ARM: dts: add 'dr_mode' property to hsotg devices for exynos boards
[linux/fpc-iii.git] / drivers / scsi / qla2xxx / qla_sup.c
blobb656a05613e87a8ee5da46b20bd884d74cd20937
1 /*
2 * QLogic Fibre Channel HBA Driver
3 * Copyright (c) 2003-2014 QLogic Corporation
5 * See LICENSE.qla2xxx for copyright and licensing details.
6 */
7 #include "qla_def.h"
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/vmalloc.h>
12 #include <asm/uaccess.h>
15 * NVRAM support routines
18 /**
19 * qla2x00_lock_nvram_access() -
20 * @ha: HA context
22 static void
23 qla2x00_lock_nvram_access(struct qla_hw_data *ha)
25 uint16_t data;
26 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
28 if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
29 data = RD_REG_WORD(&reg->nvram);
30 while (data & NVR_BUSY) {
31 udelay(100);
32 data = RD_REG_WORD(&reg->nvram);
35 /* Lock resource */
36 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
37 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
38 udelay(5);
39 data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
40 while ((data & BIT_0) == 0) {
41 /* Lock failed */
42 udelay(100);
43 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
44 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
45 udelay(5);
46 data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
51 /**
52 * qla2x00_unlock_nvram_access() -
53 * @ha: HA context
55 static void
56 qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
58 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
60 if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
61 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
62 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
66 /**
67 * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
68 * @ha: HA context
69 * @data: Serial interface selector
71 static void
72 qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
74 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
76 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
77 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
78 NVRAM_DELAY();
79 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
80 NVR_WRT_ENABLE);
81 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
82 NVRAM_DELAY();
83 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
84 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
85 NVRAM_DELAY();
88 /**
89 * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
90 * NVRAM.
91 * @ha: HA context
92 * @nv_cmd: NVRAM command
94 * Bit definitions for NVRAM command:
96 * Bit 26 = start bit
97 * Bit 25, 24 = opcode
98 * Bit 23-16 = address
99 * Bit 15-0 = write data
101 * Returns the word read from nvram @addr.
103 static uint16_t
104 qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
106 uint8_t cnt;
107 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
108 uint16_t data = 0;
109 uint16_t reg_data;
111 /* Send command to NVRAM. */
112 nv_cmd <<= 5;
113 for (cnt = 0; cnt < 11; cnt++) {
114 if (nv_cmd & BIT_31)
115 qla2x00_nv_write(ha, NVR_DATA_OUT);
116 else
117 qla2x00_nv_write(ha, 0);
118 nv_cmd <<= 1;
121 /* Read data from NVRAM. */
122 for (cnt = 0; cnt < 16; cnt++) {
123 WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
124 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
125 NVRAM_DELAY();
126 data <<= 1;
127 reg_data = RD_REG_WORD(&reg->nvram);
128 if (reg_data & NVR_DATA_IN)
129 data |= BIT_0;
130 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
131 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
132 NVRAM_DELAY();
135 /* Deselect chip. */
136 WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
137 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
138 NVRAM_DELAY();
140 return data;
145 * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
146 * request routine to get the word from NVRAM.
147 * @ha: HA context
148 * @addr: Address in NVRAM to read
150 * Returns the word read from nvram @addr.
152 static uint16_t
153 qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
155 uint16_t data;
156 uint32_t nv_cmd;
158 nv_cmd = addr << 16;
159 nv_cmd |= NV_READ_OP;
160 data = qla2x00_nvram_request(ha, nv_cmd);
162 return (data);
166 * qla2x00_nv_deselect() - Deselect NVRAM operations.
167 * @ha: HA context
169 static void
170 qla2x00_nv_deselect(struct qla_hw_data *ha)
172 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
174 WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
175 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
176 NVRAM_DELAY();
180 * qla2x00_write_nvram_word() - Write NVRAM data.
181 * @ha: HA context
182 * @addr: Address in NVRAM to write
183 * @data: word to program
185 static void
186 qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
188 int count;
189 uint16_t word;
190 uint32_t nv_cmd, wait_cnt;
191 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
192 scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
194 qla2x00_nv_write(ha, NVR_DATA_OUT);
195 qla2x00_nv_write(ha, 0);
196 qla2x00_nv_write(ha, 0);
198 for (word = 0; word < 8; word++)
199 qla2x00_nv_write(ha, NVR_DATA_OUT);
201 qla2x00_nv_deselect(ha);
203 /* Write data */
204 nv_cmd = (addr << 16) | NV_WRITE_OP;
205 nv_cmd |= data;
206 nv_cmd <<= 5;
207 for (count = 0; count < 27; count++) {
208 if (nv_cmd & BIT_31)
209 qla2x00_nv_write(ha, NVR_DATA_OUT);
210 else
211 qla2x00_nv_write(ha, 0);
213 nv_cmd <<= 1;
216 qla2x00_nv_deselect(ha);
218 /* Wait for NVRAM to become ready */
219 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
220 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
221 wait_cnt = NVR_WAIT_CNT;
222 do {
223 if (!--wait_cnt) {
224 ql_dbg(ql_dbg_user, vha, 0x708d,
225 "NVRAM didn't go ready...\n");
226 break;
228 NVRAM_DELAY();
229 word = RD_REG_WORD(&reg->nvram);
230 } while ((word & NVR_DATA_IN) == 0);
232 qla2x00_nv_deselect(ha);
234 /* Disable writes */
235 qla2x00_nv_write(ha, NVR_DATA_OUT);
236 for (count = 0; count < 10; count++)
237 qla2x00_nv_write(ha, 0);
239 qla2x00_nv_deselect(ha);
242 static int
243 qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
244 uint16_t data, uint32_t tmo)
246 int ret, count;
247 uint16_t word;
248 uint32_t nv_cmd;
249 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
251 ret = QLA_SUCCESS;
253 qla2x00_nv_write(ha, NVR_DATA_OUT);
254 qla2x00_nv_write(ha, 0);
255 qla2x00_nv_write(ha, 0);
257 for (word = 0; word < 8; word++)
258 qla2x00_nv_write(ha, NVR_DATA_OUT);
260 qla2x00_nv_deselect(ha);
262 /* Write data */
263 nv_cmd = (addr << 16) | NV_WRITE_OP;
264 nv_cmd |= data;
265 nv_cmd <<= 5;
266 for (count = 0; count < 27; count++) {
267 if (nv_cmd & BIT_31)
268 qla2x00_nv_write(ha, NVR_DATA_OUT);
269 else
270 qla2x00_nv_write(ha, 0);
272 nv_cmd <<= 1;
275 qla2x00_nv_deselect(ha);
277 /* Wait for NVRAM to become ready */
278 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
279 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
280 do {
281 NVRAM_DELAY();
282 word = RD_REG_WORD(&reg->nvram);
283 if (!--tmo) {
284 ret = QLA_FUNCTION_FAILED;
285 break;
287 } while ((word & NVR_DATA_IN) == 0);
289 qla2x00_nv_deselect(ha);
291 /* Disable writes */
292 qla2x00_nv_write(ha, NVR_DATA_OUT);
293 for (count = 0; count < 10; count++)
294 qla2x00_nv_write(ha, 0);
296 qla2x00_nv_deselect(ha);
298 return ret;
302 * qla2x00_clear_nvram_protection() -
303 * @ha: HA context
305 static int
306 qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
308 int ret, stat;
309 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
310 uint32_t word, wait_cnt;
311 uint16_t wprot, wprot_old;
312 scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
314 /* Clear NVRAM write protection. */
315 ret = QLA_FUNCTION_FAILED;
317 wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318 stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
319 __constant_cpu_to_le16(0x1234), 100000);
320 wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
321 if (stat != QLA_SUCCESS || wprot != 0x1234) {
322 /* Write enable. */
323 qla2x00_nv_write(ha, NVR_DATA_OUT);
324 qla2x00_nv_write(ha, 0);
325 qla2x00_nv_write(ha, 0);
326 for (word = 0; word < 8; word++)
327 qla2x00_nv_write(ha, NVR_DATA_OUT);
329 qla2x00_nv_deselect(ha);
331 /* Enable protection register. */
332 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
333 qla2x00_nv_write(ha, NVR_PR_ENABLE);
334 qla2x00_nv_write(ha, NVR_PR_ENABLE);
335 for (word = 0; word < 8; word++)
336 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
338 qla2x00_nv_deselect(ha);
340 /* Clear protection register (ffff is cleared). */
341 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
342 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
343 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
344 for (word = 0; word < 8; word++)
345 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
347 qla2x00_nv_deselect(ha);
349 /* Wait for NVRAM to become ready. */
350 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
351 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
352 wait_cnt = NVR_WAIT_CNT;
353 do {
354 if (!--wait_cnt) {
355 ql_dbg(ql_dbg_user, vha, 0x708e,
356 "NVRAM didn't go ready...\n");
357 break;
359 NVRAM_DELAY();
360 word = RD_REG_WORD(&reg->nvram);
361 } while ((word & NVR_DATA_IN) == 0);
363 if (wait_cnt)
364 ret = QLA_SUCCESS;
365 } else
366 qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
368 return ret;
371 static void
372 qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
374 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
375 uint32_t word, wait_cnt;
376 scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
378 if (stat != QLA_SUCCESS)
379 return;
381 /* Set NVRAM write protection. */
382 /* Write enable. */
383 qla2x00_nv_write(ha, NVR_DATA_OUT);
384 qla2x00_nv_write(ha, 0);
385 qla2x00_nv_write(ha, 0);
386 for (word = 0; word < 8; word++)
387 qla2x00_nv_write(ha, NVR_DATA_OUT);
389 qla2x00_nv_deselect(ha);
391 /* Enable protection register. */
392 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
393 qla2x00_nv_write(ha, NVR_PR_ENABLE);
394 qla2x00_nv_write(ha, NVR_PR_ENABLE);
395 for (word = 0; word < 8; word++)
396 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
398 qla2x00_nv_deselect(ha);
400 /* Enable protection register. */
401 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
402 qla2x00_nv_write(ha, NVR_PR_ENABLE);
403 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
404 for (word = 0; word < 8; word++)
405 qla2x00_nv_write(ha, NVR_PR_ENABLE);
407 qla2x00_nv_deselect(ha);
409 /* Wait for NVRAM to become ready. */
410 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
411 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
412 wait_cnt = NVR_WAIT_CNT;
413 do {
414 if (!--wait_cnt) {
415 ql_dbg(ql_dbg_user, vha, 0x708f,
416 "NVRAM didn't go ready...\n");
417 break;
419 NVRAM_DELAY();
420 word = RD_REG_WORD(&reg->nvram);
421 } while ((word & NVR_DATA_IN) == 0);
425 /*****************************************************************************/
426 /* Flash Manipulation Routines */
427 /*****************************************************************************/
429 static inline uint32_t
430 flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
432 return ha->flash_conf_off | faddr;
435 static inline uint32_t
436 flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
438 return ha->flash_data_off | faddr;
441 static inline uint32_t
442 nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
444 return ha->nvram_conf_off | naddr;
447 static inline uint32_t
448 nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
450 return ha->nvram_data_off | naddr;
453 static uint32_t
454 qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
456 int rval;
457 uint32_t cnt, data;
458 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
460 WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
461 /* Wait for READ cycle to complete. */
462 rval = QLA_SUCCESS;
463 for (cnt = 3000;
464 (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
465 rval == QLA_SUCCESS; cnt--) {
466 if (cnt)
467 udelay(10);
468 else
469 rval = QLA_FUNCTION_TIMEOUT;
470 cond_resched();
473 /* TODO: What happens if we time out? */
474 data = 0xDEADDEAD;
475 if (rval == QLA_SUCCESS)
476 data = RD_REG_DWORD(&reg->flash_data);
478 return data;
481 uint32_t *
482 qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
483 uint32_t dwords)
485 uint32_t i;
486 struct qla_hw_data *ha = vha->hw;
488 /* Dword reads to flash. */
489 for (i = 0; i < dwords; i++, faddr++)
490 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
491 flash_data_addr(ha, faddr)));
493 return dwptr;
496 static int
497 qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
499 int rval;
500 uint32_t cnt;
501 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
503 WRT_REG_DWORD(&reg->flash_data, data);
504 RD_REG_DWORD(&reg->flash_data); /* PCI Posting. */
505 WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
506 /* Wait for Write cycle to complete. */
507 rval = QLA_SUCCESS;
508 for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
509 rval == QLA_SUCCESS; cnt--) {
510 if (cnt)
511 udelay(10);
512 else
513 rval = QLA_FUNCTION_TIMEOUT;
514 cond_resched();
516 return rval;
519 static void
520 qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
521 uint8_t *flash_id)
523 uint32_t ids;
525 ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
526 *man_id = LSB(ids);
527 *flash_id = MSB(ids);
529 /* Check if man_id and flash_id are valid. */
530 if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
531 /* Read information using 0x9f opcode
532 * Device ID, Mfg ID would be read in the format:
533 * <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
534 * Example: ATMEL 0x00 01 45 1F
535 * Extract MFG and Dev ID from last two bytes.
