ARM: dts: add 'dr_mode' property to hsotg devices for exynos boards
[linux/fpc-iii.git] / drivers / watchdog / octeon-wdt-main.c
blob8453531545dfee189ee28077d55e6b37e807df2f
1 /*
2 * Octeon Watchdog driver
4 * Copyright (C) 2007, 2008, 2009, 2010 Cavium Networks
6 * Some parts derived from wdt.c
8 * (c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
9 * All Rights Reserved.
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
16 * Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
17 * warranty for any of this software. This material is provided
18 * "AS-IS" and at no charge.
20 * (c) Copyright 1995 Alan Cox <alan@lxorguk.ukuu.org.uk>
22 * This file is subject to the terms and conditions of the GNU General Public
23 * License. See the file "COPYING" in the main directory of this archive
24 * for more details.
27 * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
28 * For most systems this is less than 10 seconds, so to allow for
29 * software to request longer watchdog heartbeats, we maintain software
30 * counters to count multiples of the base rate. If the system locks
31 * up in such a manner that we can not run the software counters, the
32 * only result is a watchdog reset sooner than was requested. But
33 * that is OK, because in this case userspace would likely not be able
34 * to do anything anyhow.
36 * The hardware watchdog interval we call the period. The OCTEON
37 * watchdog goes through several stages, after the first period an
38 * irq is asserted, then if it is not reset, after the next period NMI
39 * is asserted, then after an additional period a chip wide soft reset.
40 * So for the software counters, we reset watchdog after each period
41 * and decrement the counter. But for the last two periods we need to
42 * let the watchdog progress to the NMI stage so we disable the irq
43 * and let it proceed. Once in the NMI, we print the register state
44 * to the serial port and then wait for the reset.
46 * A watchdog is maintained for each CPU in the system, that way if
47 * one CPU suffers a lockup, we also get a register dump and reset.
48 * The userspace ping resets the watchdog on all CPUs.
50 * Before userspace opens the watchdog device, we still run the
51 * watchdogs to catch any lockups that may be kernel related.
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
57 #include <linux/miscdevice.h>
58 #include <linux/interrupt.h>
59 #include <linux/watchdog.h>
60 #include <linux/cpumask.h>
61 #include <linux/bitops.h>
62 #include <linux/kernel.h>
63 #include <linux/module.h>
64 #include <linux/string.h>
65 #include <linux/delay.h>
66 #include <linux/cpu.h>
67 #include <linux/smp.h>
68 #include <linux/fs.h>
69 #include <linux/irq.h>
71 #include <asm/mipsregs.h>
72 #include <asm/uasm.h>
74 #include <asm/octeon/octeon.h>
76 /* The count needed to achieve timeout_sec. */
77 static unsigned int timeout_cnt;
79 /* The maximum period supported. */
80 static unsigned int max_timeout_sec;
82 /* The current period. */
83 static unsigned int timeout_sec;
85 /* Set to non-zero when userspace countdown mode active */
86 static int do_coundown;
87 static unsigned int countdown_reset;
88 static unsigned int per_cpu_countdown[NR_CPUS];
90 static cpumask_t irq_enabled_cpus;
92 #define WD_TIMO 60 /* Default heartbeat = 60 seconds */
94 static int heartbeat = WD_TIMO;
95 module_param(heartbeat, int, S_IRUGO);
96 MODULE_PARM_DESC(heartbeat,
97 "Watchdog heartbeat in seconds. (0 < heartbeat, default="
98 __MODULE_STRING(WD_TIMO) ")");
100 static bool nowayout = WATCHDOG_NOWAYOUT;
101 module_param(nowayout, bool, S_IRUGO);
102 MODULE_PARM_DESC(nowayout,
103 "Watchdog cannot be stopped once started (default="
104 __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
106 static unsigned long octeon_wdt_is_open;
107 static char expect_close;
109 static u32 __initdata nmi_stage1_insns[64];
110 /* We need one branch and therefore one relocation per target label. */
111 static struct uasm_label __initdata labels[5];
112 static struct uasm_reloc __initdata relocs[5];
114 enum lable_id {
115 label_enter_bootloader = 1
118 /* Some CP0 registers */
119 #define K0 26
120 #define C0_CVMMEMCTL 11, 7
121 #define C0_STATUS 12, 0
122 #define C0_EBASE 15, 1
123 #define C0_DESAVE 31, 0
125 void octeon_wdt_nmi_stage2(void);
127 static void __init octeon_wdt_build_stage1(void)
129 int i;
130 int len;
131 u32 *p = nmi_stage1_insns;
132 #ifdef CONFIG_HOTPLUG_CPU
133 struct uasm_label *l = labels;
134 struct uasm_reloc *r = relocs;
135 #endif
138 * For the next few instructions running the debugger may
139 * cause corruption of k0 in the saved registers. Since we're
140 * about to crash, nobody probably cares.
