ARM: dts: add 'dr_mode' property to hsotg devices for exynos boards
[linux/fpc-iii.git] / drivers / net / ethernet / xilinx / xilinx_axienet_main.c
blob4ea2d4e6f1d1894f22362e9a2b422392e959331d
1 /*
2 * Xilinx Axi Ethernet device driver
4 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi
5 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net>
6 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
7 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
8 * Copyright (c) 2010 - 2011 PetaLogix
9 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
11 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
12 * and Spartan6.
14 * TODO:
15 * - Add Axi Fifo support.
16 * - Factor out Axi DMA code into separate driver.
17 * - Test and fix basic multicast filtering.
18 * - Add support for extended multicast filtering.
19 * - Test basic VLAN support.
20 * - Add support for extended VLAN support.
23 #include <linux/delay.h>
24 #include <linux/etherdevice.h>
25 #include <linux/module.h>
26 #include <linux/netdevice.h>
27 #include <linux/of_mdio.h>
28 #include <linux/of_platform.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_address.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/phy.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
37 #include "xilinx_axienet.h"
39 /* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
40 #define TX_BD_NUM 64
41 #define RX_BD_NUM 128
43 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */
44 #define DRIVER_NAME "xaxienet"
45 #define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver"
46 #define DRIVER_VERSION "1.00a"
48 #define AXIENET_REGS_N 32
50 /* Match table for of_platform binding */
51 static struct of_device_id axienet_of_match[] = {
52 { .compatible = "xlnx,axi-ethernet-1.00.a", },
53 { .compatible = "xlnx,axi-ethernet-1.01.a", },
54 { .compatible = "xlnx,axi-ethernet-2.01.a", },
55 {},
58 MODULE_DEVICE_TABLE(of, axienet_of_match);
60 /* Option table for setting up Axi Ethernet hardware options */
61 static struct axienet_option axienet_options[] = {
62 /* Turn on jumbo packet support for both Rx and Tx */
64 .opt = XAE_OPTION_JUMBO,
65 .reg = XAE_TC_OFFSET,
66 .m_or = XAE_TC_JUM_MASK,
67 }, {
68 .opt = XAE_OPTION_JUMBO,
69 .reg = XAE_RCW1_OFFSET,
70 .m_or = XAE_RCW1_JUM_MASK,
71 }, { /* Turn on VLAN packet support for both Rx and Tx */
72 .opt = XAE_OPTION_VLAN,
73 .reg = XAE_TC_OFFSET,
74 .m_or = XAE_TC_VLAN_MASK,
75 }, {
76 .opt = XAE_OPTION_VLAN,
77 .reg = XAE_RCW1_OFFSET,
78 .m_or = XAE_RCW1_VLAN_MASK,
79 }, { /* Turn on FCS stripping on receive packets */
80 .opt = XAE_OPTION_FCS_STRIP,
81 .reg = XAE_RCW1_OFFSET,
82 .m_or = XAE_RCW1_FCS_MASK,
83 }, { /* Turn on FCS insertion on transmit packets */
84 .opt = XAE_OPTION_FCS_INSERT,
85 .reg = XAE_TC_OFFSET,
86 .m_or = XAE_TC_FCS_MASK,
87 }, { /* Turn off length/type field checking on receive packets */
88 .opt = XAE_OPTION_LENTYPE_ERR,
89 .reg = XAE_RCW1_OFFSET,
90 .m_or = XAE_RCW1_LT_DIS_MASK,
91 }, { /* Turn on Rx flow control */
92 .opt = XAE_OPTION_FLOW_CONTROL,
93 .reg = XAE_FCC_OFFSET,
94 .m_or = XAE_FCC_FCRX_MASK,
95 }, { /* Turn on Tx flow control */
96 .opt = XAE_OPTION_FLOW_CONTROL,
97 .reg = XAE_FCC_OFFSET,
98 .m_or = XAE_FCC_FCTX_MASK,
99 }, { /* Turn on promiscuous frame filtering */
100 .opt = XAE_OPTION_PROMISC,
101 .reg = XAE_FMI_OFFSET,
102 .m_or = XAE_FMI_PM_MASK,
103 }, { /* Enable transmitter */
104 .opt = XAE_OPTION_TXEN,
105 .reg = XAE_TC_OFFSET,
106 .m_or = XAE_TC_TX_MASK,
107 }, { /* Enable receiver */
108 .opt = XAE_OPTION_RXEN,
109 .reg = XAE_RCW1_OFFSET,
110 .m_or = XAE_RCW1_RX_MASK,
116 * axienet_dma_in32 - Memory mapped Axi DMA register read
117 * @lp: Pointer to axienet local structure
118 * @reg: Address offset from the base address of the Axi DMA core
120 * returns: The contents of the Axi DMA register
122 * This function returns the contents of the corresponding Axi DMA register.
124 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
126 return in_be32(lp->dma_regs + reg);
130 * axienet_dma_out32 - Memory mapped Axi DMA register write.
131 * @lp: Pointer to axienet local structure
132 * @reg: Address offset from the base address of the Axi DMA core
133 * @value: Value to be written into the Axi DMA register
135 * This function writes the desired value into the corresponding Axi DMA
136 * register.
138 static inline void axienet_dma_out32(struct axienet_local *lp,
139 off_t reg, u32 value)
141 out_be32((lp->dma_regs + reg), value);
145 * axienet_dma_bd_release - Release buffer descriptor rings
146 * @ndev: Pointer to the net_device structure
148 * This function is used to release the descriptors allocated in
149 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
150 * driver stop api is called.
152 static void axienet_dma_bd_release(struct net_device *ndev)
154 int i;
155 struct axienet_local *lp = netdev_priv(ndev);
157 for (i = 0; i < RX_BD_NUM; i++) {
158 dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
159 lp->max_frm_size, DMA_FROM_DEVICE);
160 dev_kfree_skb((struct sk_buff *)
161 (lp->rx_bd_v[i].sw_id_offset));
164 if (lp->rx_bd_v) {
165 dma_free_coherent(ndev->dev.parent,
166 sizeof(*lp->rx_bd_v) * RX_BD_NUM,
167 lp->rx_bd_v,
168 lp->rx_bd_p);
170 if (lp->tx_bd_v) {
171 dma_free_coherent(ndev->dev.parent,
172 sizeof(*lp->tx_bd_v) * TX_BD_NUM,
173 lp->tx_bd_v,
174 lp->tx_bd_p);
179 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
180 * @ndev: Pointer to the net_device structure
182 * returns: 0, on success
183 * -ENOMEM, on failure
185 * This function is called to initialize the Rx and Tx DMA descriptor
186 * rings. This initializes the descriptors with required default values
187 * and is called when Axi Ethernet driver reset is called.