537 ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
538 *man_id = LSB(ids);
539 *flash_id = MSB(ids);
543 static int
544 qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
546 const char *loc, *locations[] = { "DEF", "PCI" };
547 uint32_t pcihdr, pcids;
548 uint32_t *dcode;
549 uint8_t *buf, *bcode, last_image;
550 uint16_t cnt, chksum, *wptr;
551 struct qla_flt_location *fltl;
552 struct qla_hw_data *ha = vha->hw;
553 struct req_que *req = ha->req_q_map[0];
556 * FLT-location structure resides after the last PCI region.
559 /* Begin with sane defaults. */
560 loc = locations[0];
561 *start = 0;
562 if (IS_QLA24XX_TYPE(ha))
563 *start = FA_FLASH_LAYOUT_ADDR_24;
564 else if (IS_QLA25XX(ha))
565 *start = FA_FLASH_LAYOUT_ADDR;
566 else if (IS_QLA81XX(ha))
567 *start = FA_FLASH_LAYOUT_ADDR_81;
568 else if (IS_P3P_TYPE(ha)) {
569 *start = FA_FLASH_LAYOUT_ADDR_82;
570 goto end;
571 } else if (IS_QLA83XX(ha) || IS_QLA27XX(ha)) {
572 *start = FA_FLASH_LAYOUT_ADDR_83;
573 goto end;
575 /* Begin with first PCI expansion ROM header. */
576 buf = (uint8_t *)req->ring;
577 dcode = (uint32_t *)req->ring;
578 pcihdr = 0;
579 last_image = 1;
580 do {
581 /* Verify PCI expansion ROM header. */
582 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
583 bcode = buf + (pcihdr % 4);
584 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
585 goto end;
587 /* Locate PCI data structure. */
588 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
589 qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
590 bcode = buf + (pcihdr % 4);
592 /* Validate signature of PCI data structure. */
593 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
594 bcode[0x2] != 'I' || bcode[0x3] != 'R')
595 goto end;
597 last_image = bcode[0x15] & BIT_7;
599 /* Locate next PCI expansion ROM. */
600 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
601 } while (!last_image);
603 /* Now verify FLT-location structure. */
604 fltl = (struct qla_flt_location *)req->ring;
605 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
606 sizeof(struct qla_flt_location) >> 2);
607 if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
608 fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
609 goto end;
611 wptr = (uint16_t *)req->ring;
612 cnt = sizeof(struct qla_flt_location) >> 1;
613 for (chksum = 0; cnt; cnt--)
614 chksum += le16_to_cpu(*wptr++);
615 if (chksum) {
616 ql_log(ql_log_fatal, vha, 0x0045,
617 "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
618 ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010e,
619 buf, sizeof(struct qla_flt_location));
620 return QLA_FUNCTION_FAILED;
623 /* Good data. Use specified location. */
624 loc = locations[1];
625 *start = (le16_to_cpu(fltl->start_hi) << 16 |
626 le16_to_cpu(fltl->start_lo)) >> 2;
627 end:
628 ql_dbg(ql_dbg_init, vha, 0x0046,
629 "FLTL[%s] = 0x%x.\n",
630 loc, *start);
631 return QLA_SUCCESS;
634 static void
635 qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
637 const char *loc, *locations[] = { "DEF", "FLT" };
638 const uint32_t def_fw[] =
639 { FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
640 const uint32_t def_boot[] =
641 { FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
642 const uint32_t def_vpd_nvram[] =
643 { FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
644 const uint32_t def_vpd0[] =
645 { 0, 0, FA_VPD0_ADDR_81 };
646 const uint32_t def_vpd1[] =
647 { 0, 0, FA_VPD1_ADDR_81 };
648 const uint32_t def_nvram0[] =
649 { 0, 0, FA_NVRAM0_ADDR_81 };
650 const uint32_t def_nvram1[] =
651 { 0, 0, FA_NVRAM1_ADDR_81 };
652 const uint32_t def_fdt[] =
653 { FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
654 FA_FLASH_DESCR_ADDR_81 };
655 const uint32_t def_npiv_conf0[] =
656 { FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
657 FA_NPIV_CONF0_ADDR_81 };
658 const uint32_t def_npiv_conf1[] =
659 { FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
660 FA_NPIV_CONF1_ADDR_81 };
661 const uint32_t fcp_prio_cfg0[] =
662 { FA_FCP_PRIO0_ADDR, FA_FCP_PRIO0_ADDR_25,
663 0 };
664 const uint32_t fcp_prio_cfg1[] =
665 { FA_FCP_PRIO1_ADDR, FA_FCP_PRIO1_ADDR_25,
666 0 };
667 uint32_t def;
668 uint16_t *wptr;
669 uint16_t cnt, chksum;
670 uint32_t start;
671 struct qla_flt_header *flt;
672 struct qla_flt_region *region;
673 struct qla_hw_data *ha = vha->hw;
674 struct req_que *req = ha->req_q_map[0];
676 def = 0;
677 if (IS_QLA25XX(ha))
678 def = 1;
679 else if (IS_QLA81XX(ha))
680 def = 2;
682 /* Assign FCP prio region since older adapters may not have FLT, or
683 FCP prio region in it's FLT.
685 ha->flt_region_fcp_prio = (ha->port_no == 0) ?
686 fcp_prio_cfg0[def] : fcp_prio_cfg1[def];
688 ha->flt_region_flt = flt_addr;
689 wptr = (uint16_t *)req->ring;
690 flt = (struct qla_flt_header *)req->ring;
691 region = (struct qla_flt_region *)&flt[1];
692 ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
693 flt_addr << 2, OPTROM_BURST_SIZE);
694 if (*wptr == __constant_cpu_to_le16(0xffff))
695 goto no_flash_data;
696 if (flt->version != __constant_cpu_to_le16(1)) {
697 ql_log(ql_log_warn, vha, 0x0047,
698 "Unsupported FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
699 le16_to_cpu(flt->version), le16_to_cpu(flt->length),
700 le16_to_cpu(flt->checksum));
701 goto no_flash_data;
704 cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
705 for (chksum = 0; cnt; cnt--)
706 chksum += le16_to_cpu(*wptr++);
707 if (chksum) {
708 ql_log(ql_log_fatal, vha, 0x0048,
709 "Inconsistent FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
710 le16_to_cpu(flt->version), le16_to_cpu(flt->length),
711 le16_to_cpu(flt->checksum));
712 goto no_flash_data;
715 loc = locations[1];
716 cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
717 for ( ; cnt; cnt--, region++) {
718 /* Store addresses as DWORD offsets. */
719 start = le32_to_cpu(region->start) >> 2;
720 ql_dbg(ql_dbg_init, vha, 0x0049,
721 "FLT[%02x]: start=0x%x "
722 "end=0x%x size=0x%x.\n", le32_to_cpu(region->code) & 0xff,
723 start, le32_to_cpu(region->end) >> 2,
724 le32_to_cpu(region->size));
726 switch (le32_to_cpu(region->code) & 0xff) {
727 case FLT_REG_FCOE_FW:
728 if (!IS_QLA8031(ha))
729 break;
730 ha->flt_region_fw = start;
731 break;
732 case FLT_REG_FW:
733 if (IS_QLA8031(ha))
734 break;
735 ha->flt_region_fw = start;
736 break;
737 case FLT_REG_BOOT_CODE:
738 ha->flt_region_boot = start;
739 break;
740 case FLT_REG_VPD_0:
741 if (IS_QLA8031(ha))
742 break;
743 ha->flt_region_vpd_nvram = start;
744 if (IS_P3P_TYPE(ha))
745 break;
746 if (ha->port_no == 0)
747 ha->flt_region_vpd = start;
748 break;
749 case FLT_REG_VPD_1:
750 if (IS_P3P_TYPE(ha) || IS_QLA8031(ha))
751 break;
752 if (ha->port_no == 1)
753 ha->flt_region_vpd = start;
754 break;
755 case FLT_REG_VPD_2:
756 if (!IS_QLA27XX(ha))
757 break;
758 if (ha->port_no == 2)
759 ha->flt_region_vpd = start;
760 break;
761 case FLT_REG_VPD_3:
762 if (!IS_QLA27XX(ha))
763 break;
764 if (ha->port_no == 3)
765 ha->flt_region_vpd = start;
766 break;
767 case FLT_REG_NVRAM_0:
768 if (IS_QLA8031(ha))
769 break;
770 if (ha->port_no == 0)
771 ha->flt_region_nvram = start;
772 break;
773 case FLT_REG_NVRAM_1:
774 if (IS_QLA8031(ha))
775 break;
776 if (ha->port_no == 1)
777 ha->flt_region_nvram = start;
778 break;
779 case FLT_REG_NVRAM_2:
780 if (!IS_QLA27XX(ha))
781 break;
782 if (ha->port_no == 2)
783 ha->flt_region_nvram = start;
784 break;
785 case FLT_REG_NVRAM_3:
786 if (!IS_QLA27XX(ha))
787 break;
788 if (ha->port_no == 3)
789 ha->flt_region_nvram = start;
790 break;
791 case FLT_REG_FDT:
792 ha->flt_region_fdt = start;
793 break;
794 case FLT_REG_NPIV_CONF_0:
795 if (ha->port_no == 0)
796 ha->flt_region_npiv_conf = start;
797 break;
798 case FLT_REG_NPIV_CONF_1:
799 if (ha->port_no == 1)
800 ha->flt_region_npiv_conf = start;
801 break;
802 case FLT_REG_GOLD_FW:
803 ha->flt_region_gold_fw = start;
804 break;
805 case FLT_REG_FCP_PRIO_0:
806 if (ha->port_no == 0)
807 ha->flt_region_fcp_prio = start;
808 break;
809 case FLT_REG_FCP_PRIO_1:
810 if (ha->port_no == 1)
811 ha->flt_region_fcp_prio = start;
812 break;
813 case FLT_REG_BOOT_CODE_82XX:
814 ha->flt_region_boot = start;
815 break;
816 case FLT_REG_BOOT_CODE_8044:
817 if (IS_QLA8044(ha))
818 ha->flt_region_boot = start;
819 break;
820 case FLT_REG_FW_82XX:
821 ha->flt_region_fw = start;
822 break;
823 case FLT_REG_CNA_FW:
824 if (IS_CNA_CAPABLE(ha))
825 ha->flt_region_fw = start;
826 break;
827 case FLT_REG_GOLD_FW_82XX:
828 ha->flt_region_gold_fw = start;
829 break;
830 case FLT_REG_BOOTLOAD_82XX:
831 ha->flt_region_bootload = start;
832 break;
833 case FLT_REG_VPD_8XXX:
834 if (IS_CNA_CAPABLE(ha))
835 ha->flt_region_vpd = start;
836 break;
837 case FLT_REG_FCOE_NVRAM_0:
838 if (!(IS_QLA8031(ha) || IS_QLA8044(ha)))
839 break;
840 if (ha->port_no == 0)
841 ha->flt_region_nvram = start;
842 break;
843 case FLT_REG_FCOE_NVRAM_1:
844 if (!(IS_QLA8031(ha) || IS_QLA8044(ha)))
845 break;
846 if (ha->port_no == 1)
847 ha->flt_region_nvram = start;
848 break;
851 goto done;
853 no_flash_data:
854 /* Use hardcoded defaults. */
855 loc = locations[0];
856 ha->flt_region_fw = def_fw[def];
857 ha->flt_region_boot = def_boot[def];
858 ha->flt_region_vpd_nvram = def_vpd_nvram[def];
859 ha->flt_region_vpd = (ha->port_no == 0) ?
