ARM: dts: add 'dr_mode' property to hsotg devices for exynos boards
[linux/fpc-iii.git] / drivers / net / ethernet / marvell / mvneta.c
blob96208f17bb53be6240ae9e8d0cd30cc09041163e
1 /*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
4 * Copyright (C) 2012 Marvell
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/platform_device.h>
18 #include <linux/skbuff.h>
19 #include <linux/inetdevice.h>
20 #include <linux/mbus.h>
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/if_vlan.h>
24 #include <net/ip.h>
25 #include <net/ipv6.h>
26 #include <linux/io.h>
27 #include <net/tso.h>
28 #include <linux/of.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_mdio.h>
31 #include <linux/of_net.h>
32 #include <linux/of_address.h>
33 #include <linux/phy.h>
34 #include <linux/clk.h>
36 /* Registers */
37 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
38 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1)
39 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
40 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
41 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
42 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
43 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
44 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
45 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
46 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
47 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
48 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
49 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
50 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
51 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
52 #define MVNETA_PORT_RX_RESET 0x1cc0
53 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
54 #define MVNETA_PHY_ADDR 0x2000
55 #define MVNETA_PHY_ADDR_MASK 0x1f
56 #define MVNETA_MBUS_RETRY 0x2010
57 #define MVNETA_UNIT_INTR_CAUSE 0x2080
58 #define MVNETA_UNIT_CONTROL 0x20B0
59 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
60 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
61 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
62 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
63 #define MVNETA_BASE_ADDR_ENABLE 0x2290
64 #define MVNETA_PORT_CONFIG 0x2400
65 #define MVNETA_UNI_PROMISC_MODE BIT(0)
66 #define MVNETA_DEF_RXQ(q) ((q) << 1)
67 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
68 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
69 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
70 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
71 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
72 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
73 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
74 MVNETA_DEF_RXQ_ARP(q) | \
75 MVNETA_DEF_RXQ_TCP(q) | \
76 MVNETA_DEF_RXQ_UDP(q) | \
77 MVNETA_DEF_RXQ_BPDU(q) | \
78 MVNETA_TX_UNSET_ERR_SUM | \
79 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
80 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
81 #define MVNETA_MAC_ADDR_LOW 0x2414
82 #define MVNETA_MAC_ADDR_HIGH 0x2418
83 #define MVNETA_SDMA_CONFIG 0x241c
84 #define MVNETA_SDMA_BRST_SIZE_16 4
85 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
86 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
87 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
88 #define MVNETA_DESC_SWAP BIT(6)
89 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
90 #define MVNETA_PORT_STATUS 0x2444
91 #define MVNETA_TX_IN_PRGRS BIT(1)
92 #define MVNETA_TX_FIFO_EMPTY BIT(8)
93 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
94 #define MVNETA_SERDES_CFG 0x24A0
95 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
96 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
97 #define MVNETA_TYPE_PRIO 0x24bc
98 #define MVNETA_FORCE_UNI BIT(21)
99 #define MVNETA_TXQ_CMD_1 0x24e4
100 #define MVNETA_TXQ_CMD 0x2448
101 #define MVNETA_TXQ_DISABLE_SHIFT 8
102 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
103 #define MVNETA_ACC_MODE 0x2500
104 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
105 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
106 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
107 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
109 /* Exception Interrupt Port/Queue Cause register */
111 #define MVNETA_INTR_NEW_CAUSE 0x25a0
112 #define MVNETA_INTR_NEW_MASK 0x25a4
114 /* bits 0..7 = TXQ SENT, one bit per queue.
115 * bits 8..15 = RXQ OCCUP, one bit per queue.
116 * bits 16..23 = RXQ FREE, one bit per queue.
117 * bit 29 = OLD_REG_SUM, see old reg ?
118 * bit 30 = TX_ERR_SUM, one bit for 4 ports
119 * bit 31 = MISC_SUM, one bit for 4 ports
121 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
122 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
123 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
124 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
126 #define MVNETA_INTR_OLD_CAUSE 0x25a8
127 #define MVNETA_INTR_OLD_MASK 0x25ac
129 /* Data Path Port/Queue Cause Register */
130 #define MVNETA_INTR_MISC_CAUSE 0x25b0
131 #define MVNETA_INTR_MISC_MASK 0x25b4
133 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
134 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
135 #define MVNETA_CAUSE_PTP BIT(4)
137 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
138 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
139 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
140 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
141 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
142 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
143 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
144 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
146 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
147 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
148 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
150 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
151 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
152 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
154 #define MVNETA_INTR_ENABLE 0x25b8
155 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
156 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000 // note: neta says it's 0x000000FF
158 #define MVNETA_RXQ_CMD 0x2680
159 #define MVNETA_RXQ_DISABLE_SHIFT 8
160 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
161 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
162 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
163 #define MVNETA_GMAC_CTRL_0 0x2c00
164 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
165 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
166 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
167 #define MVNETA_GMAC_CTRL_2 0x2c08
168 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
169 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
170 #define MVNETA_GMAC2_PORT_RESET BIT(6)
171 #define MVNETA_GMAC_STATUS 0x2c10
172 #define MVNETA_GMAC_LINK_UP BIT(0)
173 #define MVNETA_GMAC_SPEED_1000 BIT(1)
174 #define MVNETA_GMAC_SPEED_100 BIT(2)
175 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
176 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
177 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
178 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
179 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
180 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
181 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
182 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
183 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
184 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
185 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
186 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
187 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
188 #define MVNETA_MIB_COUNTERS_BASE 0x3080
189 #define MVNETA_MIB_LATE_COLLISION 0x7c
190 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
191 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
192 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
193 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
194 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
195 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
196 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
197 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
198 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
199 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
200 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
201 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
202 #define MVNETA_PORT_TX_RESET 0x3cf0
203 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
204 #define MVNETA_TX_MTU 0x3e0c
205 #define MVNETA_TX_TOKEN_SIZE 0x3e14
206 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
207 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
208 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
210 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
212 /* Descriptor ring Macros */
213 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
214 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
216 /* Various constants */
218 /* Coalescing */
219 #define MVNETA_TXDONE_COAL_PKTS 1
220 #define MVNETA_RX_COAL_PKTS 32
221 #define MVNETA_RX_COAL_USEC 100
223 /* The two bytes Marvell header. Either contains a special value used
224 * by Marvell switches when a specific hardware mode is enabled (not
225 * supported by this driver) or is filled automatically by zeroes on
226 * the RX side. Those two bytes being at the front of the Ethernet
227 * header, they allow to have the IP header aligned on a 4 bytes
228 * boundary automatically: the hardware skips those two bytes on its
229 * own.
231 #define MVNETA_MH_SIZE 2
233 #define MVNETA_VLAN_TAG_LEN 4
235 #define MVNETA_CPU_D_CACHE_LINE_SIZE 32
236 #define MVNETA_TX_CSUM_MAX_SIZE 9800
237 #define MVNETA_ACC_MODE_EXT 1
239 /* Timeout constants */
240 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
241 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
242 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
244 #define MVNETA_TX_MTU_MAX 0x3ffff
246 /* TSO header size */
247 #define TSO_HEADER_SIZE 128
249 /* Max number of Rx descriptors */
250 #define MVNETA_MAX_RXD 128
252 /* Max number of Tx descriptors */
253 #define MVNETA_MAX_TXD 532
255 /* Max number of allowed TCP segments for software TSO */
256 #define MVNETA_MAX_TSO_SEGS 100
258 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
260 /* descriptor aligned size */
261 #define MVNETA_DESC_ALIGNED_SIZE 32
263 #define MVNETA_RX_PKT_SIZE(mtu) \
264 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
265 ETH_HLEN + ETH_FCS_LEN, \
266 MVNETA_CPU_D_CACHE_LINE_SIZE)
268 #define IS_TSO_HEADER(txq, addr) \
269 ((addr >= txq->tso_hdrs_phys) && \
270 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
272 #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
274 struct mvneta_pcpu_stats {
275 struct u64_stats_sync syncp;
276 u64 rx_packets;
277 u64 rx_bytes;
278 u64 tx_packets;
279 u64 tx_bytes;
282 struct mvneta_port {
283 int pkt_size;
284 unsigned int frag_size;
285 void __iomem *base;
286 struct mvneta_rx_queue *rxqs;
287 struct mvneta_tx_queue *txqs;
288 struct net_device *dev;
290 u32 cause_rx_tx;
291 struct napi_struct napi;
293 /* Core clock */
294 struct clk *clk;
295 u8 mcast_count[256];
296 u16 tx_ring_size;
297 u16 rx_ring_size;
298 struct mvneta_pcpu_stats *stats;
300 struct mii_bus *mii_bus;
301 struct phy_device *phy_dev;