189 static int axienet_dma_bd_init(struct net_device *ndev)
191 u32 cr;
192 int i;
193 struct sk_buff *skb;
194 struct axienet_local *lp = netdev_priv(ndev);
196 /* Reset the indexes which are used for accessing the BDs */
197 lp->tx_bd_ci = 0;
198 lp->tx_bd_tail = 0;
199 lp->rx_bd_ci = 0;
202 * Allocate the Tx and Rx buffer descriptors.
204 lp->tx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
205 sizeof(*lp->tx_bd_v) * TX_BD_NUM,
206 &lp->tx_bd_p, GFP_KERNEL);
207 if (!lp->tx_bd_v)
208 goto out;
210 lp->rx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
211 sizeof(*lp->rx_bd_v) * RX_BD_NUM,
212 &lp->rx_bd_p, GFP_KERNEL);
213 if (!lp->rx_bd_v)
214 goto out;
216 for (i = 0; i < TX_BD_NUM; i++) {
217 lp->tx_bd_v[i].next = lp->tx_bd_p +
218 sizeof(*lp->tx_bd_v) *
219 ((i + 1) % TX_BD_NUM);
222 for (i = 0; i < RX_BD_NUM; i++) {
223 lp->rx_bd_v[i].next = lp->rx_bd_p +
224 sizeof(*lp->rx_bd_v) *
225 ((i + 1) % RX_BD_NUM);
227 skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
228 if (!skb)
229 goto out;
231 lp->rx_bd_v[i].sw_id_offset = (u32) skb;
232 lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
233 skb->data,
234 lp->max_frm_size,
235 DMA_FROM_DEVICE);
236 lp->rx_bd_v[i].cntrl = lp->max_frm_size;
239 /* Start updating the Rx channel control register */
240 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
241 /* Update the interrupt coalesce count */
242 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
243 ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
244 /* Update the delay timer count */
245 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
246 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
247 /* Enable coalesce, delay timer and error interrupts */
248 cr |= XAXIDMA_IRQ_ALL_MASK;
249 /* Write to the Rx channel control register */
250 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
252 /* Start updating the Tx channel control register */
253 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
254 /* Update the interrupt coalesce count */
255 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
256 ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
257 /* Update the delay timer count */
258 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
259 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
260 /* Enable coalesce, delay timer and error interrupts */
261 cr |= XAXIDMA_IRQ_ALL_MASK;
262 /* Write to the Tx channel control register */
263 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
265 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
266 * halted state. This will make the Rx side ready for reception.*/
267 axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
268 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
269 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
270 cr | XAXIDMA_CR_RUNSTOP_MASK);
271 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
272 (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
274 /* Write to the RS (Run-stop) bit in the Tx channel control register.
275 * Tx channel is now ready to run. But only after we write to the
276 * tail pointer register that the Tx channel will start transmitting */
277 axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
278 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
279 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
280 cr | XAXIDMA_CR_RUNSTOP_MASK);
282 return 0;
283 out:
284 axienet_dma_bd_release(ndev);
285 return -ENOMEM;
289 * axienet_set_mac_address - Write the MAC address
290 * @ndev: Pointer to the net_device structure
291 * @address: 6 byte Address to be written as MAC address
293 * This function is called to initialize the MAC address of the Axi Ethernet
294 * core. It writes to the UAW0 and UAW1 registers of the core.
296 static void axienet_set_mac_address(struct net_device *ndev, void *address)
298 struct axienet_local *lp = netdev_priv(ndev);
300 if (address)
301 memcpy(ndev->dev_addr, address, ETH_ALEN);
302 if (!is_valid_ether_addr(ndev->dev_addr))
303 eth_random_addr(ndev->dev_addr);
305 /* Set up unicast MAC address filter set its mac address */
306 axienet_iow(lp, XAE_UAW0_OFFSET,
307 (ndev->dev_addr[0]) |
308 (ndev->dev_addr[1] << 8) |
309 (ndev->dev_addr[2] << 16) |
310 (ndev->dev_addr[3] << 24));
311 axienet_iow(lp, XAE_UAW1_OFFSET,
312 (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
313 ~XAE_UAW1_UNICASTADDR_MASK) |
314 (ndev->dev_addr[4] |
315 (ndev->dev_addr[5] << 8))));
319 * netdev_set_mac_address - Write the MAC address (from outside the driver)
320 * @ndev: Pointer to the net_device structure
321 * @p: 6 byte Address to be written as MAC address
323 * returns: 0 for all conditions. Presently, there is no failure case.
325 * This function is called to initialize the MAC address of the Axi Ethernet
326 * core. It calls the core specific axienet_set_mac_address. This is the
327 * function that goes into net_device_ops structure entry ndo_set_mac_address.
329 static int netdev_set_mac_address(struct net_device *ndev, void *p)
331 struct sockaddr *addr = p;
332 axienet_set_mac_address(ndev, addr->sa_data);
333 return 0;
337 * axienet_set_multicast_list - Prepare the multicast table
338 * @ndev: Pointer to the net_device structure
340 * This function is called to initialize the multicast table during
341 * initialization. The Axi Ethernet basic multicast support has a four-entry
342 * multicast table which is initialized here. Additionally this function
343 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
344 * means whenever the multicast table entries need to be updated this
345 * function gets called.
347 static void axienet_set_multicast_list(struct net_device *ndev)
349 int i;
350 u32 reg, af0reg, af1reg;
351 struct axienet_local *lp = netdev_priv(ndev);
353 if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
354 netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
355 /* We must make the kernel realize we had to move into
356 * promiscuous mode. If it was a promiscuous mode request
357 * the flag is already set. If not we set it. */
358 ndev->flags |= IFF_PROMISC;
359 reg = axienet_ior(lp, XAE_FMI_OFFSET);
360 reg |= XAE_FMI_PM_MASK;
361 axienet_iow(lp, XAE_FMI_OFFSET, reg);
362 dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
363 } else if (!netdev_mc_empty(ndev)) {
364 struct netdev_hw_addr *ha;
366 i = 0;
367 netdev_for_each_mc_addr(ha, ndev) {
368 if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
369 break;
371 af0reg = (ha->addr[0]);
372 af0reg |= (ha->addr[1] << 8);
373 af0reg |= (ha->addr[2] << 16);
374 af0reg |= (ha->addr[3] << 24);
376 af1reg = (ha->addr[4]);
377 af1reg |= (ha->addr[5] << 8);
379 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
380 reg |= i;
382 axienet_iow(lp, XAE_FMI_OFFSET, reg);
383 axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
384 axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
385 i++;
387 } else {
388 reg = axienet_ior(lp, XAE_FMI_OFFSET);
389 reg &= ~XAE_FMI_PM_MASK;
391 axienet_iow(lp, XAE_FMI_OFFSET, reg);
393 for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
394 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
395 reg |= i;
397 axienet_iow(lp, XAE_FMI_OFFSET, reg);
398 axienet_iow(lp, XAE_AF0_OFFSET, 0);
399 axienet_iow(lp, XAE_AF1_OFFSET, 0);
402 dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
407 * axienet_setoptions - Set an Axi Ethernet option
408 * @ndev: Pointer to the net_device structure
409 * @options: Option to be enabled/disabled
411 * The Axi Ethernet core has multiple features which can be selectively turned
412 * on or off. The typical options could be jumbo frame option, basic VLAN
413 * option, promiscuous mode option etc. This function is used to set or clear
414 * these options in the Axi Ethernet hardware. This is done through
415 * axienet_option structure .
