ARM: dts: add 'dr_mode' property to hsotg devices for exynos boards
[linux/fpc-iii.git] / drivers / net / ethernet / via / via-rhine.c
bloba191afc23b56c72bbdc6bf3379b646ba2ec72fdf
1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 Written 1998-2001 by Donald Becker.
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
28 [link no longer provides useful info -jgarzik]
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #define DRV_NAME "via-rhine"
35 #define DRV_VERSION "1.5.1"
36 #define DRV_RELDATE "2010-10-09"
38 #include <linux/types.h>
40 /* A few user-configurable values.
41 These may be modified when a driver module is loaded. */
42 static int debug = 0;
43 #define RHINE_MSG_DEFAULT \
44 (0x0000)
46 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
47 Setting to > 1518 effectively disables this feature. */
48 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
49 defined(CONFIG_SPARC) || defined(__ia64__) || \
50 defined(__sh__) || defined(__mips__)
51 static int rx_copybreak = 1518;
52 #else
53 static int rx_copybreak;
54 #endif
56 /* Work-around for broken BIOSes: they are unable to get the chip back out of
57 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
58 static bool avoid_D3;
61 * In case you are looking for 'options[]' or 'full_duplex[]', they
62 * are gone. Use ethtool(8) instead.
65 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
66 The Rhine has a 64 element 8390-like hash table. */
67 static const int multicast_filter_limit = 32;
70 /* Operational parameters that are set at compile time. */
72 /* Keep the ring sizes a power of two for compile efficiency.
73 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
74 Making the Tx ring too large decreases the effectiveness of channel
75 bonding and packet priority.
76 There are no ill effects from too-large receive rings. */
77 #define TX_RING_SIZE 16
78 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
79 #define RX_RING_SIZE 64
81 /* Operational parameters that usually are not changed. */
83 /* Time in jiffies before concluding the transmitter is hung. */
84 #define TX_TIMEOUT (2*HZ)
86 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
88 #include <linux/module.h>
89 #include <linux/moduleparam.h>
90 #include <linux/kernel.h>
91 #include <linux/string.h>
92 #include <linux/timer.h>
93 #include <linux/errno.h>
94 #include <linux/ioport.h>
95 #include <linux/interrupt.h>
96 #include <linux/pci.h>
97 #include <linux/of_address.h>
98 #include <linux/of_device.h>
99 #include <linux/of_irq.h>
100 #include <linux/platform_device.h>
101 #include <linux/dma-mapping.h>
102 #include <linux/netdevice.h>
103 #include <linux/etherdevice.h>
104 #include <linux/skbuff.h>
105 #include <linux/init.h>
106 #include <linux/delay.h>
107 #include <linux/mii.h>
108 #include <linux/ethtool.h>
109 #include <linux/crc32.h>
110 #include <linux/if_vlan.h>
111 #include <linux/bitops.h>
112 #include <linux/workqueue.h>
113 #include <asm/processor.h> /* Processor type for cache alignment. */
114 #include <asm/io.h>
115 #include <asm/irq.h>
116 #include <asm/uaccess.h>
117 #include <linux/dmi.h>
119 /* These identify the driver base version and may not be removed. */
120 static const char version[] =
121 "v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker";
123 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
124 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
125 MODULE_LICENSE("GPL");
127 module_param(debug, int, 0);
128 module_param(rx_copybreak, int, 0);
129 module_param(avoid_D3, bool, 0);
130 MODULE_PARM_DESC(debug, "VIA Rhine debug message flags");
131 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
132 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
134 #define MCAM_SIZE 32
135 #define VCAM_SIZE 32
138 Theory of Operation
140 I. Board Compatibility
142 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
143 controller.
145 II. Board-specific settings
147 Boards with this chip are functional only in a bus-master PCI slot.
149 Many operational settings are loaded from the EEPROM to the Config word at
150 offset 0x78. For most of these settings, this driver assumes that they are
151 correct.
152 If this driver is compiled to use PCI memory space operations the EEPROM
153 must be configured to enable memory ops.
155 III. Driver operation
157 IIIa. Ring buffers
159 This driver uses two statically allocated fixed-size descriptor lists
160 formed into rings by a branch from the final descriptor to the beginning of
161 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
163 IIIb/c. Transmit/Receive Structure
165 This driver attempts to use a zero-copy receive and transmit scheme.
167 Alas, all data buffers are required to start on a 32 bit boundary, so
168 the driver must often copy transmit packets into bounce buffers.
170 The driver allocates full frame size skbuffs for the Rx ring buffers at
171 open() time and passes the skb->data field to the chip as receive data
172 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
173 a fresh skbuff is allocated and the frame is copied to the new skbuff.
174 When the incoming frame is larger, the skbuff is passed directly up the
175 protocol stack. Buffers consumed this way are replaced by newly allocated
176 skbuffs in the last phase of rhine_rx().
178 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
179 using a full-sized skbuff for small frames vs. the copying costs of larger
180 frames. New boards are typically used in generously configured machines
181 and the underfilled buffers have negligible impact compared to the benefit of
182 a single allocation size, so the default value of zero results in never
183 copying packets. When copying is done, the cost is usually mitigated by using
184 a combined copy/checksum routine. Copying also preloads the cache, which is
185 most useful with small frames.
187 Since the VIA chips are only able to transfer data to buffers on 32 bit
188 boundaries, the IP header at offset 14 in an ethernet frame isn't
189 longword aligned for further processing. Copying these unaligned buffers
190 has the beneficial effect of 16-byte aligning the IP header.
192 IIId. Synchronization
194 The driver runs as two independent, single-threaded flows of control. One
195 is the send-packet routine, which enforces single-threaded use by the
196 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
197 which is single threaded by the hardware and interrupt handling software.
199 The send packet thread has partial control over the Tx ring. It locks the
200 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
201 the ring is not available it stops the transmit queue by
202 calling netif_stop_queue.
204 The interrupt handler has exclusive control over the Rx ring and records stats
205 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
206 empty by incrementing the dirty_tx mark. If at least half of the entries in
207 the Rx ring are available the transmit queue is woken up if it was stopped.
209 IV. Notes
211 IVb. References
213 Preliminary VT86C100A manual from http://www.via.com.tw/
214 http://www.scyld.com/expert/100mbps.html
215 http://www.scyld.com/expert/NWay.html
216 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
217 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
220 IVc. Errata
222 The VT86C100A manual is not reliable information.
223 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
224 in significant performance degradation for bounce buffer copies on transmit
225 and unaligned IP headers on receive.
226 The chip does not pad to minimum transmit length.
231 /* This table drives the PCI probe routines. It's mostly boilerplate in all
232 of the drivers, and will likely be provided by some future kernel.
233 Note the matching code -- the first table entry matchs all 56** cards but
234 second only the 1234 card.
237 enum rhine_revs {
238 VT86C100A = 0x00,
239 VTunknown0 = 0x20,
240 VT6102 = 0x40,
241 VT8231 = 0x50, /* Integrated MAC */
242 VT8233 = 0x60, /* Integrated MAC */
243 VT8235 = 0x74, /* Integrated MAC */
244 VT8237 = 0x78, /* Integrated MAC */
245 VTunknown1 = 0x7C,
246 VT6105 = 0x80,
247 VT6105_B0 = 0x83,
248 VT6105L = 0x8A,
249 VT6107 = 0x8C,
250 VTunknown2 = 0x8E,
251 VT6105M = 0x90, /* Management adapter */
254 enum rhine_quirks {
255 rqWOL = 0x0001, /* Wake-On-LAN support */
256 rqForceReset = 0x0002,
257 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
258 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
259 rqRhineI = 0x0100, /* See comment below */
260 rqIntPHY = 0x0200, /* Integrated PHY */
261 rqMgmt = 0x0400, /* Management adapter */
262 rqNeedEnMMIO = 0x0800, /* Whether the core needs to be
263 * switched from PIO mode to MMIO
264 * (only applies to PCI)
268 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
269 * MMIO as well as for the collision counter and the Tx FIFO underflow
270 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
273 /* Beware of PCI posted writes */
274 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
276 static const struct pci_device_id rhine_pci_tbl[] = {
277 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
278 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
279 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
280 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
281 { } /* terminate list */
283 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
285 /* OpenFirmware identifiers for platform-bus devices
286 * The .data field is currently only used to store quirks
288 static u32 vt8500_quirks = rqWOL | rqForceReset | rq6patterns;
289 static struct of_device_id rhine_of_tbl[] = {
290 { .compatible = "via,vt8500-rhine", .data = &vt8500_quirks },
291 { } /* terminate list */
293 MODULE_DEVICE_TABLE(of, rhine_of_tbl);
295 /* Offsets to the device registers. */
296 enum register_offsets {
297 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
298 ChipCmd1=0x09, TQWake=0x0A,
299 IntrStatus=0x0C, IntrEnable=0x0E,
300 MulticastFilter0=0x10, MulticastFilter1=0x14,
301 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
302 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
303 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
304 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