302 phy_interface_t phy_interface;
303 struct device_node *phy_node;
304 unsigned int link;
305 unsigned int duplex;
306 unsigned int speed;
309 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
310 * layout of the transmit and reception DMA descriptors, and their
311 * layout is therefore defined by the hardware design
314 #define MVNETA_TX_L3_OFF_SHIFT 0
315 #define MVNETA_TX_IP_HLEN_SHIFT 8
316 #define MVNETA_TX_L4_UDP BIT(16)
317 #define MVNETA_TX_L3_IP6 BIT(17)
318 #define MVNETA_TXD_IP_CSUM BIT(18)
319 #define MVNETA_TXD_Z_PAD BIT(19)
320 #define MVNETA_TXD_L_DESC BIT(20)
321 #define MVNETA_TXD_F_DESC BIT(21)
322 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
323 MVNETA_TXD_L_DESC | \
324 MVNETA_TXD_F_DESC)
325 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
326 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
328 #define MVNETA_RXD_ERR_CRC 0x0
329 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
330 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
331 #define MVNETA_RXD_ERR_LEN BIT(18)
332 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
333 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
334 #define MVNETA_RXD_L3_IP4 BIT(25)
335 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
336 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
338 #if defined(__LITTLE_ENDIAN)
339 struct mvneta_tx_desc {
340 u32 command; /* Options used by HW for packet transmitting.*/
341 u16 reserverd1; /* csum_l4 (for future use) */
342 u16 data_size; /* Data size of transmitted packet in bytes */
343 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
344 u32 reserved2; /* hw_cmd - (for future use, PMT) */
345 u32 reserved3[4]; /* Reserved - (for future use) */
348 struct mvneta_rx_desc {
349 u32 status; /* Info about received packet */
350 u16 reserved1; /* pnc_info - (for future use, PnC) */
351 u16 data_size; /* Size of received packet in bytes */
353 u32 buf_phys_addr; /* Physical address of the buffer */
354 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
356 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
357 u16 reserved3; /* prefetch_cmd, for future use */
358 u16 reserved4; /* csum_l4 - (for future use, PnC) */
360 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
361 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
363 #else
364 struct mvneta_tx_desc {
365 u16 data_size; /* Data size of transmitted packet in bytes */
366 u16 reserverd1; /* csum_l4 (for future use) */
367 u32 command; /* Options used by HW for packet transmitting.*/
368 u32 reserved2; /* hw_cmd - (for future use, PMT) */
369 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
370 u32 reserved3[4]; /* Reserved - (for future use) */
373 struct mvneta_rx_desc {
374 u16 data_size; /* Size of received packet in bytes */
375 u16 reserved1; /* pnc_info - (for future use, PnC) */
376 u32 status; /* Info about received packet */
378 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
379 u32 buf_phys_addr; /* Physical address of the buffer */
381 u16 reserved4; /* csum_l4 - (for future use, PnC) */
382 u16 reserved3; /* prefetch_cmd, for future use */
383 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
385 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
386 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
388 #endif
390 struct mvneta_tx_queue {
391 /* Number of this TX queue, in the range 0-7 */
392 u8 id;
394 /* Number of TX DMA descriptors in the descriptor ring */
395 int size;
397 /* Number of currently used TX DMA descriptor in the
398 * descriptor ring
400 int count;
401 int tx_stop_threshold;
402 int tx_wake_threshold;
404 /* Array of transmitted skb */
405 struct sk_buff **tx_skb;
407 /* Index of last TX DMA descriptor that was inserted */
408 int txq_put_index;
410 /* Index of the TX DMA descriptor to be cleaned up */
411 int txq_get_index;
413 u32 done_pkts_coal;
415 /* Virtual address of the TX DMA descriptors array */
416 struct mvneta_tx_desc *descs;
418 /* DMA address of the TX DMA descriptors array */
419 dma_addr_t descs_phys;
421 /* Index of the last TX DMA descriptor */
422 int last_desc;
424 /* Index of the next TX DMA descriptor to process */
425 int next_desc_to_proc;
427 /* DMA buffers for TSO headers */
428 char *tso_hdrs;
430 /* DMA address of TSO headers */
431 dma_addr_t tso_hdrs_phys;
434 struct mvneta_rx_queue {
435 /* rx queue number, in the range 0-7 */
436 u8 id;
438 /* num of rx descriptors in the rx descriptor ring */
439 int size;
441 /* counter of times when mvneta_refill() failed */
442 int missed;
444 u32 pkts_coal;
445 u32 time_coal;
447 /* Virtual address of the RX DMA descriptors array */
448 struct mvneta_rx_desc *descs;
450 /* DMA address of the RX DMA descriptors array */
451 dma_addr_t descs_phys;
453 /* Index of the last RX DMA descriptor */
454 int last_desc;
456 /* Index of the next RX DMA descriptor to process */
457 int next_desc_to_proc;
460 /* The hardware supports eight (8) rx queues, but we are only allowing
461 * the first one to be used. Therefore, let's just allocate one queue.
463 static int rxq_number = 1;
464 static int txq_number = 8;
466 static int rxq_def;
468 static int rx_copybreak __read_mostly = 256;
470 #define MVNETA_DRIVER_NAME "mvneta"
471 #define MVNETA_DRIVER_VERSION "1.0"
473 /* Utility/helper methods */
475 /* Write helper method */
476 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
478 writel(data, pp->base + offset);
481 /* Read helper method */
482 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
484 return readl(pp->base + offset);
487 /* Increment txq get counter */
488 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
490 txq->txq_get_index++;
491 if (txq->txq_get_index == txq->size)
492 txq->txq_get_index = 0;
495 /* Increment txq put counter */
496 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
498 txq->txq_put_index++;
499 if (txq->txq_put_index == txq->size)
500 txq->txq_put_index = 0;
504 /* Clear all MIB counters */
505 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
507 int i;
508 u32 dummy;
510 /* Perform dummy reads from MIB counters */
511 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
512 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
515 /* Get System Network Statistics */
516 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
517 struct rtnl_link_stats64 *stats)
519 struct mvneta_port *pp = netdev_priv(dev);
520 unsigned int start;
521 int cpu;
523 for_each_possible_cpu(cpu) {
524 struct mvneta_pcpu_stats *cpu_stats;
525 u64 rx_packets;
526 u64 rx_bytes;
527 u64 tx_packets;
528 u64 tx_bytes;
530 cpu_stats = per_cpu_ptr(pp->stats, cpu);
531 do {
532 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
533 rx_packets = cpu_stats->rx_packets;
534 rx_bytes = cpu_stats->rx_bytes;
535 tx_packets = cpu_stats->tx_packets;
536 tx_bytes = cpu_stats->tx_bytes;
537 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
539 stats->rx_packets += rx_packets;
540 stats->rx_bytes += rx_bytes;
541 stats->tx_packets += tx_packets;
542 stats->tx_bytes += tx_bytes;
545 stats->rx_errors = dev->stats.rx_errors;
546 stats->rx_dropped = dev->stats.rx_dropped;
548 stats->tx_dropped = dev->stats.tx_dropped;
550 return stats;
553 /* Rx descriptors helper methods */
555 /* Checks whether the RX descriptor having this status is both the first
556 * and the last descriptor for the RX packet. Each RX packet is currently
557 * received through a single RX descriptor, so not having each RX
558 * descriptor with its first and last bits set is an error
560 static int mvneta_rxq_desc_is_first_last(u32 status)
562 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
563 MVNETA_RXD_FIRST_LAST_DESC;
566 /* Add number of descriptors ready to receive new packets */
567 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
568 struct mvneta_rx_queue *rxq,
569 int ndescs)
571 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
572 * be added at once
574 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
575 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
576 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
577 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
578 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
581 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
582 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
585 /* Get number of RX descriptors occupied by received packets */
586 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
587 struct mvneta_rx_queue *rxq)
589 u32 val;
591 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
592 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
595 /* Update num of rx desc called upon return from rx path or
596 * from mvneta_rxq_drop_pkts().
598 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
599 struct mvneta_rx_queue *rxq,
600 int rx_done, int rx_filled)
602 u32 val;
604 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
605 val = rx_done |
606 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
607 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
608 return;
611 /* Only 255 descriptors can be added at once */
612 while ((rx_done > 0) || (rx_filled > 0)) {
613 if (rx_done <= 0xff) {
614 val = rx_done;
615 rx_done = 0;
616 } else {
617 val = 0xff;
618 rx_done -= 0xff;
620 if (rx_filled <= 0xff) {
621 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
622 rx_filled = 0;
623 } else {
624 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
625 rx_filled -= 0xff;
627 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
631 /* Get pointer to next RX descriptor to be processed by SW */
632 static struct mvneta_rx_desc *
633 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
635 int rx_desc = rxq->next_desc_to_proc;
637 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
638 prefetch(rxq->descs + rxq->next_desc_to_proc);
639 return rxq->descs + rx_desc;
642 /* Change maximum receive size of the port. */
643 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
645 u32 val;
647 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
648 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
649 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
650 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
651 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
655 /* Set rx queue offset */
656 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
657 struct mvneta_rx_queue *rxq,
658 int offset)
660 u32 val;
662 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
663 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
665 /* Offset is in */
666 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
667 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
671 /* Tx descriptors helper methods */
673 /* Update HW with number of TX descriptors to be sent */
674 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
675 struct mvneta_tx_queue *txq,
676 int pend_desc)
678 u32 val;
680 /* Only 255 descriptors can be added at once ; Assume caller
681 * process TX desriptors in quanta less than 256
683 val = pend_desc;
684 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
687 /* Get pointer to next TX descriptor to be processed (send) by HW */
688 static struct mvneta_tx_desc *
689 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
691 int tx_desc = txq->next_desc_to_proc;
693 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
694 return txq->descs + tx_desc;
697 /* Release the last allocated TX descriptor. Useful to handle DMA
698 * mapping failures in the TX path.
