreg_write(pp
, MVNETA_RXQ_CONFIG_REG(rxq
->id
), val
);
734 /* Start the Ethernet port RX and TX activity */
735 static void mvneta_port_up(struct mvneta_port
*pp
)
740 /* Enable all initialized TXs. */
741 mvneta_mib_counters_clear(pp
);
743 for (queue
= 0; queue
< txq_number
; queue
++) {
744 struct mvneta_tx_queue
*txq
= &pp
->txqs
[queue
];
745 if (txq
->descs
!= NULL
)
746 q_map
|= (1 << queue
);
748 mvreg_write(pp
, MVNETA_TXQ_CMD
, q_map
);
750 /* Enable all initialized RXQs. */
752 for (queue
= 0; queue
< rxq_number
; queue
++) {
753 struct mvneta_rx_queue
*rxq
= &pp
->rxqs
[queue
];
754 if (rxq
->descs
!= NULL
)
755 q_map
|= (1 << queue
);
758 mvreg_write(pp
, MVNETA_RXQ_CMD
, q_map
);
761 /* Stop the Ethernet port activity */
762 static void mvneta_port_down(struct mvneta_port
*pp
)
767 /* Stop Rx port activity. Check port Rx activity. */
768 val
= mvreg_read(pp
, MVNETA_RXQ_CMD
) & MVNETA_RXQ_ENABLE_MASK
;
770 /* Issue stop command for active channels only */
772 mvreg_write(pp
, MVNETA_RXQ_CMD
,
773 val
<< MVNETA_RXQ_DISABLE_SHIFT
);
775 /* Wait for all Rx activity to terminate. */
778 if (count
++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC
) {
780 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
786 val
= mvreg_read(pp
, MVNETA_RXQ_CMD
);
787 } while (val
& 0xff);
789 /* Stop Tx port activity. Check port Tx activity. Issue stop
790 * command for active channels only
792 val
= (mvreg_read(pp
, MVNETA_TXQ_CMD
)) & MVNETA_TXQ_ENABLE_MASK
;
795 mvreg_write(pp
, MVNETA_TXQ_CMD
,
796 (val
<< MVNETA_TXQ_DISABLE_SHIFT
));
798 /* Wait for all Tx activity to terminate. */
801 if (count
++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC
) {
803 "TIMEOUT for TX stopped status=0x%08x\n",
809 /* Check TX Command reg that all Txqs are stopped */
810 val
= mvreg_read(pp
, MVNETA_TXQ_CMD
);
812 } while (val
& 0xff);
814 /* Double check to verify that TX FIFO is empty */
817 if (count
++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT
) {
819 "TX FIFO empty timeout status=0x08%x\n",
825 val
= mvreg_read(pp
, MVNETA_PORT_STATUS
);
826 } while (!(val
& MVNETA_TX_FIFO_EMPTY
) &&
827 (val
& MVNETA_TX_IN_PRGRS
));
832 /* Enable the port by setting the port enable bit of the MAC control register */
833 static void mvneta_port_enable(struct mvneta_port
*pp
)
838 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_0
);
839 val
|= MVNETA_GMAC0_PORT_ENABLE
;
840 mvreg_write(pp
, MVNETA_GMAC_CTRL_0
, val
);
843 /* Disable the port and wait for about 200 usec before retuning */
844 static void mvneta_port_disable(struct mvneta_port
*pp
)
848 /* Reset the Enable bit in the Serial Control Register */
849 val
= mvreg_read(pp
, MVNETA_GMAC_CTRL_0
);
850 val
&= ~MVNETA_GMAC0_PORT_ENABLE
;
851 mvreg_write(pp
, MVNETA_GMAC_CTRL_0
, val
);
856 /* Multicast tables methods */
858 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
859 static void mvneta_set_ucast_table(struct mvneta_port
*pp
, int queue
)
867 val
= 0x1 | (queue
<< 1);
868 val
|= (val
<< 24) | (val
<< 16) | (val
<< 8);
871 for (offset
= 0; offset
<= 0xc; offset
+= 4)
872 mvreg_write(pp
, MVNETA_DA_FILT_UCAST_BASE
+ offset
, val
);
875 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
876 static void mvneta_set_special_mcast_table(struct mvneta_port
*pp
, int queue
)
884 val
= 0x1 | (queue
<< 1);
885 val
|= (val
<< 24) | (val
<< 16) | (val
<< 8);
888 for (offset
= 0; offset
<= 0xfc; offset
+= 4)
889 mvreg_write(pp
, MVNETA_DA_FILT_SPEC_MCAST
+ offset
, val
);
893 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
894 static void mvneta_set_other_mcast_table(struct mvneta_port
*pp
, int queue
)
900 memset(pp
->mcast_count
, 0, sizeof(pp
->mcast_count
));
903 memset(pp
->mcast_count
, 1, sizeof(pp
->mcast_count
));
904 val
= 0x1 | (queue
<< 1);
905 val
|= (val
<< 24) | (val
<< 16) | (val
<< 8);
908 for (offset
= 0; offset
<= 0xfc; offset
+= 4)
909 mvreg_write(pp
, MVNETA_DA_FILT_OTH_MCAST
+ offset
, val
);
912 /* This method sets defaults to the NETA port:
913 * Clears interrupt Cause and Mask registers.
914 * Clears all MAC tables.
915 * Sets defaults to all registers.
916 * Resets RX and TX descriptor rings.
918 * This method can be called after mvneta_port_down() to return the port
919 * settings to defaults.
921 static void mvneta_defaults_set(struct mvneta_port
*pp
)
927 /* Clear all Cause registers */
928 mvreg_write(pp
, MVNETA_INTR_NEW_CAUSE
, 0);
929 mvreg_write(pp
, MVNETA_INTR_OLD_CAUSE
, 0);
930 mvreg_write(pp
, MVNETA_INTR_MISC_CAUSE
, 0);
932 /* Mask all interrupts */
933 mvreg_write(pp
, MVNETA_INTR_NEW_MASK
, 0);
934 mvreg_write(pp
, MVNETA_INTR_OLD_MASK
, 0);
935 mvreg_write(pp
, MVNETA_INTR_MISC_MASK
, 0);
936 mvreg_write(pp
, MVNETA_INTR_ENABLE
, 0);
938 /* Enable MBUS Retry bit16 */
939 mvreg_write(pp
, MVNETA_MBUS_RETRY
, 0x20);
941 /* Set CPU queue access map - all CPUs have access to all RX
942 * queues and to all TX queues
944 for (cpu
= 0; cpu
< CONFIG_NR_CPUS
; cpu
++)
945 mvreg_write(pp
, MVNETA_CPU_MAP(cpu
),
946 (MVNETA_CPU_RXQ_ACCESS_ALL_MASK
|
947 MVNETA_CPU_TXQ_ACCESS_ALL_MASK
));
949 /* Reset RX and TX DMAs */
950 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, MVNETA_PORT_RX_DMA_RESET
);
951 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, MVNETA_PORT_TX_DMA_RESET
);
953 /* Disable Legacy WRR, Disable EJP, Release from reset */
954 mvreg_write(pp
, MVNETA_TXQ_CMD_1
, 0);
955 for (queue
= 0; queue
< txq_number
; queue
++) {
956 mvreg_write(pp
, MVETH_TXQ_TOKEN_COUNT_REG(queue
), 0);
957 mvreg_write(pp
, MVETH_TXQ_TOKEN_CFG_REG(queue
), 0);
960 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, 0);
961 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, 0);
963 /* Set Port Acceleration Mode */
964 val
= MVNETA_ACC_MODE_EXT
;
965 mvreg_write(pp
, MVNETA_ACC_MODE
, val
);
967 /* Update val of portCfg register accordingly with all RxQueue types */
968 val
= MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def
);
969 mvreg_write(pp
, MVNETA_PORT_CONFIG
, val
);
972 mvreg_write(pp
, MVNETA_PORT_CONFIG_EXTEND
, val
);
973 mvreg_write(pp
, MVNETA_RX_MIN_FRAME_SIZE
, 64);
975 /* Build PORT_SDMA_CONFIG_REG */
978 /* Default burst size */
979 val
|= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16
);
980 val
|= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16
);
981 val
|= MVNETA_RX_NO_DATA_SWAP
| MVNETA_TX_NO_DATA_SWAP
;
983 #if defined(__BIG_ENDIAN)
984 val
|= MVNETA_DESC_SWAP
;
987 /* Assign port SDMA configuration */
988 mvreg_write(pp
, MVNETA_SDMA_CONFIG
, val
);
990 /* Disable PHY polling in hardware, since we're using the
991 * kernel phylib to do this.