305 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
306 StickyHW=0x83, IntrStatus2=0x84,
307 CamMask=0x88, CamCon=0x92, CamAddr=0x93,
308 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
309 WOLcrClr1=0xA6, WOLcgClr=0xA7,
310 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
313 /* Bits in ConfigD */
314 enum backoff_bits {
315 BackOptional=0x01, BackModify=0x02,
316 BackCaptureEffect=0x04, BackRandom=0x08
319 /* Bits in the TxConfig (TCR) register */
320 enum tcr_bits {
321 TCR_PQEN=0x01,
322 TCR_LB0=0x02, /* loopback[0] */
323 TCR_LB1=0x04, /* loopback[1] */
324 TCR_OFSET=0x08,
325 TCR_RTGOPT=0x10,
326 TCR_RTFT0=0x20,
327 TCR_RTFT1=0x40,
328 TCR_RTSF=0x80,
331 /* Bits in the CamCon (CAMC) register */
332 enum camcon_bits {
333 CAMC_CAMEN=0x01,
334 CAMC_VCAMSL=0x02,
335 CAMC_CAMWR=0x04,
336 CAMC_CAMRD=0x08,
339 /* Bits in the PCIBusConfig1 (BCR1) register */
340 enum bcr1_bits {
341 BCR1_POT0=0x01,
342 BCR1_POT1=0x02,
343 BCR1_POT2=0x04,
344 BCR1_CTFT0=0x08,
345 BCR1_CTFT1=0x10,
346 BCR1_CTSF=0x20,
347 BCR1_TXQNOBK=0x40, /* for VT6105 */
348 BCR1_VIDFR=0x80, /* for VT6105 */
349 BCR1_MED0=0x40, /* for VT6102 */
350 BCR1_MED1=0x80, /* for VT6102 */
353 /* Registers we check that mmio and reg are the same. */
354 static const int mmio_verify_registers[] = {
355 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
359 /* Bits in the interrupt status/mask registers. */
360 enum intr_status_bits {
361 IntrRxDone = 0x0001,
362 IntrTxDone = 0x0002,
363 IntrRxErr = 0x0004,
364 IntrTxError = 0x0008,
365 IntrRxEmpty = 0x0020,
366 IntrPCIErr = 0x0040,
367 IntrStatsMax = 0x0080,
368 IntrRxEarly = 0x0100,
369 IntrTxUnderrun = 0x0210,
370 IntrRxOverflow = 0x0400,
371 IntrRxDropped = 0x0800,
372 IntrRxNoBuf = 0x1000,
373 IntrTxAborted = 0x2000,
374 IntrLinkChange = 0x4000,
375 IntrRxWakeUp = 0x8000,
376 IntrTxDescRace = 0x080000, /* mapped from IntrStatus2 */
377 IntrNormalSummary = IntrRxDone | IntrTxDone,
378 IntrTxErrSummary = IntrTxDescRace | IntrTxAborted | IntrTxError |
379 IntrTxUnderrun,
382 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
383 enum wol_bits {
384 WOLucast = 0x10,
385 WOLmagic = 0x20,
386 WOLbmcast = 0x30,
387 WOLlnkon = 0x40,
388 WOLlnkoff = 0x80,
391 /* The Rx and Tx buffer descriptors. */
392 struct rx_desc {
393 __le32 rx_status;
394 __le32 desc_length; /* Chain flag, Buffer/frame length */
395 __le32 addr;
396 __le32 next_desc;
398 struct tx_desc {
399 __le32 tx_status;
400 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
401 __le32 addr;
402 __le32 next_desc;
405 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
406 #define TXDESC 0x00e08000
408 enum rx_status_bits {
409 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
412 /* Bits in *_desc.*_status */
413 enum desc_status_bits {
414 DescOwn=0x80000000
417 /* Bits in *_desc.*_length */
418 enum desc_length_bits {
419 DescTag=0x00010000
422 /* Bits in ChipCmd. */
423 enum chip_cmd_bits {
424 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
425 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
426 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
427 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
430 struct rhine_stats {
431 u64 packets;
432 u64 bytes;
433 struct u64_stats_sync syncp;
436 struct rhine_private {
437 /* Bit mask for configured VLAN ids */
438 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
440 /* Descriptor rings */
441 struct rx_desc *rx_ring;
442 struct tx_desc *tx_ring;
443 dma_addr_t rx_ring_dma;
444 dma_addr_t tx_ring_dma;
446 /* The addresses of receive-in-place skbuffs. */
447 struct sk_buff *rx_skbuff[RX_RING_SIZE];
448 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
450 /* The saved address of a sent-in-place packet/buffer, for later free(). */
451 struct sk_buff *tx_skbuff[TX_RING_SIZE];
452 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
454 /* Tx bounce buffers (Rhine-I only) */
455 unsigned char *tx_buf[TX_RING_SIZE];
456 unsigned char *tx_bufs;
457 dma_addr_t tx_bufs_dma;
459 int irq;
460 long pioaddr;
461 struct net_device *dev;
462 struct napi_struct napi;
463 spinlock_t lock;
464 struct mutex task_lock;
465 bool task_enable;
466 struct work_struct slow_event_task;
467 struct work_struct reset_task;
469 u32 msg_enable;
471 /* Frequently used values: keep some adjacent for cache effect. */
472 u32 quirks;
473 struct rx_desc *rx_head_desc;
474 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
475 unsigned int cur_tx, dirty_tx;
476 unsigned int rx_buf_sz; /* Based on MTU+slack. */
477 struct rhine_stats rx_stats;
478 struct rhine_stats tx_stats;
479 u8 wolopts;
481 u8 tx_thresh, rx_thresh;
483 struct mii_if_info mii_if;
484 void __iomem *base;
487 #define BYTE_REG_BITS_ON(x, p) do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
488 #define WORD_REG_BITS_ON(x, p) do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
489 #define DWORD_REG_BITS_ON(x, p) do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
491 #define BYTE_REG_BITS_IS_ON(x, p) (ioread8((p)) & (x))
492 #define WORD_REG_BITS_IS_ON(x, p) (ioread16((p)) & (x))
493 #define DWORD_REG_BITS_IS_ON(x, p) (ioread32((p)) & (x))
495 #define BYTE_REG_BITS_OFF(x, p) do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
496 #define WORD_REG_BITS_OFF(x, p) do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
497 #define DWORD_REG_BITS_OFF(x, p) do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
499 #define BYTE_REG_BITS_SET(x, m, p) do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
500 #define WORD_REG_BITS_SET(x, m, p) do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
501 #define DWORD_REG_BITS_SET(x, m, p) do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
504 static int mdio_read(struct net_device *dev, int phy_id, int location);
505 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
506 static int rhine_open(struct net_device *dev);
507 static void rhine_reset_task(struct work_struct *work);
508 static void rhine_slow_event_task(struct work_struct *work);
509 static void rhine_tx_timeout(struct net_device *dev);
510 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
511 struct net_device *dev);
512 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
513 static void rhine_tx(struct net_device *dev);
514 static int rhine_rx(struct net_device *dev, int limit);
515 static void rhine_set_rx_mode(struct net_device *dev);
516 static struct rtnl_link_stats64 *rhine_get_stats64(struct net_device *dev,
517 struct rtnl_link_stats64 *stats);
518 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
519 static const struct ethtool_ops netdev_ethtool_ops;
520 static int rhine_close(struct net_device *dev);
521 static int rhine_vlan_rx_add_vid(struct net_device *dev,
522 __be16 proto, u16 vid);
523 static int rhine_vlan_rx_kill_vid(struct net_device *dev,
524 __be16 proto, u16 vid);
525 static void rhine_restart_tx(struct net_device *dev);
527 static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low)
529 void __iomem *ioaddr = rp->base;
530 int i;
532 for (i = 0; i < 1024; i++) {
533 bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask);
535 if (low ^ has_mask_bits)
536 break;
537 udelay(10);
539 if (i > 64) {
540 netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle "
541 "count: %04d\n", low ? "low" : "high", reg, mask, i);
545 static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask)
547 rhine_wait_bit(rp, reg, mask, false);
550 static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask)
552 rhine_wait_bit(rp, reg, mask, true);
555 static u32 rhine_get_events(struct rhine_private *rp)
557 void __iomem *ioaddr = rp->base;
558 u32 intr_status;
560 intr_status = ioread16(ioaddr + IntrStatus);
561 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
562 if (rp->quirks & rqStatusWBRace)
563 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
564 return intr_status;
567 static void rhine_ack_events(struct rhine_private *rp, u32 mask)
569 void __iomem *ioaddr = rp->base;
571 if (rp->quirks & rqStatusWBRace)
572 iowrite8(mask >> 16, ioaddr + IntrStatus2);
573 iowrite16(mask, ioaddr + IntrStatus);
574 mmiowb();
578 * Get power related registers into sane state.
579 * Notify user about past WOL event.
581 static void rhine_power_init(struct net_device *dev)
583 struct rhine_private *rp = netdev_priv(dev);
584 void __iomem *ioaddr = rp->base;
585 u16 wolstat;
587 if (rp->quirks & rqWOL) {
588 /* Make sure chip is in power state D0 */
589 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
591 /* Disable "force PME-enable" */
592 iowrite8(0x80, ioaddr + WOLcgClr);
594 /* Clear power-event config bits (WOL) */
595 iowrite8(0xFF, ioaddr + WOLcrClr);
596 /* More recent cards can manage two additional patterns */
597 if (rp->quirks & rq6patterns)
598 iowrite8(0x03, ioaddr + WOLcrClr1);
600 /* Save power-event status bits */
601 wolstat = ioread8(ioaddr + PwrcsrSet);
602 if (rp->quirks & rq6patterns)
603 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
605 /* Clear power-event status bits */
606 iowrite8(0xFF, ioaddr + PwrcsrClr);
607 if (rp->quirks & rq6patterns)
608 iowrite8(0x03, ioaddr + PwrcsrClr1);
610 if (wolstat) {
611 char *reason;
612 switch (wolstat) {
613 case WOLmagic:
614 reason = "Magic packet";
615 break;
616 case WOLlnkon:
617 reason = "Link went up";
618 break;
619 case WOLlnkoff:
620 reason = "Link went down";
621 break;
622 case WOLucast:
623 reason = "Unicast packet";
624 break;
625 case WOLbmcast:
626 reason = "Multicast/broadcast packet";
627 break;
628 default:
629 reason = "Unknown";
631 netdev_info(dev, "Woke system up. Reason: %s\n",
632 reason);
637 static void rhine_chip_reset(struct net_device *dev)
639 struct rhine_private *rp = netdev_priv(dev);
640 void __iomem *ioaddr = rp->base;
641 u8 cmd1;
643 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
644 IOSYNC;
646 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
647 netdev_info(dev, "Reset not complete yet. Trying harder.\n");
649 /* Force reset */
650 if (rp->quirks & rqForceReset)
651 iowrite8(0x40, ioaddr + MiscCmd);
653 /* Reset can take somewhat longer (rare) */
654 rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset);
657 cmd1 = ioread8(ioaddr + ChipCmd1);
658 netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ?