142 * Save K0 into the debug scratch register
144 uasm_i_dmtc0(&p, K0, C0_DESAVE);
146 uasm_i_mfc0(&p, K0, C0_STATUS);
147 #ifdef CONFIG_HOTPLUG_CPU
148 if (octeon_bootloader_entry_addr)
149 uasm_il_bbit0(&p, &r, K0, ilog2(ST0_NMI),
150 label_enter_bootloader);
151 #endif
152 /* Force 64-bit addressing enabled */
153 uasm_i_ori(&p, K0, K0, ST0_UX | ST0_SX | ST0_KX);
154 uasm_i_mtc0(&p, K0, C0_STATUS);
156 #ifdef CONFIG_HOTPLUG_CPU
157 if (octeon_bootloader_entry_addr) {
158 uasm_i_mfc0(&p, K0, C0_EBASE);
159 /* Coreid number in K0 */
160 uasm_i_andi(&p, K0, K0, 0xf);
161 /* 8 * coreid in bits 16-31 */
162 uasm_i_dsll_safe(&p, K0, K0, 3 + 16);
163 uasm_i_ori(&p, K0, K0, 0x8001);
164 uasm_i_dsll_safe(&p, K0, K0, 16);
165 uasm_i_ori(&p, K0, K0, 0x0700);
166 uasm_i_drotr_safe(&p, K0, K0, 32);
168 * Should result in: 0x8001,0700,0000,8*coreid which is
169 * CVMX_CIU_WDOGX(coreid) - 0x0500
171 * Now ld K0, CVMX_CIU_WDOGX(coreid)
173 uasm_i_ld(&p, K0, 0x500, K0);
175 * If bit one set handle the NMI as a watchdog event.
176 * otherwise transfer control to bootloader.
178 uasm_il_bbit0(&p, &r, K0, 1, label_enter_bootloader);
179 uasm_i_nop(&p);
181 #endif
183 /* Clear Dcache so cvmseg works right. */
184 uasm_i_cache(&p, 1, 0, 0);
186 /* Use K0 to do a read/modify/write of CVMMEMCTL */
187 uasm_i_dmfc0(&p, K0, C0_CVMMEMCTL);
188 /* Clear out the size of CVMSEG */
189 uasm_i_dins(&p, K0, 0, 0, 6);
190 /* Set CVMSEG to its largest value */
191 uasm_i_ori(&p, K0, K0, 0x1c0 | 54);
192 /* Store the CVMMEMCTL value */
193 uasm_i_dmtc0(&p, K0, C0_CVMMEMCTL);
195 /* Load the address of the second stage handler */
196 UASM_i_LA(&p, K0, (long)octeon_wdt_nmi_stage2);
197 uasm_i_jr(&p, K0);
198 uasm_i_dmfc0(&p, K0, C0_DESAVE);
200 #ifdef CONFIG_HOTPLUG_CPU
201 if (octeon_bootloader_entry_addr) {
202 uasm_build_label(&l, p, label_enter_bootloader);
203 /* Jump to the bootloader and restore K0 */
204 UASM_i_LA(&p, K0, (long)octeon_bootloader_entry_addr);
205 uasm_i_jr(&p, K0);
206 uasm_i_dmfc0(&p, K0, C0_DESAVE);
208 #endif
209 uasm_resolve_relocs(relocs, labels);
211 len = (int)(p - nmi_stage1_insns);
212 pr_debug("Synthesized NMI stage 1 handler (%d instructions)\n", len);
214 pr_debug("\t.set push\n");
215 pr_debug("\t.set noreorder\n");
216 for (i = 0; i < len; i++)
217 pr_debug("\t.word 0x%08x\n", nmi_stage1_insns[i]);
218 pr_debug("\t.set pop\n");
220 if (len > 32)
221 panic("NMI stage 1 handler exceeds 32 instructions, was %d\n", len);
224 static int cpu2core(int cpu)
226 #ifdef CONFIG_SMP
227 return cpu_logical_map(cpu);
228 #else