993 val
= mvreg_read(pp
, MVNETA_UNIT_CONTROL
);
994 val
&= ~MVNETA_PHY_POLLING_ENABLE
;
995 mvreg_write(pp
, MVNETA_UNIT_CONTROL
, val
);
997 mvneta_set_ucast_table(pp
, -1);
998 mvneta_set_special_mcast_table(pp
, -1);
999 mvneta_set_other_mcast_table(pp
, -1);
1001 /* Set port interrupt enable register - default enable all */
1002 mvreg_write(pp
, MVNETA_INTR_ENABLE
,
1003 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1004 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK
));
1007 /* Set max sizes for tx queues */
1008 static void mvneta_txq_max_tx_size_set(struct mvneta_port
*pp
, int max_tx_size
)
1014 mtu
= max_tx_size
* 8;
1015 if (mtu
> MVNETA_TX_MTU_MAX
)
1016 mtu
= MVNETA_TX_MTU_MAX
;
1019 val
= mvreg_read(pp
, MVNETA_TX_MTU
);
1020 val
&= ~MVNETA_TX_MTU_MAX
;
1022 mvreg_write(pp
, MVNETA_TX_MTU
, val
);
1024 /* TX token size and all TXQs token size must be larger that MTU */
1025 val
= mvreg_read(pp
, MVNETA_TX_TOKEN_SIZE
);
1027 size
= val
& MVNETA_TX_TOKEN_SIZE_MAX
;
1030 val
&= ~MVNETA_TX_TOKEN_SIZE_MAX
;
1032 mvreg_write(pp
, MVNETA_TX_TOKEN_SIZE
, val
);
1034 for (queue
= 0; queue
< txq_number
; queue
++) {
1035 val
= mvreg_read(pp
, MVNETA_TXQ_TOKEN_SIZE_REG(queue
));
1037 size
= val
& MVNETA_TXQ_TOKEN_SIZE_MAX
;
1040 val
&= ~MVNETA_TXQ_TOKEN_SIZE_MAX
;
1042 mvreg_write(pp
, MVNETA_TXQ_TOKEN_SIZE_REG(queue
), val
);
1047 /* Set unicast address */
1048 static void mvneta_set_ucast_addr(struct mvneta_port
*pp
, u8 last_nibble
,
1051 unsigned int unicast_reg
;
1052 unsigned int tbl_offset
;
1053 unsigned int reg_offset
;
1055 /* Locate the Unicast table entry */
1056 last_nibble
= (0xf & last_nibble
);
1058 /* offset from unicast tbl base */
1059 tbl_offset
= (last_nibble
/ 4) * 4;
1061 /* offset within the above reg */
1062 reg_offset
= last_nibble
% 4;
1064 unicast_reg
= mvreg_read(pp
, (MVNETA_DA_FILT_UCAST_BASE
+ tbl_offset
));
1067 /* Clear accepts frame bit at specified unicast DA tbl entry */
1068 unicast_reg
&= ~(0xff << (8 * reg_offset
));
1070 unicast_reg
&= ~(0xff << (8 * reg_offset
));
1071 unicast_reg
|= ((0x01 | (queue
<< 1)) << (8 * reg_offset
));
1074 mvreg_write(pp
, (MVNETA_DA_FILT_UCAST_BASE
+ tbl_offset
), unicast_reg
);
1077 /* Set mac address */
1078 static void mvneta_mac_addr_set(struct mvneta_port
*pp
, unsigned char *addr
,
1085 mac_l
= (addr
[4] << 8) | (addr
[5]);
1086 mac_h
= (addr
[0] << 24) | (addr
[1] << 16) |
1087 (addr
[2] << 8) | (addr
[3] << 0);
1089 mvreg_write(pp
, MVNETA_MAC_ADDR_LOW
, mac_l
);
1090 mvreg_write(pp
, MVNETA_MAC_ADDR_HIGH
, mac_h
);
1093 /* Accept frames of this address */
1094 mvneta_set_ucast_addr(pp
, addr
[5], queue
);
1097 /* Set the number of packets that will be received before RX interrupt
1098 * will be generated by HW.
1100 static void mvneta_rx_pkts_coal_set(struct mvneta_port
*pp
,
1101 struct mvneta_rx_queue
*rxq
, u32 value
)
1103 mvreg_write(pp
, MVNETA_RXQ_THRESHOLD_REG(rxq
->id
),
1104 value
| MVNETA_RXQ_NON_OCCUPIED(0));
1105 rxq
->pkts_coal
= value
;
1108 /* Set the time delay in usec before RX interrupt will be generated by
1111 static void mvneta_rx_time_coal_set(struct mvneta_port
*pp
,
1112 struct mvneta_rx_queue
*rxq
, u32 value
)
1115 unsigned long clk_rate
;
1117 clk_rate
= clk_get_rate(pp
->clk
);
1118 val
= (clk_rate
/ 1000000) * value
;
1120 mvreg_write(pp
, MVNETA_RXQ_TIME_COAL_REG(rxq
->id
), val
);
1121 rxq
->time_coal
= value
;
1124 /* Set threshold for TX_DONE pkts coalescing */
1125 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port
*pp
,
1126 struct mvneta_tx_queue
*txq
, u32 value
)
1130 val
= mvreg_read(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
));
1132 val
&= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK
;
1133 val
|= MVNETA_TXQ_SENT_THRESH_MASK(value
);
1135 mvreg_write(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
), val
);
1137 txq
->done_pkts_coal
= value
;
1140 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1141 static void mvneta_rx_desc_fill(struct mvneta_rx_desc
*rx_desc
,
1142 u32 phys_addr
, u32 cookie
)
1144 rx_desc
->buf_cookie
= cookie
;
1145 rx_desc
->buf_phys_addr
= phys_addr
;
1148 /* Decrement sent descriptors counter */
1149 static void mvneta_txq_sent_desc_dec(struct mvneta_port
*pp
,
1150 struct mvneta_tx_queue
*txq
,
1155 /* Only 255 TX descriptors can be updated at once */
1156 while (sent_desc
> 0xff) {
1157 val
= 0xff << MVNETA_TXQ_DEC_SENT_SHIFT
;
1158 mvreg_write(pp
, MVNETA_TXQ_UPDATE_REG(txq
->id
), val
);
1159 sent_desc
= sent_desc
- 0xff;
1162 val
= sent_desc
<< MVNETA_TXQ_DEC_SENT_SHIFT
;
1163 mvreg_write(pp
, MVNETA_TXQ_UPDATE_REG(txq
->id
), val
);
1166 /* Get number of TX descriptors already sent by HW */
1167 static int mvneta_txq_sent_desc_num_get(struct mvneta_port
*pp
,
1168 struct mvneta_tx_queue
*txq
)
1173 val
= mvreg_read(pp
, MVNETA_TXQ_STATUS_REG(txq
->id
));
1174 sent_desc
= (val
& MVNETA_TXQ_SENT_DESC_MASK
) >>
1175 MVNETA_TXQ_SENT_DESC_SHIFT
;
1180 /* Get number of sent descriptors and decrement counter.
1181 * The number of sent descriptors is returned.
1183 static int mvneta_txq_sent_desc_proc(struct mvneta_port
*pp
,
1184 struct mvneta_tx_queue
*txq
)
1188 /* Get number of sent descriptors */
1189 sent_desc
= mvneta_txq_sent_desc_num_get(pp
, txq
);
1191 /* Decrement sent descriptors counter */
1193 mvneta_txq_sent_desc_dec(pp
, txq
, sent_desc
);
1198 /* Set TXQ descriptors fields relevant for CSUM calculation */
1199 static u32
mvneta_txq_desc_csum(int l3_offs
, int l3_proto
,
1200 int ip_hdr_len
, int l4_proto
)
1204 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1205 * G_L4_chk, L4_type; required only for checksum
1208 command
= l3_offs
<< MVNETA_TX_L3_OFF_SHIFT
;
1209 command
|= ip_hdr_len
<< MVNETA_TX_IP_HLEN_SHIFT
;
1211 if (l3_proto
== htons(ETH_P_IP
))
1212 command
|= MVNETA_TXD_IP_CSUM
;
1214 command
|= MVNETA_TX_L3_IP6
;
1216 if (l4_proto
== IPPROTO_TCP
)
1217 command
|= MVNETA_TX_L4_CSUM_FULL
;
1218 else if (l4_proto
== IPPROTO_UDP
)
1219 command
|= MVNETA_TX_L4_UDP
| MVNETA_TX_L4_CSUM_FULL
;
1221 command
|= MVNETA_TX_L4_CSUM_NOT
;
1227 /* Display more error info */
1228 static void mvneta_rx_error(struct mvneta_port
*pp
,
1229 struct mvneta_rx_desc
*rx_desc
)
1231 u32 status
= rx_desc
->status
;
1233 if (!mvneta_rxq_desc_is_first_last(status
)) {
1235 "bad rx status %08x (buffer oversize), size=%d\n",
1236 status
, rx_desc
->data_size
);
1240 switch (status
& MVNETA_RXD_ERR_CODE_MASK
) {
1241 case MVNETA_RXD_ERR_CRC
:
1242 netdev_err(pp
->dev
, "bad rx status %08x (crc error), size=%d\n",
1243 status
, rx_desc
->data_size
);
1245 case MVNETA_RXD_ERR_OVERRUN
:
1246 netdev_err(pp
->dev
, "bad rx status %08x (overrun error), size=%d\n",
1247 status
, rx_desc
->data_size
);
1249 case MVNETA_RXD_ERR_LEN
:
1250 netdev_err(pp
->dev
, "bad rx status %08x (max frame length error), size=%d\n",
1251 status
, rx_desc
->data_size
);
1253 case MVNETA_RXD_ERR_RESOURCE
:
1254 netdev_err(pp
->dev
, "bad rx status %08x (resource error), size=%d\n",
1255 status
, rx_desc
->data_size
);
1260 /* Handle RX checksum offload based on the descriptor's status */
1261 static void mvneta_rx_csum(struct mvneta_port
*pp
, u32 status
,
1262 struct sk_buff
*skb
)
1264 if ((status
& MVNETA_RXD_L3_IP4
) &&
1265 (status
& MVNETA_RXD_L4_CSUM_OK
)) {
1267 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1271 skb
->ip_summed
= CHECKSUM_NONE
;
1274 /* Return tx queue pointer (find last set bit) according to <cause> returned
1275 * form tx_done reg. <cause> must not be null. The return value is always a
1276 * valid queue for matching the first one found in <cause>.