700 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
702 if (txq->next_desc_to_proc == 0)
703 txq->next_desc_to_proc = txq->last_desc - 1;
704 else
705 txq->next_desc_to_proc--;
708 /* Set rxq buf size */
709 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
710 struct mvneta_rx_queue *rxq,
711 int buf_size)
713 u32 val;
715 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
717 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
718 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
720 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
723 /* Disable buffer management (BM) */
724 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
725 struct mvneta_rx_queue *rxq)
727 u32 val;
729 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
730 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
731 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
734 /* Start the Ethernet port RX and TX activity */
735 static void mvneta_port_up(struct mvneta_port *pp)
737 int queue;
738 u32 q_map;
740 /* Enable all initialized TXs. */
741 mvneta_mib_counters_clear(pp);
742 q_map = 0;
743 for (queue = 0; queue < txq_number; queue++) {
744 struct mvneta_tx_queue *txq = &pp->txqs[queue];
745 if (txq->descs != NULL)
746 q_map |= (1 << queue);
748 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
750 /* Enable all initialized RXQs. */
751 q_map = 0;
752 for (queue = 0; queue < rxq_number; queue++) {
753 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
754 if (rxq->descs != NULL)
755 q_map |= (1 << queue);
758 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
761 /* Stop the Ethernet port activity */
762 static void mvneta_port_down(struct mvneta_port *pp)
764 u32 val;
765 int count;
767 /* Stop Rx port activity. Check port Rx activity. */
768 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
770 /* Issue stop command for active channels only */
771 if (val != 0)
772 mvreg_write(pp, MVNETA_RXQ_CMD,
773 val << MVNETA_RXQ_DISABLE_SHIFT);
775 /* Wait for all Rx activity to terminate. */
776 count = 0;
777 do {
778 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
779 netdev_warn(pp->dev,
780 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
781 val);
782 break;
784 mdelay(1);
786 val = mvreg_read(pp, MVNETA_RXQ_CMD);
787 } while (val & 0xff);
789 /* Stop Tx port activity. Check port Tx activity. Issue stop
790 * command for active channels only
792 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
794 if (val != 0)
795 mvreg_write(pp, MVNETA_TXQ_CMD,
796 (val << MVNETA_TXQ_DISABLE_SHIFT));
798 /* Wait for all Tx activity to terminate. */
799 count = 0;
800 do {
801 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
802 netdev_warn(pp->dev,
803 "TIMEOUT for TX stopped status=0x%08x\n",
804 val);
805 break;
807 mdelay(1);
809 /* Check TX Command reg that all Txqs are stopped */
810 val = mvreg_read(pp, MVNETA_TXQ_CMD);
812 } while (val & 0xff);
814 /* Double check to verify that TX FIFO is empty */
815 count = 0;
816 do {
817 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
818 netdev_warn(pp->dev,
819 "TX FIFO empty timeout status=0x08%x\n",
820 val);
821 break;
823 mdelay(1);
825 val = mvreg_read(pp, MVNETA_PORT_STATUS);
826 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
827 (val & MVNETA_TX_IN_PRGRS));
829 udelay(200);
832 /* Enable the port by setting the port enable bit of the MAC control register */
833 static void mvneta_port_enable(struct mvneta_port *pp)
835 u32 val;
837 /* Enable port */
838 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
839 val |= MVNETA_GMAC0_PORT_ENABLE;
840 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
843 /* Disable the port and wait for about 200 usec before retuning */
844 static void mvneta_port_disable(struct mvneta_port *pp)
846 u32 val;
848 /* Reset the Enable bit in the Serial Control Register */
849 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
850 val &= ~MVNETA_GMAC0_PORT_ENABLE;
851 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
853 udelay(200);
856 /* Multicast tables methods */
858 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
859 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
861 int offset;
862 u32 val;
864 if (queue == -1) {
865 val = 0;
866 } else {
867 val = 0x1 | (queue << 1);
868 val |= (val << 24) | (val << 16) | (val << 8);
871 for (offset = 0; offset <= 0xc; offset += 4)
872 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
875 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
876 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
878 int offset;
879 u32 val;
881 if (queue == -1) {
882 val = 0;
883 } else {
884 val = 0x1 | (queue << 1);
885 val |= (val << 24) | (val << 16) | (val << 8);
888 for (offset = 0; offset <= 0xfc; offset += 4)
889 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
893 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
894 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
896 int offset;
897 u32 val;
899 if (queue == -1) {
900 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
901 val = 0;
902 } else {
903 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
904 val = 0x1 | (queue << 1);
905 val |= (val << 24) | (val << 16) | (val << 8);
908 for (offset = 0; offset <= 0xfc; offset += 4)
909 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
912 /* This method sets defaults to the NETA port:
913 * Clears interrupt Cause and Mask registers.
914 * Clears all MAC tables.
915 * Sets defaults to all registers.
916 * Resets RX and TX descriptor rings.
917 * Resets PHY.
918 * This method can be called after mvneta_port_down() to return the port
919 * settings to defaults.
921 static void mvneta_defaults_set(struct mvneta_port *pp)
923 int cpu;
924 int queue;
925 u32 val;
927 /* Clear all Cause registers */
928 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
929 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
930 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
932 /* Mask all interrupts */
933 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
934 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
935 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
936 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
938 /* Enable MBUS Retry bit16 */
939 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
941 /* Set CPU queue access map - all CPUs have access to all RX
942 * queues and to all TX queues
944 for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
945 mvreg_write(pp, MVNETA_CPU_MAP(cpu),
946 (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
947 MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
949 /* Reset RX and TX DMAs */
950 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
951 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
953 /* Disable Legacy WRR, Disable EJP, Release from reset */
954 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
955 for (queue = 0; queue < txq_number; queue++) {
956 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
957 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
960 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
961 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
963 /* Set Port Acceleration Mode */
964 val = MVNETA_ACC_MODE_EXT;
965 mvreg_write(pp, MVNETA_ACC_MODE, val);
967 /* Update val of portCfg register accordingly with all RxQueue types */
968 val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
969 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
971 val = 0;
972 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
973 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
975 /* Build PORT_SDMA_CONFIG_REG */
976 val = 0;
978 /* Default burst size */
979 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
980 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
981 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
983 #if defined(__BIG_ENDIAN)
984 val |= MVNETA_DESC_SWAP;
985 #endif
987 /* Assign port SDMA configuration */
988 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
990 /* Disable PHY polling in hardware, since we're using the
991 * kernel phylib to do this.
993 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
994 val &= ~MVNETA_PHY_POLLING_ENABLE;
995 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
997 mvneta_set_ucast_table(pp, -1);
998 mvneta_set_special_mcast_table(pp, -1);
999 mvneta_set_other_mcast_table(pp, -1);
1001 /* Set port interrupt enable register - default enable all */
1002 mvreg_write(pp, MVNETA_INTR_ENABLE,
1003 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1004 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1007 /* Set max sizes for tx queues */
1008 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1011 u32 val, size, mtu;
1012 int queue;
1014 mtu = max_tx_size * 8;
1015 if (mtu > MVNETA_TX_MTU_MAX)
1016 mtu = MVNETA_TX_MTU_MAX;
1018 /* Set MTU */
1019 val = mvreg_read(pp, MVNETA_TX_MTU);
1020 val &= ~MVNETA_TX_MTU_MAX;
1021 val |= mtu;
1022 mvreg_write(pp, MVNETA_TX_MTU, val);
1024 /* TX token size and all TXQs token size must be larger that MTU */
1025 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1027 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1028 if (size < mtu) {
1029 size = mtu;
1030 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1031 val |= size;
1032 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1034 for (queue = 0; queue < txq_number; queue++) {
1035 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1037 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1038 if (size < mtu) {
1039 size = mtu;
1040 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1041 val |= size;
1042 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1047 /* Set unicast address */
1048 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1049 int queue)
1051 unsigned int unicast_reg;
1052 unsigned int tbl_offset;
1053 unsigned int reg_offset;
1055 /* Locate the Unicast table entry */
1056 last_nibble = (0xf & last_nibble);
1058 /* offset from unicast tbl base */
1059 tbl_offset = (last_nibble / 4) * 4;
1061 /* offset within the above reg */
1062 reg_offset = last_nibble % 4;
1064 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1066 if (queue == -1) {
1067 /* Clear accepts frame bit at specified unicast DA tbl entry */
1068 unicast_reg &= ~(0xff << (8 * reg_offset));
1069 } else {
1070 unicast_reg &= ~(0xff << (8 * reg_offset));
1071 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1074 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1077 /* Set mac address */
1078 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1079 int queue)
1081 unsigned int mac_h;
1082 unsigned int mac_l;
1084 if (queue != -1) {
1085 mac_l = (addr[4] << 8) | (addr[5]);
1086 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1087 (addr[2] << 8) | (addr[3] << 0);
1089 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1090 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1093 /* Accept frames of this address */
1094 mvneta_set_ucast_addr(pp, addr[5], queue);
1097 /* Set the number of packets that will be received before RX interrupt
1098 * will be generated by HW.
1100 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1101 struct mvneta_rx_queue *rxq, u32 value)
1103 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1104 value | MVNETA_RXQ_NON_OCCUPIED(0));
1105 rxq->pkts_coal = value;
1108 /* Set the time delay in usec before RX interrupt will be generated by
1109 * HW.
1111 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1112 struct mvneta_rx_queue *rxq, u32 value)
1114 u32 val;
1115 unsigned long clk_rate;
1117 clk_rate = clk_get_rate(pp->clk);
1118 val = (clk_rate / 1000000) * value;
1120 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1121 rxq->time_coal = value;
1124 /* Set threshold for TX_DONE pkts coalescing */
1125 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1126 struct mvneta_tx_queue *txq, u32 value)
1128 u32 val;
1130 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1132 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1133 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1135 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1137 txq->done_pkts_coal = value;
1140 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1141 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1142 u32 phys_addr, u32 cookie)
1144 rx_desc->buf_cookie = cookie;
1145 rx_desc->buf_phys_addr = phys_addr;
1148 /* Decrement sent descriptors counter */
1149 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1150 struct mvneta_tx_queue *txq,
1151 int sent_desc)
1153 u32 val;
1155 /* Only 255 TX descriptors can be updated at once */
1156 while (sent_desc > 0xff) {
1157 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1158 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1159 sent_desc = sent_desc - 0xff;
1162 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1163 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1166 /* Get number of TX descriptors already sent by HW */
1167 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1168 struct mvneta_tx_queue *txq)
1170 u32 val;
1171 int sent_desc;
1173 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1174 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1175 MVNETA_TXQ_SENT_DESC_SHIFT;
1177 return sent_desc;
1180 /* Get number of sent descriptors and decrement counter.
1181 * The number of sent descriptors is returned.
1183 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1184 struct mvneta_tx_queue *txq)
1186 int sent_desc;
1188 /* Get number of sent descriptors */
1189 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1191 /* Decrement sent descriptors counter */
1192 if (sent_desc)
1193 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1195 return sent_desc;
1198 /* Set TXQ descriptors fields relevant for CSUM calculation */
1199 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1200 int ip_hdr_len, int l4_proto)
1202 u32 command;
1204 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1205 * G_L4_chk, L4_type; required only for checksum
1206 * calculation
1208 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1209 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1211 if (l3_proto == htons(ETH_P_IP))
1212 command |= MVNETA_TXD_IP_CSUM;
1213 else
1214 command |= MVNETA_TX_L3_IP6;
1216 if (l4_proto == IPPROTO_TCP)
1217 command |= MVNETA_TX_L4_CSUM_FULL;
1218 else if (l4_proto == IPPROTO_UDP)
1219 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1220 else
1221 command |= MVNETA_TX_L4_CSUM_NOT;
1223 return command;
1227 /* Display more error info */
1228 static void mvneta_rx_error(struct mvneta_port *pp,
1229 struct mvneta_rx_desc *rx_desc)
1231 u32 status = rx_desc->status;
1233 if (!mvneta_rxq_desc_is_first_last(status)) {
1234 netdev_err(pp->dev,
1235 "bad rx status %08x (buffer oversize), size=%d\n",
1236 status, rx_desc->data_size);
1237 return;
1240 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1241 case MVNETA_RXD_ERR_CRC:
1242 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1243 status, rx_desc->data_size);
1244 break;
1245 case MVNETA_RXD_ERR_OVERRUN:
1246 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1247 status, rx_desc->data_size);
1248 break;
1249 case MVNETA_RXD_ERR_LEN:
1250 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1251 status, rx_desc->data_size);
1252 break;
1253 case MVNETA_RXD_ERR_RESOURCE:
1254 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1255 status, rx_desc->data_size);
1256 break;
1260 /* Handle RX checksum offload based on the descriptor's status */
1261 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1262 struct sk_buff *skb)
1264 if ((status & MVNETA_RXD_L3_IP4) &&
1265 (status & MVNETA_RXD_L4_CSUM_OK)) {
1266 skb->csum = 0;
1267 skb->ip_summed = CHECKSUM_UNNECESSARY;
1268 return;
1271 skb->ip_summed = CHECKSUM_NONE;
1274 /* Return tx queue pointer (find last set bit) according to <cause> returned
1275 * form tx_done reg. <cause> must not be null. The return value is always a
1276 * valid queue for matching the first one found in <cause>.
