ALSA: hda - Move SD nums definitions to hda_intel.c
[linux/fpc-iii.git] / mm / vmscan.c
blob0f16ffe8eb67c6fcd0350add4a5a4b6092cb6905
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
53 #include <linux/swapops.h>
54 #include <linux/balloon_compaction.h>
56 #include "internal.h"
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/vmscan.h>
61 struct scan_control {
62 /* Incremented by the number of inactive pages that were scanned */
63 unsigned long nr_scanned;
65 /* Number of pages freed so far during a call to shrink_zones() */
66 unsigned long nr_reclaimed;
68 /* How many pages shrink_list() should reclaim */
69 unsigned long nr_to_reclaim;
71 unsigned long hibernation_mode;
73 /* This context's GFP mask */
74 gfp_t gfp_mask;
76 int may_writepage;
78 /* Can mapped pages be reclaimed? */
79 int may_unmap;
81 /* Can pages be swapped as part of reclaim? */
82 int may_swap;
84 int order;
86 /* Scan (total_size >> priority) pages at once */
87 int priority;
89 /* anon vs. file LRUs scanning "ratio" */
90 int swappiness;
93 * The memory cgroup that hit its limit and as a result is the
94 * primary target of this reclaim invocation.
96 struct mem_cgroup *target_mem_cgroup;
99 * Nodemask of nodes allowed by the caller. If NULL, all nodes
100 * are scanned.
102 nodemask_t *nodemask;
105 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
107 #ifdef ARCH_HAS_PREFETCH
108 #define prefetch_prev_lru_page(_page, _base, _field) \
109 do { \
110 if ((_page)->lru.prev != _base) { \
111 struct page *prev; \
113 prev = lru_to_page(&(_page->lru)); \
114 prefetch(&prev->_field); \
116 } while (0)
117 #else
118 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
119 #endif
121 #ifdef ARCH_HAS_PREFETCHW
122 #define prefetchw_prev_lru_page(_page, _base, _field) \
123 do { \
124 if ((_page)->lru.prev != _base) { \
125 struct page *prev; \
127 prev = lru_to_page(&(_page->lru)); \
128 prefetchw(&prev->_field); \
130 } while (0)
131 #else
132 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
133 #endif
136 * From 0 .. 100. Higher means more swappy.
138 int vm_swappiness = 60;
139 unsigned long vm_total_pages; /* The total number of pages which the VM controls */
141 static LIST_HEAD(shrinker_list);
142 static DECLARE_RWSEM(shrinker_rwsem);
144 #ifdef CONFIG_MEMCG
145 static bool global_reclaim(struct scan_control *sc)
147 return !sc->target_mem_cgroup;
149 #else
150 static bool global_reclaim(struct scan_control *sc)
152 return true;
154 #endif
156 static unsigned long zone_reclaimable_pages(struct zone *zone)
158 int nr;
160 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
161 zone_page_state(zone, NR_INACTIVE_FILE);
163 if (get_nr_swap_pages() > 0)
164 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
165 zone_page_state(zone, NR_INACTIVE_ANON);
167 return nr;
170 bool zone_reclaimable(struct zone *zone)
172 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
175 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
177 if (!mem_cgroup_disabled())
178 return mem_cgroup_get_lru_size(lruvec, lru);
180 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
184 * Add a shrinker callback to be called from the vm.
186 int register_shrinker(struct shrinker *shrinker)
188 size_t size = sizeof(*shrinker->nr_deferred);
191 * If we only have one possible node in the system anyway, save
192 * ourselves the trouble and disable NUMA aware behavior. This way we
193 * will save memory and some small loop time later.