1278 static struct mvneta_tx_queue
*mvneta_tx_done_policy(struct mvneta_port
*pp
,
1281 int queue
= fls(cause
) - 1;
1283 return &pp
->txqs
[queue
];
1286 /* Free tx queue skbuffs */
1287 static void mvneta_txq_bufs_free(struct mvneta_port
*pp
,
1288 struct mvneta_tx_queue
*txq
, int num
)
1292 for (i
= 0; i
< num
; i
++) {
1293 struct mvneta_tx_desc
*tx_desc
= txq
->descs
+
1295 struct sk_buff
*skb
= txq
->tx_skb
[txq
->txq_get_index
];
1297 mvneta_txq_inc_get(txq
);
1299 if (!IS_TSO_HEADER(txq
, tx_desc
->buf_phys_addr
))
1300 dma_unmap_single(pp
->dev
->dev
.parent
,
1301 tx_desc
->buf_phys_addr
,
1302 tx_desc
->data_size
, DMA_TO_DEVICE
);
1305 dev_kfree_skb_any(skb
);
1309 /* Handle end of transmission */
1310 static void mvneta_txq_done(struct mvneta_port
*pp
,
1311 struct mvneta_tx_queue
*txq
)
1313 struct netdev_queue
*nq
= netdev_get_tx_queue(pp
->dev
, txq
->id
);
1316 tx_done
= mvneta_txq_sent_desc_proc(pp
, txq
);
1320 mvneta_txq_bufs_free(pp
, txq
, tx_done
);
1322 txq
->count
-= tx_done
;
1324 if (netif_tx_queue_stopped(nq
)) {
1325 if (txq
->count
<= txq
->tx_wake_threshold
)
1326 netif_tx_wake_queue(nq
);
1330 static void *mvneta_frag_alloc(const struct mvneta_port
*pp
)
1332 if (likely(pp
->frag_size
<= PAGE_SIZE
))
1333 return netdev_alloc_frag(pp
->frag_size
);
1335 return kmalloc(pp
->frag_size
, GFP_ATOMIC
);
1338 static void mvneta_frag_free(const struct mvneta_port
*pp
, void *data
)
1340 if (likely(pp
->frag_size
<= PAGE_SIZE
))
1341 put_page(virt_to_head_page(data
));
1346 /* Refill processing */
1347 static int mvneta_rx_refill(struct mvneta_port
*pp
,
1348 struct mvneta_rx_desc
*rx_desc
)
1351 dma_addr_t phys_addr
;
1354 data
= mvneta_frag_alloc(pp
);
1358 phys_addr
= dma_map_single(pp
->dev
->dev
.parent
, data
,
1359 MVNETA_RX_BUF_SIZE(pp
->pkt_size
),
1361 if (unlikely(dma_mapping_error(pp
->dev
->dev
.parent
, phys_addr
))) {
1362 mvneta_frag_free(pp
, data
);
1366 mvneta_rx_desc_fill(rx_desc
, phys_addr
, (u32
)data
);
1370 /* Handle tx checksum */
1371 static u32
mvneta_skb_tx_csum(struct mvneta_port
*pp
, struct sk_buff
*skb
)
1373 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1375 __be16 l3_proto
= vlan_get_protocol(skb
);
1378 if (l3_proto
== htons(ETH_P_IP
)) {
1379 struct iphdr
*ip4h
= ip_hdr(skb
);
1381 /* Calculate IPv4 checksum and L4 checksum */
1382 ip_hdr_len
= ip4h
->ihl
;
1383 l4_proto
= ip4h
->protocol
;
1384 } else if (l3_proto
== htons(ETH_P_IPV6
)) {
1385 struct ipv6hdr
*ip6h
= ipv6_hdr(skb
);
1387 /* Read l4_protocol from one of IPv6 extra headers */
1388 if (skb_network_header_len(skb
) > 0)
1389 ip_hdr_len
= (skb_network_header_len(skb
) >> 2);
1390 l4_proto
= ip6h
->nexthdr
;
1392 return MVNETA_TX_L4_CSUM_NOT
;
1394 return mvneta_txq_desc_csum(skb_network_offset(skb
),
1395 l3_proto
, ip_hdr_len
, l4_proto
);
1398 return MVNETA_TX_L4_CSUM_NOT
;
1401 /* Returns rx queue pointer (find last set bit) according to causeRxTx
1404 static struct mvneta_rx_queue
*mvneta_rx_policy(struct mvneta_port
*pp
,
1407 int queue
= fls(cause
>> 8) - 1;
1409 return (queue
< 0 || queue
>= rxq_number
) ? NULL
: &pp
->rxqs
[queue
];
1412 /* Drop packets received by the RXQ and free buffers */
1413 static void mvneta_rxq_drop_pkts(struct mvneta_port
*pp
,
1414 struct mvneta_rx_queue
*rxq
)
1418 rx_done
= mvneta_rxq_busy_desc_num_get(pp
, rxq
);
1419 for (i
= 0; i
< rxq
->size
; i
++) {
1420 struct mvneta_rx_desc
*rx_desc
= rxq
->descs
+ i
;
1421 void *data
= (void *)rx_desc
->buf_cookie
;
1423 mvneta_frag_free(pp
, data
);
1424 dma_unmap_single(pp
->dev
->dev
.parent
, rx_desc
->buf_phys_addr
,
1425 MVNETA_RX_BUF_SIZE(pp
->pkt_size
), DMA_FROM_DEVICE
);
1429 mvneta_rxq_desc_num_update(pp
, rxq
, rx_done
, rx_done
);
1432 /* Main rx processing */
1433 static int mvneta_rx(struct mvneta_port
*pp
, int rx_todo
,
1434 struct mvneta_rx_queue
*rxq
)
1436 struct net_device
*dev
= pp
->dev
;
1437 int rx_done
, rx_filled
;
1441 /* Get number of received packets */
1442 rx_done
= mvneta_rxq_busy_desc_num_get(pp
, rxq
);
1444 if (rx_todo
> rx_done
)
1450 /* Fairness NAPI loop */
1451 while (rx_done
< rx_todo
) {
1452 struct mvneta_rx_desc
*rx_desc
= mvneta_rxq_next_desc_get(rxq
);
1453 struct sk_buff
*skb
;
1454 unsigned char *data
;
1460 rx_status
= rx_desc
->status
;
1461 rx_bytes
= rx_desc
->data_size
- (ETH_FCS_LEN
+ MVNETA_MH_SIZE
);
1462 data
= (unsigned char *)rx_desc
->buf_cookie
;
1464 if (!mvneta_rxq_desc_is_first_last(rx_status
) ||
1465 (rx_status
& MVNETA_RXD_ERR_SUMMARY
)) {
1467 dev
->stats
.rx_errors
++;
1468 mvneta_rx_error(pp
, rx_desc
);
1469 /* leave the descriptor untouched */
1473 if (rx_bytes
<= rx_copybreak
) {
1474 /* better copy a small frame and not unmap the DMA region */
1475 skb
= netdev_alloc_skb_ip_align(dev
, rx_bytes
);
1477 goto err_drop_frame
;
1479 dma_sync_single_range_for_cpu(dev
->dev
.parent
,
1480 rx_desc
->buf_phys_addr
,
1481 MVNETA_MH_SIZE
+ NET_SKB_PAD
,
1484 memcpy(skb_put(skb
, rx_bytes
),
1485 data
+ MVNETA_MH_SIZE
+ NET_SKB_PAD
,
1488 skb
->protocol
= eth_type_trans(skb
, dev
);
1489 mvneta_rx_csum(pp
, rx_status
, skb
);
1490 napi_gro_receive(&pp
->napi
, skb
);
1493 rcvd_bytes
+= rx_bytes
;
1495 /* leave the descriptor and buffer untouched */
1499 skb
= build_skb(data
, pp
->frag_size
> PAGE_SIZE
? 0 : pp
->frag_size
);
1501 goto err_drop_frame
;
1503 dma_unmap_single(dev
->dev
.parent
, rx_desc
->buf_phys_addr
,
1504 MVNETA_RX_BUF_SIZE(pp
->pkt_size
), DMA_FROM_DEVICE
);
1507 rcvd_bytes
+= rx_bytes
;
1509 /* Linux processing */
1510 skb_reserve(skb
, MVNETA_MH_SIZE
+ NET_SKB_PAD
);
1511 skb_put(skb
, rx_bytes
);
1513 skb
->protocol
= eth_type_trans(skb
, dev
);
1515 mvneta_rx_csum(pp
, rx_status
, skb
);
1517 napi_gro_receive(&pp
->napi
, skb
);
1519 /* Refill processing */
1520 err
= mvneta_rx_refill(pp
, rx_desc
);
1522 netdev_err(dev
, "Linux processing - Can't refill\n");
1529 struct mvneta_pcpu_stats
*stats
= this_cpu_ptr(pp
->stats
);
1531 u64_stats_update_begin(&stats
->syncp
);
1532 stats
->rx_packets
+= rcvd_pkts
;
1533 stats
->rx_bytes
+= rcvd_bytes
;
1534 u64_stats_update_end(&stats
->syncp
);
1537 /* Update rxq management counters */
1538 mvneta_rxq_desc_num_update(pp
, rxq
, rx_done
, rx_filled
);
1544 mvneta_tso_put_hdr(struct sk_buff
*skb
,
1545 struct mvneta_port
*pp
, struct mvneta_tx_queue
*txq
)
1547 struct mvneta_tx_desc
*tx_desc
;
1548 int hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
1550 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
1551 tx_desc
= mvneta_txq_next_desc_get(txq
);
1552 tx_desc
->data_size
= hdr_len
;
1553 tx_desc
->command
= mvneta_skb_tx_csum(pp
, skb
);
1554 tx_desc
->command
|= MVNETA_TXD_F_DESC
;
1555 tx_desc
->buf_phys_addr
= txq
->tso_hdrs_phys
+
1556 txq
->txq_put_index
* TSO_HEADER_SIZE
;
1557 mvneta_txq_inc_put(txq
);
1561 mvneta_tso_put_data(struct net_device
*dev
, struct mvneta_tx_queue
*txq
,
1562 struct sk_buff
*skb
, char *data
, int size
,
1563 bool last_tcp
, bool is_last
)
1565 struct mvneta_tx_desc
*tx_desc
;
1567 tx_desc
= mvneta_txq_next_desc_get(txq
);
1568 tx_desc
->data_size
= size
;
1569 tx_desc
->buf_phys_addr
= dma_map_single(dev
->dev
.parent
, data
,
1570 size
, DMA_TO_DEVICE
);
1571 if (unlikely(dma_mapping_error(dev
->dev
.parent
,
1572 tx_desc
->buf_phys_addr
))) {
1573 mvneta_txq_desc_put(txq
);
1577 tx_desc
->command
= 0;
1578 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
1581 /* last descriptor in the TCP packet */
1582 tx_desc
->command
= MVNETA_TXD_L_DESC
;
1584 /* last descriptor in SKB */
1586 txq
->tx_skb
[txq
->txq_put_index
] = skb
;
1588 mvneta_txq_inc_put(txq
);
1592 static int mvneta_tx_tso(struct sk_buff
*skb
, struct net_device
*dev
,
1593 struct mvneta_tx_queue
*txq
)
1595 int total_len
, data_left
;
1597 struct mvneta_port
*pp
= netdev_priv(dev
);
1599 int hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
1602 /* Count needed descriptors */
1603 if ((txq
->count
+ tso_count_descs(skb
)) >= txq
->size
)
1606 if (skb_headlen(skb
) < (skb_transport_offset(skb
) + tcp_hdrlen(skb
))) {