1278 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1279 u32 cause)
1281 int queue = fls(cause) - 1;
1283 return &pp->txqs[queue];
1286 /* Free tx queue skbuffs */
1287 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1288 struct mvneta_tx_queue *txq, int num)
1290 int i;
1292 for (i = 0; i < num; i++) {
1293 struct mvneta_tx_desc *tx_desc = txq->descs +
1294 txq->txq_get_index;
1295 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1297 mvneta_txq_inc_get(txq);
1299 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1300 dma_unmap_single(pp->dev->dev.parent,
1301 tx_desc->buf_phys_addr,
1302 tx_desc->data_size, DMA_TO_DEVICE);
1303 if (!skb)
1304 continue;
1305 dev_kfree_skb_any(skb);
1309 /* Handle end of transmission */
1310 static void mvneta_txq_done(struct mvneta_port *pp,
1311 struct mvneta_tx_queue *txq)
1313 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1314 int tx_done;
1316 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1317 if (!tx_done)
1318 return;
1320 mvneta_txq_bufs_free(pp, txq, tx_done);
1322 txq->count -= tx_done;
1324 if (netif_tx_queue_stopped(nq)) {
1325 if (txq->count <= txq->tx_wake_threshold)
1326 netif_tx_wake_queue(nq);
1330 static void *mvneta_frag_alloc(const struct mvneta_port *pp)
1332 if (likely(pp->frag_size <= PAGE_SIZE))
1333 return netdev_alloc_frag(pp->frag_size);
1334 else
1335 return kmalloc(pp->frag_size, GFP_ATOMIC);
1338 static void mvneta_frag_free(const struct mvneta_port *pp, void *data)
1340 if (likely(pp->frag_size <= PAGE_SIZE))
1341 put_page(virt_to_head_page(data));
1342 else
1343 kfree(data);
1346 /* Refill processing */
1347 static int mvneta_rx_refill(struct mvneta_port *pp,
1348 struct mvneta_rx_desc *rx_desc)
1351 dma_addr_t phys_addr;
1352 void *data;
1354 data = mvneta_frag_alloc(pp);
1355 if (!data)
1356 return -ENOMEM;
1358 phys_addr = dma_map_single(pp->dev->dev.parent, data,
1359 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1360 DMA_FROM_DEVICE);
1361 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1362 mvneta_frag_free(pp, data);
1363 return -ENOMEM;
1366 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1367 return 0;
1370 /* Handle tx checksum */
1371 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1373 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1374 int ip_hdr_len = 0;
1375 __be16 l3_proto = vlan_get_protocol(skb);
1376 u8 l4_proto;
1378 if (l3_proto == htons(ETH_P_IP)) {
1379 struct iphdr *ip4h = ip_hdr(skb);
1381 /* Calculate IPv4 checksum and L4 checksum */
1382 ip_hdr_len = ip4h->ihl;
1383 l4_proto = ip4h->protocol;
1384 } else if (l3_proto == htons(ETH_P_IPV6)) {
1385 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1387 /* Read l4_protocol from one of IPv6 extra headers */
1388 if (skb_network_header_len(skb) > 0)
1389 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1390 l4_proto = ip6h->nexthdr;
1391 } else
1392 return MVNETA_TX_L4_CSUM_NOT;
1394 return mvneta_txq_desc_csum(skb_network_offset(skb),
1395 l3_proto, ip_hdr_len, l4_proto);
1398 return MVNETA_TX_L4_CSUM_NOT;
1401 /* Returns rx queue pointer (find last set bit) according to causeRxTx
1402 * value
1404 static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
1405 u32 cause)
1407 int queue = fls(cause >> 8) - 1;
1409 return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
1412 /* Drop packets received by the RXQ and free buffers */
1413 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1414 struct mvneta_rx_queue *rxq)
1416 int rx_done, i;
1418 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1419 for (i = 0; i < rxq->size; i++) {
1420 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1421 void *data = (void *)rx_desc->buf_cookie;
1423 mvneta_frag_free(pp, data);
1424 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1425 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1428 if (rx_done)
1429 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1432 /* Main rx processing */
1433 static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
1434 struct mvneta_rx_queue *rxq)
1436 struct net_device *dev = pp->dev;
1437 int rx_done, rx_filled;
1438 u32 rcvd_pkts = 0;
1439 u32 rcvd_bytes = 0;
1441 /* Get number of received packets */
1442 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1444 if (rx_todo > rx_done)
1445 rx_todo = rx_done;
1447 rx_done = 0;
1448 rx_filled = 0;
1450 /* Fairness NAPI loop */
1451 while (rx_done < rx_todo) {
1452 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1453 struct sk_buff *skb;
1454 unsigned char *data;
1455 u32 rx_status;
1456 int rx_bytes, err;
1458 rx_done++;
1459 rx_filled++;
1460 rx_status = rx_desc->status;
1461 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1462 data = (unsigned char *)rx_desc->buf_cookie;
1464 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1465 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1466 err_drop_frame:
1467 dev->stats.rx_errors++;
1468 mvneta_rx_error(pp, rx_desc);
1469 /* leave the descriptor untouched */
1470 continue;
1473 if (rx_bytes <= rx_copybreak) {
1474 /* better copy a small frame and not unmap the DMA region */
1475 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1476 if (unlikely(!skb))
1477 goto err_drop_frame;
1479 dma_sync_single_range_for_cpu(dev->dev.parent,
1480 rx_desc->buf_phys_addr,
1481 MVNETA_MH_SIZE + NET_SKB_PAD,
1482 rx_bytes,
1483 DMA_FROM_DEVICE);
1484 memcpy(skb_put(skb, rx_bytes),
1485 data + MVNETA_MH_SIZE + NET_SKB_PAD,
1486 rx_bytes);
1488 skb->protocol = eth_type_trans(skb, dev);
1489 mvneta_rx_csum(pp, rx_status, skb);
1490 napi_gro_receive(&pp->napi, skb);
1492 rcvd_pkts++;
1493 rcvd_bytes += rx_bytes;
1495 /* leave the descriptor and buffer untouched */
1496 continue;
1499 skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size);
1500 if (!skb)
1501 goto err_drop_frame;
1503 dma_unmap_single(dev->dev.parent, rx_desc->buf_phys_addr,
1504 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1506 rcvd_pkts++;
1507 rcvd_bytes += rx_bytes;
1509 /* Linux processing */
1510 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1511 skb_put(skb, rx_bytes);
1513 skb->protocol = eth_type_trans(skb, dev);
1515 mvneta_rx_csum(pp, rx_status, skb);
1517 napi_gro_receive(&pp->napi, skb);
1519 /* Refill processing */
1520 err = mvneta_rx_refill(pp, rx_desc);
1521 if (err) {
1522 netdev_err(dev, "Linux processing - Can't refill\n");
1523 rxq->missed++;
1524 rx_filled--;
1528 if (rcvd_pkts) {
1529 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1531 u64_stats_update_begin(&stats->syncp);
1532 stats->rx_packets += rcvd_pkts;
1533 stats->rx_bytes += rcvd_bytes;
1534 u64_stats_update_end(&stats->syncp);
1537 /* Update rxq management counters */
1538 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled);
1540 return rx_done;
1543 static inline void
1544 mvneta_tso_put_hdr(struct sk_buff *skb,
1545 struct mvneta_port *pp, struct mvneta_tx_queue *txq)
1547 struct mvneta_tx_desc *tx_desc;
1548 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1550 txq->tx_skb[txq->txq_put_index] = NULL;
1551 tx_desc = mvneta_txq_next_desc_get(txq);
1552 tx_desc->data_size = hdr_len;
1553 tx_desc->command = mvneta_skb_tx_csum(pp, skb);
1554 tx_desc->command |= MVNETA_TXD_F_DESC;
1555 tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
1556 txq->txq_put_index * TSO_HEADER_SIZE;
1557 mvneta_txq_inc_put(txq);
1560 static inline int
1561 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
1562 struct sk_buff *skb, char *data, int size,
1563 bool last_tcp, bool is_last)
1565 struct mvneta_tx_desc *tx_desc;
1567 tx_desc = mvneta_txq_next_desc_get(txq);
1568 tx_desc->data_size = size;
1569 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
1570 size, DMA_TO_DEVICE);
1571 if (unlikely(dma_mapping_error(dev->dev.parent,
1572 tx_desc->buf_phys_addr))) {
1573 mvneta_txq_desc_put(txq);
1574 return -ENOMEM;
1577 tx_desc->command = 0;
1578 txq->tx_skb[txq->txq_put_index] = NULL;
1580 if (last_tcp) {
1581 /* last descriptor in the TCP packet */
1582 tx_desc->command = MVNETA_TXD_L_DESC;
1584 /* last descriptor in SKB */
1585 if (is_last)
1586 txq->tx_skb[txq->txq_put_index] = skb;
1588 mvneta_txq_inc_put(txq);
1589 return 0;
1592 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
1593 struct mvneta_tx_queue *txq)
1595 int total_len, data_left;
1596 int desc_count = 0;
1597 struct mvneta_port *pp = netdev_priv(dev);
1598 struct tso_t tso;
1599 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1600 int i;
1602 /* Count needed descriptors */
1603 if ((txq->count + tso_count_descs(skb)) >= txq->size)
1604 return 0;
1606 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
1607 pr_info("*** Is this even possible???!?!?\n");
1608 return 0;
1611 /* Initialize the TSO handler, and prepare the first payload */
1612 tso_start(skb, &tso);
1614 total_len = skb->len - hdr_len;
1615 while (total_len > 0) {
1616 char *hdr;
1618 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1619 total_len -= data_left;
1620 desc_count++;
1622 /* prepare packet headers: MAC + IP + TCP */
1623 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
1624 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1626 mvneta_tso_put_hdr(skb, pp, txq);
1628 while (data_left > 0) {
1629 int size;
1630 desc_count++;
1632 size = min_t(int, tso.size, data_left);
1634 if (mvneta_tso_put_data(dev, txq, skb,
1635 tso.data, size,
1636 size == data_left,
1637 total_len == 0))
1638 goto err_release;
1639 data_left -= size;
1641 tso_build_data(skb, &tso, size);
1645 return desc_count;
1647 err_release:
1648 /* Release all used data descriptors; header descriptors must not
1649 * be DMA-unmapped.