195 if (nr_node_ids == 1)
196 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
198 if (shrinker->flags & SHRINKER_NUMA_AWARE)
199 size *= nr_node_ids;
201 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
202 if (!shrinker->nr_deferred)
203 return -ENOMEM;
205 down_write(&shrinker_rwsem);
206 list_add_tail(&shrinker->list, &shrinker_list);
207 up_write(&shrinker_rwsem);
208 return 0;
210 EXPORT_SYMBOL(register_shrinker);
213 * Remove one
215 void unregister_shrinker(struct shrinker *shrinker)
217 down_write(&shrinker_rwsem);
218 list_del(&shrinker->list);
219 up_write(&shrinker_rwsem);
220 kfree(shrinker->nr_deferred);
222 EXPORT_SYMBOL(unregister_shrinker);
224 #define SHRINK_BATCH 128
226 static unsigned long
227 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
228 unsigned long nr_pages_scanned, unsigned long lru_pages)
230 unsigned long freed = 0;
231 unsigned long long delta;
232 long total_scan;
233 long freeable;
234 long nr;
235 long new_nr;
236 int nid = shrinkctl->nid;
237 long batch_size = shrinker->batch ? shrinker->batch
238 : SHRINK_BATCH;
240 freeable = shrinker->count_objects(shrinker, shrinkctl);
241 if (freeable == 0)
242 return 0;
245 * copy the current shrinker scan count into a local variable
246 * and zero it so that other concurrent shrinker invocations
247 * don't also do this scanning work.
249 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
251 total_scan = nr;
252 delta = (4 * nr_pages_scanned) / shrinker->seeks;
253 delta *= freeable;
254 do_div(delta, lru_pages + 1);
255 total_scan += delta;
256 if (total_scan < 0) {
257 printk(KERN_ERR
258 "shrink_slab: %pF negative objects to delete nr=%ld\n",
259 shrinker->scan_objects, total_scan);
260 total_scan = freeable;
264 * We need to avoid excessive windup on filesystem shrinkers
265 * due to large numbers of GFP_NOFS allocations causing the
266 * shrinkers to return -1 all the time. This results in a large
267 * nr being built up so when a shrink that can do some work
268 * comes along it empties the entire cache due to nr >>>
269 * freeable. This is bad for sustaining a working set in
270 * memory.
272 * Hence only allow the shrinker to scan the entire cache when
273 * a large delta change is calculated directly.
275 if (delta < freeable / 4)
276 total_scan = min(total_scan, freeable / 2);
279 * Avoid risking looping forever due to too large nr value:
280 * never try to free more than twice the estimate number of
281 * freeable entries.
283 if (total_scan > freeable * 2)
284 total_scan = freeable * 2;
286 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
287 nr_pages_scanned, lru_pages,
288 freeable, delta, total_scan);
291 * Normally, we should not scan less than batch_size objects in one
292 * pass to avoid too frequent shrinker calls, but if the slab has less
293 * than batch_size objects in total and we are really tight on memory,
294 * we will try to reclaim all available objects, otherwise we can end
295 * up failing allocations although there are plenty of reclaimable
296 * objects spread over several slabs with usage less than the
297 * batch_size.
299 * We detect the "tight on memory" situations by looking at the total
300 * number of objects we want to scan (total_scan). If it is greater
301 * than the total number of objects on slab (freeable), we must be
302 * scanning at high prio and therefore should try to reclaim as much as
303 * possible.
305 while (total_scan >= batch_size ||
306 total_scan >= freeable) {
307 unsigned long ret;
308 unsigned long nr_to_scan = min(batch_size, total_scan);
310 shrinkctl->nr_to_scan = nr_to_scan;
311 ret = shrinker->scan_objects(shrinker, shrinkctl);
312 if (ret == SHRINK_STOP)
313 break;
314 freed += ret;
316 count_vm_events(SLABS_SCANNED, nr_to_scan);
317 total_scan -= nr_to_scan;
319 cond_resched();
323 * move the unused scan count back into the shrinker in a
324 * manner that handles concurrent updates. If we exhausted the
325 * scan, there is no need to do an update.
327 if (total_scan > 0)
328 new_nr = atomic_long_add_return(total_scan,
329 &shrinker->nr_deferred[nid]);
330 else
331 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
333 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
334 return freed;
338 * Call the shrink functions to age shrinkable caches
340 * Here we assume it costs one seek to replace a lru page and that it also
341 * takes a seek to recreate a cache object. With this in mind we age equal
342 * percentages of the lru and ageable caches. This should balance the seeks
343 * generated by these structures.