1607 pr_info("*** Is this even possible???!?!?\n");
1611 /* Initialize the TSO handler, and prepare the first payload */
1612 tso_start(skb
, &tso
);
1614 total_len
= skb
->len
- hdr_len
;
1615 while (total_len
> 0) {
1618 data_left
= min_t(int, skb_shinfo(skb
)->gso_size
, total_len
);
1619 total_len
-= data_left
;
1622 /* prepare packet headers: MAC + IP + TCP */
1623 hdr
= txq
->tso_hdrs
+ txq
->txq_put_index
* TSO_HEADER_SIZE
;
1624 tso_build_hdr(skb
, hdr
, &tso
, data_left
, total_len
== 0);
1626 mvneta_tso_put_hdr(skb
, pp
, txq
);
1628 while (data_left
> 0) {
1632 size
= min_t(int, tso
.size
, data_left
);
1634 if (mvneta_tso_put_data(dev
, txq
, skb
,
1641 tso_build_data(skb
, &tso
, size
);
1648 /* Release all used data descriptors; header descriptors must not
1651 for (i
= desc_count
- 1; i
>= 0; i
--) {
1652 struct mvneta_tx_desc
*tx_desc
= txq
->descs
+ i
;
1653 if (!IS_TSO_HEADER(txq
, tx_desc
->buf_phys_addr
))
1654 dma_unmap_single(pp
->dev
->dev
.parent
,
1655 tx_desc
->buf_phys_addr
,
1658 mvneta_txq_desc_put(txq
);
1663 /* Handle tx fragmentation processing */
1664 static int mvneta_tx_frag_process(struct mvneta_port
*pp
, struct sk_buff
*skb
,
1665 struct mvneta_tx_queue
*txq
)
1667 struct mvneta_tx_desc
*tx_desc
;
1668 int i
, nr_frags
= skb_shinfo(skb
)->nr_frags
;
1670 for (i
= 0; i
< nr_frags
; i
++) {
1671 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1672 void *addr
= page_address(frag
->page
.p
) + frag
->page_offset
;
1674 tx_desc
= mvneta_txq_next_desc_get(txq
);
1675 tx_desc
->data_size
= frag
->size
;
1677 tx_desc
->buf_phys_addr
=
1678 dma_map_single(pp
->dev
->dev
.parent
, addr
,
1679 tx_desc
->data_size
, DMA_TO_DEVICE
);
1681 if (dma_mapping_error(pp
->dev
->dev
.parent
,
1682 tx_desc
->buf_phys_addr
)) {
1683 mvneta_txq_desc_put(txq
);
1687 if (i
== nr_frags
- 1) {
1688 /* Last descriptor */
1689 tx_desc
->command
= MVNETA_TXD_L_DESC
| MVNETA_TXD_Z_PAD
;
1690 txq
->tx_skb
[txq
->txq_put_index
] = skb
;
1692 /* Descriptor in the middle: Not First, Not Last */
1693 tx_desc
->command
= 0;
1694 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
1696 mvneta_txq_inc_put(txq
);
1702 /* Release all descriptors that were used to map fragments of
1703 * this packet, as well as the corresponding DMA mappings
1705 for (i
= i
- 1; i
>= 0; i
--) {
1706 tx_desc
= txq
->descs
+ i
;
1707 dma_unmap_single(pp
->dev
->dev
.parent
,
1708 tx_desc
->buf_phys_addr
,
1711 mvneta_txq_desc_put(txq
);
1717 /* Main tx processing */
1718 static int mvneta_tx(struct sk_buff
*skb
, struct net_device
*dev
)
1720 struct mvneta_port
*pp
= netdev_priv(dev
);
1721 u16 txq_id
= skb_get_queue_mapping(skb
);
1722 struct mvneta_tx_queue
*txq
= &pp
->txqs
[txq_id
];
1723 struct mvneta_tx_desc
*tx_desc
;
1728 if (!netif_running(dev
))
1731 if (skb_is_gso(skb
)) {
1732 frags
= mvneta_tx_tso(skb
, dev
, txq
);
1736 frags
= skb_shinfo(skb
)->nr_frags
+ 1;
1738 /* Get a descriptor for the first part of the packet */
1739 tx_desc
= mvneta_txq_next_desc_get(txq
);
1741 tx_cmd
= mvneta_skb_tx_csum(pp
, skb
);
1743 tx_desc
->data_size
= skb_headlen(skb
);
1745 tx_desc
->buf_phys_addr
= dma_map_single(dev
->dev
.parent
, skb
->data
,
1748 if (unlikely(dma_mapping_error(dev
->dev
.parent
,
1749 tx_desc
->buf_phys_addr
))) {
1750 mvneta_txq_desc_put(txq
);
1756 /* First and Last descriptor */
1757 tx_cmd
|= MVNETA_TXD_FLZ_DESC
;
1758 tx_desc
->command
= tx_cmd
;
1759 txq
->tx_skb
[txq
->txq_put_index
] = skb
;
1760 mvneta_txq_inc_put(txq
);
1762 /* First but not Last */
1763 tx_cmd
|= MVNETA_TXD_F_DESC
;
1764 txq
->tx_skb
[txq
->txq_put_index
] = NULL
;
1765 mvneta_txq_inc_put(txq
);
1766 tx_desc
->command
= tx_cmd
;
1767 /* Continue with other skb fragments */
1768 if (mvneta_tx_frag_process(pp
, skb
, txq
)) {
1769 dma_unmap_single(dev
->dev
.parent
,
1770 tx_desc
->buf_phys_addr
,
1773 mvneta_txq_desc_put(txq
);
1781 struct mvneta_pcpu_stats
*stats
= this_cpu_ptr(pp
->stats
);
1782 struct netdev_queue
*nq
= netdev_get_tx_queue(dev
, txq_id
);
1784 txq
->count
+= frags
;
1785 mvneta_txq_pend_desc_add(pp
, txq
, frags
);
1787 if (txq
->count
>= txq
->tx_stop_threshold
)
1788 netif_tx_stop_queue(nq
);
1790 u64_stats_update_begin(&stats
->syncp
);
1791 stats
->tx_packets
++;
1792 stats
->tx_bytes
+= len
;
1793 u64_stats_update_end(&stats
->syncp
);
1795 dev
->stats
.tx_dropped
++;
1796 dev_kfree_skb_any(skb
);
1799 return NETDEV_TX_OK
;
1803 /* Free tx resources, when resetting a port */
1804 static void mvneta_txq_done_force(struct mvneta_port
*pp
,
1805 struct mvneta_tx_queue
*txq
)
1808 int tx_done
= txq
->count
;
1810 mvneta_txq_bufs_free(pp
, txq
, tx_done
);
1814 txq
->txq_put_index
= 0;
1815 txq
->txq_get_index
= 0;
1818 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
1819 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
1821 static void mvneta_tx_done_gbe(struct mvneta_port
*pp
, u32 cause_tx_done
)
1823 struct mvneta_tx_queue
*txq
;
1824 struct netdev_queue
*nq
;
1826 while (cause_tx_done
) {
1827 txq
= mvneta_tx_done_policy(pp
, cause_tx_done
);
1829 nq
= netdev_get_tx_queue(pp
->dev
, txq
->id
);
1830 __netif_tx_lock(nq
, smp_processor_id());
1833 mvneta_txq_done(pp
, txq
);
1835 __netif_tx_unlock(nq
);
1836 cause_tx_done
&= ~((1 << txq
->id
));
1840 /* Compute crc8 of the specified address, using a unique algorithm ,
1841 * according to hw spec, different than generic crc8 algorithm
1843 static int mvneta_addr_crc(unsigned char *addr
)
1848 for (i
= 0; i
< ETH_ALEN
; i
++) {
1851 crc
= (crc
^ addr
[i
]) << 8;
1852 for (j
= 7; j
>= 0; j
--) {
1853 if (crc
& (0x100 << j
))
1861 /* This method controls the net device special MAC multicast support.
1862 * The Special Multicast Table for MAC addresses supports MAC of the form
1863 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1864 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1865 * Table entries in the DA-Filter table. This method set the Special
1866 * Multicast Table appropriate entry.
1868 static void mvneta_set_special_mcast_addr(struct mvneta_port
*pp
,
1869 unsigned char last_byte
,
1872 unsigned int smc_table_reg
;
1873 unsigned int tbl_offset
;
1874 unsigned int reg_offset
;
1876 /* Register offset from SMC table base */
1877 tbl_offset
= (last_byte
/ 4);
1878 /* Entry offset within the above reg */
1879 reg_offset
= last_byte
% 4;
1881 smc_table_reg
= mvreg_read(pp
, (MVNETA_DA_FILT_SPEC_MCAST
1885 smc_table_reg
&= ~(0xff << (8 * reg_offset
));
1887 smc_table_reg
&= ~(0xff << (8 * reg_offset
));
1888 smc_table_reg
|= ((0x01 | (queue
<< 1)) << (8 * reg_offset
));
1891 mvreg_write(pp
, MVNETA_DA_FILT_SPEC_MCAST
+ tbl_offset
* 4,
1895 /* This method controls the network device Other MAC multicast support.
1896 * The Other Multicast Table is used for multicast of another type.
1897 * A CRC-8 is used as an index to the Other Multicast Table entries
1898 * in the DA-Filter table.
1899 * The method gets the CRC-8 value from the calling routine and
1900 * sets the Other Multicast Table appropriate entry according to the
1903 static void mvneta_set_other_mcast_addr(struct mvneta_port
*pp
,
1907 unsigned int omc_table_reg
;
1908 unsigned int tbl_offset
;
1909 unsigned int reg_offset
;
1911 tbl_offset
= (crc8
/ 4) * 4; /* Register offset from OMC table base */
1912 reg_offset
= crc8
% 4; /* Entry offset within the above reg */
1914 omc_table_reg
= mvreg_read(pp
, MVNETA_DA_FILT_OTH_MCAST
+ tbl_offset
);
1917 /* Clear accepts frame bit at specified Other DA table entry */
1918 omc_table_reg
&= ~(0xff << (8 * reg_offset
));
1920 omc_table_reg
&= ~(0xff << (8 * reg_offset
));
1921 omc_table_reg
|= ((0x01 | (queue
<< 1)) << (8 * reg_offset
));
1924 mvreg_write(pp
, MVNETA_DA_FILT_OTH_MCAST
+ tbl_offset
, omc_table_reg
);
1927 /* The network device supports multicast using two tables:
1928 * 1) Special Multicast Table for MAC addresses of the form
1929 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1930 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1931 * Table entries in the DA-Filter table.