1651 for (i = desc_count - 1; i >= 0; i--) {
1652 struct mvneta_tx_desc *tx_desc = txq->descs + i;
1653 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1654 dma_unmap_single(pp->dev->dev.parent,
1655 tx_desc->buf_phys_addr,
1656 tx_desc->data_size,
1657 DMA_TO_DEVICE);
1658 mvneta_txq_desc_put(txq);
1660 return 0;
1663 /* Handle tx fragmentation processing */
1664 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
1665 struct mvneta_tx_queue *txq)
1667 struct mvneta_tx_desc *tx_desc;
1668 int i, nr_frags = skb_shinfo(skb)->nr_frags;
1670 for (i = 0; i < nr_frags; i++) {
1671 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1672 void *addr = page_address(frag->page.p) + frag->page_offset;
1674 tx_desc = mvneta_txq_next_desc_get(txq);
1675 tx_desc->data_size = frag->size;
1677 tx_desc->buf_phys_addr =
1678 dma_map_single(pp->dev->dev.parent, addr,
1679 tx_desc->data_size, DMA_TO_DEVICE);
1681 if (dma_mapping_error(pp->dev->dev.parent,
1682 tx_desc->buf_phys_addr)) {
1683 mvneta_txq_desc_put(txq);
1684 goto error;
1687 if (i == nr_frags - 1) {
1688 /* Last descriptor */
1689 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
1690 txq->tx_skb[txq->txq_put_index] = skb;
1691 } else {
1692 /* Descriptor in the middle: Not First, Not Last */
1693 tx_desc->command = 0;
1694 txq->tx_skb[txq->txq_put_index] = NULL;
1696 mvneta_txq_inc_put(txq);
1699 return 0;
1701 error:
1702 /* Release all descriptors that were used to map fragments of
1703 * this packet, as well as the corresponding DMA mappings
1705 for (i = i - 1; i >= 0; i--) {
1706 tx_desc = txq->descs + i;
1707 dma_unmap_single(pp->dev->dev.parent,
1708 tx_desc->buf_phys_addr,
1709 tx_desc->data_size,
1710 DMA_TO_DEVICE);
1711 mvneta_txq_desc_put(txq);
1714 return -ENOMEM;
1717 /* Main tx processing */
1718 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
1720 struct mvneta_port *pp = netdev_priv(dev);
1721 u16 txq_id = skb_get_queue_mapping(skb);
1722 struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
1723 struct mvneta_tx_desc *tx_desc;
1724 int len = skb->len;
1725 int frags = 0;
1726 u32 tx_cmd;
1728 if (!netif_running(dev))
1729 goto out;
1731 if (skb_is_gso(skb)) {
1732 frags = mvneta_tx_tso(skb, dev, txq);
1733 goto out;
1736 frags = skb_shinfo(skb)->nr_frags + 1;
1738 /* Get a descriptor for the first part of the packet */
1739 tx_desc = mvneta_txq_next_desc_get(txq);
1741 tx_cmd = mvneta_skb_tx_csum(pp, skb);
1743 tx_desc->data_size = skb_headlen(skb);
1745 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
1746 tx_desc->data_size,
1747 DMA_TO_DEVICE);
1748 if (unlikely(dma_mapping_error(dev->dev.parent,
1749 tx_desc->buf_phys_addr))) {
1750 mvneta_txq_desc_put(txq);
1751 frags = 0;
1752 goto out;
1755 if (frags == 1) {
1756 /* First and Last descriptor */
1757 tx_cmd |= MVNETA_TXD_FLZ_DESC;
1758 tx_desc->command = tx_cmd;
1759 txq->tx_skb[txq->txq_put_index] = skb;
1760 mvneta_txq_inc_put(txq);
1761 } else {
1762 /* First but not Last */
1763 tx_cmd |= MVNETA_TXD_F_DESC;
1764 txq->tx_skb[txq->txq_put_index] = NULL;
1765 mvneta_txq_inc_put(txq);
1766 tx_desc->command = tx_cmd;
1767 /* Continue with other skb fragments */
1768 if (mvneta_tx_frag_process(pp, skb, txq)) {
1769 dma_unmap_single(dev->dev.parent,
1770 tx_desc->buf_phys_addr,
1771 tx_desc->data_size,
1772 DMA_TO_DEVICE);
1773 mvneta_txq_desc_put(txq);
1774 frags = 0;
1775 goto out;
1779 out:
1780 if (frags > 0) {
1781 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1782 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
1784 txq->count += frags;
1785 mvneta_txq_pend_desc_add(pp, txq, frags);
1787 if (txq->count >= txq->tx_stop_threshold)
1788 netif_tx_stop_queue(nq);
1790 u64_stats_update_begin(&stats->syncp);
1791 stats->tx_packets++;
1792 stats->tx_bytes += len;
1793 u64_stats_update_end(&stats->syncp);
1794 } else {
1795 dev->stats.tx_dropped++;
1796 dev_kfree_skb_any(skb);
1799 return NETDEV_TX_OK;
1803 /* Free tx resources, when resetting a port */
1804 static void mvneta_txq_done_force(struct mvneta_port *pp,
1805 struct mvneta_tx_queue *txq)
1808 int tx_done = txq->count;
1810 mvneta_txq_bufs_free(pp, txq, tx_done);
1812 /* reset txq */
1813 txq->count = 0;
1814 txq->txq_put_index = 0;
1815 txq->txq_get_index = 0;
1818 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
1819 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
1821 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
1823 struct mvneta_tx_queue *txq;
1824 struct netdev_queue *nq;
1826 while (cause_tx_done) {
1827 txq = mvneta_tx_done_policy(pp, cause_tx_done);
1829 nq = netdev_get_tx_queue(pp->dev, txq->id);
1830 __netif_tx_lock(nq, smp_processor_id());
1832 if (txq->count)
1833 mvneta_txq_done(pp, txq);
1835 __netif_tx_unlock(nq);
1836 cause_tx_done &= ~((1 << txq->id));
1840 /* Compute crc8 of the specified address, using a unique algorithm ,
1841 * according to hw spec, different than generic crc8 algorithm
1843 static int mvneta_addr_crc(unsigned char *addr)
1845 int crc = 0;
1846 int i;
1848 for (i = 0; i < ETH_ALEN; i++) {
1849 int j;
1851 crc = (crc ^ addr[i]) << 8;
1852 for (j = 7; j >= 0; j--) {
1853 if (crc & (0x100 << j))
1854 crc ^= 0x107 << j;
1858 return crc;
1861 /* This method controls the net device special MAC multicast support.
1862 * The Special Multicast Table for MAC addresses supports MAC of the form
1863 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1864 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1865 * Table entries in the DA-Filter table. This method set the Special
1866 * Multicast Table appropriate entry.
1868 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
1869 unsigned char last_byte,
1870 int queue)
1872 unsigned int smc_table_reg;
1873 unsigned int tbl_offset;
1874 unsigned int reg_offset;
1876 /* Register offset from SMC table base */
1877 tbl_offset = (last_byte / 4);
1878 /* Entry offset within the above reg */
1879 reg_offset = last_byte % 4;
1881 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
1882 + tbl_offset * 4));
1884 if (queue == -1)
1885 smc_table_reg &= ~(0xff << (8 * reg_offset));
1886 else {
1887 smc_table_reg &= ~(0xff << (8 * reg_offset));
1888 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1891 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
1892 smc_table_reg);
1895 /* This method controls the network device Other MAC multicast support.
1896 * The Other Multicast Table is used for multicast of another type.
1897 * A CRC-8 is used as an index to the Other Multicast Table entries
1898 * in the DA-Filter table.
1899 * The method gets the CRC-8 value from the calling routine and
1900 * sets the Other Multicast Table appropriate entry according to the
1901 * specified CRC-8 .
1903 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
1904 unsigned char crc8,
1905 int queue)
1907 unsigned int omc_table_reg;
1908 unsigned int tbl_offset;
1909 unsigned int reg_offset;
1911 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
1912 reg_offset = crc8 % 4; /* Entry offset within the above reg */
1914 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
1916 if (queue == -1) {
1917 /* Clear accepts frame bit at specified Other DA table entry */
1918 omc_table_reg &= ~(0xff << (8 * reg_offset));
1919 } else {
1920 omc_table_reg &= ~(0xff << (8 * reg_offset));
1921 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1924 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
1927 /* The network device supports multicast using two tables:
1928 * 1) Special Multicast Table for MAC addresses of the form
1929 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1930 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1931 * Table entries in the DA-Filter table.
1932 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
1933 * is used as an index to the Other Multicast Table entries in the
1934 * DA-Filter table.