345 * If the vm encountered mapped pages on the LRU it increase the pressure on
346 * slab to avoid swapping.
348 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
350 * `lru_pages' represents the number of on-LRU pages in all the zones which
351 * are eligible for the caller's allocation attempt. It is used for balancing
352 * slab reclaim versus page reclaim.
354 * Returns the number of slab objects which we shrunk.
356 unsigned long shrink_slab(struct shrink_control *shrinkctl,
357 unsigned long nr_pages_scanned,
358 unsigned long lru_pages)
360 struct shrinker *shrinker;
361 unsigned long freed = 0;
363 if (nr_pages_scanned == 0)
364 nr_pages_scanned = SWAP_CLUSTER_MAX;
366 if (!down_read_trylock(&shrinker_rwsem)) {
368 * If we would return 0, our callers would understand that we
369 * have nothing else to shrink and give up trying. By returning
370 * 1 we keep it going and assume we'll be able to shrink next
371 * time.
373 freed = 1;
374 goto out;
377 list_for_each_entry(shrinker, &shrinker_list, list) {
378 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
379 shrinkctl->nid = 0;
380 freed += shrink_slab_node(shrinkctl, shrinker,
381 nr_pages_scanned, lru_pages);
382 continue;
385 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
386 if (node_online(shrinkctl->nid))
387 freed += shrink_slab_node(shrinkctl, shrinker,
388 nr_pages_scanned, lru_pages);
392 up_read(&shrinker_rwsem);
393 out:
394 cond_resched();
395 return freed;
398 static inline int is_page_cache_freeable(struct page *page)
401 * A freeable page cache page is referenced only by the caller
402 * that isolated the page, the page cache radix tree and
403 * optional buffer heads at page->private.
405 return page_count(page) - page_has_private(page) == 2;
408 static int may_write_to_queue(struct backing_dev_info *bdi,
409 struct scan_control *sc)
411 if (current->flags & PF_SWAPWRITE)
412 return 1;
413 if (!bdi_write_congested(bdi))
414 return 1;
415 if (bdi == current->backing_dev_info)
416 return 1;
417 return 0;
421 * We detected a synchronous write error writing a page out. Probably
422 * -ENOSPC. We need to propagate that into the address_space for a subsequent
423 * fsync(), msync() or close().
425 * The tricky part is that after writepage we cannot touch the mapping: nothing
426 * prevents it from being freed up. But we have a ref on the page and once
427 * that page is locked, the mapping is pinned.
429 * We're allowed to run sleeping lock_page() here because we know the caller has
430 * __GFP_FS.
432 static void handle_write_error(struct address_space *mapping,
433 struct page *page, int error)
435 lock_page(page);
436 if (page_mapping(page) == mapping)
437 mapping_set_error(mapping, error);
438 unlock_page(page);
441 /* possible outcome of pageout() */
442 typedef enum {
443 /* failed to write page out, page is locked */
444 PAGE_KEEP,
445 /* move page to the active list, page is locked */
446 PAGE_ACTIVATE,
447 /* page has been sent to the disk successfully, page is unlocked */
448 PAGE_SUCCESS,
449 /* page is clean and locked */
450 PAGE_CLEAN,
451 } pageout_t;
454 * pageout is called by shrink_page_list() for each dirty page.
455 * Calls ->writepage().
457 static pageout_t pageout(struct page *page, struct address_space *mapping,
458 struct scan_control *sc)
461 * If the page is dirty, only perform writeback if that write
462 * will be non-blocking. To prevent this allocation from being
463 * stalled by pagecache activity. But note that there may be
464 * stalls if we need to run get_block(). We could test
465 * PagePrivate for that.
467 * If this process is currently in __generic_file_write_iter() against
468 * this page's queue, we can perform writeback even if that
469 * will block.
471 * If the page is swapcache, write it back even if that would
472 * block, for some throttling. This happens by accident, because
473 * swap_backing_dev_info is bust: it doesn't reflect the
474 * congestion state of the swapdevs. Easy to fix, if needed.