1932 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
1933 * is used as an index to the Other Multicast Table entries in the
1936 static int mvneta_mcast_addr_set(struct mvneta_port
*pp
, unsigned char *p_addr
,
1939 unsigned char crc_result
= 0;
1941 if (memcmp(p_addr
, "\x01\x00\x5e\x00\x00", 5) == 0) {
1942 mvneta_set_special_mcast_addr(pp
, p_addr
[5], queue
);
1946 crc_result
= mvneta_addr_crc(p_addr
);
1948 if (pp
->mcast_count
[crc_result
] == 0) {
1949 netdev_info(pp
->dev
, "No valid Mcast for crc8=0x%02x\n",
1954 pp
->mcast_count
[crc_result
]--;
1955 if (pp
->mcast_count
[crc_result
] != 0) {
1956 netdev_info(pp
->dev
,
1957 "After delete there are %d valid Mcast for crc8=0x%02x\n",
1958 pp
->mcast_count
[crc_result
], crc_result
);
1962 pp
->mcast_count
[crc_result
]++;
1964 mvneta_set_other_mcast_addr(pp
, crc_result
, queue
);
1969 /* Configure Fitering mode of Ethernet port */
1970 static void mvneta_rx_unicast_promisc_set(struct mvneta_port
*pp
,
1973 u32 port_cfg_reg
, val
;
1975 port_cfg_reg
= mvreg_read(pp
, MVNETA_PORT_CONFIG
);
1977 val
= mvreg_read(pp
, MVNETA_TYPE_PRIO
);
1979 /* Set / Clear UPM bit in port configuration register */
1981 /* Accept all Unicast addresses */
1982 port_cfg_reg
|= MVNETA_UNI_PROMISC_MODE
;
1983 val
|= MVNETA_FORCE_UNI
;
1984 mvreg_write(pp
, MVNETA_MAC_ADDR_LOW
, 0xffff);
1985 mvreg_write(pp
, MVNETA_MAC_ADDR_HIGH
, 0xffffffff);
1987 /* Reject all Unicast addresses */
1988 port_cfg_reg
&= ~MVNETA_UNI_PROMISC_MODE
;
1989 val
&= ~MVNETA_FORCE_UNI
;
1992 mvreg_write(pp
, MVNETA_PORT_CONFIG
, port_cfg_reg
);
1993 mvreg_write(pp
, MVNETA_TYPE_PRIO
, val
);
1996 /* register unicast and multicast addresses */
1997 static void mvneta_set_rx_mode(struct net_device
*dev
)
1999 struct mvneta_port
*pp
= netdev_priv(dev
);
2000 struct netdev_hw_addr
*ha
;
2002 if (dev
->flags
& IFF_PROMISC
) {
2003 /* Accept all: Multicast + Unicast */
2004 mvneta_rx_unicast_promisc_set(pp
, 1);
2005 mvneta_set_ucast_table(pp
, rxq_def
);
2006 mvneta_set_special_mcast_table(pp
, rxq_def
);
2007 mvneta_set_other_mcast_table(pp
, rxq_def
);
2009 /* Accept single Unicast */
2010 mvneta_rx_unicast_promisc_set(pp
, 0);
2011 mvneta_set_ucast_table(pp
, -1);
2012 mvneta_mac_addr_set(pp
, dev
->dev_addr
, rxq_def
);
2014 if (dev
->flags
& IFF_ALLMULTI
) {
2015 /* Accept all multicast */
2016 mvneta_set_special_mcast_table(pp
, rxq_def
);
2017 mvneta_set_other_mcast_table(pp
, rxq_def
);
2019 /* Accept only initialized multicast */
2020 mvneta_set_special_mcast_table(pp
, -1);
2021 mvneta_set_other_mcast_table(pp
, -1);
2023 if (!netdev_mc_empty(dev
)) {
2024 netdev_for_each_mc_addr(ha
, dev
) {
2025 mvneta_mcast_addr_set(pp
, ha
->addr
,
2033 /* Interrupt handling - the callback for request_irq() */
2034 static irqreturn_t
mvneta_isr(int irq
, void *dev_id
)
2036 struct mvneta_port
*pp
= (struct mvneta_port
*)dev_id
;
2038 /* Mask all interrupts */
2039 mvreg_write(pp
, MVNETA_INTR_NEW_MASK
, 0);
2041 napi_schedule(&pp
->napi
);
2047 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2048 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2049 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2050 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2051 * Each CPU has its own causeRxTx register
2053 static int mvneta_poll(struct napi_struct
*napi
, int budget
)
2057 unsigned long flags
;
2058 struct mvneta_port
*pp
= netdev_priv(napi
->dev
);
2060 if (!netif_running(pp
->dev
)) {
2061 napi_complete(napi
);
2065 /* Read cause register */
2066 cause_rx_tx
= mvreg_read(pp
, MVNETA_INTR_NEW_CAUSE
) &
2067 (MVNETA_RX_INTR_MASK(rxq_number
) | MVNETA_TX_INTR_MASK(txq_number
));
2069 /* Release Tx descriptors */
2070 if (cause_rx_tx
& MVNETA_TX_INTR_MASK_ALL
) {
2071 mvneta_tx_done_gbe(pp
, (cause_rx_tx
& MVNETA_TX_INTR_MASK_ALL
));
2072 cause_rx_tx
&= ~MVNETA_TX_INTR_MASK_ALL
;
2075 /* For the case where the last mvneta_poll did not process all
2078 cause_rx_tx
|= pp
->cause_rx_tx
;
2079 if (rxq_number
> 1) {
2080 while ((cause_rx_tx
& MVNETA_RX_INTR_MASK_ALL
) && (budget
> 0)) {
2082 struct mvneta_rx_queue
*rxq
;
2083 /* get rx queue number from cause_rx_tx */
2084 rxq
= mvneta_rx_policy(pp
, cause_rx_tx
);
2088 /* process the packet in that rx queue */
2089 count
= mvneta_rx(pp
, budget
, rxq
);
2093 /* set off the rx bit of the
2094 * corresponding bit in the cause rx
2095 * tx register, so that next iteration
2096 * will find the next rx queue where
2097 * packets are received on
2099 cause_rx_tx
&= ~((1 << rxq
->id
) << 8);
2103 rx_done
= mvneta_rx(pp
, budget
, &pp
->rxqs
[rxq_def
]);
2109 napi_complete(napi
);
2110 local_irq_save(flags
);
2111 mvreg_write(pp
, MVNETA_INTR_NEW_MASK
,
2112 MVNETA_RX_INTR_MASK(rxq_number
) | MVNETA_TX_INTR_MASK(txq_number
));
2113 local_irq_restore(flags
);
2116 pp
->cause_rx_tx
= cause_rx_tx
;
2120 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2121 static int mvneta_rxq_fill(struct mvneta_port
*pp
, struct mvneta_rx_queue
*rxq
,
2126 for (i
= 0; i
< num
; i
++) {
2127 memset(rxq
->descs
+ i
, 0, sizeof(struct mvneta_rx_desc
));
2128 if (mvneta_rx_refill(pp
, rxq
->descs
+ i
) != 0) {
2129 netdev_err(pp
->dev
, "%s:rxq %d, %d of %d buffs filled\n",
2130 __func__
, rxq
->id
, i
, num
);
2135 /* Add this number of RX descriptors as non occupied (ready to
2138 mvneta_rxq_non_occup_desc_add(pp
, rxq
, i
);
2143 /* Free all packets pending transmit from all TXQs and reset TX port */
2144 static void mvneta_tx_reset(struct mvneta_port
*pp
)
2148 /* free the skb's in the tx ring */
2149 for (queue
= 0; queue
< txq_number
; queue
++)
2150 mvneta_txq_done_force(pp
, &pp
->txqs
[queue
]);
2152 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, MVNETA_PORT_TX_DMA_RESET
);
2153 mvreg_write(pp
, MVNETA_PORT_TX_RESET
, 0);
2156 static void mvneta_rx_reset(struct mvneta_port
*pp
)
2158 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, MVNETA_PORT_RX_DMA_RESET
);
2159 mvreg_write(pp
, MVNETA_PORT_RX_RESET
, 0);
2162 /* Rx/Tx queue initialization/cleanup methods */
2164 /* Create a specified RX queue */
2165 static int mvneta_rxq_init(struct mvneta_port
*pp
,
2166 struct mvneta_rx_queue
*rxq
)
2169 rxq
->size
= pp
->rx_ring_size
;
2171 /* Allocate memory for RX descriptors */
2172 rxq
->descs
= dma_alloc_coherent(pp
->dev
->dev
.parent
,
2173 rxq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2174 &rxq
->descs_phys
, GFP_KERNEL
);
2175 if (rxq
->descs
== NULL
)
2178 BUG_ON(rxq
->descs
!=
2179 PTR_ALIGN(rxq
->descs
, MVNETA_CPU_D_CACHE_LINE_SIZE
));
2181 rxq
->last_desc
= rxq
->size
- 1;
2183 /* Set Rx descriptors queue starting address */
2184 mvreg_write(pp
, MVNETA_RXQ_BASE_ADDR_REG(rxq
->id
), rxq
->descs_phys
);
2185 mvreg_write(pp
, MVNETA_RXQ_SIZE_REG(rxq
->id
), rxq
->size
);
2188 mvneta_rxq_offset_set(pp
, rxq
, NET_SKB_PAD
);
2190 /* Set coalescing pkts and time */
2191 mvneta_rx_pkts_coal_set(pp
, rxq
, rxq
->pkts_coal
);
2192 mvneta_rx_time_coal_set(pp
, rxq
, rxq
->time_coal
);
2194 /* Fill RXQ with buffers from RX pool */
2195 mvneta_rxq_buf_size_set(pp
, rxq
, MVNETA_RX_BUF_SIZE(pp
->pkt_size
));
2196 mvneta_rxq_bm_disable(pp
, rxq
);
2197 mvneta_rxq_fill(pp
, rxq
, rxq
->size
);
2202 /* Cleanup Rx queue */
2203 static void mvneta_rxq_deinit(struct mvneta_port
*pp
,
2204 struct mvneta_rx_queue
*rxq
)
2206 mvneta_rxq_drop_pkts(pp
, rxq
);
2209 dma_free_coherent(pp
->dev
->dev
.parent
,
2210 rxq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2216 rxq
->next_desc_to_proc
= 0;
2217 rxq
->descs_phys
= 0;
2220 /* Create and initialize a tx queue */
2221 static int mvneta_txq_init(struct mvneta_port
*pp
,
2222 struct mvneta_tx_queue
*txq
)
2224 txq
->size
= pp
->tx_ring_size
;
2226 /* A queue must always have room for at least one skb.