229 return cvmx_get_core_num();
230 #endif
233 static int core2cpu(int coreid)
235 #ifdef CONFIG_SMP
236 return cpu_number_map(coreid);
237 #else
238 return 0;
239 #endif
243 * Poke the watchdog when an interrupt is received
245 * @cpl:
246 * @dev_id:
248 * Returns
250 static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
252 unsigned int core = cvmx_get_core_num();
253 int cpu = core2cpu(core);
255 if (do_coundown) {
256 if (per_cpu_countdown[cpu] > 0) {
257 /* We're alive, poke the watchdog */
258 cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
259 per_cpu_countdown[cpu]--;
260 } else {
261 /* Bad news, you are about to reboot. */
262 disable_irq_nosync(cpl);
263 cpumask_clear_cpu(cpu, &irq_enabled_cpus);
265 } else {
266 /* Not open, just ping away... */
267 cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
269 return IRQ_HANDLED;
272 /* From setup.c */
273 extern int prom_putchar(char c);
276 * Write a string to the uart
278 * @str: String to write
280 static void octeon_wdt_write_string(const char *str)
282 /* Just loop writing one byte at a time */
283 while (*str)
284 prom_putchar(*str++);
288 * Write a hex number out of the uart
290 * @value: Number to display
291 * @digits: Number of digits to print (1 to 16)
293 static void octeon_wdt_write_hex(u64 value, int digits)
295 int d;
296 int v;
297 for (d = 0; d < digits; d++) {
298 v = (value >> ((digits - d - 1) * 4)) & 0xf;
299 if (v >= 10)
300 prom_putchar('a' + v - 10);
301 else
302 prom_putchar('0' + v);
306 const char *reg_name[] = {
307 "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
308 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
309 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
310 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
314 * NMI stage 3 handler. NMIs are handled in the following manner:
315 * 1) The first NMI handler enables CVMSEG and transfers from
316 * the bootbus region into normal memory. It is careful to not
317 * destroy any registers.
318 * 2) The second stage handler uses CVMSEG to save the registers
319 * and create a stack for C code. It then calls the third level
320 * handler with one argument, a pointer to the register values.
321 * 3) The third, and final, level handler is the following C
322 * function that prints out some useful infomration.
324 * @reg: Pointer to register state before the NMI
326 void octeon_wdt_nmi_stage3(u64 reg[32])
328 u64 i;
330 unsigned int coreid = cvmx_get_core_num();
332 * Save status and cause early to get them before any changes
333 * might happen.