417 static void axienet_setoptions(struct net_device *ndev, u32 options)
419 int reg;
420 struct axienet_local *lp = netdev_priv(ndev);
421 struct axienet_option *tp = &axienet_options[0];
423 while (tp->opt) {
424 reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
425 if (options & tp->opt)
426 reg |= tp->m_or;
427 axienet_iow(lp, tp->reg, reg);
428 tp++;
431 lp->options |= options;
434 static void __axienet_device_reset(struct axienet_local *lp,
435 struct device *dev, off_t offset)
437 u32 timeout;
438 /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
439 * process of Axi DMA takes a while to complete as all pending
440 * commands/transfers will be flushed or completed during this
441 * reset process. */
442 axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
443 timeout = DELAY_OF_ONE_MILLISEC;
444 while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
445 udelay(1);
446 if (--timeout == 0) {
447 dev_err(dev, "axienet_device_reset DMA "
448 "reset timeout!\n");
449 break;
455 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
456 * @ndev: Pointer to the net_device structure
458 * This function is called to reset and initialize the Axi Ethernet core. This
459 * is typically called during initialization. It does a reset of the Axi DMA
460 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
461 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
462 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
463 * core.
465 static void axienet_device_reset(struct net_device *ndev)
467 u32 axienet_status;
468 struct axienet_local *lp = netdev_priv(ndev);
470 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
471 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
473 lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
474 lp->options &= (~XAE_OPTION_JUMBO);
476 if ((ndev->mtu > XAE_MTU) &&
477 (ndev->mtu <= XAE_JUMBO_MTU) &&
478 (lp->jumbo_support)) {
479 lp->max_frm_size = ndev->mtu + XAE_HDR_VLAN_SIZE +
480 XAE_TRL_SIZE;
481 lp->options |= XAE_OPTION_JUMBO;
484 if (axienet_dma_bd_init(ndev)) {
485 dev_err(&ndev->dev, "axienet_device_reset descriptor "
486 "allocation failed\n");
489 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
490 axienet_status &= ~XAE_RCW1_RX_MASK;
491 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
493 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
494 if (axienet_status & XAE_INT_RXRJECT_MASK)
495 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
497 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
499 /* Sync default options with HW but leave receiver and
500 * transmitter disabled.*/
501 axienet_setoptions(ndev, lp->options &
502 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
503 axienet_set_mac_address(ndev, NULL);
504 axienet_set_multicast_list(ndev);
505 axienet_setoptions(ndev, lp->options);
507 ndev->trans_start = jiffies;
511 * axienet_adjust_link - Adjust the PHY link speed/duplex.
512 * @ndev: Pointer to the net_device structure
514 * This function is called to change the speed and duplex setting after
515 * auto negotiation is done by the PHY. This is the function that gets
516 * registered with the PHY interface through the "of_phy_connect" call.
518 static void axienet_adjust_link(struct net_device *ndev)
520 u32 emmc_reg;
521 u32 link_state;
522 u32 setspeed = 1;
523 struct axienet_local *lp = netdev_priv(ndev);
524 struct phy_device *phy = lp->phy_dev;
526 link_state = phy->speed | (phy->duplex << 1) | phy->link;
527 if (lp->last_link != link_state) {
528 if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
529 if (lp->phy_type == XAE_PHY_TYPE_1000BASE_X)
530 setspeed = 0;
531 } else {
532 if ((phy->speed == SPEED_1000) &&
533 (lp->phy_type == XAE_PHY_TYPE_MII))
534 setspeed = 0;
537 if (setspeed == 1) {
538 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
539 emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
541 switch (phy->speed) {
542 case SPEED_1000:
543 emmc_reg |= XAE_EMMC_LINKSPD_1000;
544 break;
545 case SPEED_100:
546 emmc_reg |= XAE_EMMC_LINKSPD_100;
547 break;
548 case SPEED_10:
549 emmc_reg |= XAE_EMMC_LINKSPD_10;
550 break;
551 default:
552 dev_err(&ndev->dev, "Speed other than 10, 100 "
553 "or 1Gbps is not supported\n");
554 break;
557 axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
558 lp->last_link = link_state;
559 phy_print_status(phy);
560 } else {
561 dev_err(&ndev->dev, "Error setting Axi Ethernet "
562 "mac speed\n");
568 * axienet_start_xmit_done - Invoked once a transmit is completed by the
569 * Axi DMA Tx channel.
570 * @ndev: Pointer to the net_device structure
572 * This function is invoked from the Axi DMA Tx isr to notify the completion
573 * of transmit operation. It clears fields in the corresponding Tx BDs and
574 * unmaps the corresponding buffer so that CPU can regain ownership of the
575 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
576 * required.
578 static void axienet_start_xmit_done(struct net_device *ndev)
580 u32 size = 0;
581 u32 packets = 0;
582 struct axienet_local *lp = netdev_priv(ndev);
583 struct axidma_bd *cur_p;
584 unsigned int status = 0;
586 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
587 status = cur_p->status;
588 while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
589 dma_unmap_single(ndev->dev.parent, cur_p->phys,
590 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
591 DMA_TO_DEVICE);
592 if (cur_p->app4)
593 dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
594 /*cur_p->phys = 0;*/
595 cur_p->app0 = 0;
596 cur_p->app1 = 0;
597 cur_p->app2 = 0;
598 cur_p->app4 = 0;
599 cur_p->status = 0;
601 size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
602 packets++;
604 ++lp->tx_bd_ci;
605 lp->tx_bd_ci %= TX_BD_NUM;
606 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
607 status = cur_p->status;
610 ndev->stats.tx_packets += packets;
611 ndev->stats.tx_bytes += size;
612 netif_wake_queue(ndev);
616 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
617 * @lp: Pointer to the axienet_local structure
618 * @num_frag: The number of BDs to check for
620 * returns: 0, on success
621 * NETDEV_TX_BUSY, if any of the descriptors are not free
623 * This function is invoked before BDs are allocated and transmission starts.