860 def_vpd0[def] : def_vpd1[def];
861 ha->flt_region_nvram = (ha->port_no == 0) ?
862 def_nvram0[def] : def_nvram1[def];
863 ha->flt_region_fdt = def_fdt[def];
864 ha->flt_region_npiv_conf = (ha->port_no == 0) ?
865 def_npiv_conf0[def] : def_npiv_conf1[def];
866 done:
867 ql_dbg(ql_dbg_init, vha, 0x004a,
868 "FLT[%s]: boot=0x%x fw=0x%x vpd_nvram=0x%x vpd=0x%x nvram=0x%x "
869 "fdt=0x%x flt=0x%x npiv=0x%x fcp_prif_cfg=0x%x.\n",
870 loc, ha->flt_region_boot, ha->flt_region_fw,
871 ha->flt_region_vpd_nvram, ha->flt_region_vpd, ha->flt_region_nvram,
872 ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_npiv_conf,
873 ha->flt_region_fcp_prio);
876 static void
877 qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
879 #define FLASH_BLK_SIZE_4K 0x1000
880 #define FLASH_BLK_SIZE_32K 0x8000
881 #define FLASH_BLK_SIZE_64K 0x10000
882 const char *loc, *locations[] = { "MID", "FDT" };
883 uint16_t cnt, chksum;
884 uint16_t *wptr;
885 struct qla_fdt_layout *fdt;
886 uint8_t man_id, flash_id;
887 uint16_t mid = 0, fid = 0;
888 struct qla_hw_data *ha = vha->hw;
889 struct req_que *req = ha->req_q_map[0];
891 wptr = (uint16_t *)req->ring;
892 fdt = (struct qla_fdt_layout *)req->ring;
893 ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
894 ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
895 if (*wptr == __constant_cpu_to_le16(0xffff))
896 goto no_flash_data;
897 if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
898 fdt->sig[3] != 'D')
899 goto no_flash_data;
901 for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
902 cnt++)
903 chksum += le16_to_cpu(*wptr++);
904 if (chksum) {
905 ql_dbg(ql_dbg_init, vha, 0x004c,
906 "Inconsistent FDT detected:"
907 " checksum=0x%x id=%c version0x%x.\n", chksum,
908 fdt->sig[0], le16_to_cpu(fdt->version));
909 ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x0113,
910 (uint8_t *)fdt, sizeof(*fdt));
911 goto no_flash_data;
914 loc = locations[1];
915 mid = le16_to_cpu(fdt->man_id);
916 fid = le16_to_cpu(fdt->id);
917 ha->fdt_wrt_disable = fdt->wrt_disable_bits;
918 ha->fdt_wrt_enable = fdt->wrt_enable_bits;
919 ha->fdt_wrt_sts_reg_cmd = fdt->wrt_sts_reg_cmd;
920 if (IS_QLA8044(ha))
921 ha->fdt_erase_cmd = fdt->erase_cmd;
922 else
923 ha->fdt_erase_cmd =
924 flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
925 ha->fdt_block_size = le32_to_cpu(fdt->block_size);
926 if (fdt->unprotect_sec_cmd) {
927 ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
928 fdt->unprotect_sec_cmd);
929 ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
930 flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
931 flash_conf_addr(ha, 0x0336);
933 goto done;
934 no_flash_data:
935 loc = locations[0];
936 if (IS_P3P_TYPE(ha)) {
937 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
938 goto done;
940 qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
941 mid = man_id;
942 fid = flash_id;
943 ha->fdt_wrt_disable = 0x9c;
944 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
945 switch (man_id) {
946 case 0xbf: /* STT flash. */
947 if (flash_id == 0x8e)
948 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
949 else
950 ha->fdt_block_size = FLASH_BLK_SIZE_32K;
952 if (flash_id == 0x80)
953 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
954 break;
955 case 0x13: /* ST M25P80. */
956 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
957 break;
958 case 0x1f: /* Atmel 26DF081A. */
959 ha->fdt_block_size = FLASH_BLK_SIZE_4K;
960 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
961 ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
962 ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
963 break;
964 default:
965 /* Default to 64 kb sector size. */
966 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
967 break;
969 done:
970 ql_dbg(ql_dbg_init, vha, 0x004d,
971 "FDT[%s]: (0x%x/0x%x) erase=0x%x "
972 "pr=%x wrtd=0x%x blk=0x%x.\n",
973 loc, mid, fid,
974 ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
975 ha->fdt_wrt_disable, ha->fdt_block_size);
979 static void
980 qla2xxx_get_idc_param(scsi_qla_host_t *vha)
982 #define QLA82XX_IDC_PARAM_ADDR 0x003e885c
983 uint32_t *wptr;
984 struct qla_hw_data *ha = vha->hw;
985 struct req_que *req = ha->req_q_map[0];
987 if (!(IS_P3P_TYPE(ha)))
988 return;
990 wptr = (uint32_t *)req->ring;
991 ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
992 QLA82XX_IDC_PARAM_ADDR , 8);
994 if (*wptr == __constant_cpu_to_le32(0xffffffff)) {
995 ha->fcoe_dev_init_timeout = QLA82XX_ROM_DEV_INIT_TIMEOUT;
996 ha->fcoe_reset_timeout = QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT;
997 } else {
998 ha->fcoe_dev_init_timeout = le32_to_cpu(*wptr++);
999 ha->fcoe_reset_timeout = le32_to_cpu(*wptr);
1001 ql_dbg(ql_dbg_init, vha, 0x004e,
1002 "fcoe_dev_init_timeout=%d "
1003 "fcoe_reset_timeout=%d.\n", ha->fcoe_dev_init_timeout,
1004 ha->fcoe_reset_timeout);
1005 return;
1009 qla2xxx_get_flash_info(scsi_qla_host_t *vha)
1011 int ret;
1012 uint32_t flt_addr;
1013 struct qla_hw_data *ha = vha->hw;
1015 if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) &&
1016 !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha) && !IS_QLA27XX(ha))
1017 return QLA_SUCCESS;
1019 ret = qla2xxx_find_flt_start(vha, &flt_addr);
1020 if (ret != QLA_SUCCESS)
1021 return ret;
1023 qla2xxx_get_flt_info(vha, flt_addr);
1024 qla2xxx_get_fdt_info(vha);
1025 qla2xxx_get_idc_param(vha);
1027 return QLA_SUCCESS;
1030 void
1031 qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
1033 #define NPIV_CONFIG_SIZE (16*1024)
1034 void *data;
1035 uint16_t *wptr;
1036 uint16_t cnt, chksum;
1037 int i;
1038 struct qla_npiv_header hdr;
1039 struct qla_npiv_entry *entry;
1040 struct qla_hw_data *ha = vha->hw;
1042 if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) &&
1043 !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha))
1044 return;
1046 if (ha->flags.nic_core_reset_hdlr_active)
1047 return;
1049 if (IS_QLA8044(ha))
1050 return;
1052 ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
1053 ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
1054 if (hdr.version == __constant_cpu_to_le16(0xffff))
1055 return;
1056 if (hdr.version != __constant_cpu_to_le16(1)) {
1057 ql_dbg(ql_dbg_user, vha, 0x7090,
1058 "Unsupported NPIV-Config "
1059 "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1060 le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1061 le16_to_cpu(hdr.checksum));
1062 return;
1065 data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
1066 if (!data) {
1067 ql_log(ql_log_warn, vha, 0x7091,
1068 "Unable to allocate memory for data.\n");
1069 return;
1072 ha->isp_ops->read_optrom(vha, (uint8_t *)data,
1073 ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
1075 cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
1076 sizeof(struct qla_npiv_entry)) >> 1;
1077 for (wptr = data, chksum = 0; cnt; cnt--)
1078 chksum += le16_to_cpu(*wptr++);
1079 if (chksum) {
1080 ql_dbg(ql_dbg_user, vha, 0x7092,
1081 "Inconsistent NPIV-Config "
1082 "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1083 le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1084 le16_to_cpu(hdr.checksum));
1085 goto done;
1088 entry = data + sizeof(struct qla_npiv_header);
1089 cnt = le16_to_cpu(hdr.entries);
1090 for (i = 0; cnt; cnt--, entry++, i++) {
1091 uint16_t flags;
1092 struct fc_vport_identifiers vid;
1093 struct fc_vport *vport;
1095 memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));
1097 flags = le16_to_cpu(entry->flags);
1098 if (flags == 0xffff)
1099 continue;
1100 if ((flags & BIT_0) == 0)
1101 continue;
1103 memset(&vid, 0, sizeof(vid));
1104 vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
1105 vid.vport_type = FC_PORTTYPE_NPIV;
1106 vid.disable = false;
1107 vid.port_name = wwn_to_u64(entry->port_name);
1108 vid.node_name = wwn_to_u64(entry->node_name);
1110 ql_dbg(ql_dbg_user, vha, 0x7093,
1111 "NPIV[%02x]: wwpn=%llx "
1112 "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
1113 (unsigned long long)vid.port_name,
1114 (unsigned long long)vid.node_name,
1115 le16_to_cpu(entry->vf_id),
1116 entry->q_qos, entry->f_qos);
1118 if (i < QLA_PRECONFIG_VPORTS) {
1119 vport = fc_vport_create(vha->host, 0, &vid);
1120 if (!vport)
1121 ql_log(ql_log_warn, vha, 0x7094,
1122 "NPIV-Config Failed to create vport [%02x]: "
1123 "wwpn=%llx wwnn=%llx.\n", cnt,
1124 (unsigned long long)vid.port_name,
1125 (unsigned long long)vid.node_name);
1128 done:
1129 kfree(data);
1132 static int
1133 qla24xx_unprotect_flash(scsi_qla_host_t *vha)
1135 struct qla_hw_data *ha = vha->hw;
1136 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1138 if (ha->flags.fac_supported)
1139 return qla81xx_fac_do_write_enable(vha, 1);
1141 /* Enable flash write. */
1142 WRT_REG_DWORD(&reg->ctrl_status,
1143 RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1144 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1146 if (!ha->fdt_wrt_disable)
1147 goto done;
1149 /* Disable flash write-protection, first clear SR protection bit */
1150 qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1151 /* Then write zero again to clear remaining SR bits.*/
1152 qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1153 done:
1154 return QLA_SUCCESS;
1157 static int
1158 qla24xx_protect_flash(scsi_qla_host_t *vha)
1160 uint32_t cnt;
1161 struct qla_hw_data *ha = vha->hw;
1162 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1164 if (ha->flags.fac_supported)
1165 return qla81xx_fac_do_write_enable(vha, 0);
1167 if (!ha->fdt_wrt_disable)
1168 goto skip_wrt_protect;
1170 /* Enable flash write-protection and wait for completion. */
1171 qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1172 ha->fdt_wrt_disable);
1173 for (cnt = 300; cnt &&
1174 qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1175 cnt--) {
1176 udelay(10);
1179 skip_wrt_protect:
1180 /* Disable flash write. */
1181 WRT_REG_DWORD(&reg->ctrl_status,
1182 RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1183 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1185 return QLA_SUCCESS;
1188 static int
1189 qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
1191 struct qla_hw_data *ha = vha->hw;
1192 uint32_t start, finish;
1194 if (ha->flags.fac_supported) {
1195 start = fdata >> 2;
1196 finish = start + (ha->fdt_block_size >> 2) - 1;
1197 return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
1198 start), flash_data_addr(ha, finish));
1201 return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1202 (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
1203 ((fdata >> 16) & 0xff));
1206 static int
1207 qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1208 uint32_t dwords)
1210 int ret;
1211 uint32_t liter;
1212 uint32_t sec_mask, rest_addr;