2227 * Therefore, stop the queue when the free entries reaches
2228 * the maximum number of descriptors per skb.
2230 txq
->tx_stop_threshold
= txq
->size
- MVNETA_MAX_SKB_DESCS
;
2231 txq
->tx_wake_threshold
= txq
->tx_stop_threshold
/ 2;
2234 /* Allocate memory for TX descriptors */
2235 txq
->descs
= dma_alloc_coherent(pp
->dev
->dev
.parent
,
2236 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2237 &txq
->descs_phys
, GFP_KERNEL
);
2238 if (txq
->descs
== NULL
)
2241 /* Make sure descriptor address is cache line size aligned */
2242 BUG_ON(txq
->descs
!=
2243 PTR_ALIGN(txq
->descs
, MVNETA_CPU_D_CACHE_LINE_SIZE
));
2245 txq
->last_desc
= txq
->size
- 1;
2247 /* Set maximum bandwidth for enabled TXQs */
2248 mvreg_write(pp
, MVETH_TXQ_TOKEN_CFG_REG(txq
->id
), 0x03ffffff);
2249 mvreg_write(pp
, MVETH_TXQ_TOKEN_COUNT_REG(txq
->id
), 0x3fffffff);
2251 /* Set Tx descriptors queue starting address */
2252 mvreg_write(pp
, MVNETA_TXQ_BASE_ADDR_REG(txq
->id
), txq
->descs_phys
);
2253 mvreg_write(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
), txq
->size
);
2255 txq
->tx_skb
= kmalloc(txq
->size
* sizeof(*txq
->tx_skb
), GFP_KERNEL
);
2256 if (txq
->tx_skb
== NULL
) {
2257 dma_free_coherent(pp
->dev
->dev
.parent
,
2258 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2259 txq
->descs
, txq
->descs_phys
);
2263 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2264 txq
->tso_hdrs
= dma_alloc_coherent(pp
->dev
->dev
.parent
,
2265 txq
->size
* TSO_HEADER_SIZE
,
2266 &txq
->tso_hdrs_phys
, GFP_KERNEL
);
2267 if (txq
->tso_hdrs
== NULL
) {
2269 dma_free_coherent(pp
->dev
->dev
.parent
,
2270 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2271 txq
->descs
, txq
->descs_phys
);
2274 mvneta_tx_done_pkts_coal_set(pp
, txq
, txq
->done_pkts_coal
);
2279 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2280 static void mvneta_txq_deinit(struct mvneta_port
*pp
,
2281 struct mvneta_tx_queue
*txq
)
2286 dma_free_coherent(pp
->dev
->dev
.parent
,
2287 txq
->size
* TSO_HEADER_SIZE
,
2288 txq
->tso_hdrs
, txq
->tso_hdrs_phys
);
2290 dma_free_coherent(pp
->dev
->dev
.parent
,
2291 txq
->size
* MVNETA_DESC_ALIGNED_SIZE
,
2292 txq
->descs
, txq
->descs_phys
);
2296 txq
->next_desc_to_proc
= 0;
2297 txq
->descs_phys
= 0;
2299 /* Set minimum bandwidth for disabled TXQs */
2300 mvreg_write(pp
, MVETH_TXQ_TOKEN_CFG_REG(txq
->id
), 0);
2301 mvreg_write(pp
, MVETH_TXQ_TOKEN_COUNT_REG(txq
->id
), 0);
2303 /* Set Tx descriptors queue starting address and size */
2304 mvreg_write(pp
, MVNETA_TXQ_BASE_ADDR_REG(txq
->id
), 0);
2305 mvreg_write(pp
, MVNETA_TXQ_SIZE_REG(txq
->id
), 0);
2308 /* Cleanup all Tx queues */
2309 static void mvneta_cleanup_txqs(struct mvneta_port
*pp
)
2313 for (queue
= 0; queue
< txq_number
; queue
++)
2314 mvneta_txq_deinit(pp
, &pp
->txqs
[queue
]);
2317 /* Cleanup all Rx queues */
2318 static void mvneta_cleanup_rxqs(struct mvneta_port
*pp
)
2322 for (queue
= 0; queue
< rxq_number
; queue
++)
2323 mvneta_rxq_deinit(pp
, &pp
->rxqs
[queue
]);
2327 /* Init all Rx queues */
2328 static int mvneta_setup_rxqs(struct mvneta_port
*pp
)
2332 for (queue
= 0; queue
< rxq_number
; queue
++) {
2333 int err
= mvneta_rxq_init(pp
, &pp
->rxqs
[queue
]);
2335 netdev_err(pp
->dev
, "%s: can't create rxq=%d\n",
2337 mvneta_cleanup_rxqs(pp
);
2345 /* Init all tx queues */
2346 static int mvneta_setup_txqs(struct mvneta_port
*pp
)
2350 for (queue
= 0; queue
< txq_number
; queue
++) {
2351 int err
= mvneta_txq_init(pp
, &pp
->txqs
[queue
]);
2353 netdev_err(pp
->dev
, "%s: can't create txq=%d\n",
2355 mvneta_cleanup_txqs(pp
);
2363 static void mvneta_start_dev(struct mvneta_port
*pp
)
2365 mvneta_max_rx_size_set(pp
, pp
->pkt_size
);
2366 mvneta_txq_max_tx_size_set(pp
, pp
->pkt_size
);
2368 /* start the Rx/Tx activity */
2369 mvneta_port_enable(pp
);
2371 /* Enable polling on the port */
2372 napi_enable(&pp
->napi
);
2374 /* Unmask interrupts */
2375 mvreg_write(pp
, MVNETA_INTR_NEW_MASK
,
2376 MVNETA_RX_INTR_MASK(rxq_number
) | MVNETA_TX_INTR_MASK(txq_number
));
2378 phy_start(pp
->phy_dev
);
2379 netif_tx_start_all_queues(pp
->dev
);
2382 static void mvneta_stop_dev(struct mvneta_port
*pp
)
2384 phy_stop(pp
->phy_dev
);
2386 napi_disable(&pp
->napi
);
2388 netif_carrier_off(pp
->dev
);
2390 mvneta_port_down(pp
);
2391 netif_tx_stop_all_queues(pp
->dev
);
2393 /* Stop the port activity */
2394 mvneta_port_disable(pp
);
2396 /* Clear all ethernet port interrupts */
2397 mvreg_write(pp
, MVNETA_INTR_MISC_CAUSE
, 0);
2398 mvreg_write(pp
, MVNETA_INTR_OLD_CAUSE
, 0);
2400 /* Mask all ethernet port interrupts */
2401 mvreg_write(pp
, MVNETA_INTR_NEW_MASK
, 0);
2402 mvreg_write(pp
, MVNETA_INTR_OLD_MASK
, 0);
2403 mvreg_write(pp
, MVNETA_INTR_MISC_MASK
, 0);
2405 mvneta_tx_reset(pp
);
2406 mvneta_rx_reset(pp
);
2409 /* Return positive if MTU is valid */
2410 static int mvneta_check_mtu_valid(struct net_device
*dev
, int mtu
)
2413 netdev_err(dev
, "cannot change mtu to less than 68\n");
2417 /* 9676 == 9700 - 20 and rounding to 8 */
2419 netdev_info(dev
, "Illegal MTU value %d, round to 9676\n", mtu
);
2423 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu
), 8)) {
2424 netdev_info(dev
, "Illegal MTU value %d, rounding to %d\n",
2425 mtu
, ALIGN(MVNETA_RX_PKT_SIZE(mtu
), 8));
2426 mtu
= ALIGN(MVNETA_RX_PKT_SIZE(mtu
), 8);
2432 /* Change the device mtu */
2433 static int mvneta_change_mtu(struct net_device
*dev
, int mtu
)
2435 struct mvneta_port
*pp
= netdev_priv(dev
);
2438 mtu
= mvneta_check_mtu_valid(dev
, mtu
);
2444 if (!netif_running(dev
))
2447 /* The interface is running, so we have to force a
2448 * reallocation of the queues
2450 mvneta_stop_dev(pp
);
2452 mvneta_cleanup_txqs(pp
);
2453 mvneta_cleanup_rxqs(pp
);
2455 pp
->pkt_size
= MVNETA_RX_PKT_SIZE(dev
->mtu
);
2456 pp
->frag_size
= SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp
->pkt_size
)) +
2457 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
2459 ret
= mvneta_setup_rxqs(pp
);
2461 netdev_err(dev
, "unable to setup rxqs after MTU change\n");
2465 ret
= mvneta_setup_txqs(pp
);
2467 netdev_err(dev
, "unable to setup txqs after MTU change\n");
2471 mvneta_start_dev(pp
);
2477 /* Get mac address */
2478 static void mvneta_get_mac_addr(struct mvneta_port
*pp
, unsigned char *addr
)
2480 u32 mac_addr_l
, mac_addr_h
;
2482 mac_addr_l
= mvreg_read(pp
, MVNETA_MAC_ADDR_LOW
);
2483 mac_addr_h
= mvreg_read(pp
, MVNETA_MAC_ADDR_HIGH
);
2484 addr
[0] = (mac_addr_h
>> 24) & 0xFF;