624 * This function returns 0 if a BD or group of BDs can be allocated for
625 * transmission. If the BD or any of the BDs are not free the function
626 * returns a busy status. This is invoked from axienet_start_xmit.
628 static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
629 int num_frag)
631 struct axidma_bd *cur_p;
632 cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
633 if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
634 return NETDEV_TX_BUSY;
635 return 0;
639 * axienet_start_xmit - Starts the transmission.
640 * @skb: sk_buff pointer that contains data to be Txed.
641 * @ndev: Pointer to net_device structure.
643 * returns: NETDEV_TX_OK, on success
644 * NETDEV_TX_BUSY, if any of the descriptors are not free
646 * This function is invoked from upper layers to initiate transmission. The
647 * function uses the next available free BDs and populates their fields to
648 * start the transmission. Additionally if checksum offloading is supported,
649 * it populates AXI Stream Control fields with appropriate values.
651 static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
653 u32 ii;
654 u32 num_frag;
655 u32 csum_start_off;
656 u32 csum_index_off;
657 skb_frag_t *frag;
658 dma_addr_t tail_p;
659 struct axienet_local *lp = netdev_priv(ndev);
660 struct axidma_bd *cur_p;
662 num_frag = skb_shinfo(skb)->nr_frags;
663 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
665 if (axienet_check_tx_bd_space(lp, num_frag)) {
666 if (!netif_queue_stopped(ndev))
667 netif_stop_queue(ndev);
668 return NETDEV_TX_BUSY;
671 if (skb->ip_summed == CHECKSUM_PARTIAL) {
672 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
673 /* Tx Full Checksum Offload Enabled */
674 cur_p->app0 |= 2;
675 } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
676 csum_start_off = skb_transport_offset(skb);
677 csum_index_off = csum_start_off + skb->csum_offset;
678 /* Tx Partial Checksum Offload Enabled */
679 cur_p->app0 |= 1;
680 cur_p->app1 = (csum_start_off << 16) | csum_index_off;
682 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
683 cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
686 cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
687 cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
688 skb_headlen(skb), DMA_TO_DEVICE);
690 for (ii = 0; ii < num_frag; ii++) {
691 ++lp->tx_bd_tail;
692 lp->tx_bd_tail %= TX_BD_NUM;
693 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
694 frag = &skb_shinfo(skb)->frags[ii];
695 cur_p->phys = dma_map_single(ndev->dev.parent,
696 skb_frag_address(frag),
697 skb_frag_size(frag),
698 DMA_TO_DEVICE);
699 cur_p->cntrl = skb_frag_size(frag);
702 cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
703 cur_p->app4 = (unsigned long)skb;
705 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
706 /* Start the transfer */
707 axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
708 ++lp->tx_bd_tail;
709 lp->tx_bd_tail %= TX_BD_NUM;
711 return NETDEV_TX_OK;
715 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
716 * BD processing.
717 * @ndev: Pointer to net_device structure.
719 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
720 * does minimal processing and invokes "netif_rx" to complete further
721 * processing.
723 static void axienet_recv(struct net_device *ndev)
725 u32 length;
726 u32 csumstatus;
727 u32 size = 0;
728 u32 packets = 0;
729 dma_addr_t tail_p;
730 struct axienet_local *lp = netdev_priv(ndev);
731 struct sk_buff *skb, *new_skb;
732 struct axidma_bd *cur_p;
734 tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
735 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
737 while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
738 skb = (struct sk_buff *) (cur_p->sw_id_offset);
739 length = cur_p->app4 & 0x0000FFFF;
741 dma_unmap_single(ndev->dev.parent, cur_p->phys,
742 lp->max_frm_size,
743 DMA_FROM_DEVICE);
745 skb_put(skb, length);
746 skb->protocol = eth_type_trans(skb, ndev);
747 /*skb_checksum_none_assert(skb);*/
748 skb->ip_summed = CHECKSUM_NONE;
750 /* if we're doing Rx csum offload, set it up */
751 if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
752 csumstatus = (cur_p->app2 &
753 XAE_FULL_CSUM_STATUS_MASK) >> 3;
754 if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
755 (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
756 skb->ip_summed = CHECKSUM_UNNECESSARY;
758 } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
759 skb->protocol == htons(ETH_P_IP) &&
760 skb->len > 64) {
761 skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
762 skb->ip_summed = CHECKSUM_COMPLETE;
765 netif_rx(skb);
767 size += length;
768 packets++;
770 new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
771 if (!new_skb)
772 return;
774 cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
775 lp->max_frm_size,
776 DMA_FROM_DEVICE);
777 cur_p->cntrl = lp->max_frm_size;
778 cur_p->status = 0;
779 cur_p->sw_id_offset = (u32) new_skb;
781 ++lp->rx_bd_ci;
782 lp->rx_bd_ci %= RX_BD_NUM;
783 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
786 ndev->stats.rx_packets += packets;
787 ndev->stats.rx_bytes += size;
789 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
793 * axienet_tx_irq - Tx Done Isr.
794 * @irq: irq number
795 * @_ndev: net_device pointer
797 * returns: IRQ_HANDLED for all cases.
799 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
800 * to complete the BD processing.
802 static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
804 u32 cr;
805 unsigned int status;
806 struct net_device *ndev = _ndev;
807 struct axienet_local *lp = netdev_priv(ndev);
809 status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
810 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
811 axienet_start_xmit_done(lp->ndev);
812 goto out;
814 if (!(status & XAXIDMA_IRQ_ALL_MASK))
815 dev_err(&ndev->dev, "No interrupts asserted in Tx path");
816 if (status & XAXIDMA_IRQ_ERROR_MASK) {
817 dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
818 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
819 (lp->tx_bd_v[lp->tx_bd_ci]).phys);
821 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
822 /* Disable coalesce, delay timer and error interrupts */
823 cr &= (~XAXIDMA_IRQ_ALL_MASK);
824 /* Write to the Tx channel control register */
825 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
827 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
828 /* Disable coalesce, delay timer and error interrupts */
829 cr &= (~XAXIDMA_IRQ_ALL_MASK);
830 /* Write to the Rx channel control register */
831 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
833 tasklet_schedule(&lp->dma_err_tasklet);
835 out:
836 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
837 return IRQ_HANDLED;
841 * axienet_rx_irq - Rx Isr.
842 * @irq: irq number
843 * @_ndev: net_device pointer
845 * returns: IRQ_HANDLED for all cases.