659 "failed" : "succeeded");
662 static void enable_mmio(long pioaddr, u32 quirks)
664 int n;
666 if (quirks & rqNeedEnMMIO) {
667 if (quirks & rqRhineI) {
668 /* More recent docs say that this bit is reserved */
669 n = inb(pioaddr + ConfigA) | 0x20;
670 outb(n, pioaddr + ConfigA);
671 } else {
672 n = inb(pioaddr + ConfigD) | 0x80;
673 outb(n, pioaddr + ConfigD);
678 static inline int verify_mmio(struct device *hwdev,
679 long pioaddr,
680 void __iomem *ioaddr,
681 u32 quirks)
683 if (quirks & rqNeedEnMMIO) {
684 int i = 0;
686 /* Check that selected MMIO registers match the PIO ones */
687 while (mmio_verify_registers[i]) {
688 int reg = mmio_verify_registers[i++];
689 unsigned char a = inb(pioaddr+reg);
690 unsigned char b = readb(ioaddr+reg);
692 if (a != b) {
693 dev_err(hwdev,
694 "MMIO do not match PIO [%02x] (%02x != %02x)\n",
695 reg, a, b);
696 return -EIO;
700 return 0;
704 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
705 * (plus 0x6C for Rhine-I/II)
707 static void rhine_reload_eeprom(long pioaddr, struct net_device *dev)
709 struct rhine_private *rp = netdev_priv(dev);
710 void __iomem *ioaddr = rp->base;
711 int i;
713 outb(0x20, pioaddr + MACRegEEcsr);
714 for (i = 0; i < 1024; i++) {
715 if (!(inb(pioaddr + MACRegEEcsr) & 0x20))
716 break;
718 if (i > 512)
719 pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__);
722 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
723 * MMIO. If reloading EEPROM was done first this could be avoided, but
724 * it is not known if that still works with the "win98-reboot" problem.
726 enable_mmio(pioaddr, rp->quirks);
728 /* Turn off EEPROM-controlled wake-up (magic packet) */
729 if (rp->quirks & rqWOL)
730 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
734 #ifdef CONFIG_NET_POLL_CONTROLLER
735 static void rhine_poll(struct net_device *dev)
737 struct rhine_private *rp = netdev_priv(dev);
738 const int irq = rp->irq;
740 disable_irq(irq);
741 rhine_interrupt(irq, dev);
742 enable_irq(irq);
744 #endif
746 static void rhine_kick_tx_threshold(struct rhine_private *rp)
748 if (rp->tx_thresh < 0xe0) {
749 void __iomem *ioaddr = rp->base;
751 rp->tx_thresh += 0x20;
752 BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig);
756 static void rhine_tx_err(struct rhine_private *rp, u32 status)
758 struct net_device *dev = rp->dev;
760 if (status & IntrTxAborted) {
761 netif_info(rp, tx_err, dev,
762 "Abort %08x, frame dropped\n", status);
765 if (status & IntrTxUnderrun) {
766 rhine_kick_tx_threshold(rp);
767 netif_info(rp, tx_err ,dev, "Transmitter underrun, "
768 "Tx threshold now %02x\n", rp->tx_thresh);
771 if (status & IntrTxDescRace)
772 netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n");
774 if ((status & IntrTxError) &&
775 (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) {
776 rhine_kick_tx_threshold(rp);
777 netif_info(rp, tx_err, dev, "Unspecified error. "
778 "Tx threshold now %02x\n", rp->tx_thresh);
781 rhine_restart_tx(dev);
784 static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp)
786 void __iomem *ioaddr = rp->base;
787 struct net_device_stats *stats = &rp->dev->stats;
789 stats->rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
790 stats->rx_missed_errors += ioread16(ioaddr + RxMissed);
793 * Clears the "tally counters" for CRC errors and missed frames(?).
794 * It has been reported that some chips need a write of 0 to clear
795 * these, for others the counters are set to 1 when written to and
796 * instead cleared when read. So we clear them both ways ...
798 iowrite32(0, ioaddr + RxMissed);
799 ioread16(ioaddr + RxCRCErrs);
800 ioread16(ioaddr + RxMissed);
803 #define RHINE_EVENT_NAPI_RX (IntrRxDone | \
804 IntrRxErr | \
805 IntrRxEmpty | \
806 IntrRxOverflow | \
807 IntrRxDropped | \
808 IntrRxNoBuf | \
809 IntrRxWakeUp)
811 #define RHINE_EVENT_NAPI_TX_ERR (IntrTxError | \
812 IntrTxAborted | \
813 IntrTxUnderrun | \
814 IntrTxDescRace)
815 #define RHINE_EVENT_NAPI_TX (IntrTxDone | RHINE_EVENT_NAPI_TX_ERR)
817 #define RHINE_EVENT_NAPI (RHINE_EVENT_NAPI_RX | \
818 RHINE_EVENT_NAPI_TX | \
819 IntrStatsMax)
820 #define RHINE_EVENT_SLOW (IntrPCIErr | IntrLinkChange)
821 #define RHINE_EVENT (RHINE_EVENT_NAPI | RHINE_EVENT_SLOW)
823 static int rhine_napipoll(struct napi_struct *napi, int budget)
825 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
826 struct net_device *dev = rp->dev;
827 void __iomem *ioaddr = rp->base;
828 u16 enable_mask = RHINE_EVENT & 0xffff;
829 int work_done = 0;
830 u32 status;
832 status = rhine_get_events(rp);
833 rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW);
835 if (status & RHINE_EVENT_NAPI_RX)
836 work_done += rhine_rx(dev, budget);
838 if (status & RHINE_EVENT_NAPI_TX) {
839 if (status & RHINE_EVENT_NAPI_TX_ERR) {
840 /* Avoid scavenging before Tx engine turned off */
841 rhine_wait_bit_low(rp, ChipCmd, CmdTxOn);
842 if (ioread8(ioaddr + ChipCmd) & CmdTxOn)
843 netif_warn(rp, tx_err, dev, "Tx still on\n");
846 rhine_tx(dev);
848 if (status & RHINE_EVENT_NAPI_TX_ERR)
849 rhine_tx_err(rp, status);
852 if (status & IntrStatsMax) {
853 spin_lock(&rp->lock);
854 rhine_update_rx_crc_and_missed_errord(rp);
855 spin_unlock(&rp->lock);
858 if (status & RHINE_EVENT_SLOW) {
859 enable_mask &= ~RHINE_EVENT_SLOW;
860 schedule_work(&rp->slow_event_task);
863 if (work_done < budget) {
864 napi_complete(napi);
865 iowrite16(enable_mask, ioaddr + IntrEnable);
866 mmiowb();
868 return work_done;
871 static void rhine_hw_init(struct net_device *dev, long pioaddr)
873 struct rhine_private *rp = netdev_priv(dev);
875 /* Reset the chip to erase previous misconfiguration. */
876 rhine_chip_reset(dev);
878 /* Rhine-I needs extra time to recuperate before EEPROM reload */
879 if (rp->quirks & rqRhineI)
880 msleep(5);
882 /* Reload EEPROM controlled bytes cleared by soft reset */
883 if (dev_is_pci(dev->dev.parent))
884 rhine_reload_eeprom(pioaddr, dev);
887 static const struct net_device_ops rhine_netdev_ops = {
888 .ndo_open = rhine_open,
889 .ndo_stop = rhine_close,
890 .ndo_start_xmit = rhine_start_tx,
891 .ndo_get_stats64 = rhine_get_stats64,
892 .ndo_set_rx_mode = rhine_set_rx_mode,
893 .ndo_change_mtu = eth_change_mtu,
894 .ndo_validate_addr = eth_validate_addr,
895 .ndo_set_mac_address = eth_mac_addr,
896 .ndo_do_ioctl = netdev_ioctl,
897 .ndo_tx_timeout = rhine_tx_timeout,
898 .ndo_vlan_rx_add_vid = rhine_vlan_rx_add_vid,
899 .ndo_vlan_rx_kill_vid = rhine_vlan_rx_kill_vid,
900 #ifdef CONFIG_NET_POLL_CONTROLLER
901 .ndo_poll_controller = rhine_poll,
902 #endif
905 static int rhine_init_one_common(struct device *hwdev, u32 quirks,
906 long pioaddr, void __iomem *ioaddr, int irq)
908 struct net_device *dev;
909 struct rhine_private *rp;
910 int i, rc, phy_id;
911 const char *name;
913 /* this should always be supported */
914 rc = dma_set_mask(hwdev, DMA_BIT_MASK(32));
915 if (rc) {
916 dev_err(hwdev, "32-bit DMA addresses not supported by the card!?\n");
917 goto err_out;
920 dev = alloc_etherdev(sizeof(struct rhine_private));
921 if (!dev) {
922 rc = -ENOMEM;
923 goto err_out;
925 SET_NETDEV_DEV(dev, hwdev);
927 rp = netdev_priv(dev);
928 rp->dev = dev;
929 rp->quirks = quirks;
930 rp->pioaddr = pioaddr;
931 rp->base = ioaddr;
932 rp->irq = irq;
933 rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT);