476 if (!is_page_cache_freeable(page))
477 return PAGE_KEEP;
478 if (!mapping) {
480 * Some data journaling orphaned pages can have
481 * page->mapping == NULL while being dirty with clean buffers.
483 if (page_has_private(page)) {
484 if (try_to_free_buffers(page)) {
485 ClearPageDirty(page);
486 pr_info("%s: orphaned page\n", __func__);
487 return PAGE_CLEAN;
490 return PAGE_KEEP;
492 if (mapping->a_ops->writepage == NULL)
493 return PAGE_ACTIVATE;
494 if (!may_write_to_queue(mapping->backing_dev_info, sc))
495 return PAGE_KEEP;
497 if (clear_page_dirty_for_io(page)) {
498 int res;
499 struct writeback_control wbc = {
500 .sync_mode = WB_SYNC_NONE,
501 .nr_to_write = SWAP_CLUSTER_MAX,
502 .range_start = 0,
503 .range_end = LLONG_MAX,
504 .for_reclaim = 1,
507 SetPageReclaim(page);
508 res = mapping->a_ops->writepage(page, &wbc);
509 if (res < 0)
510 handle_write_error(mapping, page, res);
511 if (res == AOP_WRITEPAGE_ACTIVATE) {
512 ClearPageReclaim(page);
513 return PAGE_ACTIVATE;
516 if (!PageWriteback(page)) {
517 /* synchronous write or broken a_ops? */
518 ClearPageReclaim(page);
520 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
521 inc_zone_page_state(page, NR_VMSCAN_WRITE);
522 return PAGE_SUCCESS;
525 return PAGE_CLEAN;
529 * Same as remove_mapping, but if the page is removed from the mapping, it
530 * gets returned with a refcount of 0.
532 static int __remove_mapping(struct address_space *mapping, struct page *page,
533 bool reclaimed)
535 BUG_ON(!PageLocked(page));
536 BUG_ON(mapping != page_mapping(page));
538 spin_lock_irq(&mapping->tree_lock);
540 * The non racy check for a busy page.
542 * Must be careful with the order of the tests. When someone has
543 * a ref to the page, it may be possible that they dirty it then
544 * drop the reference. So if PageDirty is tested before page_count
545 * here, then the following race may occur:
547 * get_user_pages(&page);
548 * [user mapping goes away]
549 * write_to(page);
550 * !PageDirty(page) [good]
551 * SetPageDirty(page);
552 * put_page(page);
553 * !page_count(page) [good, discard it]
555 * [oops, our write_to data is lost]
557 * Reversing the order of the tests ensures such a situation cannot
558 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
559 * load is not satisfied before that of page->_count.
561 * Note that if SetPageDirty is always performed via set_page_dirty,
562 * and thus under tree_lock, then this ordering is not required.
564 if (!page_freeze_refs(page, 2))
565 goto cannot_free;
566 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
567 if (unlikely(PageDirty(page))) {
568 page_unfreeze_refs(page, 2);
569 goto cannot_free;
572 if (PageSwapCache(page)) {
573 swp_entry_t swap = { .val = page_private(page) };
574 __delete_from_swap_cache(page);
575 spin_unlock_irq(&mapping->tree_lock);
576 swapcache_free(swap, page);
577 } else {
578 void (*freepage)(struct page *);
579 void *shadow = NULL;
581 freepage = mapping->a_ops->freepage;
583 * Remember a shadow entry for reclaimed file cache in
584 * order to detect refaults, thus thrashing, later on.
586 * But don't store shadows in an address space that is
587 * already exiting. This is not just an optizimation,
588 * inode reclaim needs to empty out the radix tree or
589 * the nodes are lost. Don't plant shadows behind its
590 * back.
592 if (reclaimed && page_is_file_cache(page) &&
593 !mapping_exiting(mapping))
594 shadow = workingset_eviction(mapping, page);
595 __delete_from_page_cache(page, shadow);
596 spin_unlock_irq(&mapping->tree_lock);
597 mem_cgroup_uncharge_cache_page(page);
599 if (freepage != NULL)
600 freepage(page);
603 return 1;
605 cannot_free:
606 spin_unlock_irq(&mapping->tree_lock);
607 return 0;
611 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
612 * someone else has a ref on the page, abort and return 0. If it was
613 * successfully detached, return 1. Assumes the caller has a single ref on
614 * this page.