847 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
848 * processing.
850 static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
852 u32 cr;
853 unsigned int status;
854 struct net_device *ndev = _ndev;
855 struct axienet_local *lp = netdev_priv(ndev);
857 status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
858 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
859 axienet_recv(lp->ndev);
860 goto out;
862 if (!(status & XAXIDMA_IRQ_ALL_MASK))
863 dev_err(&ndev->dev, "No interrupts asserted in Rx path");
864 if (status & XAXIDMA_IRQ_ERROR_MASK) {
865 dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
866 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
867 (lp->rx_bd_v[lp->rx_bd_ci]).phys);
869 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
870 /* Disable coalesce, delay timer and error interrupts */
871 cr &= (~XAXIDMA_IRQ_ALL_MASK);
872 /* Finally write to the Tx channel control register */
873 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
875 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
876 /* Disable coalesce, delay timer and error interrupts */
877 cr &= (~XAXIDMA_IRQ_ALL_MASK);
878 /* write to the Rx channel control register */
879 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
881 tasklet_schedule(&lp->dma_err_tasklet);
883 out:
884 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
885 return IRQ_HANDLED;
888 static void axienet_dma_err_handler(unsigned long data);
891 * axienet_open - Driver open routine.
892 * @ndev: Pointer to net_device structure
894 * returns: 0, on success.
895 * -ENODEV, if PHY cannot be connected to
896 * non-zero error value on failure
898 * This is the driver open routine. It calls phy_start to start the PHY device.
899 * It also allocates interrupt service routines, enables the interrupt lines
900 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
901 * descriptors are initialized.
903 static int axienet_open(struct net_device *ndev)
905 int ret, mdio_mcreg;
906 struct axienet_local *lp = netdev_priv(ndev);
908 dev_dbg(&ndev->dev, "axienet_open()\n");
910 mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
911 ret = axienet_mdio_wait_until_ready(lp);
912 if (ret < 0)
913 return ret;
914 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
915 * When we do an Axi Ethernet reset, it resets the complete core
916 * including the MDIO. If MDIO is not disabled when the reset
917 * process is started, MDIO will be broken afterwards. */
918 axienet_iow(lp, XAE_MDIO_MC_OFFSET,
919 (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
920 axienet_device_reset(ndev);
921 /* Enable the MDIO */
922 axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
923 ret = axienet_mdio_wait_until_ready(lp);
924 if (ret < 0)
925 return ret;
927 if (lp->phy_node) {
928 lp->phy_dev = of_phy_connect(lp->ndev, lp->phy_node,
929 axienet_adjust_link, 0,
930 PHY_INTERFACE_MODE_GMII);
931 if (!lp->phy_dev) {
932 dev_err(lp->dev, "of_phy_connect() failed\n");
933 return -ENODEV;
935 phy_start(lp->phy_dev);
938 /* Enable tasklets for Axi DMA error handling */
939 tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
940 (unsigned long) lp);
942 /* Enable interrupts for Axi DMA Tx */
943 ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
944 if (ret)
945 goto err_tx_irq;
946 /* Enable interrupts for Axi DMA Rx */
947 ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
948 if (ret)
949 goto err_rx_irq;
951 return 0;
953 err_rx_irq:
954 free_irq(lp->tx_irq, ndev);
955 err_tx_irq:
956 if (lp->phy_dev)
957 phy_disconnect(lp->phy_dev);
958 lp->phy_dev = NULL;
959 tasklet_kill(&lp->dma_err_tasklet);
960 dev_err(lp->dev, "request_irq() failed\n");
961 return ret;
965 * axienet_stop - Driver stop routine.
966 * @ndev: Pointer to net_device structure
968 * returns: 0, on success.
970 * This is the driver stop routine. It calls phy_disconnect to stop the PHY
971 * device. It also removes the interrupt handlers and disables the interrupts.
972 * The Axi DMA Tx/Rx BDs are released.
974 static int axienet_stop(struct net_device *ndev)
976 u32 cr;
977 struct axienet_local *lp = netdev_priv(ndev);
979 dev_dbg(&ndev->dev, "axienet_close()\n");
981 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
982 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
983 cr & (~XAXIDMA_CR_RUNSTOP_MASK));
984 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
985 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
986 cr & (~XAXIDMA_CR_RUNSTOP_MASK));
987 axienet_setoptions(ndev, lp->options &
988 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
990 tasklet_kill(&lp->dma_err_tasklet);
992 free_irq(lp->tx_irq, ndev);
993 free_irq(lp->rx_irq, ndev);
995 if (lp->phy_dev)
996 phy_disconnect(lp->phy_dev);
997 lp->phy_dev = NULL;
999 axienet_dma_bd_release(ndev);
1000 return 0;
1004 * axienet_change_mtu - Driver change mtu routine.
1005 * @ndev: Pointer to net_device structure
1006 * @new_mtu: New mtu value to be applied
1008 * returns: Always returns 0 (success).
1010 * This is the change mtu driver routine. It checks if the Axi Ethernet
1011 * hardware supports jumbo frames before changing the mtu. This can be
1012 * called only when the device is not up.
1014 static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1016 struct axienet_local *lp = netdev_priv(ndev);
1018 if (netif_running(ndev))
1019 return -EBUSY;
1020 if (lp->jumbo_support) {
1021 if ((new_mtu > XAE_JUMBO_MTU) || (new_mtu < 64))
1022 return -EINVAL;
1023 ndev->mtu = new_mtu;
1024 } else {
1025 if ((new_mtu > XAE_MTU) || (new_mtu < 64))
1026 return -EINVAL;
1027 ndev->mtu = new_mtu;
1030 return 0;
1033 #ifdef CONFIG_NET_POLL_CONTROLLER
1035 * axienet_poll_controller - Axi Ethernet poll mechanism.
1036 * @ndev: Pointer to net_device structure
1038 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1039 * to polling the ISRs and are enabled back after the polling is done.
1041 static void axienet_poll_controller(struct net_device *ndev)
1043 struct axienet_local *lp = netdev_priv(ndev);
1044 disable_irq(lp->tx_irq);
1045 disable_irq(lp->rx_irq);
1046 axienet_rx_irq(lp->tx_irq, ndev);
1047 axienet_tx_irq(lp->rx_irq, ndev);
1048 enable_irq(lp->tx_irq);
1049 enable_irq(lp->rx_irq);
1051 #endif
1053 static const struct net_device_ops axienet_netdev_ops = {
1054 .ndo_open = axienet_open,
1055 .ndo_stop = axienet_stop,
1056 .ndo_start_xmit = axienet_start_xmit,
1057 .ndo_change_mtu = axienet_change_mtu,
1058 .ndo_set_mac_address = netdev_set_mac_address,
1059 .ndo_validate_addr = eth_validate_addr,
1060 .ndo_set_rx_mode = axienet_set_multicast_list,
1061 #ifdef CONFIG_NET_POLL_CONTROLLER
1062 .ndo_poll_controller = axienet_poll_controller,
1063 #endif
1067 * axienet_ethtools_get_settings - Get Axi Ethernet settings related to PHY.