1213 uint32_t fdata;
1214 dma_addr_t optrom_dma;
1215 void *optrom = NULL;
1216 struct qla_hw_data *ha = vha->hw;
1218 /* Prepare burst-capable write on supported ISPs. */
1219 if ((IS_QLA25XX(ha) || IS_QLA81XX(ha) || IS_QLA83XX(ha) ||
1220 IS_QLA27XX(ha)) &&
1221 !(faddr & 0xfff) && dwords > OPTROM_BURST_DWORDS) {
1222 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1223 &optrom_dma, GFP_KERNEL);
1224 if (!optrom) {
1225 ql_log(ql_log_warn, vha, 0x7095,
1226 "Unable to allocate "
1227 "memory for optrom burst write (%x KB).\n",
1228 OPTROM_BURST_SIZE / 1024);
1232 rest_addr = (ha->fdt_block_size >> 2) - 1;
1233 sec_mask = ~rest_addr;
1235 ret = qla24xx_unprotect_flash(vha);
1236 if (ret != QLA_SUCCESS) {
1237 ql_log(ql_log_warn, vha, 0x7096,
1238 "Unable to unprotect flash for update.\n");
1239 goto done;
1242 for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1243 fdata = (faddr & sec_mask) << 2;
1245 /* Are we at the beginning of a sector? */
1246 if ((faddr & rest_addr) == 0) {
1247 /* Do sector unprotect. */
1248 if (ha->fdt_unprotect_sec_cmd)
1249 qla24xx_write_flash_dword(ha,
1250 ha->fdt_unprotect_sec_cmd,
1251 (fdata & 0xff00) | ((fdata << 16) &
1252 0xff0000) | ((fdata >> 16) & 0xff));
1253 ret = qla24xx_erase_sector(vha, fdata);
1254 if (ret != QLA_SUCCESS) {
1255 ql_dbg(ql_dbg_user, vha, 0x7007,
1256 "Unable to erase erase sector: address=%x.\n",
1257 faddr);
1258 break;
1262 /* Go with burst-write. */
1263 if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1264 /* Copy data to DMA'ble buffer. */
1265 memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1267 ret = qla2x00_load_ram(vha, optrom_dma,
1268 flash_data_addr(ha, faddr),
1269 OPTROM_BURST_DWORDS);
1270 if (ret != QLA_SUCCESS) {
1271 ql_log(ql_log_warn, vha, 0x7097,
1272 "Unable to burst-write optrom segment "
1273 "(%x/%x/%llx).\n", ret,
1274 flash_data_addr(ha, faddr),
1275 (unsigned long long)optrom_dma);
1276 ql_log(ql_log_warn, vha, 0x7098,
1277 "Reverting to slow-write.\n");
1279 dma_free_coherent(&ha->pdev->dev,
1280 OPTROM_BURST_SIZE, optrom, optrom_dma);
1281 optrom = NULL;
1282 } else {
1283 liter += OPTROM_BURST_DWORDS - 1;
1284 faddr += OPTROM_BURST_DWORDS - 1;
1285 dwptr += OPTROM_BURST_DWORDS - 1;
1286 continue;
1290 ret = qla24xx_write_flash_dword(ha,
1291 flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1292 if (ret != QLA_SUCCESS) {
1293 ql_dbg(ql_dbg_user, vha, 0x7006,
1294 "Unable to program flash address=%x data=%x.\n",
1295 faddr, *dwptr);
1296 break;
1299 /* Do sector protect. */
1300 if (ha->fdt_unprotect_sec_cmd &&
1301 ((faddr & rest_addr) == rest_addr))
1302 qla24xx_write_flash_dword(ha,
1303 ha->fdt_protect_sec_cmd,
1304 (fdata & 0xff00) | ((fdata << 16) &
1305 0xff0000) | ((fdata >> 16) & 0xff));
1308 ret = qla24xx_protect_flash(vha);
1309 if (ret != QLA_SUCCESS)
1310 ql_log(ql_log_warn, vha, 0x7099,
1311 "Unable to protect flash after update.\n");
1312 done:
1313 if (optrom)
1314 dma_free_coherent(&ha->pdev->dev,
1315 OPTROM_BURST_SIZE, optrom, optrom_dma);
1317 return ret;
1320 uint8_t *
1321 qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1322 uint32_t bytes)
1324 uint32_t i;
1325 uint16_t *wptr;
1326 struct qla_hw_data *ha = vha->hw;
1328 /* Word reads to NVRAM via registers. */
1329 wptr = (uint16_t *)buf;
1330 qla2x00_lock_nvram_access(ha);
1331 for (i = 0; i < bytes >> 1; i++, naddr++)
1332 wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
1333 naddr));
1334 qla2x00_unlock_nvram_access(ha);
1336 return buf;
1339 uint8_t *
1340 qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1341 uint32_t bytes)
1343 uint32_t i;
1344 uint32_t *dwptr;
1345 struct qla_hw_data *ha = vha->hw;
1347 if (IS_P3P_TYPE(ha))
1348 return buf;
1350 /* Dword reads to flash. */
1351 dwptr = (uint32_t *)buf;
1352 for (i = 0; i < bytes >> 2; i++, naddr++)
1353 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1354 nvram_data_addr(ha, naddr)));
1356 return buf;
1360 qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1361 uint32_t bytes)
1363 int ret, stat;
1364 uint32_t i;
1365 uint16_t *wptr;
1366 unsigned long flags;
1367 struct qla_hw_data *ha = vha->hw;
1369 ret = QLA_SUCCESS;
1371 spin_lock_irqsave(&ha->hardware_lock, flags);
1372 qla2x00_lock_nvram_access(ha);
1374 /* Disable NVRAM write-protection. */
1375 stat = qla2x00_clear_nvram_protection(ha);
1377 wptr = (uint16_t *)buf;
1378 for (i = 0; i < bytes >> 1; i++, naddr++) {
1379 qla2x00_write_nvram_word(ha, naddr,
1380 cpu_to_le16(*wptr));
1381 wptr++;
1384 /* Enable NVRAM write-protection. */
1385 qla2x00_set_nvram_protection(ha, stat);
1387 qla2x00_unlock_nvram_access(ha);
1388 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1390 return ret;
1394 qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1395 uint32_t bytes)
1397 int ret;
1398 uint32_t i;
1399 uint32_t *dwptr;
1400 struct qla_hw_data *ha = vha->hw;
1401 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1403 ret = QLA_SUCCESS;
1405 if (IS_P3P_TYPE(ha))
1406 return ret;
1408 /* Enable flash write. */
1409 WRT_REG_DWORD(&reg->ctrl_status,
1410 RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1411 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1413 /* Disable NVRAM write-protection. */
1414 qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1415 qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1417 /* Dword writes to flash. */
1418 dwptr = (uint32_t *)buf;
1419 for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
1420 ret = qla24xx_write_flash_dword(ha,
1421 nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1422 if (ret != QLA_SUCCESS) {
1423 ql_dbg(ql_dbg_user, vha, 0x709a,
1424 "Unable to program nvram address=%x data=%x.\n",
1425 naddr, *dwptr);
1426 break;
1430 /* Enable NVRAM write-protection. */
1431 qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1433 /* Disable flash write. */
1434 WRT_REG_DWORD(&reg->ctrl_status,
1435 RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1436 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1438 return ret;
1441 uint8_t *
1442 qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1443 uint32_t bytes)
1445 uint32_t i;
1446 uint32_t *dwptr;
1447 struct qla_hw_data *ha = vha->hw;
1449 /* Dword reads to flash. */
1450 dwptr = (uint32_t *)buf;
1451 for (i = 0; i < bytes >> 2; i++, naddr++)
1452 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1453 flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1455 return buf;
1459 qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1460 uint32_t bytes)
1462 struct qla_hw_data *ha = vha->hw;
1463 #define RMW_BUFFER_SIZE (64 * 1024)
1464 uint8_t *dbuf;
1466 dbuf = vmalloc(RMW_BUFFER_SIZE);
1467 if (!dbuf)
1468 return QLA_MEMORY_ALLOC_FAILED;
1469 ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1470 RMW_BUFFER_SIZE);
1471 memcpy(dbuf + (naddr << 2), buf, bytes);
1472 ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1473 RMW_BUFFER_SIZE);
1474 vfree(dbuf);
1476 return QLA_SUCCESS;
1479 static inline void
1480 qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1482 if (IS_QLA2322(ha)) {
1483 /* Flip all colors. */
1484 if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1485 /* Turn off. */
1486 ha->beacon_color_state = 0;
1487 *pflags = GPIO_LED_ALL_OFF;
1488 } else {
1489 /* Turn on. */
1490 ha->beacon_color_state = QLA_LED_ALL_ON;
1491 *pflags = GPIO_LED_RGA_ON;
1493 } else {
1494 /* Flip green led only. */
1495 if (ha->beacon_color_state == QLA_LED_GRN_ON) {
1496 /* Turn off. */
1497 ha->beacon_color_state = 0;
1498 *pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
1499 } else {
1500 /* Turn on. */
1501 ha->beacon_color_state = QLA_LED_GRN_ON;
1502 *pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
1507 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1509 void
1510 qla2x00_beacon_blink(struct scsi_qla_host *vha)
1512 uint16_t gpio_enable;
1513 uint16_t gpio_data;
1514 uint16_t led_color = 0;
1515 unsigned long flags;
1516 struct qla_hw_data *ha = vha->hw;
1517 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1519 if (IS_P3P_TYPE(ha))
1520 return;
1522 spin_lock_irqsave(&ha->hardware_lock, flags);
1524 /* Save the Original GPIOE. */
1525 if (ha->pio_address) {
1526 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1527 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1528 } else {
1529 gpio_enable = RD_REG_WORD(&reg->gpioe);
1530 gpio_data = RD_REG_WORD(&reg->gpiod);
1533 /* Set the modified gpio_enable values */
1534 gpio_enable |= GPIO_LED_MASK;
1536 if (ha->pio_address) {
1537 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1538 } else {
1539 WRT_REG_WORD(&reg->gpioe, gpio_enable);
1540 RD_REG_WORD(&reg->gpioe);
1543 qla2x00_flip_colors(ha, &led_color);
1545 /* Clear out any previously set LED color. */
1546 gpio_data &= ~GPIO_LED_MASK;
1548 /* Set the new input LED color to GPIOD. */
1549 gpio_data |= led_color;
1551 /* Set the modified gpio_data values */
1552 if (ha->pio_address) {
1553 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1554 } else {
1555 WRT_REG_WORD(&reg->gpiod, gpio_data);
1556 RD_REG_WORD(&reg->gpiod);
1559 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1563 qla2x00_beacon_on(struct scsi_qla_host *vha)
1565 uint16_t gpio_enable;
1566 uint16_t gpio_data;
1567 unsigned long flags;
1568 struct qla_hw_data *ha = vha->hw;
1569 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1571 ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1572 ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1574 if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1575 ql_log(ql_log_warn, vha, 0x709b,
1576 "Unable to update fw options (beacon on).\n");
1577 return QLA_FUNCTION_FAILED;
1580 /* Turn off LEDs. */
1581 spin_lock_irqsave(&ha->hardware_lock, flags);
1582 if (ha->pio_address) {
1583 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1584 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1585 } else {
1586 gpio_enable = RD_REG_WORD(&reg->gpioe);
1587 gpio_data = RD_REG_WORD(&reg->gpiod);
1589 gpio_enable |= GPIO_LED_MASK;
1591 /* Set the modified gpio_enable values. */
1592 if (ha->pio_address) {
1593 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1594 } else {
1595 WRT_REG_WORD(&reg->gpioe, gpio_enable);
1596 RD_REG_WORD(&reg->gpioe);
1599 /* Clear out previously set LED colour. */
1600 gpio_data &= ~GPIO_LED_MASK;
1601 if (ha->pio_address) {
1602 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1603 } else {
1604 WRT_REG_WORD(&reg->gpiod, gpio_data);
1605 RD_REG_WORD(&reg->gpiod);
1607 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1610 * Let the per HBA timer kick off the blinking process based on
1611 * the following flags. No need to do anything else now.