616 int remove_mapping(struct address_space *mapping, struct page *page)
618 if (__remove_mapping(mapping, page, false)) {
620 * Unfreezing the refcount with 1 rather than 2 effectively
621 * drops the pagecache ref for us without requiring another
622 * atomic operation.
624 page_unfreeze_refs(page, 1);
625 return 1;
627 return 0;
631 * putback_lru_page - put previously isolated page onto appropriate LRU list
632 * @page: page to be put back to appropriate lru list
634 * Add previously isolated @page to appropriate LRU list.
635 * Page may still be unevictable for other reasons.
637 * lru_lock must not be held, interrupts must be enabled.
639 void putback_lru_page(struct page *page)
641 bool is_unevictable;
642 int was_unevictable = PageUnevictable(page);
644 VM_BUG_ON_PAGE(PageLRU(page), page);
646 redo:
647 ClearPageUnevictable(page);
649 if (page_evictable(page)) {
651 * For evictable pages, we can use the cache.
652 * In event of a race, worst case is we end up with an
653 * unevictable page on [in]active list.
654 * We know how to handle that.
656 is_unevictable = false;
657 lru_cache_add(page);
658 } else {
660 * Put unevictable pages directly on zone's unevictable
661 * list.
663 is_unevictable = true;
664 add_page_to_unevictable_list(page);
666 * When racing with an mlock or AS_UNEVICTABLE clearing
667 * (page is unlocked) make sure that if the other thread
668 * does not observe our setting of PG_lru and fails
669 * isolation/check_move_unevictable_pages,
670 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
671 * the page back to the evictable list.
673 * The other side is TestClearPageMlocked() or shmem_lock().
675 smp_mb();
679 * page's status can change while we move it among lru. If an evictable
680 * page is on unevictable list, it never be freed. To avoid that,
681 * check after we added it to the list, again.
683 if (is_unevictable && page_evictable(page)) {
684 if (!isolate_lru_page(page)) {
685 put_page(page);
686 goto redo;
688 /* This means someone else dropped this page from LRU
689 * So, it will be freed or putback to LRU again. There is
690 * nothing to do here.
694 if (was_unevictable && !is_unevictable)
695 count_vm_event(UNEVICTABLE_PGRESCUED);
696 else if (!was_unevictable && is_unevictable)
697 count_vm_event(UNEVICTABLE_PGCULLED);
699 put_page(page); /* drop ref from isolate */
702 enum page_references {
703 PAGEREF_RECLAIM,
704 PAGEREF_RECLAIM_CLEAN,
705 PAGEREF_KEEP,
706 PAGEREF_ACTIVATE,
709 static enum page_references page_check_references(struct page *page,
710 struct scan_control *sc)
712 int referenced_ptes, referenced_page;
713 unsigned long vm_flags;
715 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
716 &vm_flags);
717 referenced_page = TestClearPageReferenced(page);
720 * Mlock lost the isolation race with us. Let try_to_unmap()
721 * move the page to the unevictable list.
723 if (vm_flags & VM_LOCKED)
724 return PAGEREF_RECLAIM;
726 if (referenced_ptes) {
727 if (PageSwapBacked(page))
728 return PAGEREF_ACTIVATE;
730 * All mapped pages start out with page table
731 * references from the instantiating fault, so we need
732 * to look twice if a mapped file page is used more
733 * than once.
735 * Mark it and spare it for another trip around the
736 * inactive list. Another page table reference will
737 * lead to its activation.
739 * Note: the mark is set for activated pages as well
740 * so that recently deactivated but used pages are
741 * quickly recovered.
743 SetPageReferenced(page);
745 if (referenced_page || referenced_ptes > 1)
746 return PAGEREF_ACTIVATE;
749 * Activate file-backed executable pages after first usage.