335 u64 cp0_cause = read_c0_cause();
336 u64 cp0_status = read_c0_status();
337 u64 cp0_error_epc = read_c0_errorepc();
338 u64 cp0_epc = read_c0_epc();
340 /* Delay so output from all cores output is not jumbled together. */
341 __delay(100000000ull * coreid);
343 octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
344 octeon_wdt_write_hex(coreid, 1);
345 octeon_wdt_write_string(" ***\r\n");
346 for (i = 0; i < 32; i++) {
347 octeon_wdt_write_string("\t");
348 octeon_wdt_write_string(reg_name[i]);
349 octeon_wdt_write_string("\t0x");
350 octeon_wdt_write_hex(reg[i], 16);
351 if (i & 1)
352 octeon_wdt_write_string("\r\n");
354 octeon_wdt_write_string("\terr_epc\t0x");
355 octeon_wdt_write_hex(cp0_error_epc, 16);
357 octeon_wdt_write_string("\tepc\t0x");
358 octeon_wdt_write_hex(cp0_epc, 16);
359 octeon_wdt_write_string("\r\n");
361 octeon_wdt_write_string("\tstatus\t0x");
362 octeon_wdt_write_hex(cp0_status, 16);
363 octeon_wdt_write_string("\tcause\t0x");
364 octeon_wdt_write_hex(cp0_cause, 16);
365 octeon_wdt_write_string("\r\n");
367 octeon_wdt_write_string("\tsum0\t0x");
368 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
369 octeon_wdt_write_string("\ten0\t0x");
370 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
371 octeon_wdt_write_string("\r\n");
373 octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
376 static void octeon_wdt_disable_interrupt(int cpu)
378 unsigned int core;
379 unsigned int irq;
380 union cvmx_ciu_wdogx ciu_wdog;
382 core = cpu2core(cpu);
384 irq = OCTEON_IRQ_WDOG0 + core;
386 /* Poke the watchdog to clear out its state */
387 cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
389 /* Disable the hardware. */
390 ciu_wdog.u64 = 0;
391 cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
393 free_irq(irq, octeon_wdt_poke_irq);
396 static void octeon_wdt_setup_interrupt(int cpu)
398 unsigned int core;
399 unsigned int irq;
400 union cvmx_ciu_wdogx ciu_wdog;
402 core = cpu2core(cpu);
404 /* Disable it before doing anything with the interrupts. */
405 ciu_wdog.u64 = 0;
406 cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
408 per_cpu_countdown[cpu] = countdown_reset;
410 irq = OCTEON_IRQ_WDOG0 + core;
412 if (request_irq(irq, octeon_wdt_poke_irq,
413 IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq))
414 panic("octeon_wdt: Couldn't obtain irq %d", irq);
416 cpumask_set_cpu(cpu, &irq_enabled_cpus);
418 /* Poke the watchdog to clear out its state */
419 cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
421 /* Finally enable the watchdog now that all handlers are installed */
422 ciu_wdog.u64 = 0;
423 ciu_wdog.s.len = timeout_cnt;
424 ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
425 cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
428 static int octeon_wdt_cpu_callback(struct notifier_block *nfb,
429 unsigned long action, void *hcpu)
431 unsigned int cpu = (unsigned long)hcpu;
433 switch (action) {
434 case CPU_DOWN_PREPARE:
435 octeon_wdt_disable_interrupt(cpu);
436 break;
437 case CPU_ONLINE:
438 case CPU_DOWN_FAILED:
439 octeon_wdt_setup_interrupt(cpu);
440 break;
441 default:
442 break;
444 return NOTIFY_OK;
447 static void octeon_wdt_ping(void)
449 int cpu;
450 int coreid;
452 for_each_online_cpu(cpu) {
453 coreid = cpu2core(cpu);
454 cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
455 per_cpu_countdown[cpu] = countdown_reset;
456 if ((countdown_reset || !do_coundown) &&
457 !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
458 /* We have to enable the irq */
459 int irq = OCTEON_IRQ_WDOG0 + coreid;
460 enable_irq(irq);
461 cpumask_set_cpu(cpu, &irq_enabled_cpus);
466 static void octeon_wdt_calc_parameters(int t)
468 unsigned int periods;
470 timeout_sec = max_timeout_sec;
474 * Find the largest interrupt period, that can evenly divide
475 * the requested heartbeat time.
477 while ((t % timeout_sec) != 0)
478 timeout_sec--;
480 periods = t / timeout_sec;
483 * The last two periods are after the irq is disabled, and
484 * then to the nmi, so we subtract them off.