1936 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
1937 int queue)
1939 unsigned char crc_result = 0;
1941 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
1942 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
1943 return 0;
1946 crc_result = mvneta_addr_crc(p_addr);
1947 if (queue == -1) {
1948 if (pp->mcast_count[crc_result] == 0) {
1949 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
1950 crc_result);
1951 return -EINVAL;
1954 pp->mcast_count[crc_result]--;
1955 if (pp->mcast_count[crc_result] != 0) {
1956 netdev_info(pp->dev,
1957 "After delete there are %d valid Mcast for crc8=0x%02x\n",
1958 pp->mcast_count[crc_result], crc_result);
1959 return -EINVAL;
1961 } else
1962 pp->mcast_count[crc_result]++;
1964 mvneta_set_other_mcast_addr(pp, crc_result, queue);
1966 return 0;
1969 /* Configure Fitering mode of Ethernet port */
1970 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
1971 int is_promisc)
1973 u32 port_cfg_reg, val;
1975 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
1977 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
1979 /* Set / Clear UPM bit in port configuration register */
1980 if (is_promisc) {
1981 /* Accept all Unicast addresses */
1982 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
1983 val |= MVNETA_FORCE_UNI;
1984 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
1985 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
1986 } else {
1987 /* Reject all Unicast addresses */
1988 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
1989 val &= ~MVNETA_FORCE_UNI;
1992 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
1993 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
1996 /* register unicast and multicast addresses */
1997 static void mvneta_set_rx_mode(struct net_device *dev)
1999 struct mvneta_port *pp = netdev_priv(dev);
2000 struct netdev_hw_addr *ha;
2002 if (dev->flags & IFF_PROMISC) {
2003 /* Accept all: Multicast + Unicast */
2004 mvneta_rx_unicast_promisc_set(pp, 1);
2005 mvneta_set_ucast_table(pp, rxq_def);
2006 mvneta_set_special_mcast_table(pp, rxq_def);
2007 mvneta_set_other_mcast_table(pp, rxq_def);
2008 } else {
2009 /* Accept single Unicast */
2010 mvneta_rx_unicast_promisc_set(pp, 0);
2011 mvneta_set_ucast_table(pp, -1);
2012 mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
2014 if (dev->flags & IFF_ALLMULTI) {
2015 /* Accept all multicast */
2016 mvneta_set_special_mcast_table(pp, rxq_def);
2017 mvneta_set_other_mcast_table(pp, rxq_def);
2018 } else {
2019 /* Accept only initialized multicast */
2020 mvneta_set_special_mcast_table(pp, -1);
2021 mvneta_set_other_mcast_table(pp, -1);
2023 if (!netdev_mc_empty(dev)) {
2024 netdev_for_each_mc_addr(ha, dev) {
2025 mvneta_mcast_addr_set(pp, ha->addr,
2026 rxq_def);
2033 /* Interrupt handling - the callback for request_irq() */
2034 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2036 struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2038 /* Mask all interrupts */
2039 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2041 napi_schedule(&pp->napi);
2043 return IRQ_HANDLED;
2046 /* NAPI handler
2047 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2048 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2049 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2050 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2051 * Each CPU has its own causeRxTx register
2053 static int mvneta_poll(struct napi_struct *napi, int budget)
2055 int rx_done = 0;
2056 u32 cause_rx_tx;
2057 unsigned long flags;
2058 struct mvneta_port *pp = netdev_priv(napi->dev);
2060 if (!netif_running(pp->dev)) {
2061 napi_complete(napi);
2062 return rx_done;
2065 /* Read cause register */
2066 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) &
2067 (MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
2069 /* Release Tx descriptors */
2070 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2071 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2072 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2075 /* For the case where the last mvneta_poll did not process all
2076 * RX packets
2078 cause_rx_tx |= pp->cause_rx_tx;
2079 if (rxq_number > 1) {
2080 while ((cause_rx_tx & MVNETA_RX_INTR_MASK_ALL) && (budget > 0)) {
2081 int count;
2082 struct mvneta_rx_queue *rxq;
2083 /* get rx queue number from cause_rx_tx */
2084 rxq = mvneta_rx_policy(pp, cause_rx_tx);
2085 if (!rxq)
2086 break;
2088 /* process the packet in that rx queue */
2089 count = mvneta_rx(pp, budget, rxq);
2090 rx_done += count;
2091 budget -= count;
2092 if (budget > 0) {
2093 /* set off the rx bit of the
2094 * corresponding bit in the cause rx
2095 * tx register, so that next iteration
2096 * will find the next rx queue where
2097 * packets are received on
2099 cause_rx_tx &= ~((1 << rxq->id) << 8);
2102 } else {
2103 rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
2104 budget -= rx_done;
2107 if (budget > 0) {
2108 cause_rx_tx = 0;
2109 napi_complete(napi);
2110 local_irq_save(flags);
2111 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2112 MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
2113 local_irq_restore(flags);
2116 pp->cause_rx_tx = cause_rx_tx;
2117 return rx_done;
2120 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2121 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2122 int num)
2124 int i;
2126 for (i = 0; i < num; i++) {
2127 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2128 if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
2129 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n",
2130 __func__, rxq->id, i, num);
2131 break;
2135 /* Add this number of RX descriptors as non occupied (ready to
2136 * get packets)
2138 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2140 return i;
2143 /* Free all packets pending transmit from all TXQs and reset TX port */
2144 static void mvneta_tx_reset(struct mvneta_port *pp)
2146 int queue;
2148 /* free the skb's in the tx ring */
2149 for (queue = 0; queue < txq_number; queue++)
2150 mvneta_txq_done_force(pp, &pp->txqs[queue]);
2152 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2153 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2156 static void mvneta_rx_reset(struct mvneta_port *pp)
2158 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2159 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2162 /* Rx/Tx queue initialization/cleanup methods */
2164 /* Create a specified RX queue */
2165 static int mvneta_rxq_init(struct mvneta_port *pp,
2166 struct mvneta_rx_queue *rxq)
2169 rxq->size = pp->rx_ring_size;
2171 /* Allocate memory for RX descriptors */
2172 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2173 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2174 &rxq->descs_phys, GFP_KERNEL);
2175 if (rxq->descs == NULL)
2176 return -ENOMEM;
2178 BUG_ON(rxq->descs !=
2179 PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2181 rxq->last_desc = rxq->size - 1;
2183 /* Set Rx descriptors queue starting address */
2184 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2185 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2187 /* Set Offset */
2188 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2190 /* Set coalescing pkts and time */
2191 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2192 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2194 /* Fill RXQ with buffers from RX pool */
2195 mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
2196 mvneta_rxq_bm_disable(pp, rxq);
2197 mvneta_rxq_fill(pp, rxq, rxq->size);
2199 return 0;
2202 /* Cleanup Rx queue */
2203 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2204 struct mvneta_rx_queue *rxq)
2206 mvneta_rxq_drop_pkts(pp, rxq);
2208 if (rxq->descs)
2209 dma_free_coherent(pp->dev->dev.parent,
2210 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2211 rxq->descs,
2212 rxq->descs_phys);
2214 rxq->descs = NULL;
2215 rxq->last_desc = 0;
2216 rxq->next_desc_to_proc = 0;
2217 rxq->descs_phys = 0;
2220 /* Create and initialize a tx queue */
2221 static int mvneta_txq_init(struct mvneta_port *pp,
2222 struct mvneta_tx_queue *txq)
2224 txq->size = pp->tx_ring_size;
2226 /* A queue must always have room for at least one skb.
2227 * Therefore, stop the queue when the free entries reaches
2228 * the maximum number of descriptors per skb.
2230 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2231 txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2234 /* Allocate memory for TX descriptors */
2235 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2236 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2237 &txq->descs_phys, GFP_KERNEL);
2238 if (txq->descs == NULL)
2239 return -ENOMEM;
2241 /* Make sure descriptor address is cache line size aligned */
2242 BUG_ON(txq->descs !=
2243 PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2245 txq->last_desc = txq->size - 1;
2247 /* Set maximum bandwidth for enabled TXQs */
2248 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2249 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2251 /* Set Tx descriptors queue starting address */
2252 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2253 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2255 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2256 if (txq->tx_skb == NULL) {
2257 dma_free_coherent(pp->dev->dev.parent,
2258 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2259 txq->descs, txq->descs_phys);
2260 return -ENOMEM;
2263 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2264 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2265 txq->size * TSO_HEADER_SIZE,
2266 &txq->tso_hdrs_phys, GFP_KERNEL);
2267 if (txq->tso_hdrs == NULL) {
2268 kfree(txq->tx_skb);
2269 dma_free_coherent(pp->dev->dev.parent,
2270 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2271 txq->descs, txq->descs_phys);
2272 return -ENOMEM;
2274 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2276 return 0;
2279 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2280 static void mvneta_txq_deinit(struct mvneta_port *pp,
2281 struct mvneta_tx_queue *txq)
2283 kfree(txq->tx_skb);
2285 if (txq->tso_hdrs)
2286 dma_free_coherent(pp->dev->dev.parent,
2287 txq->size * TSO_HEADER_SIZE,
2288 txq->tso_hdrs, txq->tso_hdrs_phys);
2289 if (txq->descs)
2290 dma_free_coherent(pp->dev->dev.parent,
2291 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2292 txq->descs, txq->descs_phys);
2294 txq->descs = NULL;
2295 txq->last_desc = 0;
2296 txq->next_desc_to_proc = 0;
2297 txq->descs_phys = 0;
2299 /* Set minimum bandwidth for disabled TXQs */