1613 ha->beacon_blink_led = 1;
1614 ha->beacon_color_state = 0;
1616 return QLA_SUCCESS;
1620 qla2x00_beacon_off(struct scsi_qla_host *vha)
1622 int rval = QLA_SUCCESS;
1623 struct qla_hw_data *ha = vha->hw;
1625 ha->beacon_blink_led = 0;
1627 /* Set the on flag so when it gets flipped it will be off. */
1628 if (IS_QLA2322(ha))
1629 ha->beacon_color_state = QLA_LED_ALL_ON;
1630 else
1631 ha->beacon_color_state = QLA_LED_GRN_ON;
1633 ha->isp_ops->beacon_blink(vha); /* This turns green LED off */
1635 ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1636 ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1638 rval = qla2x00_set_fw_options(vha, ha->fw_options);
1639 if (rval != QLA_SUCCESS)
1640 ql_log(ql_log_warn, vha, 0x709c,
1641 "Unable to update fw options (beacon off).\n");
1642 return rval;
1646 static inline void
1647 qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1649 /* Flip all colors. */
1650 if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1651 /* Turn off. */
1652 ha->beacon_color_state = 0;
1653 *pflags = 0;
1654 } else {
1655 /* Turn on. */
1656 ha->beacon_color_state = QLA_LED_ALL_ON;
1657 *pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1661 void
1662 qla24xx_beacon_blink(struct scsi_qla_host *vha)
1664 uint16_t led_color = 0;
1665 uint32_t gpio_data;
1666 unsigned long flags;
1667 struct qla_hw_data *ha = vha->hw;
1668 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1670 /* Save the Original GPIOD. */
1671 spin_lock_irqsave(&ha->hardware_lock, flags);
1672 gpio_data = RD_REG_DWORD(&reg->gpiod);
1674 /* Enable the gpio_data reg for update. */
1675 gpio_data |= GPDX_LED_UPDATE_MASK;
1677 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1678 gpio_data = RD_REG_DWORD(&reg->gpiod);
1680 /* Set the color bits. */
1681 qla24xx_flip_colors(ha, &led_color);
1683 /* Clear out any previously set LED color. */
1684 gpio_data &= ~GPDX_LED_COLOR_MASK;
1686 /* Set the new input LED color to GPIOD. */
1687 gpio_data |= led_color;
1689 /* Set the modified gpio_data values. */
1690 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1691 gpio_data = RD_REG_DWORD(&reg->gpiod);
1692 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1695 static uint32_t
1696 qla83xx_select_led_port(struct qla_hw_data *ha)
1698 uint32_t led_select_value = 0;
1700 if (!IS_QLA83XX(ha))
1701 goto out;
1703 if (ha->port_no == 0)
1704 led_select_value = QLA83XX_LED_PORT0;
1705 else
1706 led_select_value = QLA83XX_LED_PORT1;
1708 out:
1709 return led_select_value;
1712 void
1713 qla83xx_beacon_blink(struct scsi_qla_host *vha)
1715 uint32_t led_select_value;
1716 struct qla_hw_data *ha = vha->hw;
1717 uint16_t led_cfg[6];
1718 uint16_t orig_led_cfg[6];
1719 uint32_t led_10_value, led_43_value;
1721 if (!IS_QLA83XX(ha) && !IS_QLA81XX(ha))
1722 return;
1724 if (!ha->beacon_blink_led)
1725 return;
1727 if (IS_QLA2031(ha)) {
1728 led_select_value = qla83xx_select_led_port(ha);
1730 qla83xx_wr_reg(vha, led_select_value, 0x40000230);
1731 qla83xx_wr_reg(vha, led_select_value + 4, 0x40000230);
1732 } else if (IS_QLA8031(ha)) {
1733 led_select_value = qla83xx_select_led_port(ha);
1735 qla83xx_rd_reg(vha, led_select_value, &led_10_value);
1736 qla83xx_rd_reg(vha, led_select_value + 0x10, &led_43_value);
1737 qla83xx_wr_reg(vha, led_select_value, 0x01f44000);
1738 msleep(500);
1739 qla83xx_wr_reg(vha, led_select_value, 0x400001f4);
1740 msleep(1000);
1741 qla83xx_wr_reg(vha, led_select_value, led_10_value);
1742 qla83xx_wr_reg(vha, led_select_value + 0x10, led_43_value);
1743 } else if (IS_QLA81XX(ha)) {
1744 int rval;
1746 /* Save Current */
1747 rval = qla81xx_get_led_config(vha, orig_led_cfg);
1748 /* Do the blink */
1749 if (rval == QLA_SUCCESS) {
1750 if (IS_QLA81XX(ha)) {
1751 led_cfg[0] = 0x4000;
1752 led_cfg[1] = 0x2000;
1753 led_cfg[2] = 0;
1754 led_cfg[3] = 0;
1755 led_cfg[4] = 0;
1756 led_cfg[5] = 0;
1757 } else {
1758 led_cfg[0] = 0x4000;
1759 led_cfg[1] = 0x4000;
1760 led_cfg[2] = 0x4000;
1761 led_cfg[3] = 0x2000;
1762 led_cfg[4] = 0;
1763 led_cfg[5] = 0x2000;
1765 rval = qla81xx_set_led_config(vha, led_cfg);
1766 msleep(1000);
1767 if (IS_QLA81XX(ha)) {
1768 led_cfg[0] = 0x4000;
1769 led_cfg[1] = 0x2000;
1770 led_cfg[2] = 0;
1771 } else {
1772 led_cfg[0] = 0x4000;
1773 led_cfg[1] = 0x2000;
1774 led_cfg[2] = 0x4000;
1775 led_cfg[3] = 0x4000;
1776 led_cfg[4] = 0;
1777 led_cfg[5] = 0x2000;
1779 rval = qla81xx_set_led_config(vha, led_cfg);
1781 /* On exit, restore original (presumes no status change) */
1782 qla81xx_set_led_config(vha, orig_led_cfg);
1787 qla24xx_beacon_on(struct scsi_qla_host *vha)
1789 uint32_t gpio_data;
1790 unsigned long flags;
1791 struct qla_hw_data *ha = vha->hw;
1792 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1794 if (IS_P3P_TYPE(ha))
1795 return QLA_SUCCESS;
1797 if (IS_QLA8031(ha) || IS_QLA81XX(ha))
1798 goto skip_gpio; /* let blink handle it */
1800 if (ha->beacon_blink_led == 0) {
1801 /* Enable firmware for update */
1802 ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1804 if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1805 return QLA_FUNCTION_FAILED;
1807 if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1808 QLA_SUCCESS) {
1809 ql_log(ql_log_warn, vha, 0x7009,
1810 "Unable to update fw options (beacon on).\n");
1811 return QLA_FUNCTION_FAILED;
1814 if (IS_QLA2031(ha))
1815 goto skip_gpio;
1817 spin_lock_irqsave(&ha->hardware_lock, flags);
1818 gpio_data = RD_REG_DWORD(&reg->gpiod);
1820 /* Enable the gpio_data reg for update. */
1821 gpio_data |= GPDX_LED_UPDATE_MASK;
1822 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1823 RD_REG_DWORD(&reg->gpiod);
1825 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1828 /* So all colors blink together. */
1829 ha->beacon_color_state = 0;
1831 skip_gpio:
1832 /* Let the per HBA timer kick off the blinking process. */
1833 ha->beacon_blink_led = 1;
1835 return QLA_SUCCESS;
1839 qla24xx_beacon_off(struct scsi_qla_host *vha)
1841 uint32_t gpio_data;
1842 unsigned long flags;
1843 struct qla_hw_data *ha = vha->hw;
1844 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1846 if (IS_P3P_TYPE(ha))
1847 return QLA_SUCCESS;
1849 ha->beacon_blink_led = 0;
1851 if (IS_QLA2031(ha))
1852 goto set_fw_options;
1854 if (IS_QLA8031(ha) || IS_QLA81XX(ha))
1855 return QLA_SUCCESS;
1857 ha->beacon_color_state = QLA_LED_ALL_ON;
1859 ha->isp_ops->beacon_blink(vha); /* Will flip to all off. */
1861 /* Give control back to firmware. */
1862 spin_lock_irqsave(&ha->hardware_lock, flags);
1863 gpio_data = RD_REG_DWORD(&reg->gpiod);
1865 /* Disable the gpio_data reg for update. */
1866 gpio_data &= ~GPDX_LED_UPDATE_MASK;
1867 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1868 RD_REG_DWORD(&reg->gpiod);
1869 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1871 set_fw_options:
1872 ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1874 if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1875 ql_log(ql_log_warn, vha, 0x704d,
1876 "Unable to update fw options (beacon on).\n");
1877 return QLA_FUNCTION_FAILED;
1880 if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1881 ql_log(ql_log_warn, vha, 0x704e,
1882 "Unable to update fw options (beacon on).\n");
1883 return QLA_FUNCTION_FAILED;
1886 return QLA_SUCCESS;
1891 * Flash support routines
1895 * qla2x00_flash_enable() - Setup flash for reading and writing.
1896 * @ha: HA context
1898 static void
1899 qla2x00_flash_enable(struct qla_hw_data *ha)
1901 uint16_t data;
1902 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1904 data = RD_REG_WORD(&reg->ctrl_status);
1905 data |= CSR_FLASH_ENABLE;
1906 WRT_REG_WORD(&reg->ctrl_status, data);
1907 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1911 * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1912 * @ha: HA context
1914 static void
1915 qla2x00_flash_disable(struct qla_hw_data *ha)
1917 uint16_t data;
1918 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1920 data = RD_REG_WORD(&reg->ctrl_status);
1921 data &= ~(CSR_FLASH_ENABLE);
1922 WRT_REG_WORD(&reg->ctrl_status, data);
1923 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1927 * qla2x00_read_flash_byte() - Reads a byte from flash
1928 * @ha: HA context
1929 * @addr: Address in flash to read
1931 * A word is read from the chip, but, only the lower byte is valid.
1933 * Returns the byte read from flash @addr.
1935 static uint8_t
1936 qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1938 uint16_t data;
1939 uint16_t bank_select;
1940 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1942 bank_select = RD_REG_WORD(&reg->ctrl_status);
1944 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1945 /* Specify 64K address range: */
1946 /* clear out Module Select and Flash Address bits [19:16]. */
1947 bank_select &= ~0xf8;
1948 bank_select |= addr >> 12 & 0xf0;
1949 bank_select |= CSR_FLASH_64K_BANK;
1950 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1951 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1953 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1954 data = RD_REG_WORD(&reg->flash_data);
1956 return (uint8_t)data;
1959 /* Setup bit 16 of flash address. */
1960 if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1961 bank_select |= CSR_FLASH_64K_BANK;
1962 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1963 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1964 } else if (((addr & BIT_16) == 0) &&
1965 (bank_select & CSR_FLASH_64K_BANK)) {
1966 bank_select &= ~(CSR_FLASH_64K_BANK);
1967 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1968 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1971 /* Always perform IO mapped accesses to the FLASH registers. */
1972 if (ha->pio_address) {
1973 uint16_t data2;
1975 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1976 do {
1977 data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1978 barrier();
1979 cpu_relax();
1980 data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1981 } while (data != data2);
1982 } else {
1983 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1984 data = qla2x00_debounce_register(&reg->flash_data);
1987 return (uint8_t)data;
1991 * qla2x00_write_flash_byte() - Write a byte to flash
1992 * @ha: HA context
1993 * @addr: Address in flash to write
1994 * @data: Data to write
1996 static void
1997 qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1999 uint16_t bank_select;
2000 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2002 bank_select = RD_REG_WORD(&reg->ctrl_status);
2003 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2004 /* Specify 64K address range: */
2005 /* clear out Module Select and Flash Address bits [19:16]. */
2006 bank_select &= ~0xf8;
2007 bank_select |= addr >> 12 & 0xf0;
2008 bank_select |= CSR_FLASH_64K_BANK;
2009 WRT_REG_WORD(&reg->ctrl_status, bank_select);
2010 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
2012 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
2013 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
2014 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
2015 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
2017 return;
2020 /* Setup bit 16 of flash address. */
2021 if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
2022 bank_select |= CSR_FLASH_64K_BANK;
2023 WRT_REG_WORD(&reg->ctrl_status, bank_select);
2024 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
2025 } else if (((addr & BIT_16) == 0) &&
2026 (bank_select & CSR_FLASH_64K_BANK)) {
2027 bank_select &= ~(CSR_FLASH_64K_BANK);
2028 WRT_REG_WORD(&reg->ctrl_status, bank_select);
2029 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
2032 /* Always perform IO mapped accesses to the FLASH registers. */
2033 if (ha->pio_address) {
2034 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
2035 WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
2036 } else {
2037 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
2038 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
2039 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
2040 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
2045 * qla2x00_poll_flash() - Polls flash for completion.