2485 addr
[1] = (mac_addr_h
>> 16) & 0xFF;
2486 addr
[2] = (mac_addr_h
>> 8) & 0xFF;
2487 addr
[3] = mac_addr_h
& 0xFF;
2488 addr
[4] = (mac_addr_l
>> 8) & 0xFF;
2489 addr
[5] = mac_addr_l
& 0xFF;
2492 /* Handle setting mac address */
2493 static int mvneta_set_mac_addr(struct net_device
*dev
, void *addr
)
2495 struct mvneta_port
*pp
= netdev_priv(dev
);
2496 struct sockaddr
*sockaddr
= addr
;
2499 ret
= eth_prepare_mac_addr_change(dev
, addr
);
2502 /* Remove previous address table entry */
2503 mvneta_mac_addr_set(pp
, dev
->dev_addr
, -1);
2505 /* Set new addr in hw */
2506 mvneta_mac_addr_set(pp
, sockaddr
->sa_data
, rxq_def
);
2508 eth_commit_mac_addr_change(dev
, addr
);
2512 static void mvneta_adjust_link(struct net_device
*ndev
)
2514 struct mvneta_port
*pp
= netdev_priv(ndev
);
2515 struct phy_device
*phydev
= pp
->phy_dev
;
2516 int status_change
= 0;
2519 if ((pp
->speed
!= phydev
->speed
) ||
2520 (pp
->duplex
!= phydev
->duplex
)) {
2523 val
= mvreg_read(pp
, MVNETA_GMAC_AUTONEG_CONFIG
);
2524 val
&= ~(MVNETA_GMAC_CONFIG_MII_SPEED
|
2525 MVNETA_GMAC_CONFIG_GMII_SPEED
|
2526 MVNETA_GMAC_CONFIG_FULL_DUPLEX
|
2527 MVNETA_GMAC_AN_SPEED_EN
|
2528 MVNETA_GMAC_AN_DUPLEX_EN
);
2531 val
|= MVNETA_GMAC_CONFIG_FULL_DUPLEX
;
2533 if (phydev
->speed
== SPEED_1000
)
2534 val
|= MVNETA_GMAC_CONFIG_GMII_SPEED
;
2535 else if (phydev
->speed
== SPEED_100
)
2536 val
|= MVNETA_GMAC_CONFIG_MII_SPEED
;
2538 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
, val
);
2540 pp
->duplex
= phydev
->duplex
;
2541 pp
->speed
= phydev
->speed
;
2545 if (phydev
->link
!= pp
->link
) {
2546 if (!phydev
->link
) {
2551 pp
->link
= phydev
->link
;
2555 if (status_change
) {
2557 u32 val
= mvreg_read(pp
, MVNETA_GMAC_AUTONEG_CONFIG
);
2558 val
|= (MVNETA_GMAC_FORCE_LINK_PASS
|
2559 MVNETA_GMAC_FORCE_LINK_DOWN
);
2560 mvreg_write(pp
, MVNETA_GMAC_AUTONEG_CONFIG
, val
);
2563 mvneta_port_down(pp
);
2565 phy_print_status(phydev
);
2569 static int mvneta_mdio_probe(struct mvneta_port
*pp
)
2571 struct phy_device
*phy_dev
;
2573 phy_dev
= of_phy_connect(pp
->dev
, pp
->phy_node
, mvneta_adjust_link
, 0,
2576 netdev_err(pp
->dev
, "could not find the PHY\n");
2580 phy_dev
->supported
&= PHY_GBIT_FEATURES
;
2581 phy_dev
->advertising
= phy_dev
->supported
;
2583 pp
->phy_dev
= phy_dev
;
2591 static void mvneta_mdio_remove(struct mvneta_port
*pp
)
2593 phy_disconnect(pp
->phy_dev
);
2597 static int mvneta_open(struct net_device
*dev
)
2599 struct mvneta_port
*pp
= netdev_priv(dev
);
2602 pp
->pkt_size
= MVNETA_RX_PKT_SIZE(pp
->dev
->mtu
);
2603 pp
->frag_size
= SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp
->pkt_size
)) +
2604 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
2606 ret
= mvneta_setup_rxqs(pp
);
2610 ret
= mvneta_setup_txqs(pp
);
2612 goto err_cleanup_rxqs
;
2614 /* Connect to port interrupt line */
2615 ret
= request_irq(pp
->dev
->irq
, mvneta_isr
, 0,
2616 MVNETA_DRIVER_NAME
, pp
);
2618 netdev_err(pp
->dev
, "cannot request irq %d\n", pp
->dev
->irq
);
2619 goto err_cleanup_txqs
;
2622 /* In default link is down */
2623 netif_carrier_off(pp
->dev
);
2625 ret
= mvneta_mdio_probe(pp
);
2627 netdev_err(dev
, "cannot probe MDIO bus\n");
2631 mvneta_start_dev(pp
);
2636 free_irq(pp
->dev
->irq
, pp
);
2638 mvneta_cleanup_txqs(pp
);
2640 mvneta_cleanup_rxqs(pp
);
2644 /* Stop the port, free port interrupt line */
2645 static int mvneta_stop(struct net_device
*dev
)
2647 struct mvneta_port
*pp
= netdev_priv(dev
);
2649 mvneta_stop_dev(pp
);
2650 mvneta_mdio_remove(pp
);
2651 free_irq(dev
->irq
, pp
);
2652 mvneta_cleanup_rxqs(pp
);
2653 mvneta_cleanup_txqs(pp
);
2658 static int mvneta_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2660 struct mvneta_port
*pp
= netdev_priv(dev
);
2666 ret
= phy_mii_ioctl(pp
->phy_dev
, ifr
, cmd
);
2668 mvneta_adjust_link(dev
);
2673 /* Ethtool methods */
2675 /* Get settings (phy address, speed) for ethtools */
2676 int mvneta_ethtool_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2678 struct mvneta_port
*pp
= netdev_priv(dev
);
2683 return phy_ethtool_gset(pp
->phy_dev
, cmd
);
2686 /* Set settings (phy address, speed) for ethtools */
2687 int mvneta_ethtool_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2689 struct mvneta_port
*pp
= netdev_priv(dev
);
2694 return phy_ethtool_sset(pp
->phy_dev
, cmd
);
2697 /* Set interrupt coalescing for ethtools */
2698 static int mvneta_ethtool_set_coalesce(struct net_device
*dev
,
2699 struct ethtool_coalesce
*c
)
2701 struct mvneta_port
*pp
= netdev_priv(dev
);
2704 for (queue
= 0; queue
< rxq_number
; queue
++) {
2705 struct mvneta_rx_queue
*rxq
= &pp
->rxqs
[queue
];
2706 rxq
->time_coal
= c
->rx_coalesce_usecs
;
2707 rxq
->pkts_coal
= c
->rx_max_coalesced_frames
;
2708 mvneta_rx_pkts_coal_set(pp
, rxq
, rxq
->pkts_coal
);
2709 mvneta_rx_time_coal_set(pp
, rxq
, rxq
->time_coal
);
2712 for (queue
= 0; queue
< txq_number
; queue
++) {
2713 struct mvneta_tx_queue
*txq
= &pp
->txqs
[queue
];
2714 txq
->done_pkts_coal
= c
->tx_max_coalesced_frames
;
2715 mvneta_tx_done_pkts_coal_set(pp
, txq
, txq
->done_pkts_coal
);
2721 /* get coalescing for ethtools */
2722 static int mvneta_ethtool_get_coalesce(struct net_device
*dev
,
2723 struct ethtool_coalesce
*c
)
2725 struct mvneta_port
*pp
= netdev_priv(dev
);
2727 c
->rx_coalesce_usecs
= pp
->rxqs
[0].time_coal
;
2728 c
->rx_max_coalesced_frames
= pp
->rxqs
[0].pkts_coal
;
2730 c
->tx_max_coalesced_frames
= pp
->txqs
[0].done_pkts_coal
;
2735 static void mvneta_ethtool_get_drvinfo(struct net_device
*dev
,
2736 struct ethtool_drvinfo
*drvinfo
)
2738 strlcpy(drvinfo
->driver
, MVNETA_DRIVER_NAME
,
2739 sizeof(drvinfo
->driver
));
2740 strlcpy(drvinfo
->version
, MVNETA_DRIVER_VERSION
,
2741 sizeof(drvinfo
->version
));
2742 strlcpy(drvinfo
->bus_info
, dev_name(&dev
->dev
),
2743 sizeof(drvinfo
->bus_info
));
2747 static void mvneta_ethtool_get_ringparam(struct net_device
*netdev
,
2748 struct ethtool_ringparam
*ring
)
2750 struct mvneta_port
*pp
= netdev_priv(netdev
);
2752 ring
->rx_max_pending
= MVNETA_MAX_RXD
;
2753 ring
->tx_max_pending
= MVNETA_MAX_TXD
;
2754 ring
->rx_pending
= pp
->rx_ring_size
;
2755 ring
->tx_pending
= pp
->tx_ring_size
;
2758 static int mvneta_ethtool_set_ringparam(struct net_device
*dev
,
2759 struct ethtool_ringparam
*ring
)
2761 struct mvneta_port
*pp
= netdev_priv(dev
);
2763 if ((ring
->rx_pending
== 0) || (ring
->tx_pending
== 0))
2765 pp
->rx_ring_size
= ring
->rx_pending
< MVNETA_MAX_RXD
?