935 phy_id = rp->quirks & rqIntPHY ? 1 : 0;
937 u64_stats_init(&rp->tx_stats.syncp);
938 u64_stats_init(&rp->rx_stats.syncp);
940 /* Get chip registers into a sane state */
941 rhine_power_init(dev);
942 rhine_hw_init(dev, pioaddr);
944 for (i = 0; i < 6; i++)
945 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
947 if (!is_valid_ether_addr(dev->dev_addr)) {
948 /* Report it and use a random ethernet address instead */
949 netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
950 eth_hw_addr_random(dev);
951 netdev_info(dev, "Using random MAC address: %pM\n",
952 dev->dev_addr);
955 /* For Rhine-I/II, phy_id is loaded from EEPROM */
956 if (!phy_id)
957 phy_id = ioread8(ioaddr + 0x6C);
959 spin_lock_init(&rp->lock);
960 mutex_init(&rp->task_lock);
961 INIT_WORK(&rp->reset_task, rhine_reset_task);
962 INIT_WORK(&rp->slow_event_task, rhine_slow_event_task);
964 rp->mii_if.dev = dev;
965 rp->mii_if.mdio_read = mdio_read;
966 rp->mii_if.mdio_write = mdio_write;
967 rp->mii_if.phy_id_mask = 0x1f;
968 rp->mii_if.reg_num_mask = 0x1f;
970 /* The chip-specific entries in the device structure. */
971 dev->netdev_ops = &rhine_netdev_ops;
972 dev->ethtool_ops = &netdev_ethtool_ops;
973 dev->watchdog_timeo = TX_TIMEOUT;
975 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
977 if (rp->quirks & rqRhineI)
978 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
980 if (rp->quirks & rqMgmt)
981 dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
982 NETIF_F_HW_VLAN_CTAG_RX |
983 NETIF_F_HW_VLAN_CTAG_FILTER;
985 /* dev->name not defined before register_netdev()! */
986 rc = register_netdev(dev);
987 if (rc)
988 goto err_out_free_netdev;
990 if (rp->quirks & rqRhineI)
991 name = "Rhine";
992 else if (rp->quirks & rqStatusWBRace)
993 name = "Rhine II";
994 else if (rp->quirks & rqMgmt)
995 name = "Rhine III (Management Adapter)";
996 else
997 name = "Rhine III";
999 netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n",
1000 name, (long)ioaddr, dev->dev_addr, rp->irq);
1002 dev_set_drvdata(hwdev, dev);
1005 u16 mii_cmd;
1006 int mii_status = mdio_read(dev, phy_id, 1);
1007 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
1008 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
1009 if (mii_status != 0xffff && mii_status != 0x0000) {
1010 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
1011 netdev_info(dev,
1012 "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
1013 phy_id,
1014 mii_status, rp->mii_if.advertising,
1015 mdio_read(dev, phy_id, 5));
1017 /* set IFF_RUNNING */
1018 if (mii_status & BMSR_LSTATUS)
1019 netif_carrier_on(dev);
1020 else
1021 netif_carrier_off(dev);
1025 rp->mii_if.phy_id = phy_id;
1026 if (avoid_D3)
1027 netif_info(rp, probe, dev, "No D3 power state at shutdown\n");
1029 return 0;
1031 err_out_free_netdev:
1032 free_netdev(dev);
1033 err_out:
1034 return rc;
1037 static int rhine_init_one_pci(struct pci_dev *pdev,
1038 const struct pci_device_id *ent)
1040 struct device *hwdev = &pdev->dev;
1041 int rc;
1042 long pioaddr, memaddr;
1043 void __iomem *ioaddr;
1044 int io_size = pdev->revision < VTunknown0 ? 128 : 256;
1046 /* This driver was written to use PCI memory space. Some early versions
1047 * of the Rhine may only work correctly with I/O space accesses.
1048 * TODO: determine for which revisions this is true and assign the flag
1049 * in code as opposed to this Kconfig option (???)
1051 #ifdef CONFIG_VIA_RHINE_MMIO
1052 u32 quirks = rqNeedEnMMIO;
1053 #else
1054 u32 quirks = 0;
1055 #endif
1057 /* when built into the kernel, we only print version if device is found */
1058 #ifndef MODULE
1059 pr_info_once("%s\n", version);
1060 #endif
1062 rc = pci_enable_device(pdev);
1063 if (rc)
1064 goto err_out;
1066 if (pdev->revision < VTunknown0) {
1067 quirks |= rqRhineI;
1068 } else if (pdev->revision >= VT6102) {
1069 quirks |= rqWOL | rqForceReset;
1070 if (pdev->revision < VT6105) {
1071 quirks |= rqStatusWBRace;
1072 } else {
1073 quirks |= rqIntPHY;
1074 if (pdev->revision >= VT6105_B0)
1075 quirks |= rq6patterns;
1076 if (pdev->revision >= VT6105M)
1077 quirks |= rqMgmt;
1081 /* sanity check */
1082 if ((pci_resource_len(pdev, 0) < io_size) ||
1083 (pci_resource_len(pdev, 1) < io_size)) {
1084 rc = -EIO;
1085 dev_err(hwdev, "Insufficient PCI resources, aborting\n");
1086 goto err_out_pci_disable;
1089 pioaddr = pci_resource_start(pdev, 0);
1090 memaddr = pci_resource_start(pdev, 1);
1092 pci_set_master(pdev);
1094 rc = pci_request_regions(pdev, DRV_NAME);
1095 if (rc)
1096 goto err_out_pci_disable;
1098 ioaddr = pci_iomap(pdev, (quirks & rqNeedEnMMIO ? 1 : 0), io_size);
1099 if (!ioaddr) {
1100 rc = -EIO;
1101 dev_err(hwdev,
1102 "ioremap failed for device %s, region 0x%X @ 0x%lX\n",
1103 dev_name(hwdev), io_size, memaddr);
1104 goto err_out_free_res;
1107 enable_mmio(pioaddr, quirks);
1109 rc = verify_mmio(hwdev, pioaddr, ioaddr, quirks);
1110 if (rc)
1111 goto err_out_unmap;
1113 rc = rhine_init_one_common(&pdev->dev, quirks,
1114 pioaddr, ioaddr, pdev->irq);
1115 if (!rc)
1116 return 0;
1118 err_out_unmap:
1119 pci_iounmap(pdev, ioaddr);
1120 err_out_free_res:
1121 pci_release_regions(pdev);
1122 err_out_pci_disable:
1123 pci_disable_device(pdev);
1124 err_out:
1125 return rc;
1128 static int rhine_init_one_platform(struct platform_device *pdev)
1130 const struct of_device_id *match;
1131 const u32 *quirks;
1132 int irq;
1133 struct resource *res;
1134 void __iomem *ioaddr;
1136 match = of_match_device(rhine_of_tbl, &pdev->dev);
1137 if (!match)
1138 return -EINVAL;
1140 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1141 ioaddr = devm_ioremap_resource(&pdev->dev, res);
1142 if (IS_ERR(ioaddr))
1143 return PTR_ERR(ioaddr);
1145 irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1146 if (!irq)
1147 return -EINVAL;
1149 quirks = match->data;
1150 if (!quirks)
1151 return -EINVAL;
1153 return rhine_init_one_common(&pdev->dev, *quirks,
1154 (long)ioaddr, ioaddr, irq);
1157 static int alloc_ring(struct net_device* dev)
1159 struct rhine_private *rp = netdev_priv(dev);
1160 struct device *hwdev = dev->dev.parent;
1161 void *ring;
1162 dma_addr_t ring_dma;
1164 ring = dma_alloc_coherent(hwdev,
1165 RX_RING_SIZE * sizeof(struct rx_desc) +
1166 TX_RING_SIZE * sizeof(struct tx_desc),
1167 &ring_dma,
1168 GFP_ATOMIC);
1169 if (!ring) {
1170 netdev_err(dev, "Could not allocate DMA memory\n");
1171 return -ENOMEM;
1173 if (rp->quirks & rqRhineI) {
1174 rp->tx_bufs = dma_alloc_coherent(hwdev,
1175 PKT_BUF_SZ * TX_RING_SIZE,
1176 &rp->tx_bufs_dma,
1177 GFP_ATOMIC);
1178 if (rp->tx_bufs == NULL) {
1179 dma_free_coherent(hwdev,
1180 RX_RING_SIZE * sizeof(struct rx_desc) +
1181 TX_RING_SIZE * sizeof(struct tx_desc),
1182 ring, ring_dma);
1183 return -ENOMEM;
1187 rp->rx_ring = ring;
1188 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
1189 rp->rx_ring_dma = ring_dma;
1190 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
1192 return 0;
1195 static void free_ring(struct net_device* dev)
1197 struct rhine_private *rp = netdev_priv(dev);
1198 struct device *hwdev = dev->dev.parent;
1200 dma_free_coherent(hwdev,
1201 RX_RING_SIZE * sizeof(struct rx_desc) +
1202 TX_RING_SIZE * sizeof(struct tx_desc),
1203 rp->rx_ring, rp->rx_ring_dma);
1204 rp->tx_ring = NULL;
1206 if (rp->tx_bufs)