2300 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2301 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2303 /* Set Tx descriptors queue starting address and size */
2304 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2305 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2308 /* Cleanup all Tx queues */
2309 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2311 int queue;
2313 for (queue = 0; queue < txq_number; queue++)
2314 mvneta_txq_deinit(pp, &pp->txqs[queue]);
2317 /* Cleanup all Rx queues */
2318 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2320 int queue;
2322 for (queue = 0; queue < rxq_number; queue++)
2323 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2327 /* Init all Rx queues */
2328 static int mvneta_setup_rxqs(struct mvneta_port *pp)
2330 int queue;
2332 for (queue = 0; queue < rxq_number; queue++) {
2333 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2334 if (err) {
2335 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2336 __func__, queue);
2337 mvneta_cleanup_rxqs(pp);
2338 return err;
2342 return 0;
2345 /* Init all tx queues */
2346 static int mvneta_setup_txqs(struct mvneta_port *pp)
2348 int queue;
2350 for (queue = 0; queue < txq_number; queue++) {
2351 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2352 if (err) {
2353 netdev_err(pp->dev, "%s: can't create txq=%d\n",
2354 __func__, queue);
2355 mvneta_cleanup_txqs(pp);
2356 return err;
2360 return 0;
2363 static void mvneta_start_dev(struct mvneta_port *pp)
2365 mvneta_max_rx_size_set(pp, pp->pkt_size);
2366 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2368 /* start the Rx/Tx activity */
2369 mvneta_port_enable(pp);
2371 /* Enable polling on the port */
2372 napi_enable(&pp->napi);
2374 /* Unmask interrupts */
2375 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2376 MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
2378 phy_start(pp->phy_dev);
2379 netif_tx_start_all_queues(pp->dev);
2382 static void mvneta_stop_dev(struct mvneta_port *pp)
2384 phy_stop(pp->phy_dev);
2386 napi_disable(&pp->napi);
2388 netif_carrier_off(pp->dev);
2390 mvneta_port_down(pp);
2391 netif_tx_stop_all_queues(pp->dev);
2393 /* Stop the port activity */
2394 mvneta_port_disable(pp);
2396 /* Clear all ethernet port interrupts */
2397 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2398 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
2400 /* Mask all ethernet port interrupts */
2401 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2402 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2403 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2405 mvneta_tx_reset(pp);
2406 mvneta_rx_reset(pp);
2409 /* Return positive if MTU is valid */
2410 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
2412 if (mtu < 68) {
2413 netdev_err(dev, "cannot change mtu to less than 68\n");
2414 return -EINVAL;
2417 /* 9676 == 9700 - 20 and rounding to 8 */
2418 if (mtu > 9676) {
2419 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
2420 mtu = 9676;
2423 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
2424 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
2425 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
2426 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
2429 return mtu;
2432 /* Change the device mtu */
2433 static int mvneta_change_mtu(struct net_device *dev, int mtu)
2435 struct mvneta_port *pp = netdev_priv(dev);
2436 int ret;
2438 mtu = mvneta_check_mtu_valid(dev, mtu);
2439 if (mtu < 0)
2440 return -EINVAL;
2442 dev->mtu = mtu;
2444 if (!netif_running(dev))
2445 return 0;
2447 /* The interface is running, so we have to force a
2448 * reallocation of the queues
2450 mvneta_stop_dev(pp);
2452 mvneta_cleanup_txqs(pp);
2453 mvneta_cleanup_rxqs(pp);
2455 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
2456 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2457 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2459 ret = mvneta_setup_rxqs(pp);
2460 if (ret) {
2461 netdev_err(dev, "unable to setup rxqs after MTU change\n");
2462 return ret;
2465 ret = mvneta_setup_txqs(pp);
2466 if (ret) {
2467 netdev_err(dev, "unable to setup txqs after MTU change\n");
2468 return ret;
2471 mvneta_start_dev(pp);
2472 mvneta_port_up(pp);
2474 return 0;
2477 /* Get mac address */
2478 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
2480 u32 mac_addr_l, mac_addr_h;
2482 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
2483 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
2484 addr[0] = (mac_addr_h >> 24) & 0xFF;
2485 addr[1] = (mac_addr_h >> 16) & 0xFF;
2486 addr[2] = (mac_addr_h >> 8) & 0xFF;
2487 addr[3] = mac_addr_h & 0xFF;
2488 addr[4] = (mac_addr_l >> 8) & 0xFF;
2489 addr[5] = mac_addr_l & 0xFF;
2492 /* Handle setting mac address */
2493 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
2495 struct mvneta_port *pp = netdev_priv(dev);
2496 struct sockaddr *sockaddr = addr;
2497 int ret;
2499 ret = eth_prepare_mac_addr_change(dev, addr);
2500 if (ret < 0)
2501 return ret;
2502 /* Remove previous address table entry */
2503 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
2505 /* Set new addr in hw */
2506 mvneta_mac_addr_set(pp, sockaddr->sa_data, rxq_def);
2508 eth_commit_mac_addr_change(dev, addr);
2509 return 0;
2512 static void mvneta_adjust_link(struct net_device *ndev)
2514 struct mvneta_port *pp = netdev_priv(ndev);
2515 struct phy_device *phydev = pp->phy_dev;
2516 int status_change = 0;
2518 if (phydev->link) {
2519 if ((pp->speed != phydev->speed) ||
2520 (pp->duplex != phydev->duplex)) {
2521 u32 val;
2523 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2524 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
2525 MVNETA_GMAC_CONFIG_GMII_SPEED |
2526 MVNETA_GMAC_CONFIG_FULL_DUPLEX |
2527 MVNETA_GMAC_AN_SPEED_EN |
2528 MVNETA_GMAC_AN_DUPLEX_EN);
2530 if (phydev->duplex)
2531 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
2533 if (phydev->speed == SPEED_1000)
2534 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
2535 else if (phydev->speed == SPEED_100)
2536 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
2538 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2540 pp->duplex = phydev->duplex;
2541 pp->speed = phydev->speed;
2545 if (phydev->link != pp->link) {
2546 if (!phydev->link) {
2547 pp->duplex = -1;
2548 pp->speed = 0;
2551 pp->link = phydev->link;
2552 status_change = 1;
2555 if (status_change) {
2556 if (phydev->link) {
2557 u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2558 val |= (MVNETA_GMAC_FORCE_LINK_PASS |
2559 MVNETA_GMAC_FORCE_LINK_DOWN);
2560 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2561 mvneta_port_up(pp);
2562 } else {
2563 mvneta_port_down(pp);
2565 phy_print_status(phydev);
2569 static int mvneta_mdio_probe(struct mvneta_port *pp)
2571 struct phy_device *phy_dev;
2573 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
2574 pp->phy_interface);
2575 if (!phy_dev) {
2576 netdev_err(pp->dev, "could not find the PHY\n");
2577 return -ENODEV;
2580 phy_dev->supported &= PHY_GBIT_FEATURES;
2581 phy_dev->advertising = phy_dev->supported;
2583 pp->phy_dev = phy_dev;
2584 pp->link = 0;
2585 pp->duplex = 0;
2586 pp->speed = 0;
2588 return 0;
2591 static void mvneta_mdio_remove(struct mvneta_port *pp)
2593 phy_disconnect(pp->phy_dev);
2594 pp->phy_dev = NULL;
2597 static int mvneta_open(struct net_device *dev)
2599 struct mvneta_port *pp = netdev_priv(dev);
2600 int ret;
2602 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2603 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2604 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2606 ret = mvneta_setup_rxqs(pp);
2607 if (ret)
2608 return ret;
2610 ret = mvneta_setup_txqs(pp);
2611 if (ret)
2612 goto err_cleanup_rxqs;
2614 /* Connect to port interrupt line */
2615 ret = request_irq(pp->dev->irq, mvneta_isr, 0,
2616 MVNETA_DRIVER_NAME, pp);
2617 if (ret) {
2618 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
2619 goto err_cleanup_txqs;
2622 /* In default link is down */
2623 netif_carrier_off(pp->dev);
2625 ret = mvneta_mdio_probe(pp);
2626 if (ret < 0) {
2627 netdev_err(dev, "cannot probe MDIO bus\n");
2628 goto err_free_irq;
2631 mvneta_start_dev(pp);
2633 return 0;
2635 err_free_irq:
2636 free_irq(pp->dev->irq, pp);
2637 err_cleanup_txqs:
2638 mvneta_cleanup_txqs(pp);
2639 err_cleanup_rxqs:
2640 mvneta_cleanup_rxqs(pp);
2641 return ret;
2644 /* Stop the port, free port interrupt line */
2645 static int mvneta_stop(struct net_device *dev)
2647 struct mvneta_port *pp = netdev_priv(dev);
2649 mvneta_stop_dev(pp);
2650 mvneta_mdio_remove(pp);
2651 free_irq(dev->irq, pp);
2652 mvneta_cleanup_rxqs(pp);
2653 mvneta_cleanup_txqs(pp);
2655 return 0;
2658 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2660 struct mvneta_port *pp = netdev_priv(dev);
2661 int ret;
2663 if (!pp->phy_dev)
2664 return -ENOTSUPP;
2666 ret = phy_mii_ioctl(pp->phy_dev, ifr, cmd);
2667 if (!ret)
2668 mvneta_adjust_link(dev);
2670 return ret;
2673 /* Ethtool methods */
2675 /* Get settings (phy address, speed) for ethtools */
2676 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2678 struct mvneta_port *pp = netdev_priv(dev);
2680 if (!pp->phy_dev)
2681 return -ENODEV;
2683 return phy_ethtool_gset(pp->phy_dev, cmd);
2686 /* Set settings (phy address, speed) for ethtools */
2687 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2689 struct mvneta_port *pp = netdev_priv(dev);
2691 if (!pp->phy_dev)
2692 return -ENODEV;
2694 return phy_ethtool_sset(pp->phy_dev, cmd);
2697 /* Set interrupt coalescing for ethtools */
2698 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
2699 struct ethtool_coalesce *c)
2701 struct mvneta_port *pp = netdev_priv(dev);
2702 int queue;
2704 for (queue = 0; queue < rxq_number; queue++) {
2705 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2706 rxq->time_coal = c->rx_coalesce_usecs;
2707 rxq->pkts_coal = c->rx_max_coalesced_frames;
2708 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2709 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2712 for (queue = 0; queue < txq_number; queue++) {
2713 struct mvneta_tx_queue *txq = &pp->txqs[queue];
2714 txq->done_pkts_coal = c->tx_max_coalesced_frames;
2715 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2718 return 0;
2721 /* get coalescing for ethtools */
2722 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
2723 struct ethtool_coalesce *c)
2725 struct mvneta_port *pp = netdev_priv(dev);
2727 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
2728 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
2730 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