751 if (vm_flags & VM_EXEC)
752 return PAGEREF_ACTIVATE;
754 return PAGEREF_KEEP;
757 /* Reclaim if clean, defer dirty pages to writeback */
758 if (referenced_page && !PageSwapBacked(page))
759 return PAGEREF_RECLAIM_CLEAN;
761 return PAGEREF_RECLAIM;
764 /* Check if a page is dirty or under writeback */
765 static void page_check_dirty_writeback(struct page *page,
766 bool *dirty, bool *writeback)
768 struct address_space *mapping;
771 * Anonymous pages are not handled by flushers and must be written
772 * from reclaim context. Do not stall reclaim based on them
774 if (!page_is_file_cache(page)) {
775 *dirty = false;
776 *writeback = false;
777 return;
780 /* By default assume that the page flags are accurate */
781 *dirty = PageDirty(page);
782 *writeback = PageWriteback(page);
784 /* Verify dirty/writeback state if the filesystem supports it */
785 if (!page_has_private(page))
786 return;
788 mapping = page_mapping(page);
789 if (mapping && mapping->a_ops->is_dirty_writeback)
790 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
794 * shrink_page_list() returns the number of reclaimed pages
796 static unsigned long shrink_page_list(struct list_head *page_list,
797 struct zone *zone,
798 struct scan_control *sc,
799 enum ttu_flags ttu_flags,
800 unsigned long *ret_nr_dirty,
801 unsigned long *ret_nr_unqueued_dirty,
802 unsigned long *ret_nr_congested,
803 unsigned long *ret_nr_writeback,
804 unsigned long *ret_nr_immediate,
805 bool force_reclaim)
807 LIST_HEAD(ret_pages);
808 LIST_HEAD(free_pages);
809 int pgactivate = 0;
810 unsigned long nr_unqueued_dirty = 0;
811 unsigned long nr_dirty = 0;
812 unsigned long nr_congested = 0;
813 unsigned long nr_reclaimed = 0;
814 unsigned long nr_writeback = 0;
815 unsigned long nr_immediate = 0;
817 cond_resched();
819 mem_cgroup_uncharge_start();
820 while (!list_empty(page_list)) {
821 struct address_space *mapping;
822 struct page *page;
823 int may_enter_fs;
824 enum page_references references = PAGEREF_RECLAIM_CLEAN;
825 bool dirty, writeback;
827 cond_resched();
829 page = lru_to_page(page_list);
830 list_del(&page->lru);
832 if (!trylock_page(page))
833 goto keep;
835 VM_BUG_ON_PAGE(PageActive(page), page);
836 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
838 sc->nr_scanned++;
840 if (unlikely(!page_evictable(page)))
841 goto cull_mlocked;
843 if (!sc->may_unmap && page_mapped(page))
844 goto keep_locked;
846 /* Double the slab pressure for mapped and swapcache pages */
847 if (page_mapped(page) || PageSwapCache(page))
848 sc->nr_scanned++;
850 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
851 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
854 * The number of dirty pages determines if a zone is marked
855 * reclaim_congested which affects wait_iff_congested. kswapd
856 * will stall and start writing pages if the tail of the LRU
857 * is all dirty unqueued pages.
859 page_check_dirty_writeback(page, &dirty, &writeback);
860 if (dirty || writeback)
861 nr_dirty++;
863 if (dirty && !writeback)
864 nr_unqueued_dirty++;
867 * Treat this page as congested if the underlying BDI is or if
868 * pages are cycling through the LRU so quickly that the
869 * pages marked for immediate reclaim are making it to the
870 * end of the LRU a second time.
872 mapping = page_mapping(page);
873 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
874 (writeback && PageReclaim(page)))
875 nr_congested++;
878 * If a page at the tail of the LRU is under writeback, there
879 * are three cases to consider.
881 * 1) If reclaim is encountering an excessive number of pages
882 * under writeback and this page is both under writeback and
883 * PageReclaim then it indicates that pages are being queued
884 * for IO but are being recycled through the LRU before the
885 * IO can complete. Waiting on the page itself risks an
886 * indefinite stall if it is impossible to writeback the
887 * page due to IO error or disconnected storage so instead
888 * note that the LRU is being scanned too quickly and the
889 * caller can stall after page list has been processed.