1207 dma_free_coherent(hwdev, PKT_BUF_SZ * TX_RING_SIZE,
1208 rp->tx_bufs, rp->tx_bufs_dma);
1210 rp->tx_bufs = NULL;
1214 static void alloc_rbufs(struct net_device *dev)
1216 struct rhine_private *rp = netdev_priv(dev);
1217 struct device *hwdev = dev->dev.parent;
1218 dma_addr_t next;
1219 int i;
1221 rp->dirty_rx = rp->cur_rx = 0;
1223 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1224 rp->rx_head_desc = &rp->rx_ring[0];
1225 next = rp->rx_ring_dma;
1227 /* Init the ring entries */
1228 for (i = 0; i < RX_RING_SIZE; i++) {
1229 rp->rx_ring[i].rx_status = 0;
1230 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
1231 next += sizeof(struct rx_desc);
1232 rp->rx_ring[i].next_desc = cpu_to_le32(next);
1233 rp->rx_skbuff[i] = NULL;
1235 /* Mark the last entry as wrapping the ring. */
1236 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
1238 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1239 for (i = 0; i < RX_RING_SIZE; i++) {
1240 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1241 rp->rx_skbuff[i] = skb;
1242 if (skb == NULL)
1243 break;
1245 rp->rx_skbuff_dma[i] =
1246 dma_map_single(hwdev, skb->data, rp->rx_buf_sz,
1247 DMA_FROM_DEVICE);
1248 if (dma_mapping_error(hwdev, rp->rx_skbuff_dma[i])) {
1249 rp->rx_skbuff_dma[i] = 0;
1250 dev_kfree_skb(skb);
1251 break;
1253 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
1254 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1256 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1259 static void free_rbufs(struct net_device* dev)
1261 struct rhine_private *rp = netdev_priv(dev);
1262 struct device *hwdev = dev->dev.parent;
1263 int i;
1265 /* Free all the skbuffs in the Rx queue. */
1266 for (i = 0; i < RX_RING_SIZE; i++) {
1267 rp->rx_ring[i].rx_status = 0;
1268 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1269 if (rp->rx_skbuff[i]) {
1270 dma_unmap_single(hwdev,
1271 rp->rx_skbuff_dma[i],
1272 rp->rx_buf_sz, DMA_FROM_DEVICE);
1273 dev_kfree_skb(rp->rx_skbuff[i]);
1275 rp->rx_skbuff[i] = NULL;
1279 static void alloc_tbufs(struct net_device* dev)
1281 struct rhine_private *rp = netdev_priv(dev);
1282 dma_addr_t next;
1283 int i;
1285 rp->dirty_tx = rp->cur_tx = 0;
1286 next = rp->tx_ring_dma;
1287 for (i = 0; i < TX_RING_SIZE; i++) {
1288 rp->tx_skbuff[i] = NULL;
1289 rp->tx_ring[i].tx_status = 0;
1290 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1291 next += sizeof(struct tx_desc);
1292 rp->tx_ring[i].next_desc = cpu_to_le32(next);
1293 if (rp->quirks & rqRhineI)
1294 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1296 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1300 static void free_tbufs(struct net_device* dev)
1302 struct rhine_private *rp = netdev_priv(dev);
1303 struct device *hwdev = dev->dev.parent;
1304 int i;
1306 for (i = 0; i < TX_RING_SIZE; i++) {
1307 rp->tx_ring[i].tx_status = 0;
1308 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1309 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1310 if (rp->tx_skbuff[i]) {
1311 if (rp->tx_skbuff_dma[i]) {
1312 dma_unmap_single(hwdev,
1313 rp->tx_skbuff_dma[i],
1314 rp->tx_skbuff[i]->len,
1315 DMA_TO_DEVICE);
1317 dev_kfree_skb(rp->tx_skbuff[i]);
1319 rp->tx_skbuff[i] = NULL;
1320 rp->tx_buf[i] = NULL;
1324 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1326 struct rhine_private *rp = netdev_priv(dev);
1327 void __iomem *ioaddr = rp->base;
1329 mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media);
1331 if (rp->mii_if.full_duplex)
1332 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1333 ioaddr + ChipCmd1);
1334 else
1335 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1336 ioaddr + ChipCmd1);
1338 netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1339 rp->mii_if.force_media, netif_carrier_ok(dev));
1342 /* Called after status of force_media possibly changed */
1343 static void rhine_set_carrier(struct mii_if_info *mii)
1345 struct net_device *dev = mii->dev;
1346 struct rhine_private *rp = netdev_priv(dev);
1348 if (mii->force_media) {
1349 /* autoneg is off: Link is always assumed to be up */
1350 if (!netif_carrier_ok(dev))
1351 netif_carrier_on(dev);
1354 rhine_check_media(dev, 0);
1356 netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1357 mii->force_media, netif_carrier_ok(dev));
1361 * rhine_set_cam - set CAM multicast filters
1362 * @ioaddr: register block of this Rhine
1363 * @idx: multicast CAM index [0..MCAM_SIZE-1]
1364 * @addr: multicast address (6 bytes)
1366 * Load addresses into multicast filters.
1368 static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
1370 int i;
1372 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1373 wmb();
1375 /* Paranoid -- idx out of range should never happen */
1376 idx &= (MCAM_SIZE - 1);
1378 iowrite8((u8) idx, ioaddr + CamAddr);
1380 for (i = 0; i < 6; i++, addr++)
1381 iowrite8(*addr, ioaddr + MulticastFilter0 + i);
1382 udelay(10);
1383 wmb();
1385 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1386 udelay(10);
1388 iowrite8(0, ioaddr + CamCon);
1392 * rhine_set_vlan_cam - set CAM VLAN filters
1393 * @ioaddr: register block of this Rhine
1394 * @idx: VLAN CAM index [0..VCAM_SIZE-1]
1395 * @addr: VLAN ID (2 bytes)
1397 * Load addresses into VLAN filters.
1399 static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
1401 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1402 wmb();
1404 /* Paranoid -- idx out of range should never happen */
1405 idx &= (VCAM_SIZE - 1);
1407 iowrite8((u8) idx, ioaddr + CamAddr);
1409 iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
1410 udelay(10);
1411 wmb();
1413 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1414 udelay(10);
1416 iowrite8(0, ioaddr + CamCon);
1420 * rhine_set_cam_mask - set multicast CAM mask
1421 * @ioaddr: register block of this Rhine
1422 * @mask: multicast CAM mask
1424 * Mask sets multicast filters active/inactive.
1426 static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
1428 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1429 wmb();
1431 /* write mask */
1432 iowrite32(mask, ioaddr + CamMask);
1434 /* disable CAMEN */
1435 iowrite8(0, ioaddr + CamCon);
1439 * rhine_set_vlan_cam_mask - set VLAN CAM mask
1440 * @ioaddr: register block of this Rhine
1441 * @mask: VLAN CAM mask
1443 * Mask sets VLAN filters active/inactive.
1445 static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
1447 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1448 wmb();
1450 /* write mask */
1451 iowrite32(mask, ioaddr + CamMask);
1453 /* disable CAMEN */
1454 iowrite8(0, ioaddr + CamCon);
1458 * rhine_init_cam_filter - initialize CAM filters
1459 * @dev: network device
1461 * Initialize (disable) hardware VLAN and multicast support on this
1462 * Rhine.
1464 static void rhine_init_cam_filter(struct net_device *dev)
1466 struct rhine_private *rp = netdev_priv(dev);
1467 void __iomem *ioaddr = rp->base;
1469 /* Disable all CAMs */
1470 rhine_set_vlan_cam_mask(ioaddr, 0);
1471 rhine_set_cam_mask(ioaddr, 0);
1473 /* disable hardware VLAN support */
1474 BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
1475 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
1479 * rhine_update_vcam - update VLAN CAM filters
1480 * @rp: rhine_private data of this Rhine
1482 * Update VLAN CAM filters to match configuration change.