2731 return 0;
2735 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
2736 struct ethtool_drvinfo *drvinfo)
2738 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
2739 sizeof(drvinfo->driver));
2740 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
2741 sizeof(drvinfo->version));
2742 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
2743 sizeof(drvinfo->bus_info));
2747 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
2748 struct ethtool_ringparam *ring)
2750 struct mvneta_port *pp = netdev_priv(netdev);
2752 ring->rx_max_pending = MVNETA_MAX_RXD;
2753 ring->tx_max_pending = MVNETA_MAX_TXD;
2754 ring->rx_pending = pp->rx_ring_size;
2755 ring->tx_pending = pp->tx_ring_size;
2758 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
2759 struct ethtool_ringparam *ring)
2761 struct mvneta_port *pp = netdev_priv(dev);
2763 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
2764 return -EINVAL;
2765 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
2766 ring->rx_pending : MVNETA_MAX_RXD;
2768 pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
2769 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
2770 if (pp->tx_ring_size != ring->tx_pending)
2771 netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
2772 pp->tx_ring_size, ring->tx_pending);
2774 if (netif_running(dev)) {
2775 mvneta_stop(dev);
2776 if (mvneta_open(dev)) {
2777 netdev_err(dev,
2778 "error on opening device after ring param change\n");
2779 return -ENOMEM;
2783 return 0;
2786 static const struct net_device_ops mvneta_netdev_ops = {
2787 .ndo_open = mvneta_open,
2788 .ndo_stop = mvneta_stop,
2789 .ndo_start_xmit = mvneta_tx,
2790 .ndo_set_rx_mode = mvneta_set_rx_mode,
2791 .ndo_set_mac_address = mvneta_set_mac_addr,
2792 .ndo_change_mtu = mvneta_change_mtu,
2793 .ndo_get_stats64 = mvneta_get_stats64,
2794 .ndo_do_ioctl = mvneta_ioctl,
2797 const struct ethtool_ops mvneta_eth_tool_ops = {
2798 .get_link = ethtool_op_get_link,
2799 .get_settings = mvneta_ethtool_get_settings,
2800 .set_settings = mvneta_ethtool_set_settings,
2801 .set_coalesce = mvneta_ethtool_set_coalesce,
2802 .get_coalesce = mvneta_ethtool_get_coalesce,
2803 .get_drvinfo = mvneta_ethtool_get_drvinfo,
2804 .get_ringparam = mvneta_ethtool_get_ringparam,
2805 .set_ringparam = mvneta_ethtool_set_ringparam,
2808 /* Initialize hw */
2809 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
2811 int queue;
2813 /* Disable port */
2814 mvneta_port_disable(pp);
2816 /* Set port default values */
2817 mvneta_defaults_set(pp);
2819 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
2820 GFP_KERNEL);
2821 if (!pp->txqs)
2822 return -ENOMEM;
2824 /* Initialize TX descriptor rings */
2825 for (queue = 0; queue < txq_number; queue++) {
2826 struct mvneta_tx_queue *txq = &pp->txqs[queue];
2827 txq->id = queue;
2828 txq->size = pp->tx_ring_size;
2829 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
2832 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
2833 GFP_KERNEL);
2834 if (!pp->rxqs)
2835 return -ENOMEM;
2837 /* Create Rx descriptor rings */
2838 for (queue = 0; queue < rxq_number; queue++) {
2839 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2840 rxq->id = queue;
2841 rxq->size = pp->rx_ring_size;
2842 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
2843 rxq->time_coal = MVNETA_RX_COAL_USEC;
2846 return 0;
2849 /* platform glue : initialize decoding windows */
2850 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
2851 const struct mbus_dram_target_info *dram)
2853 u32 win_enable;
2854 u32 win_protect;
2855 int i;
2857 for (i = 0; i < 6; i++) {
2858 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
2859 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
2861 if (i < 4)
2862 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
2865 win_enable = 0x3f;
2866 win_protect = 0;
2868 for (i = 0; i < dram->num_cs; i++) {
2869 const struct mbus_dram_window *cs = dram->cs + i;
2870 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
2871 (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
2873 mvreg_write(pp, MVNETA_WIN_SIZE(i),
2874 (cs->size - 1) & 0xffff0000);
2876 win_enable &= ~(1 << i);
2877 win_protect |= 3 << (2 * i);
2880 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
2883 /* Power up the port */
2884 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
2886 u32 ctrl;
2888 /* MAC Cause register should be cleared */
2889 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
2891 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
2893 /* Even though it might look weird, when we're configured in
2894 * SGMII or QSGMII mode, the RGMII bit needs to be set.
2896 switch(phy_mode) {
2897 case PHY_INTERFACE_MODE_QSGMII:
2898 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
2899 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
2900 break;
2901 case PHY_INTERFACE_MODE_SGMII:
2902 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
2903 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
2904 break;
2905 case PHY_INTERFACE_MODE_RGMII:
2906 case PHY_INTERFACE_MODE_RGMII_ID:
2907 ctrl |= MVNETA_GMAC2_PORT_RGMII;
2908 break;
2909 default:
2910 return -EINVAL;
2913 /* Cancel Port Reset */
2914 ctrl &= ~MVNETA_GMAC2_PORT_RESET;
2915 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
2917 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
2918 MVNETA_GMAC2_PORT_RESET) != 0)
2919 continue;
2921 return 0;
2924 /* Device initialization routine */
2925 static int mvneta_probe(struct platform_device *pdev)
2927 const struct mbus_dram_target_info *dram_target_info;
2928 struct resource *res;
2929 struct device_node *dn = pdev->dev.of_node;
2930 struct device_node *phy_node;
2931 struct mvneta_port *pp;
2932 struct net_device *dev;
2933 const char *dt_mac_addr;
2934 char hw_mac_addr[ETH_ALEN];
2935 const char *mac_from;
2936 int phy_mode;
2937 int err;
2939 /* Our multiqueue support is not complete, so for now, only
2940 * allow the usage of the first RX queue
2942 if (rxq_def != 0) {
2943 dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
2944 return -EINVAL;
2947 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
2948 if (!dev)
2949 return -ENOMEM;
2951 dev->irq = irq_of_parse_and_map(dn, 0);
2952 if (dev->irq == 0) {
2953 err = -EINVAL;
2954 goto err_free_netdev;
2957 phy_node = of_parse_phandle(dn, "phy", 0);
2958 if (!phy_node) {
2959 if (!of_phy_is_fixed_link(dn)) {
2960 dev_err(&pdev->dev, "no PHY specified\n");
2961 err = -ENODEV;
2962 goto err_free_irq;
2965 err = of_phy_register_fixed_link(dn);
2966 if (err < 0) {
2967 dev_err(&pdev->dev, "cannot register fixed PHY\n");
2968 goto err_free_irq;
2971 /* In the case of a fixed PHY, the DT node associated
2972 * to the PHY is the Ethernet MAC DT node.
2974 phy_node = of_node_get(dn);
2977 phy_mode = of_get_phy_mode(dn);
2978 if (phy_mode < 0) {
2979 dev_err(&pdev->dev, "incorrect phy-mode\n");
2980 err = -EINVAL;
2981 goto err_put_phy_node;
2984 dev->tx_queue_len = MVNETA_MAX_TXD;
2985 dev->watchdog_timeo = 5 * HZ;
2986 dev->netdev_ops = &mvneta_netdev_ops;
2988 dev->ethtool_ops = &mvneta_eth_tool_ops;
2990 pp = netdev_priv(dev);
2991 pp->phy_node = phy_node;
2992 pp->phy_interface = phy_mode;
2994 pp->clk = devm_clk_get(&pdev->dev, NULL);
2995 if (IS_ERR(pp->clk)) {
2996 err = PTR_ERR(pp->clk);
2997 goto err_put_phy_node;
3000 clk_prepare_enable(pp->clk);
3002 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3003 pp->base = devm_ioremap_resource(&pdev->dev, res);
3004 if (IS_ERR(pp->base)) {
3005 err = PTR_ERR(pp->base);
3006 goto err_clk;
3009 /* Alloc per-cpu stats */
3010 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
3011 if (!pp->stats) {
3012 err = -ENOMEM;
3013 goto err_clk;
3016 dt_mac_addr = of_get_mac_address(dn);
3017 if (dt_mac_addr) {
3018 mac_from = "device tree";
3019 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
3020 } else {
3021 mvneta_get_mac_addr(pp, hw_mac_addr);
3022 if (is_valid_ether_addr(hw_mac_addr)) {
3023 mac_from = "hardware";
3024 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
3025 } else {
3026 mac_from = "random";
3027 eth_hw_addr_random(dev);
3031 pp->tx_ring_size = MVNETA_MAX_TXD;
3032 pp->rx_ring_size = MVNETA_MAX_RXD;
3034 pp->dev = dev;
3035 SET_NETDEV_DEV(dev, &pdev->dev);
3037 err = mvneta_init(&pdev->dev, pp);
3038 if (err < 0)
3039 goto err_free_stats;
3041 err = mvneta_port_power_up(pp, phy_mode);
3042 if (err < 0) {
3043 dev_err(&pdev->dev, "can't power up port\n");
3044 goto err_free_stats;
3047 dram_target_info = mv_mbus_dram_info();
3048 if (dram_target_info)
3049 mvneta_conf_mbus_windows(pp, dram_target_info);
3051 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
3053 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3054 dev->hw_features |= dev->features;
3055 dev->vlan_features |= dev->features;
3056 dev->priv_flags |= IFF_UNICAST_FLT;
3057 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
3059 err = register_netdev(dev);
3060 if (err < 0) {
3061 dev_err(&pdev->dev, "failed to register\n");
3062 goto err_free_stats;
3065 netdev_info(dev, "Using %s mac address %pM\n", mac_from,
3066 dev->dev_addr);
3068 platform_set_drvdata(pdev, pp->dev);
3070 return 0;
3072 err_free_stats:
3073 free_percpu(pp->stats);
3074 err_clk:
3075 clk_disable_unprepare(pp->clk);
3076 err_put_phy_node:
3077 of_node_put(phy_node);
3078 err_free_irq:
3079 irq_dispose_mapping(dev->irq);
3080 err_free_netdev:
3081 free_netdev(dev);
3082 return err;
3085 /* Device removal routine */
3086 static int mvneta_remove(struct platform_device *pdev)
3088 struct net_device *dev = platform_get_drvdata(pdev);
3089 struct mvneta_port *pp = netdev_priv(dev);
3091 unregister_netdev(dev);
3092 clk_disable_unprepare(pp->clk);
3093 free_percpu(pp->stats);
3094 irq_dispose_mapping(dev->irq);
3095 of_node_put(pp->phy_node);
3096 free_netdev(dev);
3098 return 0;
3101 static const struct of_device_id mvneta_match[] = {
3102 { .compatible = "marvell,armada-370-neta" },
3105 MODULE_DEVICE_TABLE(of, mvneta_match);
3107 static struct platform_driver mvneta_driver = {
3108 .probe = mvneta_probe,
3109 .remove = mvneta_remove,
3110 .driver = {
3111 .name = MVNETA_DRIVER_NAME,
3112 .of_match_table = mvneta_match,
3116 module_platform_driver(mvneta_driver);
3118 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
3119 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
3120 MODULE_LICENSE("GPL");
3122 module_param(rxq_number, int, S_IRUGO);
3123 module_param(txq_number, int, S_IRUGO);
3125 module_param(rxq_def, int, S_IRUGO);
3126 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);