1068 * @ndev: Pointer to net_device structure
1069 * @ecmd: Pointer to ethtool_cmd structure
1071 * This implements ethtool command for getting PHY settings. If PHY could
1072 * not be found, the function returns -ENODEV. This function calls the
1073 * relevant PHY ethtool API to get the PHY settings.
1074 * Issue "ethtool ethX" under linux prompt to execute this function.
1076 static int axienet_ethtools_get_settings(struct net_device *ndev,
1077 struct ethtool_cmd *ecmd)
1079 struct axienet_local *lp = netdev_priv(ndev);
1080 struct phy_device *phydev = lp->phy_dev;
1081 if (!phydev)
1082 return -ENODEV;
1083 return phy_ethtool_gset(phydev, ecmd);
1087 * axienet_ethtools_set_settings - Set PHY settings as passed in the argument.
1088 * @ndev: Pointer to net_device structure
1089 * @ecmd: Pointer to ethtool_cmd structure
1091 * This implements ethtool command for setting various PHY settings. If PHY
1092 * could not be found, the function returns -ENODEV. This function calls the
1093 * relevant PHY ethtool API to set the PHY.
1094 * Issue e.g. "ethtool -s ethX speed 1000" under linux prompt to execute this
1095 * function.
1097 static int axienet_ethtools_set_settings(struct net_device *ndev,
1098 struct ethtool_cmd *ecmd)
1100 struct axienet_local *lp = netdev_priv(ndev);
1101 struct phy_device *phydev = lp->phy_dev;
1102 if (!phydev)
1103 return -ENODEV;
1104 return phy_ethtool_sset(phydev, ecmd);
1108 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1109 * @ndev: Pointer to net_device structure
1110 * @ed: Pointer to ethtool_drvinfo structure
1112 * This implements ethtool command for getting the driver information.
1113 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1115 static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1116 struct ethtool_drvinfo *ed)
1118 strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1119 strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1120 ed->regdump_len = sizeof(u32) * AXIENET_REGS_N;
1124 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1125 * AxiEthernet core.
1126 * @ndev: Pointer to net_device structure
1128 * This implements ethtool command for getting the total register length
1129 * information.
1131 static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1133 return sizeof(u32) * AXIENET_REGS_N;
1137 * axienet_ethtools_get_regs - Dump the contents of all registers present
1138 * in AxiEthernet core.
1139 * @ndev: Pointer to net_device structure
1140 * @regs: Pointer to ethtool_regs structure
1141 * @ret: Void pointer used to return the contents of the registers.
1143 * This implements ethtool command for getting the Axi Ethernet register dump.
1144 * Issue "ethtool -d ethX" to execute this function.
1146 static void axienet_ethtools_get_regs(struct net_device *ndev,
1147 struct ethtool_regs *regs, void *ret)
1149 u32 *data = (u32 *) ret;
1150 size_t len = sizeof(u32) * AXIENET_REGS_N;
1151 struct axienet_local *lp = netdev_priv(ndev);
1153 regs->version = 0;
1154 regs->len = len;
1156 memset(data, 0, len);
1157 data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1158 data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1159 data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1160 data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1161 data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1162 data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1163 data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1164 data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1165 data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1166 data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1167 data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1168 data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1169 data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1170 data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1171 data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1172 data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1173 data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1174 data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1175 data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1176 data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1177 data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1178 data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1179 data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1180 data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1181 data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1182 data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1183 data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1184 data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1185 data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1186 data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1187 data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1188 data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1192 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1193 * Tx and Rx paths.
1194 * @ndev: Pointer to net_device structure
1195 * @epauseparm: Pointer to ethtool_pauseparam structure.
1197 * This implements ethtool command for getting axi ethernet pause frame
1198 * setting. Issue "ethtool -a ethX" to execute this function.
1200 static void
1201 axienet_ethtools_get_pauseparam(struct net_device *ndev,
1202 struct ethtool_pauseparam *epauseparm)
1204 u32 regval;
1205 struct axienet_local *lp = netdev_priv(ndev);
1206 epauseparm->autoneg = 0;
1207 regval = axienet_ior(lp, XAE_FCC_OFFSET);
1208 epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1209 epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1213 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1214 * settings.
1215 * @ndev: Pointer to net_device structure
1216 * @epauseparam:Pointer to ethtool_pauseparam structure
1218 * This implements ethtool command for enabling flow control on Rx and Tx
1219 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1220 * function.
1222 static int
1223 axienet_ethtools_set_pauseparam(struct net_device *ndev,
1224 struct ethtool_pauseparam *epauseparm)
1226 u32 regval = 0;
1227 struct axienet_local *lp = netdev_priv(ndev);
1229 if (netif_running(ndev)) {
1230 printk(KERN_ERR "%s: Please stop netif before applying "
1231 "configruation\n", ndev->name);
1232 return -EFAULT;
1235 regval = axienet_ior(lp, XAE_FCC_OFFSET);
1236 if (epauseparm->tx_pause)
1237 regval |= XAE_FCC_FCTX_MASK;
1238 else
1239 regval &= ~XAE_FCC_FCTX_MASK;
1240 if (epauseparm->rx_pause)
1241 regval |= XAE_FCC_FCRX_MASK;
1242 else
1243 regval &= ~XAE_FCC_FCRX_MASK;
1244 axienet_iow(lp, XAE_FCC_OFFSET, regval);
1246 return 0;
1250 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1251 * @ndev: Pointer to net_device structure
1252 * @ecoalesce: Pointer to ethtool_coalesce structure
1254 * This implements ethtool command for getting the DMA interrupt coalescing
1255 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1256 * execute this function.
1258 static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1259 struct ethtool_coalesce *ecoalesce)
1261 u32 regval = 0;
1262 struct axienet_local *lp = netdev_priv(ndev);
1263 regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1264 ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1265 >> XAXIDMA_COALESCE_SHIFT;
1266 regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1267 ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1268 >> XAXIDMA_COALESCE_SHIFT;
1269 return 0;
1273 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1274 * @ndev: Pointer to net_device structure
1275 * @ecoalesce: Pointer to ethtool_coalesce structure
1277 * This implements ethtool command for setting the DMA interrupt coalescing
1278 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1279 * prompt to execute this function.