2046 * @ha: HA context
2047 * @addr: Address in flash to poll
2048 * @poll_data: Data to be polled
2049 * @man_id: Flash manufacturer ID
2050 * @flash_id: Flash ID
2052 * This function polls the device until bit 7 of what is read matches data
2053 * bit 7 or until data bit 5 becomes a 1. If that hapens, the flash ROM timed
2054 * out (a fatal error). The flash book recommeds reading bit 7 again after
2055 * reading bit 5 as a 1.
2057 * Returns 0 on success, else non-zero.
2059 static int
2060 qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
2061 uint8_t man_id, uint8_t flash_id)
2063 int status;
2064 uint8_t flash_data;
2065 uint32_t cnt;
2067 status = 1;
2069 /* Wait for 30 seconds for command to finish. */
2070 poll_data &= BIT_7;
2071 for (cnt = 3000000; cnt; cnt--) {
2072 flash_data = qla2x00_read_flash_byte(ha, addr);
2073 if ((flash_data & BIT_7) == poll_data) {
2074 status = 0;
2075 break;
2078 if (man_id != 0x40 && man_id != 0xda) {
2079 if ((flash_data & BIT_5) && cnt > 2)
2080 cnt = 2;
2082 udelay(10);
2083 barrier();
2084 cond_resched();
2086 return status;
2090 * qla2x00_program_flash_address() - Programs a flash address
2091 * @ha: HA context
2092 * @addr: Address in flash to program
2093 * @data: Data to be written in flash
2094 * @man_id: Flash manufacturer ID
2095 * @flash_id: Flash ID
2097 * Returns 0 on success, else non-zero.
2099 static int
2100 qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
2101 uint8_t data, uint8_t man_id, uint8_t flash_id)
2103 /* Write Program Command Sequence. */
2104 if (IS_OEM_001(ha)) {
2105 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2106 qla2x00_write_flash_byte(ha, 0x555, 0x55);
2107 qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
2108 qla2x00_write_flash_byte(ha, addr, data);
2109 } else {
2110 if (man_id == 0xda && flash_id == 0xc1) {
2111 qla2x00_write_flash_byte(ha, addr, data);
2112 if (addr & 0x7e)
2113 return 0;
2114 } else {
2115 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2116 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2117 qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
2118 qla2x00_write_flash_byte(ha, addr, data);
2122 udelay(150);
2124 /* Wait for write to complete. */
2125 return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
2129 * qla2x00_erase_flash() - Erase the flash.
2130 * @ha: HA context
2131 * @man_id: Flash manufacturer ID
2132 * @flash_id: Flash ID
2134 * Returns 0 on success, else non-zero.
2136 static int
2137 qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
2139 /* Individual Sector Erase Command Sequence */
2140 if (IS_OEM_001(ha)) {
2141 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2142 qla2x00_write_flash_byte(ha, 0x555, 0x55);
2143 qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
2144 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2145 qla2x00_write_flash_byte(ha, 0x555, 0x55);
2146 qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
2147 } else {
2148 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2149 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2150 qla2x00_write_flash_byte(ha, 0x5555, 0x80);
2151 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2152 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2153 qla2x00_write_flash_byte(ha, 0x5555, 0x10);
2156 udelay(150);
2158 /* Wait for erase to complete. */
2159 return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
2163 * qla2x00_erase_flash_sector() - Erase a flash sector.
2164 * @ha: HA context
2165 * @addr: Flash sector to erase
2166 * @sec_mask: Sector address mask
2167 * @man_id: Flash manufacturer ID
2168 * @flash_id: Flash ID
2170 * Returns 0 on success, else non-zero.
2172 static int
2173 qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
2174 uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
2176 /* Individual Sector Erase Command Sequence */
2177 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2178 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2179 qla2x00_write_flash_byte(ha, 0x5555, 0x80);
2180 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2181 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2182 if (man_id == 0x1f && flash_id == 0x13)
2183 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
2184 else
2185 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
2187 udelay(150);
2189 /* Wait for erase to complete. */
2190 return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
2194 * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
2195 * @man_id: Flash manufacturer ID
2196 * @flash_id: Flash ID
2198 static void
2199 qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
2200 uint8_t *flash_id)
2202 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2203 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2204 qla2x00_write_flash_byte(ha, 0x5555, 0x90);
2205 *man_id = qla2x00_read_flash_byte(ha, 0x0000);
2206 *flash_id = qla2x00_read_flash_byte(ha, 0x0001);
2207 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2208 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2209 qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
2212 static void
2213 qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
2214 uint32_t saddr, uint32_t length)
2216 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2217 uint32_t midpoint, ilength;
2218 uint8_t data;
2220 midpoint = length / 2;
2222 WRT_REG_WORD(&reg->nvram, 0);
2223 RD_REG_WORD(&reg->nvram);
2224 for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
2225 if (ilength == midpoint) {
2226 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2227 RD_REG_WORD(&reg->nvram);
2229 data = qla2x00_read_flash_byte(ha, saddr);
2230 if (saddr % 100)
2231 udelay(10);
2232 *tmp_buf = data;
2233 cond_resched();
2237 static inline void
2238 qla2x00_suspend_hba(struct scsi_qla_host *vha)
2240 int cnt;
2241 unsigned long flags;
2242 struct qla_hw_data *ha = vha->hw;
2243 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2245 /* Suspend HBA. */
2246 scsi_block_requests(vha->host);
2247 ha->isp_ops->disable_intrs(ha);
2248 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2250 /* Pause RISC. */
2251 spin_lock_irqsave(&ha->hardware_lock, flags);
2252 WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
2253 RD_REG_WORD(&reg->hccr);
2254 if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
2255 for (cnt = 0; cnt < 30000; cnt++) {
2256 if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
2257 break;
2258 udelay(100);
2260 } else {
2261 udelay(10);
2263 spin_unlock_irqrestore(&ha->hardware_lock, flags);
2266 static inline void
2267 qla2x00_resume_hba(struct scsi_qla_host *vha)
2269 struct qla_hw_data *ha = vha->hw;
2271 /* Resume HBA. */
2272 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2273 set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
2274 qla2xxx_wake_dpc(vha);
2275 qla2x00_wait_for_chip_reset(vha);
2276 scsi_unblock_requests(vha->host);
2279 uint8_t *
2280 qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2281 uint32_t offset, uint32_t length)
2283 uint32_t addr, midpoint;
2284 uint8_t *data;
2285 struct qla_hw_data *ha = vha->hw;
2286 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2288 /* Suspend HBA. */
2289 qla2x00_suspend_hba(vha);
2291 /* Go with read. */
2292 midpoint = ha->optrom_size / 2;
2294 qla2x00_flash_enable(ha);
2295 WRT_REG_WORD(&reg->nvram, 0);
2296 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
2297 for (addr = offset, data = buf; addr < length; addr++, data++) {
2298 if (addr == midpoint) {
2299 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2300 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
2303 *data = qla2x00_read_flash_byte(ha, addr);
2305 qla2x00_flash_disable(ha);
2307 /* Resume HBA. */
2308 qla2x00_resume_hba(vha);
2310 return buf;
2314 qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2315 uint32_t offset, uint32_t length)
2318 int rval;
2319 uint8_t man_id, flash_id, sec_number, data;
2320 uint16_t wd;
2321 uint32_t addr, liter, sec_mask, rest_addr;
2322 struct qla_hw_data *ha = vha->hw;
2323 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2325 /* Suspend HBA. */
2326 qla2x00_suspend_hba(vha);
2328 rval = QLA_SUCCESS;
2329 sec_number = 0;
2331 /* Reset ISP chip. */
2332 WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
2333 pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
2335 /* Go with write. */
2336 qla2x00_flash_enable(ha);
2337 do { /* Loop once to provide quick error exit */
2338 /* Structure of flash memory based on manufacturer */
2339 if (IS_OEM_001(ha)) {
2340 /* OEM variant with special flash part. */
2341 man_id = flash_id = 0;
2342 rest_addr = 0xffff;
2343 sec_mask = 0x10000;
2344 goto update_flash;
2346 qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
2347 switch (man_id) {
2348 case 0x20: /* ST flash. */
2349 if (flash_id == 0xd2 || flash_id == 0xe3) {
2351 * ST m29w008at part - 64kb sector size with
2352 * 32kb,8kb,8kb,16kb sectors at memory address
2353 * 0xf0000.
2355 rest_addr = 0xffff;
2356 sec_mask = 0x10000;
2357 break;
2360 * ST m29w010b part - 16kb sector size
2361 * Default to 16kb sectors
2363 rest_addr = 0x3fff;
2364 sec_mask = 0x1c000;
2365 break;
2366 case 0x40: /* Mostel flash. */
2367 /* Mostel v29c51001 part - 512 byte sector size. */
2368 rest_addr = 0x1ff;
2369 sec_mask = 0x1fe00;
2370 break;
2371 case 0xbf: /* SST flash. */
2372 /* SST39sf10 part - 4kb sector size. */
2373 rest_addr = 0xfff;
2374 sec_mask = 0x1f000;
2375 break;
2376 case 0xda: /* Winbond flash. */
2377 /* Winbond W29EE011 part - 256 byte sector size. */
2378 rest_addr = 0x7f;
2379 sec_mask = 0x1ff80;
2380 break;
2381 case 0xc2: /* Macronix flash. */
2382 /* 64k sector size. */
2383 if (flash_id == 0x38 || flash_id == 0x4f) {
2384 rest_addr = 0xffff;
2385 sec_mask = 0x10000;
2386 break;
2388 /* Fall through... */
2390 case 0x1f: /* Atmel flash. */
2391 /* 512k sector size. */
2392 if (flash_id == 0x13) {
2393 rest_addr = 0x7fffffff;
2394 sec_mask = 0x80000000;
2395 break;
2397 /* Fall through... */
2399 case 0x01: /* AMD flash. */
2400 if (flash_id == 0x38 || flash_id == 0x40 ||
2401 flash_id == 0x4f) {
2402 /* Am29LV081 part - 64kb sector size. */
2403 /* Am29LV002BT part - 64kb sector size. */
2404 rest_addr = 0xffff;
2405 sec_mask = 0x10000;
2406 break;
2407 } else if (flash_id == 0x3e) {
2409 * Am29LV008b part - 64kb sector size with
2410 * 32kb,8kb,8kb,16kb sector at memory address
2411 * h0xf0000.
2413 rest_addr = 0xffff;
2414 sec_mask = 0x10000;
2415 break;
2416 } else if (flash_id == 0x20 || flash_id == 0x6e) {
2418 * Am29LV010 part or AM29f010 - 16kb sector
2419 * size.