487 countdown_reset = periods > 2 ? periods - 2 : 0;
488 heartbeat = t;
489 timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * timeout_sec) >> 8;
492 static int octeon_wdt_set_heartbeat(int t)
494 int cpu;
495 int coreid;
496 union cvmx_ciu_wdogx ciu_wdog;
498 if (t <= 0)
499 return -1;
501 octeon_wdt_calc_parameters(t);
503 for_each_online_cpu(cpu) {
504 coreid = cpu2core(cpu);
505 cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
506 ciu_wdog.u64 = 0;
507 ciu_wdog.s.len = timeout_cnt;
508 ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
509 cvmx_write_csr(CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
510 cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
512 octeon_wdt_ping(); /* Get the irqs back on. */
513 return 0;
517 * octeon_wdt_write:
518 * @file: file handle to the watchdog
519 * @buf: buffer to write (unused as data does not matter here
520 * @count: count of bytes
521 * @ppos: pointer to the position to write. No seeks allowed
523 * A write to a watchdog device is defined as a keepalive signal. Any
524 * write of data will do, as we we don't define content meaning.
527 static ssize_t octeon_wdt_write(struct file *file, const char __user *buf,
528 size_t count, loff_t *ppos)
530 if (count) {
531 if (!nowayout) {
532 size_t i;
534 /* In case it was set long ago */
535 expect_close = 0;
537 for (i = 0; i != count; i++) {
538 char c;
539 if (get_user(c, buf + i))
540 return -EFAULT;
541 if (c == 'V')
542 expect_close = 1;
545 octeon_wdt_ping();
547 return count;
551 * octeon_wdt_ioctl:
552 * @file: file handle to the device
553 * @cmd: watchdog command
554 * @arg: argument pointer
556 * The watchdog API defines a common set of functions for all
557 * watchdogs according to their available features. We only
558 * actually usefully support querying capabilities and setting
559 * the timeout.
562 static long octeon_wdt_ioctl(struct file *file, unsigned int cmd,
563 unsigned long arg)
565 void __user *argp = (void __user *)arg;
566 int __user *p = argp;
567 int new_heartbeat;
569 static struct watchdog_info ident = {
570 .options = WDIOF_SETTIMEOUT|
571 WDIOF_MAGICCLOSE|
572 WDIOF_KEEPALIVEPING,
573 .firmware_version = 1,
574 .identity = "OCTEON",
577 switch (cmd) {
578 case WDIOC_GETSUPPORT:
579 return copy_to_user(argp, &ident, sizeof(ident)) ? -EFAULT : 0;
580 case WDIOC_GETSTATUS:
581 case WDIOC_GETBOOTSTATUS:
582 return put_user(0, p);
583 case WDIOC_KEEPALIVE:
584 octeon_wdt_ping();
585 return 0;
586 case WDIOC_SETTIMEOUT:
587 if (get_user(new_heartbeat, p))
588 return -EFAULT;
589 if (octeon_wdt_set_heartbeat(new_heartbeat))
590 return -EINVAL;
591 /* Fall through. */
592 case WDIOC_GETTIMEOUT:
593 return put_user(heartbeat, p);
594 default:
595 return -ENOTTY;
600 * octeon_wdt_open:
601 * @inode: inode of device
602 * @file: file handle to device
604 * The watchdog device has been opened. The watchdog device is single
605 * open and on opening we do a ping to reset the counters.
608 static int octeon_wdt_open(struct inode *inode, struct file *file)
610 if (test_and_set_bit(0, &octeon_wdt_is_open))
611 return -EBUSY;
613 * Activate
615 octeon_wdt_ping();
616 do_coundown = 1;
617 return nonseekable_open(inode, file);
621 * octeon_wdt_release:
622 * @inode: inode to board
623 * @file: file handle to board
625 * The watchdog has a configurable API. There is a religious dispute
626 * between people who want their watchdog to be able to shut down and
627 * those who want to be sure if the watchdog manager dies the machine
628 * reboots. In the former case we disable the counters, in the latter
629 * case you have to open it again very soon.