2766 ring
->rx_pending
: MVNETA_MAX_RXD
;
2768 pp
->tx_ring_size
= clamp_t(u16
, ring
->tx_pending
,
2769 MVNETA_MAX_SKB_DESCS
* 2, MVNETA_MAX_TXD
);
2770 if (pp
->tx_ring_size
!= ring
->tx_pending
)
2771 netdev_warn(dev
, "TX queue size set to %u (requested %u)\n",
2772 pp
->tx_ring_size
, ring
->tx_pending
);
2774 if (netif_running(dev
)) {
2776 if (mvneta_open(dev
)) {
2778 "error on opening device after ring param change\n");
2786 static const struct net_device_ops mvneta_netdev_ops
= {
2787 .ndo_open
= mvneta_open
,
2788 .ndo_stop
= mvneta_stop
,
2789 .ndo_start_xmit
= mvneta_tx
,
2790 .ndo_set_rx_mode
= mvneta_set_rx_mode
,
2791 .ndo_set_mac_address
= mvneta_set_mac_addr
,
2792 .ndo_change_mtu
= mvneta_change_mtu
,
2793 .ndo_get_stats64
= mvneta_get_stats64
,
2794 .ndo_do_ioctl
= mvneta_ioctl
,
2797 const struct ethtool_ops mvneta_eth_tool_ops
= {
2798 .get_link
= ethtool_op_get_link
,
2799 .get_settings
= mvneta_ethtool_get_settings
,
2800 .set_settings
= mvneta_ethtool_set_settings
,
2801 .set_coalesce
= mvneta_ethtool_set_coalesce
,
2802 .get_coalesce
= mvneta_ethtool_get_coalesce
,
2803 .get_drvinfo
= mvneta_ethtool_get_drvinfo
,
2804 .get_ringparam
= mvneta_ethtool_get_ringparam
,
2805 .set_ringparam
= mvneta_ethtool_set_ringparam
,
2809 static int mvneta_init(struct device
*dev
, struct mvneta_port
*pp
)
2814 mvneta_port_disable(pp
);
2816 /* Set port default values */
2817 mvneta_defaults_set(pp
);
2819 pp
->txqs
= devm_kcalloc(dev
, txq_number
, sizeof(struct mvneta_tx_queue
),
2824 /* Initialize TX descriptor rings */
2825 for (queue
= 0; queue
< txq_number
; queue
++) {
2826 struct mvneta_tx_queue
*txq
= &pp
->txqs
[queue
];
2828 txq
->size
= pp
->tx_ring_size
;
2829 txq
->done_pkts_coal
= MVNETA_TXDONE_COAL_PKTS
;
2832 pp
->rxqs
= devm_kcalloc(dev
, rxq_number
, sizeof(struct mvneta_rx_queue
),
2837 /* Create Rx descriptor rings */
2838 for (queue
= 0; queue
< rxq_number
; queue
++) {
2839 struct mvneta_rx_queue
*rxq
= &pp
->rxqs
[queue
];
2841 rxq
->size
= pp
->rx_ring_size
;
2842 rxq
->pkts_coal
= MVNETA_RX_COAL_PKTS
;
2843 rxq
->time_coal
= MVNETA_RX_COAL_USEC
;
2849 /* platform glue : initialize decoding windows */
2850 static void mvneta_conf_mbus_windows(struct mvneta_port
*pp
,
2851 const struct mbus_dram_target_info
*dram
)
2857 for (i
= 0; i
< 6; i
++) {
2858 mvreg_write(pp
, MVNETA_WIN_BASE(i
), 0);
2859 mvreg_write(pp
, MVNETA_WIN_SIZE(i
), 0);
2862 mvreg_write(pp
, MVNETA_WIN_REMAP(i
), 0);
2868 for (i
= 0; i
< dram
->num_cs
; i
++) {
2869 const struct mbus_dram_window
*cs
= dram
->cs
+ i
;
2870 mvreg_write(pp
, MVNETA_WIN_BASE(i
), (cs
->base
& 0xffff0000) |
2871 (cs
->mbus_attr
<< 8) | dram
->mbus_dram_target_id
);
2873 mvreg_write(pp
, MVNETA_WIN_SIZE(i
),
2874 (cs
->size
- 1) & 0xffff0000);
2876 win_enable
&= ~(1 << i
);
2877 win_protect
|= 3 << (2 * i
);
2880 mvreg_write(pp
, MVNETA_BASE_ADDR_ENABLE
, win_enable
);
2883 /* Power up the port */
2884 static int mvneta_port_power_up(struct mvneta_port
*pp
, int phy_mode
)
2888 /* MAC Cause register should be cleared */
2889 mvreg_write(pp
, MVNETA_UNIT_INTR_CAUSE
, 0);
2891 ctrl
= mvreg_read(pp
, MVNETA_GMAC_CTRL_2
);
2893 /* Even though it might look weird, when we're configured in
2894 * SGMII or QSGMII mode, the RGMII bit needs to be set.
2897 case PHY_INTERFACE_MODE_QSGMII
:
2898 mvreg_write(pp
, MVNETA_SERDES_CFG
, MVNETA_QSGMII_SERDES_PROTO
);
2899 ctrl
|= MVNETA_GMAC2_PCS_ENABLE
| MVNETA_GMAC2_PORT_RGMII
;
2901 case PHY_INTERFACE_MODE_SGMII
:
2902 mvreg_write(pp
, MVNETA_SERDES_CFG
, MVNETA_SGMII_SERDES_PROTO
);
2903 ctrl
|= MVNETA_GMAC2_PCS_ENABLE
| MVNETA_GMAC2_PORT_RGMII
;
2905 case PHY_INTERFACE_MODE_RGMII
:
2906 case PHY_INTERFACE_MODE_RGMII_ID
:
2907 ctrl
|= MVNETA_GMAC2_PORT_RGMII
;
2913 /* Cancel Port Reset */
2914 ctrl
&= ~MVNETA_GMAC2_PORT_RESET
;
2915 mvreg_write(pp
, MVNETA_GMAC_CTRL_2
, ctrl
);
2917 while ((mvreg_read(pp
, MVNETA_GMAC_CTRL_2
) &
2918 MVNETA_GMAC2_PORT_RESET
) != 0)
2924 /* Device initialization routine */
2925 static int mvneta_probe(struct platform_device
*pdev
)
2927 const struct mbus_dram_target_info
*dram_target_info
;
2928 struct resource
*res
;
2929 struct device_node
*dn
= pdev
->dev
.of_node
;
2930 struct device_node
*phy_node
;
2931 struct mvneta_port
*pp
;
2932 struct net_device
*dev
;
2933 const char *dt_mac_addr
;
2934 char hw_mac_addr
[ETH_ALEN
];
2935 const char *mac_from
;
2939 /* Our multiqueue support is not complete, so for now, only
2940 * allow the usage of the first RX queue
2943 dev_err(&pdev
->dev
, "Invalid rxq_def argument: %d\n", rxq_def
);
2947 dev
= alloc_etherdev_mqs(sizeof(struct mvneta_port
), txq_number
, rxq_number
);
2951 dev
->irq
= irq_of_parse_and_map(dn
, 0);
2952 if (dev
->irq
== 0) {
2954 goto err_free_netdev
;
2957 phy_node
= of_parse_phandle(dn
, "phy", 0);
2959 if (!of_phy_is_fixed_link(dn
)) {
2960 dev_err(&pdev
->dev
, "no PHY specified\n");
2965 err
= of_phy_register_fixed_link(dn
);
2967 dev_err(&pdev
->dev
, "cannot register fixed PHY\n");
2971 /* In the case of a fixed PHY, the DT node associated
2972 * to the PHY is the Ethernet MAC DT node.
2974 phy_node
= of_node_get(dn
);
2977 phy_mode
= of_get_phy_mode(dn
);
2979 dev_err(&pdev
->dev
, "incorrect phy-mode\n");
2981 goto err_put_phy_node
;
2984 dev
->tx_queue_len
= MVNETA_MAX_TXD
;
2985 dev
->watchdog_timeo
= 5 * HZ
;
2986 dev
->netdev_ops
= &mvneta_netdev_ops
;
2988 dev
->ethtool_ops
= &mvneta_eth_tool_ops
;
2990 pp
= netdev_priv(dev
);
2991 pp
->phy_node
= phy_node
;
2992 pp
->phy_interface
= phy_mode
;
2994 pp
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
2995 if (IS_ERR(pp
->clk
)) {
2996 err
= PTR_ERR(pp
->clk
);
2997 goto err_put_phy_node
;
3000 clk_prepare_enable(pp
->clk
);
3002 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
3003 pp
->base
= devm_ioremap_resource(&pdev
->dev
, res
);
3004 if (IS_ERR(pp
->base
)) {
3005 err
= PTR_ERR(pp
->base
);
3009 /* Alloc per-cpu stats */
3010 pp
->stats
= netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats
);
3016 dt_mac_addr
= of_get_mac_address(dn
);
3018 mac_from
= "device tree";
3019 memcpy(dev
->dev_addr
, dt_mac_addr
, ETH_ALEN
);
3021 mvneta_get_mac_addr(pp
, hw_mac_addr
);
3022 if (is_valid_ether_addr(hw_mac_addr
)) {
3023 mac_from
= "hardware";
3024 memcpy(dev
->dev_addr
, hw_mac_addr
, ETH_ALEN
);
3026 mac_from
= "random";
3027 eth_hw_addr_random(dev
);
3031 pp
->tx_ring_size
= MVNETA_MAX_TXD
;
3032 pp
->rx_ring_size
= MVNETA_MAX_RXD
;
3035 SET_NETDEV_DEV(dev
, &pdev
->dev
);
3037 err
= mvneta_init(&pdev
->dev
, pp
);
3039 goto err_free_stats
;
3041 err
= mvneta_port_power_up(pp
, phy_mode
);
3043 dev_err(&pdev
->dev
, "can't power up port\n");
3044 goto err_free_stats
;
3047 dram_target_info
= mv_mbus_dram_info();
3048 if (dram_target_info
)
3049 mvneta_conf_mbus_windows(pp
, dram_target_info
);
3051 netif_napi_add(dev
, &pp
->napi
, mvneta_poll
, NAPI_POLL_WEIGHT
);
3053 dev
->features
= NETIF_F_SG
| NETIF_F_IP_CSUM
| NETIF_F_TSO
;
3054 dev
->hw_features
|= dev
->features
;
3055 dev
->vlan_features
|= dev
->features
;
3056 dev
->priv_flags
|= IFF_UNICAST_FLT
;
3057 dev
->gso_max_segs
= MVNETA_MAX_TSO_SEGS
;
3059 err
= register_netdev(dev
);
3061 dev_err(&pdev
->dev
, "failed to register\n");
3062 goto err_free_stats
;
3065 netdev_info(dev
, "Using %s mac address %pM\n", mac_from
,
3068 platform_set_drvdata(pdev
, pp
->dev
);
3073 free_percpu(pp
->stats
);
3075 clk_disable_unprepare(pp
->clk
);
3077 of_node_put(phy_node
);
3079 irq_dispose_mapping(dev
->irq
);
3085 /* Device removal routine */
3086 static int mvneta_remove(struct platform_device
*pdev
)
3088 struct net_device
*dev
= platform_get_drvdata(pdev
);
3089 struct mvneta_port
*pp
= netdev_priv(dev
);
3091 unregister_netdev(dev
);
3092 clk_disable_unprepare(pp
->clk
);
3093 free_percpu(pp
->stats
);
3094 irq_dispose_mapping(dev
->irq
);
3095 of_node_put(pp
->phy_node
);
3101 static const struct of_device_id mvneta_match
[] = {
3102 { .compatible
= "marvell,armada-370-neta" },
3105 MODULE_DEVICE_TABLE(of
, mvneta_match
);
3107 static struct platform_driver mvneta_driver
= {
3108 .probe
= mvneta_probe
,
3109 .remove
= mvneta_remove
,
3111 .name
= MVNETA_DRIVER_NAME
,
3112 .of_match_table
= mvneta_match
,
3116 module_platform_driver(mvneta_driver
);
3118 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
3119 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
3120 MODULE_LICENSE("GPL");
3122 module_param(rxq_number
, int, S_IRUGO
);
3123 module_param(txq_number
, int, S_IRUGO
);
3125 module_param(rxq_def
, int, S_IRUGO
);
3126 module_param(rx_copybreak
, int, S_IRUGO
| S_IWUSR
);