2421 rest_addr = 0x3fff;
2422 sec_mask = 0x1c000;
2423 break;
2424 } else if (flash_id == 0x6d) {
2425 /* Am29LV001 part - 8kb sector size. */
2426 rest_addr = 0x1fff;
2427 sec_mask = 0x1e000;
2428 break;
2430 default:
2431 /* Default to 16 kb sector size. */
2432 rest_addr = 0x3fff;
2433 sec_mask = 0x1c000;
2434 break;
2437 update_flash:
2438 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2439 if (qla2x00_erase_flash(ha, man_id, flash_id)) {
2440 rval = QLA_FUNCTION_FAILED;
2441 break;
2445 for (addr = offset, liter = 0; liter < length; liter++,
2446 addr++) {
2447 data = buf[liter];
2448 /* Are we at the beginning of a sector? */
2449 if ((addr & rest_addr) == 0) {
2450 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2451 if (addr >= 0x10000UL) {
2452 if (((addr >> 12) & 0xf0) &&
2453 ((man_id == 0x01 &&
2454 flash_id == 0x3e) ||
2455 (man_id == 0x20 &&
2456 flash_id == 0xd2))) {
2457 sec_number++;
2458 if (sec_number == 1) {
2459 rest_addr =
2460 0x7fff;
2461 sec_mask =
2462 0x18000;
2463 } else if (
2464 sec_number == 2 ||
2465 sec_number == 3) {
2466 rest_addr =
2467 0x1fff;
2468 sec_mask =
2469 0x1e000;
2470 } else if (
2471 sec_number == 4) {
2472 rest_addr =
2473 0x3fff;
2474 sec_mask =
2475 0x1c000;
2479 } else if (addr == ha->optrom_size / 2) {
2480 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2481 RD_REG_WORD(&reg->nvram);
2484 if (flash_id == 0xda && man_id == 0xc1) {
2485 qla2x00_write_flash_byte(ha, 0x5555,
2486 0xaa);
2487 qla2x00_write_flash_byte(ha, 0x2aaa,
2488 0x55);
2489 qla2x00_write_flash_byte(ha, 0x5555,
2490 0xa0);
2491 } else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
2492 /* Then erase it */
2493 if (qla2x00_erase_flash_sector(ha,
2494 addr, sec_mask, man_id,
2495 flash_id)) {
2496 rval = QLA_FUNCTION_FAILED;
2497 break;
2499 if (man_id == 0x01 && flash_id == 0x6d)
2500 sec_number++;
2504 if (man_id == 0x01 && flash_id == 0x6d) {
2505 if (sec_number == 1 &&
2506 addr == (rest_addr - 1)) {
2507 rest_addr = 0x0fff;
2508 sec_mask = 0x1f000;
2509 } else if (sec_number == 3 && (addr & 0x7ffe)) {
2510 rest_addr = 0x3fff;
2511 sec_mask = 0x1c000;
2515 if (qla2x00_program_flash_address(ha, addr, data,
2516 man_id, flash_id)) {
2517 rval = QLA_FUNCTION_FAILED;
2518 break;
2520 cond_resched();
2522 } while (0);
2523 qla2x00_flash_disable(ha);
2525 /* Resume HBA. */
2526 qla2x00_resume_hba(vha);
2528 return rval;
2531 uint8_t *
2532 qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2533 uint32_t offset, uint32_t length)
2535 struct qla_hw_data *ha = vha->hw;
2537 /* Suspend HBA. */
2538 scsi_block_requests(vha->host);
2539 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2541 /* Go with read. */
2542 qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2544 /* Resume HBA. */
2545 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2546 scsi_unblock_requests(vha->host);
2548 return buf;
2552 qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2553 uint32_t offset, uint32_t length)
2555 int rval;
2556 struct qla_hw_data *ha = vha->hw;
2558 /* Suspend HBA. */
2559 scsi_block_requests(vha->host);
2560 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2562 /* Go with write. */
2563 rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2564 length >> 2);
2566 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2567 scsi_unblock_requests(vha->host);
2569 return rval;
2572 uint8_t *
2573 qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2574 uint32_t offset, uint32_t length)
2576 int rval;
2577 dma_addr_t optrom_dma;
2578 void *optrom;
2579 uint8_t *pbuf;
2580 uint32_t faddr, left, burst;
2581 struct qla_hw_data *ha = vha->hw;
2583 if (IS_QLA25XX(ha) || IS_QLA81XX(ha) || IS_QLA83XX(ha) ||
2584 IS_QLA27XX(ha))
2585 goto try_fast;
2586 if (offset & 0xfff)
2587 goto slow_read;
2588 if (length < OPTROM_BURST_SIZE)
2589 goto slow_read;
2591 try_fast:
2592 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2593 &optrom_dma, GFP_KERNEL);
2594 if (!optrom) {
2595 ql_log(ql_log_warn, vha, 0x00cc,
2596 "Unable to allocate memory for optrom burst read (%x KB).\n",
2597 OPTROM_BURST_SIZE / 1024);
2598 goto slow_read;
2601 pbuf = buf;
2602 faddr = offset >> 2;
2603 left = length >> 2;
2604 burst = OPTROM_BURST_DWORDS;
2605 while (left != 0) {
2606 if (burst > left)
2607 burst = left;
2609 rval = qla2x00_dump_ram(vha, optrom_dma,
2610 flash_data_addr(ha, faddr), burst);
2611 if (rval) {
2612 ql_log(ql_log_warn, vha, 0x00f5,
2613 "Unable to burst-read optrom segment (%x/%x/%llx).\n",
2614 rval, flash_data_addr(ha, faddr),
2615 (unsigned long long)optrom_dma);
2616 ql_log(ql_log_warn, vha, 0x00f6,
2617 "Reverting to slow-read.\n");
2619 dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2620 optrom, optrom_dma);
2621 goto slow_read;
2624 memcpy(pbuf, optrom, burst * 4);
2626 left -= burst;
2627 faddr += burst;
2628 pbuf += burst * 4;
2631 dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
2632 optrom_dma);
2634 return buf;
2636 slow_read:
2637 return qla24xx_read_optrom_data(vha, buf, offset, length);
2641 * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2642 * @ha: HA context
2643 * @pcids: Pointer to the FCODE PCI data structure
2645 * The process of retrieving the FCODE version information is at best
2646 * described as interesting.
2648 * Within the first 100h bytes of the image an ASCII string is present
2649 * which contains several pieces of information including the FCODE
2650 * version. Unfortunately it seems the only reliable way to retrieve
2651 * the version is by scanning for another sentinel within the string,
2652 * the FCODE build date:
2654 * ... 2.00.02 10/17/02 ...
2656 * Returns QLA_SUCCESS on successful retrieval of version.
2658 static void
2659 qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2661 int ret = QLA_FUNCTION_FAILED;
2662 uint32_t istart, iend, iter, vend;
2663 uint8_t do_next, rbyte, *vbyte;
2665 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2667 /* Skip the PCI data structure. */
2668 istart = pcids +
2669 ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2670 qla2x00_read_flash_byte(ha, pcids + 0x0A));
2671 iend = istart + 0x100;
2672 do {
2673 /* Scan for the sentinel date string...eeewww. */
2674 do_next = 0;
2675 iter = istart;
2676 while ((iter < iend) && !do_next) {
2677 iter++;
2678 if (qla2x00_read_flash_byte(ha, iter) == '/') {
2679 if (qla2x00_read_flash_byte(ha, iter + 2) ==
2680 '/')
2681 do_next++;
2682 else if (qla2x00_read_flash_byte(ha,
2683 iter + 3) == '/')
2684 do_next++;
2687 if (!do_next)
2688 break;
2690 /* Backtrack to previous ' ' (space). */
2691 do_next = 0;
2692 while ((iter > istart) && !do_next) {
2693 iter--;
2694 if (qla2x00_read_flash_byte(ha, iter) == ' ')
2695 do_next++;
2697 if (!do_next)
2698 break;
2701 * Mark end of version tag, and find previous ' ' (space) or
2702 * string length (recent FCODE images -- major hack ahead!!!).
2704 vend = iter - 1;
2705 do_next = 0;
2706 while ((iter > istart) && !do_next) {
2707 iter--;
2708 rbyte = qla2x00_read_flash_byte(ha, iter);
2709 if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2710 do_next++;
2712 if (!do_next)
2713 break;
2715 /* Mark beginning of version tag, and copy data. */
2716 iter++;
2717 if ((vend - iter) &&
2718 ((vend - iter) < sizeof(ha->fcode_revision))) {
2719 vbyte = ha->fcode_revision;
2720 while (iter <= vend) {
2721 *vbyte++ = qla2x00_read_flash_byte(ha, iter);
2722 iter++;
2724 ret = QLA_SUCCESS;
2726 } while (0);
2728 if (ret != QLA_SUCCESS)
2729 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2733 qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2735 int ret = QLA_SUCCESS;
2736 uint8_t code_type, last_image;
2737 uint32_t pcihdr, pcids;
2738 uint8_t *dbyte;
2739 uint16_t *dcode;
2740 struct qla_hw_data *ha = vha->hw;
2742 if (!ha->pio_address || !mbuf)
2743 return QLA_FUNCTION_FAILED;
2745 memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2746 memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2747 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2748 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2750 qla2x00_flash_enable(ha);
2752 /* Begin with first PCI expansion ROM header. */
2753 pcihdr = 0;
2754 last_image = 1;
2755 do {
2756 /* Verify PCI expansion ROM header. */
2757 if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2758 qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2759 /* No signature */
2760 ql_log(ql_log_fatal, vha, 0x0050,
2761 "No matching ROM signature.\n");
2762 ret = QLA_FUNCTION_FAILED;
2763 break;
2766 /* Locate PCI data structure. */
2767 pcids = pcihdr +
2768 ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2769 qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2771 /* Validate signature of PCI data structure. */
2772 if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2773 qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2774 qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2775 qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2776 /* Incorrect header. */
2777 ql_log(ql_log_fatal, vha, 0x0051,
2778 "PCI data struct not found pcir_adr=%x.\n", pcids);
2779 ret = QLA_FUNCTION_FAILED;
2780 break;
2783 /* Read version */
2784 code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2785 switch (code_type) {
2786 case ROM_CODE_TYPE_BIOS:
2787 /* Intel x86, PC-AT compatible. */
2788 ha->bios_revision[0] =
2789 qla2x00_read_flash_byte(ha, pcids + 0x12);
2790 ha->bios_revision[1] =
2791 qla2x00_read_flash_byte(ha, pcids + 0x13);
2792 ql_dbg(ql_dbg_init, vha, 0x0052,
2793 "Read BIOS %d.%d.\n",
2794 ha->bios_revision[1], ha->bios_revision[0]);
2795 break;
2796 case ROM_CODE_TYPE_FCODE:
2797 /* Open Firmware standard for PCI (FCode). */
2798 /* Eeeewww... */
2799 qla2x00_get_fcode_version(ha, pcids);
2800 break;
2801 case ROM_CODE_TYPE_EFI:
2802 /* Extensible Firmware Interface (EFI). */
2803 ha->efi_revision[0] =
2804 qla2x00_read_flash_byte(ha, pcids + 0x12);
2805 ha->efi_revision[1] =
2806 qla2x00_read_flash_byte(ha, pcids + 0x13);
2807 ql_dbg(ql_dbg_init, vha, 0x0053,
2808 "Read EFI %d.%d.\n",
2809 ha->efi_revision[1], ha->efi_revision[0]);
2810 break;
2811 default:
2812 ql_log(ql_log_warn, vha, 0x0054,
2813 "Unrecognized code type %x at pcids %x.\n",
2814 code_type, pcids);
2815 break;
2818 last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2820 /* Locate next PCI expansion ROM. */
2821 pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2822 qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2823 } while (!last_image);
2825 if (IS_QLA2322(ha)) {
2826 /* Read firmware image information. */
2827 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2828 dbyte = mbuf;
2829 memset(dbyte, 0, 8);
2830 dcode = (uint16_t *)dbyte;
2832 qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2834 ql_dbg(ql_dbg_init + ql_dbg_buffer, vha, 0x010a,
2835 "Dumping fw "
2836 "ver from flash:.\n");
2837 ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010b,
2838 (uint8_t *)dbyte, 8);