632 static int octeon_wdt_release(struct inode *inode, struct file *file)
634 if (expect_close) {
635 do_coundown = 0;
636 octeon_wdt_ping();
637 } else {
638 pr_crit("WDT device closed unexpectedly. WDT will not stop!\n");
640 clear_bit(0, &octeon_wdt_is_open);
641 expect_close = 0;
642 return 0;
645 static const struct file_operations octeon_wdt_fops = {
646 .owner = THIS_MODULE,
647 .llseek = no_llseek,
648 .write = octeon_wdt_write,
649 .unlocked_ioctl = octeon_wdt_ioctl,
650 .open = octeon_wdt_open,
651 .release = octeon_wdt_release,
654 static struct miscdevice octeon_wdt_miscdev = {
655 .minor = WATCHDOG_MINOR,
656 .name = "watchdog",
657 .fops = &octeon_wdt_fops,
660 static struct notifier_block octeon_wdt_cpu_notifier = {
661 .notifier_call = octeon_wdt_cpu_callback,
666 * Module/ driver initialization.
668 * Returns Zero on success
670 static int __init octeon_wdt_init(void)
672 int i;
673 int ret;
674 int cpu;
675 u64 *ptr;
678 * Watchdog time expiration length = The 16 bits of LEN
679 * represent the most significant bits of a 24 bit decrementer
680 * that decrements every 256 cycles.
682 * Try for a timeout of 5 sec, if that fails a smaller number
683 * of even seconds,
685 max_timeout_sec = 6;
686 do {
687 max_timeout_sec--;
688 timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * max_timeout_sec) >> 8;
689 } while (timeout_cnt > 65535);
691 BUG_ON(timeout_cnt == 0);
693 octeon_wdt_calc_parameters(heartbeat);
695 pr_info("Initial granularity %d Sec\n", timeout_sec);
697 ret = misc_register(&octeon_wdt_miscdev);
698 if (ret) {
699 pr_err("cannot register miscdev on minor=%d (err=%d)\n",
700 WATCHDOG_MINOR, ret);
701 goto out;
704 /* Build the NMI handler ... */
705 octeon_wdt_build_stage1();
707 /* ... and install it. */
708 ptr = (u64 *) nmi_stage1_insns;
709 for (i = 0; i < 16; i++) {
710 cvmx_write_csr(CVMX_MIO_BOOT_LOC_ADR, i * 8);
711 cvmx_write_csr(CVMX_MIO_BOOT_LOC_DAT, ptr[i]);
713 cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0x81fc0000);
715 cpumask_clear(&irq_enabled_cpus);
717 cpu_notifier_register_begin();
718 for_each_online_cpu(cpu)
719 octeon_wdt_setup_interrupt(cpu);
721 __register_hotcpu_notifier(&octeon_wdt_cpu_notifier);
722 cpu_notifier_register_done();
724 out:
725 return ret;
729 * Module / driver shutdown
731 static void __exit octeon_wdt_cleanup(void)
733 int cpu;
735 misc_deregister(&octeon_wdt_miscdev);
737 cpu_notifier_register_begin();
738 __unregister_hotcpu_notifier(&octeon_wdt_cpu_notifier);
740 for_each_online_cpu(cpu) {
741 int core = cpu2core(cpu);
742 /* Disable the watchdog */
743 cvmx_write_csr(CVMX_CIU_WDOGX(core), 0);
744 /* Free the interrupt handler */
745 free_irq(OCTEON_IRQ_WDOG0 + core, octeon_wdt_poke_irq);
748 cpu_notifier_register_done();
751 * Disable the boot-bus memory, the code it points to is soon
752 * to go missing.
754 cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
757 MODULE_LICENSE("GPL");
758 MODULE_AUTHOR("Cavium Networks <support@caviumnetworks.com>");
759 MODULE_DESCRIPTION("Cavium Networks Octeon Watchdog driver.");
760 module_init(octeon_wdt_init);
761 module_exit(octeon_wdt_cleanup);