1281 static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1282 struct ethtool_coalesce *ecoalesce)
1284 struct axienet_local *lp = netdev_priv(ndev);
1286 if (netif_running(ndev)) {
1287 printk(KERN_ERR "%s: Please stop netif before applying "
1288 "configruation\n", ndev->name);
1289 return -EFAULT;
1292 if ((ecoalesce->rx_coalesce_usecs) ||
1293 (ecoalesce->rx_coalesce_usecs_irq) ||
1294 (ecoalesce->rx_max_coalesced_frames_irq) ||
1295 (ecoalesce->tx_coalesce_usecs) ||
1296 (ecoalesce->tx_coalesce_usecs_irq) ||
1297 (ecoalesce->tx_max_coalesced_frames_irq) ||
1298 (ecoalesce->stats_block_coalesce_usecs) ||
1299 (ecoalesce->use_adaptive_rx_coalesce) ||
1300 (ecoalesce->use_adaptive_tx_coalesce) ||
1301 (ecoalesce->pkt_rate_low) ||
1302 (ecoalesce->rx_coalesce_usecs_low) ||
1303 (ecoalesce->rx_max_coalesced_frames_low) ||
1304 (ecoalesce->tx_coalesce_usecs_low) ||
1305 (ecoalesce->tx_max_coalesced_frames_low) ||
1306 (ecoalesce->pkt_rate_high) ||
1307 (ecoalesce->rx_coalesce_usecs_high) ||
1308 (ecoalesce->rx_max_coalesced_frames_high) ||
1309 (ecoalesce->tx_coalesce_usecs_high) ||
1310 (ecoalesce->tx_max_coalesced_frames_high) ||
1311 (ecoalesce->rate_sample_interval))
1312 return -EOPNOTSUPP;
1313 if (ecoalesce->rx_max_coalesced_frames)
1314 lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1315 if (ecoalesce->tx_max_coalesced_frames)
1316 lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1318 return 0;
1321 static struct ethtool_ops axienet_ethtool_ops = {
1322 .get_settings = axienet_ethtools_get_settings,
1323 .set_settings = axienet_ethtools_set_settings,
1324 .get_drvinfo = axienet_ethtools_get_drvinfo,
1325 .get_regs_len = axienet_ethtools_get_regs_len,
1326 .get_regs = axienet_ethtools_get_regs,
1327 .get_link = ethtool_op_get_link,
1328 .get_pauseparam = axienet_ethtools_get_pauseparam,
1329 .set_pauseparam = axienet_ethtools_set_pauseparam,
1330 .get_coalesce = axienet_ethtools_get_coalesce,
1331 .set_coalesce = axienet_ethtools_set_coalesce,
1335 * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1336 * @data: Data passed
1338 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1339 * Tx/Rx BDs.
1341 static void axienet_dma_err_handler(unsigned long data)
1343 u32 axienet_status;
1344 u32 cr, i;
1345 int mdio_mcreg;
1346 struct axienet_local *lp = (struct axienet_local *) data;
1347 struct net_device *ndev = lp->ndev;
1348 struct axidma_bd *cur_p;
1350 axienet_setoptions(ndev, lp->options &
1351 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1352 mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1353 axienet_mdio_wait_until_ready(lp);
1354 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
1355 * When we do an Axi Ethernet reset, it resets the complete core
1356 * including the MDIO. So if MDIO is not disabled when the reset
1357 * process is started, MDIO will be broken afterwards. */
1358 axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1359 ~XAE_MDIO_MC_MDIOEN_MASK));
1361 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
1362 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
1364 axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1365 axienet_mdio_wait_until_ready(lp);
1367 for (i = 0; i < TX_BD_NUM; i++) {
1368 cur_p = &lp->tx_bd_v[i];
1369 if (cur_p->phys)
1370 dma_unmap_single(ndev->dev.parent, cur_p->phys,
1371 (cur_p->cntrl &
1372 XAXIDMA_BD_CTRL_LENGTH_MASK),
1373 DMA_TO_DEVICE);
1374 if (cur_p->app4)
1375 dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1376 cur_p->phys = 0;
1377 cur_p->cntrl = 0;
1378 cur_p->status = 0;
1379 cur_p->app0 = 0;
1380 cur_p->app1 = 0;
1381 cur_p->app2 = 0;
1382 cur_p->app3 = 0;
1383 cur_p->app4 = 0;
1384 cur_p->sw_id_offset = 0;
1387 for (i = 0; i < RX_BD_NUM; i++) {
1388 cur_p = &lp->rx_bd_v[i];
1389 cur_p->status = 0;
1390 cur_p->app0 = 0;
1391 cur_p->app1 = 0;
1392 cur_p->app2 = 0;
1393 cur_p->app3 = 0;
1394 cur_p->app4 = 0;
1397 lp->tx_bd_ci = 0;
1398 lp->tx_bd_tail = 0;
1399 lp->rx_bd_ci = 0;
1401 /* Start updating the Rx channel control register */
1402 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1403 /* Update the interrupt coalesce count */
1404 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1405 (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1406 /* Update the delay timer count */
1407 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1408 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1409 /* Enable coalesce, delay timer and error interrupts */
1410 cr |= XAXIDMA_IRQ_ALL_MASK;
1411 /* Finally write to the Rx channel control register */
1412 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1414 /* Start updating the Tx channel control register */
1415 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1416 /* Update the interrupt coalesce count */
1417 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1418 (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1419 /* Update the delay timer count */
1420 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1421 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1422 /* Enable coalesce, delay timer and error interrupts */
1423 cr |= XAXIDMA_IRQ_ALL_MASK;
1424 /* Finally write to the Tx channel control register */
1425 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1427 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
1428 * halted state. This will make the Rx side ready for reception.*/
1429 axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1430 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1431 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1432 cr | XAXIDMA_CR_RUNSTOP_MASK);
1433 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1434 (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1436 /* Write to the RS (Run-stop) bit in the Tx channel control register.
1437 * Tx channel is now ready to run. But only after we write to the
1438 * tail pointer register that the Tx channel will start transmitting */
1439 axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1440 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1441 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1442 cr | XAXIDMA_CR_RUNSTOP_MASK);
1444 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1445 axienet_status &= ~XAE_RCW1_RX_MASK;
1446 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1448 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1449 if (axienet_status & XAE_INT_RXRJECT_MASK)
1450 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1451 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1453 /* Sync default options with HW but leave receiver and
1454 * transmitter disabled.*/
1455 axienet_setoptions(ndev, lp->options &
1456 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1457 axienet_set_mac_address(ndev, NULL);
1458 axienet_set_multicast_list(ndev);
1459 axienet_setoptions(ndev, lp->options);
1463 * axienet_of_probe - Axi Ethernet probe function.