1484 static void rhine_update_vcam(struct net_device *dev)
1486 struct rhine_private *rp = netdev_priv(dev);
1487 void __iomem *ioaddr = rp->base;
1488 u16 vid;
1489 u32 vCAMmask = 0; /* 32 vCAMs (6105M and better) */
1490 unsigned int i = 0;
1492 for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
1493 rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
1494 vCAMmask |= 1 << i;
1495 if (++i >= VCAM_SIZE)
1496 break;
1498 rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
1501 static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1503 struct rhine_private *rp = netdev_priv(dev);
1505 spin_lock_bh(&rp->lock);
1506 set_bit(vid, rp->active_vlans);
1507 rhine_update_vcam(dev);
1508 spin_unlock_bh(&rp->lock);
1509 return 0;
1512 static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
1514 struct rhine_private *rp = netdev_priv(dev);
1516 spin_lock_bh(&rp->lock);
1517 clear_bit(vid, rp->active_vlans);
1518 rhine_update_vcam(dev);
1519 spin_unlock_bh(&rp->lock);
1520 return 0;
1523 static void init_registers(struct net_device *dev)
1525 struct rhine_private *rp = netdev_priv(dev);
1526 void __iomem *ioaddr = rp->base;
1527 int i;
1529 for (i = 0; i < 6; i++)
1530 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1532 /* Initialize other registers. */
1533 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1534 /* Configure initial FIFO thresholds. */
1535 iowrite8(0x20, ioaddr + TxConfig);
1536 rp->tx_thresh = 0x20;
1537 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1539 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1540 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1542 rhine_set_rx_mode(dev);
1544 if (rp->quirks & rqMgmt)
1545 rhine_init_cam_filter(dev);
1547 napi_enable(&rp->napi);
1549 iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable);
1551 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1552 ioaddr + ChipCmd);
1553 rhine_check_media(dev, 1);
1556 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1557 static void rhine_enable_linkmon(struct rhine_private *rp)
1559 void __iomem *ioaddr = rp->base;
1561 iowrite8(0, ioaddr + MIICmd);
1562 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1563 iowrite8(0x80, ioaddr + MIICmd);
1565 rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1567 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1570 /* Disable MII link status auto-polling (required for MDIO access) */
1571 static void rhine_disable_linkmon(struct rhine_private *rp)
1573 void __iomem *ioaddr = rp->base;
1575 iowrite8(0, ioaddr + MIICmd);
1577 if (rp->quirks & rqRhineI) {
1578 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1580 /* Can be called from ISR. Evil. */
1581 mdelay(1);
1583 /* 0x80 must be set immediately before turning it off */
1584 iowrite8(0x80, ioaddr + MIICmd);
1586 rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1588 /* Heh. Now clear 0x80 again. */
1589 iowrite8(0, ioaddr + MIICmd);
1591 else
1592 rhine_wait_bit_high(rp, MIIRegAddr, 0x80);
1595 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1597 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1599 struct rhine_private *rp = netdev_priv(dev);
1600 void __iomem *ioaddr = rp->base;
1601 int result;
1603 rhine_disable_linkmon(rp);
1605 /* rhine_disable_linkmon already cleared MIICmd */
1606 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1607 iowrite8(regnum, ioaddr + MIIRegAddr);
1608 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1609 rhine_wait_bit_low(rp, MIICmd, 0x40);
1610 result = ioread16(ioaddr + MIIData);
1612 rhine_enable_linkmon(rp);
1613 return result;
1616 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1618 struct rhine_private *rp = netdev_priv(dev);
1619 void __iomem *ioaddr = rp->base;
1621 rhine_disable_linkmon(rp);
1623 /* rhine_disable_linkmon already cleared MIICmd */
1624 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1625 iowrite8(regnum, ioaddr + MIIRegAddr);
1626 iowrite16(value, ioaddr + MIIData);
1627 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1628 rhine_wait_bit_low(rp, MIICmd, 0x20);
1630 rhine_enable_linkmon(rp);
1633 static void rhine_task_disable(struct rhine_private *rp)
1635 mutex_lock(&rp->task_lock);
1636 rp->task_enable = false;
1637 mutex_unlock(&rp->task_lock);
1639 cancel_work_sync(&rp->slow_event_task);
1640 cancel_work_sync(&rp->reset_task);
1643 static void rhine_task_enable(struct rhine_private *rp)
1645 mutex_lock(&rp->task_lock);
1646 rp->task_enable = true;
1647 mutex_unlock(&rp->task_lock);
1650 static int rhine_open(struct net_device *dev)
1652 struct rhine_private *rp = netdev_priv(dev);
1653 void __iomem *ioaddr = rp->base;
1654 int rc;
1656 rc = request_irq(rp->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev);
1657 if (rc)
1658 return rc;
1660 netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->irq);
1662 rc = alloc_ring(dev);
1663 if (rc) {
1664 free_irq(rp->irq, dev);
1665 return rc;
1667 alloc_rbufs(dev);
1668 alloc_tbufs(dev);
1669 rhine_chip_reset(dev);
1670 rhine_task_enable(rp);
1671 init_registers(dev);
1673 netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n",
1674 __func__, ioread16(ioaddr + ChipCmd),
1675 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1677 netif_start_queue(dev);
1679 return 0;
1682 static void rhine_reset_task(struct work_struct *work)
1684 struct rhine_private *rp = container_of(work, struct rhine_private,
1685 reset_task);
1686 struct net_device *dev = rp->dev;
1688 mutex_lock(&rp->task_lock);
1690 if (!rp->task_enable)
1691 goto out_unlock;
1693 napi_disable(&rp->napi);
1694 netif_tx_disable(dev);
1695 spin_lock_bh(&rp->lock);
1697 /* clear all descriptors */
1698 free_tbufs(dev);
1699 free_rbufs(dev);
1700 alloc_tbufs(dev);
1701 alloc_rbufs(dev);
1703 /* Reinitialize the hardware. */
1704 rhine_chip_reset(dev);
1705 init_registers(dev);
1707 spin_unlock_bh(&rp->lock);
1709 dev->trans_start = jiffies; /* prevent tx timeout */
1710 dev->stats.tx_errors++;
1711 netif_wake_queue(dev);
1713 out_unlock:
1714 mutex_unlock(&rp->task_lock);
1717 static void rhine_tx_timeout(struct net_device *dev)
1719 struct rhine_private *rp = netdev_priv(dev);
1720 void __iomem *ioaddr = rp->base;
1722 netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
1723 ioread16(ioaddr + IntrStatus),
1724 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1726 schedule_work(&rp->reset_task);
1729 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1730 struct net_device *dev)
1732 struct rhine_private *rp = netdev_priv(dev);
1733 struct device *hwdev = dev->dev.parent;
1734 void __iomem *ioaddr = rp->base;
1735 unsigned entry;
1737 /* Caution: the write order is important here, set the field
1738 with the "ownership" bits last. */
1740 /* Calculate the next Tx descriptor entry. */
1741 entry = rp->cur_tx % TX_RING_SIZE;
1743 if (skb_padto(skb, ETH_ZLEN))
1744 return NETDEV_TX_OK;
1746 rp->tx_skbuff[entry] = skb;
1748 if ((rp->quirks & rqRhineI) &&
1749 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1750 /* Must use alignment buffer. */
1751 if (skb->len > PKT_BUF_SZ) {
1752 /* packet too long, drop it */
1753 dev_kfree_skb_any(skb);
1754 rp->tx_skbuff[entry] = NULL;
1755 dev->stats.tx_dropped++;
1756 return NETDEV_TX_OK;
1759 /* Padding is not copied and so must be redone. */
1760 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1761 if (skb->len < ETH_ZLEN)
1762 memset(rp->tx_buf[entry] + skb->len, 0,
1763 ETH_ZLEN - skb->len);
1764 rp->tx_skbuff_dma[entry] = 0;
1765 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1766 (rp->tx_buf[entry] -
1767 rp->tx_bufs));
1768 } else {
1769 rp->tx_skbuff_dma[entry] =
1770 dma_map_single(hwdev, skb->data, skb->len,
1771 DMA_TO_DEVICE);
1772 if (dma_mapping_error(hwdev, rp->tx_skbuff_dma[entry])) {
1773 dev_kfree_skb_any(skb);
1774 rp->tx_skbuff_dma[entry] = 0;
1775 dev->stats.tx_dropped++;
1776 return NETDEV_TX_OK;
1778 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1781 rp->tx_ring[entry].desc_length =
1782 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1784 if (unlikely(vlan_tx_tag_present(skb))) {
1785 u16 vid_pcp = vlan_tx_tag_get(skb);
1787 /* drop CFI/DEI bit, register needs VID and PCP */
1788 vid_pcp = (vid_pcp & VLAN_VID_MASK) |
1789 ((vid_pcp & VLAN_PRIO_MASK) >> 1);
1790 rp->tx_ring[entry].tx_status = cpu_to_le32((vid_pcp) << 16);
1791 /* request tagging */
1792 rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
1794 else
1795 rp->tx_ring[entry].tx_status = 0;
1797 /* lock eth irq */
1798 wmb();
1799 rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
1800 wmb();
1802 rp->cur_tx++;
1804 /* Non-x86 Todo: explicitly flush cache lines here. */
1806 if (vlan_tx_tag_present(skb))
1807 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1808 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1810 /* Wake the potentially-idle transmit channel */
1811 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1812 ioaddr + ChipCmd1);
1813 IOSYNC;
1815 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1816 netif_stop_queue(dev);
1818 netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n",
1819 rp->cur_tx - 1, entry);
1821 return NETDEV_TX_OK;
1824 static void rhine_irq_disable(struct rhine_private *rp)
1826 iowrite16(0x0000, rp->base + IntrEnable);
1827 mmiowb();
1830 /* The interrupt handler does all of the Rx thread work and cleans up
1831 after the Tx thread. */
1832 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1834 struct net_device *dev = dev_instance;
1835 struct rhine_private *rp = netdev_priv(dev);
1836 u32 status;
1837 int handled = 0;
1839 status = rhine_get_events(rp);
1841 netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status);
1843 if (status & RHINE_EVENT) {
1844 handled = 1;
1846 rhine_irq_disable(rp);
1847 napi_schedule(&rp->napi);
1850 if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) {
1851 netif_err(rp, intr, dev, "Something Wicked happened! %08x\n",
1852 status);
1855 return IRQ_RETVAL(handled);
1858 /* This routine is logically part of the interrupt handler, but isolated
1859 for clarity. */
1860 static void rhine_tx(struct net_device *dev)
1862 struct rhine_private *rp = netdev_priv(dev);
1863 struct device *hwdev = dev->dev.parent;
1864 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1866 /* find and cleanup dirty tx descriptors */
1867 while (rp->dirty_tx != rp->cur_tx) {
1868 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1869 netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n",
1870 entry, txstatus);
1871 if (txstatus & DescOwn)
1872 break;
1873 if (txstatus & 0x8000) {
1874 netif_dbg(rp, tx_done, dev,
1875 "Transmit error, Tx status %08x\n", txstatus);
1876 dev->stats.tx_errors++;
1877 if (txstatus & 0x0400)
1878 dev->stats.tx_carrier_errors++;
1879 if (txstatus & 0x0200)
1880 dev->stats.tx_window_errors++;
1881 if (txstatus & 0x0100)
1882 dev->stats.tx_aborted_errors++;
1883 if (txstatus & 0x0080)
1884 dev->stats.tx_heartbeat_errors++;
1885 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1886 (txstatus & 0x0800) || (txstatus & 0x1000)) {
1887 dev->stats.tx_fifo_errors++;
1888 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1889 break; /* Keep the skb - we try again */
1891 /* Transmitter restarted in 'abnormal' handler. */
1892 } else {
1893 if (rp->quirks & rqRhineI)
1894 dev->stats.collisions += (txstatus >> 3) & 0x0F;
1895 else
1896 dev->stats.collisions += txstatus & 0x0F;
1897 netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n",
1898 (txstatus >> 3) & 0xF, txstatus & 0xF);
1900 u64_stats_update_begin(&rp->tx_stats.syncp);
1901 rp->tx_stats.bytes += rp->tx_skbuff[entry]->len;
1902 rp->tx_stats.packets++;
1903 u64_stats_update_end(&rp->tx_stats.syncp);
1905 /* Free the original skb. */
1906 if (rp->tx_skbuff_dma[entry]) {
1907 dma_unmap_single(hwdev,
1908 rp->tx_skbuff_dma[entry],
1909 rp->tx_skbuff[entry]->len,
1910 DMA_TO_DEVICE);
1912 dev_consume_skb_any(rp->tx_skbuff[entry]);
1913 rp->tx_skbuff[entry] = NULL;
1914 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1916 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1917 netif_wake_queue(dev);
1921 * rhine_get_vlan_tci - extract TCI from Rx data buffer
1922 * @skb: pointer to sk_buff
1923 * @data_size: used data area of the buffer including CRC
1925 * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
1926 * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
1927 * aligned following the CRC.