2840 if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2841 dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2842 (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2843 dcode[3] == 0)) {
2844 ql_log(ql_log_warn, vha, 0x0057,
2845 "Unrecognized fw revision at %x.\n",
2846 ha->flt_region_fw * 4);
2847 } else {
2848 /* values are in big endian */
2849 ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2850 ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2851 ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2852 ql_dbg(ql_dbg_init, vha, 0x0058,
2853 "FW Version: "
2854 "%d.%d.%d.\n", ha->fw_revision[0],
2855 ha->fw_revision[1], ha->fw_revision[2]);
2859 qla2x00_flash_disable(ha);
2861 return ret;
2865 qla82xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2867 int ret = QLA_SUCCESS;
2868 uint32_t pcihdr, pcids;
2869 uint32_t *dcode;
2870 uint8_t *bcode;
2871 uint8_t code_type, last_image;
2872 struct qla_hw_data *ha = vha->hw;
2874 if (!mbuf)
2875 return QLA_FUNCTION_FAILED;
2877 memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2878 memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2879 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2880 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2882 dcode = mbuf;
2884 /* Begin with first PCI expansion ROM header. */
2885 pcihdr = ha->flt_region_boot << 2;
2886 last_image = 1;
2887 do {
2888 /* Verify PCI expansion ROM header. */
2889 ha->isp_ops->read_optrom(vha, (uint8_t *)dcode, pcihdr,
2890 0x20 * 4);
2891 bcode = mbuf + (pcihdr % 4);
2892 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2893 /* No signature */
2894 ql_log(ql_log_fatal, vha, 0x0154,
2895 "No matching ROM signature.\n");
2896 ret = QLA_FUNCTION_FAILED;
2897 break;
2900 /* Locate PCI data structure. */
2901 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2903 ha->isp_ops->read_optrom(vha, (uint8_t *)dcode, pcids,
2904 0x20 * 4);
2905 bcode = mbuf + (pcihdr % 4);
2907 /* Validate signature of PCI data structure. */
2908 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2909 bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2910 /* Incorrect header. */
2911 ql_log(ql_log_fatal, vha, 0x0155,
2912 "PCI data struct not found pcir_adr=%x.\n", pcids);
2913 ret = QLA_FUNCTION_FAILED;
2914 break;
2917 /* Read version */
2918 code_type = bcode[0x14];
2919 switch (code_type) {
2920 case ROM_CODE_TYPE_BIOS:
2921 /* Intel x86, PC-AT compatible. */
2922 ha->bios_revision[0] = bcode[0x12];
2923 ha->bios_revision[1] = bcode[0x13];
2924 ql_dbg(ql_dbg_init, vha, 0x0156,
2925 "Read BIOS %d.%d.\n",
2926 ha->bios_revision[1], ha->bios_revision[0]);
2927 break;
2928 case ROM_CODE_TYPE_FCODE:
2929 /* Open Firmware standard for PCI (FCode). */
2930 ha->fcode_revision[0] = bcode[0x12];
2931 ha->fcode_revision[1] = bcode[0x13];
2932 ql_dbg(ql_dbg_init, vha, 0x0157,
2933 "Read FCODE %d.%d.\n",
2934 ha->fcode_revision[1], ha->fcode_revision[0]);
2935 break;
2936 case ROM_CODE_TYPE_EFI:
2937 /* Extensible Firmware Interface (EFI). */
2938 ha->efi_revision[0] = bcode[0x12];
2939 ha->efi_revision[1] = bcode[0x13];
2940 ql_dbg(ql_dbg_init, vha, 0x0158,
2941 "Read EFI %d.%d.\n",
2942 ha->efi_revision[1], ha->efi_revision[0]);
2943 break;
2944 default:
2945 ql_log(ql_log_warn, vha, 0x0159,
2946 "Unrecognized code type %x at pcids %x.\n",
2947 code_type, pcids);
2948 break;
2951 last_image = bcode[0x15] & BIT_7;
2953 /* Locate next PCI expansion ROM. */
2954 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2955 } while (!last_image);
2957 /* Read firmware image information. */
2958 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2959 dcode = mbuf;
2960 ha->isp_ops->read_optrom(vha, (uint8_t *)dcode, ha->flt_region_fw << 2,
2961 0x20);
2962 bcode = mbuf + (pcihdr % 4);
2964 /* Validate signature of PCI data structure. */
2965 if (bcode[0x0] == 0x3 && bcode[0x1] == 0x0 &&
2966 bcode[0x2] == 0x40 && bcode[0x3] == 0x40) {
2967 ha->fw_revision[0] = bcode[0x4];
2968 ha->fw_revision[1] = bcode[0x5];
2969 ha->fw_revision[2] = bcode[0x6];
2970 ql_dbg(ql_dbg_init, vha, 0x0153,
2971 "Firmware revision %d.%d.%d\n",
2972 ha->fw_revision[0], ha->fw_revision[1],
2973 ha->fw_revision[2]);
2976 return ret;
2980 qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2982 int ret = QLA_SUCCESS;
2983 uint32_t pcihdr, pcids;
2984 uint32_t *dcode;
2985 uint8_t *bcode;
2986 uint8_t code_type, last_image;
2987 int i;
2988 struct qla_hw_data *ha = vha->hw;
2990 if (IS_P3P_TYPE(ha))
2991 return ret;
2993 if (!mbuf)
2994 return QLA_FUNCTION_FAILED;
2996 memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2997 memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2998 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2999 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
3001 dcode = mbuf;
3003 /* Begin with first PCI expansion ROM header. */
3004 pcihdr = ha->flt_region_boot << 2;
3005 last_image = 1;
3006 do {
3007 /* Verify PCI expansion ROM header. */
3008 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
3009 bcode = mbuf + (pcihdr % 4);
3010 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
3011 /* No signature */
3012 ql_log(ql_log_fatal, vha, 0x0059,
3013 "No matching ROM signature.\n");
3014 ret = QLA_FUNCTION_FAILED;
3015 break;
3018 /* Locate PCI data structure. */
3019 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
3021 qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
3022 bcode = mbuf + (pcihdr % 4);
3024 /* Validate signature of PCI data structure. */
3025 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
3026 bcode[0x2] != 'I' || bcode[0x3] != 'R') {
3027 /* Incorrect header. */
3028 ql_log(ql_log_fatal, vha, 0x005a,
3029 "PCI data struct not found pcir_adr=%x.\n", pcids);
3030 ret = QLA_FUNCTION_FAILED;
3031 break;
3034 /* Read version */
3035 code_type = bcode[0x14];
3036 switch (code_type) {
3037 case ROM_CODE_TYPE_BIOS:
3038 /* Intel x86, PC-AT compatible. */
3039 ha->bios_revision[0] = bcode[0x12];
3040 ha->bios_revision[1] = bcode[0x13];
3041 ql_dbg(ql_dbg_init, vha, 0x005b,
3042 "Read BIOS %d.%d.\n",
3043 ha->bios_revision[1], ha->bios_revision[0]);
3044 break;
3045 case ROM_CODE_TYPE_FCODE:
3046 /* Open Firmware standard for PCI (FCode). */
3047 ha->fcode_revision[0] = bcode[0x12];
3048 ha->fcode_revision[1] = bcode[0x13];
3049 ql_dbg(ql_dbg_init, vha, 0x005c,
3050 "Read FCODE %d.%d.\n",
3051 ha->fcode_revision[1], ha->fcode_revision[0]);
3052 break;
3053 case ROM_CODE_TYPE_EFI:
3054 /* Extensible Firmware Interface (EFI). */
3055 ha->efi_revision[0] = bcode[0x12];
3056 ha->efi_revision[1] = bcode[0x13];
3057 ql_dbg(ql_dbg_init, vha, 0x005d,
3058 "Read EFI %d.%d.\n",
3059 ha->efi_revision[1], ha->efi_revision[0]);
3060 break;
3061 default:
3062 ql_log(ql_log_warn, vha, 0x005e,
3063 "Unrecognized code type %x at pcids %x.\n",
3064 code_type, pcids);
3065 break;
3068 last_image = bcode[0x15] & BIT_7;
3070 /* Locate next PCI expansion ROM. */
3071 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
3072 } while (!last_image);
3074 /* Read firmware image information. */
3075 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
3076 dcode = mbuf;
3078 qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
3079 for (i = 0; i < 4; i++)
3080 dcode[i] = be32_to_cpu(dcode[i]);
3082 if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
3083 dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
3084 (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
3085 dcode[3] == 0)) {
3086 ql_log(ql_log_warn, vha, 0x005f,
3087 "Unrecognized fw revision at %x.\n",
3088 ha->flt_region_fw * 4);
3089 } else {
3090 ha->fw_revision[0] = dcode[0];
3091 ha->fw_revision[1] = dcode[1];
3092 ha->fw_revision[2] = dcode[2];
3093 ha->fw_revision[3] = dcode[3];
3094 ql_dbg(ql_dbg_init, vha, 0x0060,
3095 "Firmware revision %d.%d.%d (%x).\n",
3096 ha->fw_revision[0], ha->fw_revision[1],
3097 ha->fw_revision[2], ha->fw_revision[3]);
3100 /* Check for golden firmware and get version if available */
3101 if (!IS_QLA81XX(ha)) {
3102 /* Golden firmware is not present in non 81XX adapters */
3103 return ret;
3106 memset(ha->gold_fw_version, 0, sizeof(ha->gold_fw_version));
3107 dcode = mbuf;
3108 ha->isp_ops->read_optrom(vha, (uint8_t *)dcode,
3109 ha->flt_region_gold_fw << 2, 32);
3111 if (dcode[4] == 0xFFFFFFFF && dcode[5] == 0xFFFFFFFF &&
3112 dcode[6] == 0xFFFFFFFF && dcode[7] == 0xFFFFFFFF) {
3113 ql_log(ql_log_warn, vha, 0x0056,
3114 "Unrecognized golden fw at 0x%x.\n",
3115 ha->flt_region_gold_fw * 4);
3116 return ret;
3119 for (i = 4; i < 8; i++)
3120 ha->gold_fw_version[i-4] = be32_to_cpu(dcode[i]);
3122 return ret;
3125 static int
3126 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
3128 if (pos >= end || *pos != 0x82)
3129 return 0;
3131 pos += 3 + pos[1];
3132 if (pos >= end || *pos != 0x90)
3133 return 0;
3135 pos += 3 + pos[1];
3136 if (pos >= end || *pos != 0x78)
3137 return 0;
3139 return 1;
3143 qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
3145 struct qla_hw_data *ha = vha->hw;
3146 uint8_t *pos = ha->vpd;
3147 uint8_t *end = pos + ha->vpd_size;
3148 int len = 0;
3150 if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
3151 return 0;
3153 while (pos < end && *pos != 0x78) {
3154 len = (*pos == 0x82) ? pos[1] : pos[2];
3156 if (!strncmp(pos, key, strlen(key)))
3157 break;
3159 if (*pos != 0x90 && *pos != 0x91)
3160 pos += len;
3162 pos += 3;
3165 if (pos < end - len && *pos != 0x78)
3166 return scnprintf(str, size, "%.*s", len, pos + 3);
3168 return 0;
3172 qla24xx_read_fcp_prio_cfg(scsi_qla_host_t *vha)
3174 int len, max_len;
3175 uint32_t fcp_prio_addr;
3176 struct qla_hw_data *ha = vha->hw;
3178 if (!ha->fcp_prio_cfg) {
3179 ha->fcp_prio_cfg = vmalloc(FCP_PRIO_CFG_SIZE);
3180 if (!ha->fcp_prio_cfg) {
3181 ql_log(ql_log_warn, vha, 0x00d5,
3182 "Unable to allocate memory for fcp priorty data (%x).\n",
3183 FCP_PRIO_CFG_SIZE);
3184 return QLA_FUNCTION_FAILED;
3187 memset(ha->fcp_prio_cfg, 0, FCP_PRIO_CFG_SIZE);
3189 fcp_prio_addr = ha->flt_region_fcp_prio;
3191 /* first read the fcp priority data header from flash */
3192 ha->isp_ops->read_optrom(vha, (uint8_t *)ha->fcp_prio_cfg,
3193 fcp_prio_addr << 2, FCP_PRIO_CFG_HDR_SIZE);
3195 if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 0))
3196 goto fail;
3198 /* read remaining FCP CMD config data from flash */
3199 fcp_prio_addr += (FCP_PRIO_CFG_HDR_SIZE >> 2);
3200 len = ha->fcp_prio_cfg->num_entries * FCP_PRIO_CFG_ENTRY_SIZE;
3201 max_len = FCP_PRIO_CFG_SIZE - FCP_PRIO_CFG_HDR_SIZE;
3203 ha->isp_ops->read_optrom(vha, (uint8_t *)&ha->fcp_prio_cfg->entry[0],
3204 fcp_prio_addr << 2, (len < max_len ? len : max_len));
3206 /* revalidate the entire FCP priority config data, including entries */
3207 if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 1))
3208 goto fail;
3210 ha->flags.fcp_prio_enabled = 1;
3211 return QLA_SUCCESS;
3212 fail:
3213 vfree(ha->fcp_prio_cfg);
3214 ha->fcp_prio_cfg = NULL;
3215 return QLA_FUNCTION_FAILED;