1464 * @op: Pointer to platform device structure.
1465 * @match: Pointer to device id structure
1467 * returns: 0, on success
1468 * Non-zero error value on failure.
1470 * This is the probe routine for Axi Ethernet driver. This is called before
1471 * any other driver routines are invoked. It allocates and sets up the Ethernet
1472 * device. Parses through device tree and populates fields of
1473 * axienet_local. It registers the Ethernet device.
1475 static int axienet_of_probe(struct platform_device *op)
1477 __be32 *p;
1478 int size, ret = 0;
1479 struct device_node *np;
1480 struct axienet_local *lp;
1481 struct net_device *ndev;
1482 const void *addr;
1484 ndev = alloc_etherdev(sizeof(*lp));
1485 if (!ndev)
1486 return -ENOMEM;
1488 platform_set_drvdata(op, ndev);
1490 SET_NETDEV_DEV(ndev, &op->dev);
1491 ndev->flags &= ~IFF_MULTICAST; /* clear multicast */
1492 ndev->features = NETIF_F_SG;
1493 ndev->netdev_ops = &axienet_netdev_ops;
1494 ndev->ethtool_ops = &axienet_ethtool_ops;
1496 lp = netdev_priv(ndev);
1497 lp->ndev = ndev;
1498 lp->dev = &op->dev;
1499 lp->options = XAE_OPTION_DEFAULTS;
1500 /* Map device registers */
1501 lp->regs = of_iomap(op->dev.of_node, 0);
1502 if (!lp->regs) {
1503 dev_err(&op->dev, "could not map Axi Ethernet regs.\n");
1504 goto nodev;
1506 /* Setup checksum offload, but default to off if not specified */
1507 lp->features = 0;
1509 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,txcsum", NULL);
1510 if (p) {
1511 switch (be32_to_cpup(p)) {
1512 case 1:
1513 lp->csum_offload_on_tx_path =
1514 XAE_FEATURE_PARTIAL_TX_CSUM;
1515 lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1516 /* Can checksum TCP/UDP over IPv4. */
1517 ndev->features |= NETIF_F_IP_CSUM;
1518 break;
1519 case 2:
1520 lp->csum_offload_on_tx_path =
1521 XAE_FEATURE_FULL_TX_CSUM;
1522 lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1523 /* Can checksum TCP/UDP over IPv4. */
1524 ndev->features |= NETIF_F_IP_CSUM;
1525 break;
1526 default:
1527 lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1530 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxcsum", NULL);
1531 if (p) {
1532 switch (be32_to_cpup(p)) {
1533 case 1:
1534 lp->csum_offload_on_rx_path =
1535 XAE_FEATURE_PARTIAL_RX_CSUM;
1536 lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1537 break;
1538 case 2:
1539 lp->csum_offload_on_rx_path =
1540 XAE_FEATURE_FULL_RX_CSUM;
1541 lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1542 break;
1543 default:
1544 lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1547 /* For supporting jumbo frames, the Axi Ethernet hardware must have
1548 * a larger Rx/Tx Memory. Typically, the size must be more than or
1549 * equal to 16384 bytes, so that we can enable jumbo option and start
1550 * supporting jumbo frames. Here we check for memory allocated for
1551 * Rx/Tx in the hardware from the device-tree and accordingly set
1552 * flags. */
1553 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxmem", NULL);
1554 if (p) {
1555 if ((be32_to_cpup(p)) >= 0x4000)
1556 lp->jumbo_support = 1;
1558 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,temac-type",
1559 NULL);
1560 if (p)
1561 lp->temac_type = be32_to_cpup(p);
1562 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,phy-type", NULL);
1563 if (p)
1564 lp->phy_type = be32_to_cpup(p);
1566 /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1567 np = of_parse_phandle(op->dev.of_node, "axistream-connected", 0);
1568 if (!np) {
1569 dev_err(&op->dev, "could not find DMA node\n");
1570 goto err_iounmap;
1572 lp->dma_regs = of_iomap(np, 0);
1573 if (lp->dma_regs) {
1574 dev_dbg(&op->dev, "MEM base: %p\n", lp->dma_regs);
1575 } else {
1576 dev_err(&op->dev, "unable to map DMA registers\n");
1577 of_node_put(np);
1579 lp->rx_irq = irq_of_parse_and_map(np, 1);
1580 lp->tx_irq = irq_of_parse_and_map(np, 0);
1581 of_node_put(np);
1582 if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
1583 dev_err(&op->dev, "could not determine irqs\n");
1584 ret = -ENOMEM;
1585 goto err_iounmap_2;
1588 /* Retrieve the MAC address */
1589 addr = of_get_property(op->dev.of_node, "local-mac-address", &size);
1590 if ((!addr) || (size != 6)) {
1591 dev_err(&op->dev, "could not find MAC address\n");
1592 ret = -ENODEV;
1593 goto err_iounmap_2;
1595 axienet_set_mac_address(ndev, (void *) addr);
1597 lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1598 lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1600 lp->phy_node = of_parse_phandle(op->dev.of_node, "phy-handle", 0);
1601 ret = axienet_mdio_setup(lp, op->dev.of_node);
1602 if (ret)
1603 dev_warn(&op->dev, "error registering MDIO bus\n");
1605 ret = register_netdev(lp->ndev);
1606 if (ret) {
1607 dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1608 goto err_iounmap_2;
1611 return 0;
1613 err_iounmap_2:
1614 if (lp->dma_regs)
1615 iounmap(lp->dma_regs);
1616 err_iounmap:
1617 iounmap(lp->regs);
1618 nodev:
1619 free_netdev(ndev);
1620 ndev = NULL;
1621 return ret;
1624 static int axienet_of_remove(struct platform_device *op)
1626 struct net_device *ndev = platform_get_drvdata(op);
1627 struct axienet_local *lp = netdev_priv(ndev);
1629 axienet_mdio_teardown(lp);
1630 unregister_netdev(ndev);
1632 of_node_put(lp->phy_node);
1633 lp->phy_node = NULL;
1635 iounmap(lp->regs);
1636 if (lp->dma_regs)
1637 iounmap(lp->dma_regs);
1638 free_netdev(ndev);
1640 return 0;
1643 static struct platform_driver axienet_of_driver = {
1644 .probe = axienet_of_probe,
1645 .remove = axienet_of_remove,
1646 .driver = {
1647 .name = "xilinx_axienet",
1648 .of_match_table = axienet_of_match,
1652 module_platform_driver(axienet_of_driver);
1654 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1655 MODULE_AUTHOR("Xilinx");
1656 MODULE_LICENSE("GPL");