1929 static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
1931 u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
1932 return be16_to_cpup((__be16 *)trailer);
1935 /* Process up to limit frames from receive ring */
1936 static int rhine_rx(struct net_device *dev, int limit)
1938 struct rhine_private *rp = netdev_priv(dev);
1939 struct device *hwdev = dev->dev.parent;
1940 int count;
1941 int entry = rp->cur_rx % RX_RING_SIZE;
1943 netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__,
1944 entry, le32_to_cpu(rp->rx_head_desc->rx_status));
1946 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1947 for (count = 0; count < limit; ++count) {
1948 struct rx_desc *desc = rp->rx_head_desc;
1949 u32 desc_status = le32_to_cpu(desc->rx_status);
1950 u32 desc_length = le32_to_cpu(desc->desc_length);
1951 int data_size = desc_status >> 16;
1953 if (desc_status & DescOwn)
1954 break;
1956 netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__,
1957 desc_status);
1959 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1960 if ((desc_status & RxWholePkt) != RxWholePkt) {
1961 netdev_warn(dev,
1962 "Oversized Ethernet frame spanned multiple buffers, "
1963 "entry %#x length %d status %08x!\n",
1964 entry, data_size,
1965 desc_status);
1966 netdev_warn(dev,
1967 "Oversized Ethernet frame %p vs %p\n",
1968 rp->rx_head_desc,
1969 &rp->rx_ring[entry]);
1970 dev->stats.rx_length_errors++;
1971 } else if (desc_status & RxErr) {
1972 /* There was a error. */
1973 netif_dbg(rp, rx_err, dev,
1974 "%s() Rx error %08x\n", __func__,
1975 desc_status);
1976 dev->stats.rx_errors++;
1977 if (desc_status & 0x0030)
1978 dev->stats.rx_length_errors++;
1979 if (desc_status & 0x0048)
1980 dev->stats.rx_fifo_errors++;
1981 if (desc_status & 0x0004)
1982 dev->stats.rx_frame_errors++;
1983 if (desc_status & 0x0002) {
1984 /* this can also be updated outside the interrupt handler */
1985 spin_lock(&rp->lock);
1986 dev->stats.rx_crc_errors++;
1987 spin_unlock(&rp->lock);
1990 } else {
1991 struct sk_buff *skb = NULL;
1992 /* Length should omit the CRC */
1993 int pkt_len = data_size - 4;
1994 u16 vlan_tci = 0;
1996 /* Check if the packet is long enough to accept without
1997 copying to a minimally-sized skbuff. */
1998 if (pkt_len < rx_copybreak)
1999 skb = netdev_alloc_skb_ip_align(dev, pkt_len);
2000 if (skb) {
2001 dma_sync_single_for_cpu(hwdev,
2002 rp->rx_skbuff_dma[entry],
2003 rp->rx_buf_sz,
2004 DMA_FROM_DEVICE);
2006 skb_copy_to_linear_data(skb,
2007 rp->rx_skbuff[entry]->data,
2008 pkt_len);
2009 skb_put(skb, pkt_len);
2010 dma_sync_single_for_device(hwdev,
2011 rp->rx_skbuff_dma[entry],
2012 rp->rx_buf_sz,
2013 DMA_FROM_DEVICE);
2014 } else {
2015 skb = rp->rx_skbuff[entry];
2016 if (skb == NULL) {
2017 netdev_err(dev, "Inconsistent Rx descriptor chain\n");
2018 break;
2020 rp->rx_skbuff[entry] = NULL;
2021 skb_put(skb, pkt_len);
2022 dma_unmap_single(hwdev,
2023 rp->rx_skbuff_dma[entry],
2024 rp->rx_buf_sz,
2025 DMA_FROM_DEVICE);
2028 if (unlikely(desc_length & DescTag))
2029 vlan_tci = rhine_get_vlan_tci(skb, data_size);
2031 skb->protocol = eth_type_trans(skb, dev);
2033 if (unlikely(desc_length & DescTag))
2034 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
2035 netif_receive_skb(skb);
2037 u64_stats_update_begin(&rp->rx_stats.syncp);
2038 rp->rx_stats.bytes += pkt_len;
2039 rp->rx_stats.packets++;
2040 u64_stats_update_end(&rp->rx_stats.syncp);
2042 entry = (++rp->cur_rx) % RX_RING_SIZE;
2043 rp->rx_head_desc = &rp->rx_ring[entry];
2046 /* Refill the Rx ring buffers. */
2047 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
2048 struct sk_buff *skb;
2049 entry = rp->dirty_rx % RX_RING_SIZE;
2050 if (rp->rx_skbuff[entry] == NULL) {
2051 skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
2052 rp->rx_skbuff[entry] = skb;
2053 if (skb == NULL)
2054 break; /* Better luck next round. */
2055 rp->rx_skbuff_dma[entry] =
2056 dma_map_single(hwdev, skb->data,
2057 rp->rx_buf_sz,
2058 DMA_FROM_DEVICE);
2059 if (dma_mapping_error(hwdev,
2060 rp->rx_skbuff_dma[entry])) {
2061 dev_kfree_skb(skb);
2062 rp->rx_skbuff_dma[entry] = 0;
2063 break;
2065 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
2067 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
2070 return count;
2073 static void rhine_restart_tx(struct net_device *dev) {
2074 struct rhine_private *rp = netdev_priv(dev);
2075 void __iomem *ioaddr = rp->base;
2076 int entry = rp->dirty_tx % TX_RING_SIZE;
2077 u32 intr_status;
2080 * If new errors occurred, we need to sort them out before doing Tx.
2081 * In that case the ISR will be back here RSN anyway.
2083 intr_status = rhine_get_events(rp);
2085 if ((intr_status & IntrTxErrSummary) == 0) {
2087 /* We know better than the chip where it should continue. */
2088 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
2089 ioaddr + TxRingPtr);
2091 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
2092 ioaddr + ChipCmd);
2094 if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
2095 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
2096 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
2098 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
2099 ioaddr + ChipCmd1);
2100 IOSYNC;
2102 else {
2103 /* This should never happen */
2104 netif_warn(rp, tx_err, dev, "another error occurred %08x\n",
2105 intr_status);
2110 static void rhine_slow_event_task(struct work_struct *work)
2112 struct rhine_private *rp =
2113 container_of(work, struct rhine_private, slow_event_task);
2114 struct net_device *dev = rp->dev;
2115 u32 intr_status;
2117 mutex_lock(&rp->task_lock);
2119 if (!rp->task_enable)
2120 goto out_unlock;
2122 intr_status = rhine_get_events(rp);
2123 rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW);
2125 if (intr_status & IntrLinkChange)
2126 rhine_check_media(dev, 0);
2128 if (intr_status & IntrPCIErr)
2129 netif_warn(rp, hw, dev, "PCI error\n");
2131 iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable);
2133 out_unlock:
2134 mutex_unlock(&rp->task_lock);
2137 static struct rtnl_link_stats64 *
2138 rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
2140 struct rhine_private *rp = netdev_priv(dev);
2141 unsigned int start;
2143 spin_lock_bh(&rp->lock);
2144 rhine_update_rx_crc_and_missed_errord(rp);
2145 spin_unlock_bh(&rp->lock);
2147 netdev_stats_to_stats64(stats, &dev->stats);
2149 do {
2150 start = u64_stats_fetch_begin_irq(&rp->rx_stats.syncp);
2151 stats->rx_packets = rp->rx_stats.packets;
2152 stats->rx_bytes = rp->rx_stats.bytes;
2153 } while (u64_stats_fetch_retry_irq(&rp->rx_stats.syncp, start));
2155 do {
2156 start = u64_stats_fetch_begin_irq(&rp->tx_stats.syncp);
2157 stats->tx_packets = rp->tx_stats.packets;
2158 stats->tx_bytes = rp->tx_stats.bytes;
2159 } while (u64_stats_fetch_retry_irq(&rp->tx_stats.syncp, start));
2161 return stats;
2164 static void rhine_set_rx_mode(struct net_device *dev)
2166 struct rhine_private *rp = netdev_priv(dev);
2167 void __iomem *ioaddr = rp->base;
2168 u32 mc_filter[2]; /* Multicast hash filter */
2169 u8 rx_mode = 0x0C; /* Note: 0x02=accept runt, 0x01=accept errs */
2170 struct netdev_hw_addr *ha;
2172 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2173 rx_mode = 0x1C;
2174 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2175 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2176 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2177 (dev->flags & IFF_ALLMULTI)) {
2178 /* Too many to match, or accept all multicasts. */
2179 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2180 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2181 } else if (rp->quirks & rqMgmt) {
2182 int i = 0;
2183 u32 mCAMmask = 0; /* 32 mCAMs (6105M and better) */
2184 netdev_for_each_mc_addr(ha, dev) {
2185 if (i == MCAM_SIZE)
2186 break;
2187 rhine_set_cam(ioaddr, i, ha->addr);
2188 mCAMmask |= 1 << i;
2189 i++;
2191 rhine_set_cam_mask(ioaddr, mCAMmask);
2192 } else {
2193 memset(mc_filter, 0, sizeof(mc_filter));
2194 netdev_for_each_mc_addr(ha, dev) {
2195 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
2197 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
2199 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
2200 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
2202 /* enable/disable VLAN receive filtering */
2203 if (rp->quirks & rqMgmt) {
2204 if (dev->flags & IFF_PROMISC)
2205 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2206 else
2207 BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2209 BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
2212 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2214 struct device *hwdev = dev->dev.parent;
2216 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2217 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2218 strlcpy(info->bus_info, dev_name(hwdev), sizeof(info->bus_info));
2221 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2223 struct rhine_private *rp = netdev_priv(dev);
2224 int rc;
2226 mutex_lock(&rp->task_lock);
2227 rc = mii_ethtool_gset(&rp->mii_if, cmd);
2228 mutex_unlock(&rp->task_lock);
2230 return rc;
2233 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2235 struct rhine_private *rp = netdev_priv(dev);
2236 int rc;
2238 mutex_lock(&rp->task_lock);
2239 rc = mii_ethtool_sset(&rp->mii_if, cmd);
2240 rhine_set_carrier(&rp->mii_if);
2241 mutex_unlock(&rp->task_lock);
2243 return rc;
2246 static int netdev_nway_reset(struct net_device *dev)
2248 struct rhine_private *rp = netdev_priv(dev);
2250 return mii_nway_restart(&rp->mii_if);
2253 static u32 netdev_get_link(struct net_device *dev)
2255 struct rhine_private *rp = netdev_priv(dev);
2257 return mii_link_ok(&rp->mii_if);
2260 static u32 netdev_get_msglevel(struct net_device *dev)
2262 struct rhine_private *rp = netdev_priv(dev);
2264 return rp->msg_enable;
2267 static void netdev_set_msglevel(struct net_device *dev, u32 value)
2269 struct rhine_private *rp = netdev_priv(dev);
2271 rp->msg_enable = value;
2274 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2276 struct rhine_private *rp = netdev_priv(dev);
2278 if (!(rp->quirks & rqWOL))
2279 return;
2281 spin_lock_irq(&rp->lock);
2282 wol->supported = WAKE_PHY | WAKE_MAGIC |
2283 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2284 wol->wolopts = rp->wolopts;
2285 spin_unlock_irq(&rp->lock);
2288 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2290 struct rhine_private *rp = netdev_priv(dev);
2291 u32 support = WAKE_PHY | WAKE_MAGIC |
2292 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2294 if (!(rp->quirks & rqWOL))
2295 return -EINVAL;
2297 if (wol->wolopts & ~support)
2298 return -EINVAL;
2300 spin_lock_irq(&rp->lock);
2301 rp->wolopts = wol->wolopts;
2302 spin_unlock_irq(&rp->lock);
2304 return 0;
2307 static const struct ethtool_ops netdev_ethtool_ops = {
2308 .get_drvinfo = netdev_get_drvinfo,
2309 .get_settings = netdev_get_settings,
2310 .set_settings = netdev_set_settings,
2311 .nway_reset = netdev_nway_reset,
2312 .get_link = netdev_get_link,
2313 .get_msglevel = netdev_get_msglevel,
2314 .set_msglevel = netdev_set_msglevel,
2315 .get_wol = rhine_get_wol,
2316 .set_wol = rhine_set_wol,
2319 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2321 struct rhine_private *rp = netdev_priv(dev);
2322 int rc;
2324 if (!netif_running(dev))
2325 return -EINVAL;
2327 mutex_lock(&rp->task_lock);
2328 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
2329 rhine_set_carrier(&rp->mii_if);
2330 mutex_unlock(&rp->task_lock);
2332 return rc;
2335 static int rhine_close(struct net_device *dev)
2337 struct rhine_private *rp = netdev_priv(dev);
2338 void __iomem *ioaddr = rp->base;
2340 rhine_task_disable(rp);
2341 napi_disable(&rp->napi);
2342 netif_stop_queue(dev);
2344 netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n",
2345 ioread16(ioaddr + ChipCmd));
2347 /* Switch to loopback mode to avoid hardware races. */
2348 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
2350 rhine_irq_disable(rp);
2352 /* Stop the chip's Tx and Rx processes. */
2353 iowrite16(CmdStop, ioaddr + ChipCmd);
2355 free_irq(rp->irq, dev);
2356 free_rbufs(dev);
2357 free_tbufs(dev);
2358 free_ring(dev);
2360 return 0;
2364 static void rhine_remove_one_pci(struct pci_dev *pdev)
2366 struct net_device *dev = pci_get_drvdata(pdev);
2367 struct rhine_private *rp = netdev_priv(dev);
2369 unregister_netdev(dev);
2371 pci_iounmap(pdev, rp->base);
2372 pci_release_regions(pdev);
2374 free_netdev(dev);
2375 pci_disable_device(pdev);
2378 static int rhine_remove_one_platform(struct platform_device *pdev)
2380 struct net_device *dev = platform_get_drvdata(pdev);
2381 struct rhine_private *rp = netdev_priv(dev);
2383 unregister_netdev(dev);
2385 iounmap(rp->base);
2387 free_netdev(dev);
2389 return 0;
2392 static void rhine_shutdown_pci(struct pci_dev *pdev)
2394 struct net_device *dev = pci_get_drvdata(pdev);
2395 struct rhine_private *rp = netdev_priv(dev);
2396 void __iomem *ioaddr = rp->base;
2398 if (!(rp->quirks & rqWOL))
2399 return; /* Nothing to do for non-WOL adapters */
2401 rhine_power_init(dev);
2403 /* Make sure we use pattern 0, 1 and not 4, 5 */
2404 if (rp->quirks & rq6patterns)
2405 iowrite8(0x04, ioaddr + WOLcgClr);
2407 spin_lock(&rp->lock);
2409 if (rp->wolopts & WAKE_MAGIC) {
2410 iowrite8(WOLmagic, ioaddr + WOLcrSet);
2412 * Turn EEPROM-controlled wake-up back on -- some hardware may
2413 * not cooperate otherwise.
2415 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
2418 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
2419 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
2421 if (rp->wolopts & WAKE_PHY)
2422 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
2424 if (rp->wolopts & WAKE_UCAST)
2425 iowrite8(WOLucast, ioaddr + WOLcrSet);
2427 if (rp->wolopts) {
2428 /* Enable legacy WOL (for old motherboards) */
2429 iowrite8(0x01, ioaddr + PwcfgSet);
2430 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
2433 spin_unlock(&rp->lock);
2435 if (system_state == SYSTEM_POWER_OFF && !avoid_D3) {
2436 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
2438 pci_wake_from_d3(pdev, true);
2439 pci_set_power_state(pdev, PCI_D3hot);
2443 #ifdef CONFIG_PM_SLEEP
2444 static int rhine_suspend(struct device *device)
2446 struct net_device *dev = dev_get_drvdata(device);
2447 struct rhine_private *rp = netdev_priv(dev);
2449 if (!netif_running(dev))
2450 return 0;
2452 rhine_task_disable(rp);
2453 rhine_irq_disable(rp);
2454 napi_disable(&rp->napi);
2456 netif_device_detach(dev);
2458 if (dev_is_pci(device))
2459 rhine_shutdown_pci(to_pci_dev(device));
2461 return 0;
2464 static int rhine_resume(struct device *device)
2466 struct net_device *dev = dev_get_drvdata(device);
2467 struct rhine_private *rp = netdev_priv(dev);
2469 if (!netif_running(dev))
2470 return 0;
2472 enable_mmio(rp->pioaddr, rp->quirks);
2473 rhine_power_init(dev);
2474 free_tbufs(dev);
2475 free_rbufs(dev);
2476 alloc_tbufs(dev);
2477 alloc_rbufs(dev);
2478 rhine_task_enable(rp);
2479 spin_lock_bh(&rp->lock);
2480 init_registers(dev);
2481 spin_unlock_bh(&rp->lock);
2483 netif_device_attach(dev);
2485 return 0;
2488 static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume);
2489 #define RHINE_PM_OPS (&rhine_pm_ops)
2491 #else
2493 #define RHINE_PM_OPS NULL
2495 #endif /* !CONFIG_PM_SLEEP */
2497 static struct pci_driver rhine_driver_pci = {
2498 .name = DRV_NAME,
2499 .id_table = rhine_pci_tbl,
2500 .probe = rhine_init_one_pci,
2501 .remove = rhine_remove_one_pci,
2502 .shutdown = rhine_shutdown_pci,
2503 .driver.pm = RHINE_PM_OPS,
2506 static struct platform_driver rhine_driver_platform = {
2507 .probe = rhine_init_one_platform,
2508 .remove = rhine_remove_one_platform,
2509 .driver = {
2510 .name = DRV_NAME,
2511 .of_match_table = rhine_of_tbl,
2512 .pm = RHINE_PM_OPS,
2516 static struct dmi_system_id rhine_dmi_table[] __initdata = {
2518 .ident = "EPIA-M",
2519 .matches = {
2520 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2521 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2525 .ident = "KV7",
2526 .matches = {
2527 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2528 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2531 { NULL }
2534 static int __init rhine_init(void)
2536 int ret_pci, ret_platform;
2538 /* when a module, this is printed whether or not devices are found in probe */
2539 #ifdef MODULE
2540 pr_info("%s\n", version);
2541 #endif
2542 if (dmi_check_system(rhine_dmi_table)) {
2543 /* these BIOSes fail at PXE boot if chip is in D3 */
2544 avoid_D3 = true;
2545 pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
2547 else if (avoid_D3)
2548 pr_info("avoid_D3 set\n");
2550 ret_pci = pci_register_driver(&rhine_driver_pci);
2551 ret_platform = platform_driver_register(&rhine_driver_platform);
2552 if ((ret_pci < 0) && (ret_platform < 0))
2553 return ret_pci;
2555 return 0;
2559 static void __exit rhine_cleanup(void)
2561 platform_driver_unregister(&rhine_driver_platform);
2562 pci_unregister_driver(&rhine_driver_pci);
2566 module_init(rhine_init);
2567 module_exit(rhine_cleanup);