891 * 2) Global reclaim encounters a page, memcg encounters a
892 * page that is not marked for immediate reclaim or
893 * the caller does not have __GFP_IO. In this case mark
894 * the page for immediate reclaim and continue scanning.
896 * __GFP_IO is checked because a loop driver thread might
897 * enter reclaim, and deadlock if it waits on a page for
898 * which it is needed to do the write (loop masks off
899 * __GFP_IO|__GFP_FS for this reason); but more thought
900 * would probably show more reasons.
902 * Don't require __GFP_FS, since we're not going into the
903 * FS, just waiting on its writeback completion. Worryingly,
904 * ext4 gfs2 and xfs allocate pages with
905 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
906 * may_enter_fs here is liable to OOM on them.
908 * 3) memcg encounters a page that is not already marked
909 * PageReclaim. memcg does not have any dirty pages
910 * throttling so we could easily OOM just because too many
911 * pages are in writeback and there is nothing else to
912 * reclaim. Wait for the writeback to complete.
914 if (PageWriteback(page)) {
915 /* Case 1 above */
916 if (current_is_kswapd() &&
917 PageReclaim(page) &&
918 zone_is_reclaim_writeback(zone)) {
919 nr_immediate++;
920 goto keep_locked;
922 /* Case 2 above */
923 } else if (global_reclaim(sc) ||
924 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
926 * This is slightly racy - end_page_writeback()
927 * might have just cleared PageReclaim, then
928 * setting PageReclaim here end up interpreted
929 * as PageReadahead - but that does not matter
930 * enough to care. What we do want is for this
931 * page to have PageReclaim set next time memcg
932 * reclaim reaches the tests above, so it will
933 * then wait_on_page_writeback() to avoid OOM;
934 * and it's also appropriate in global reclaim.
936 SetPageReclaim(page);
937 nr_writeback++;
939 goto keep_locked;
941 /* Case 3 above */
942 } else {
943 wait_on_page_writeback(page);
947 if (!force_reclaim)
948 references = page_check_references(page, sc);
950 switch (references) {
951 case PAGEREF_ACTIVATE:
952 goto activate_locked;
953 case PAGEREF_KEEP:
954 goto keep_locked;
955 case PAGEREF_RECLAIM:
956 case PAGEREF_RECLAIM_CLEAN:
957 ; /* try to reclaim the page below */
961 * Anonymous process memory has backing store?
962 * Try to allocate it some swap space here.
964 if (PageAnon(page) && !PageSwapCache(page)) {
965 if (!(sc->gfp_mask & __GFP_IO))
966 goto keep_locked;
967 if (!add_to_swap(page, page_list))
968 goto activate_locked;
969 may_enter_fs = 1;
971 /* Adding to swap updated mapping */
972 mapping = page_mapping(page);
976 * The page is mapped into the page tables of one or more
977 * processes. Try to unmap it here.
979 if (page_mapped(page) && mapping) {
980 switch (try_to_unmap(page, ttu_flags)) {
981 case SWAP_FAIL:
982 goto activate_locked;
983 case SWAP_AGAIN:
984 goto keep_locked;
985 case SWAP_MLOCK:
986 goto cull_mlocked;
987 case SWAP_SUCCESS:
988 ; /* try to free the page below */
992 if (PageDirty(page)) {
994 * Only kswapd can writeback filesystem pages to
995 * avoid risk of stack overflow but only writeback
996 * if many dirty pages have been encountered.
998 if (page_is_file_cache(page) &&
999 (!current_is_kswapd() ||
1000 !zone_is_reclaim_dirty(zone))) {
1002 * Immediately reclaim when written back.
1003 * Similar in principal to deactivate_page()
1004 * except we already have the page isolated
1005 * and know it's dirty
1007 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1008 SetPageReclaim(page);
1010 goto keep_locked;
1013 if (references == PAGEREF_RECLAIM_CLEAN)
1014 goto keep_locked;
1015 if (!may_enter_fs)
1016 goto keep_locked;
1017 if (!sc->may_writepage)
1018 goto keep_locked;
1020 /* Page is dirty, try to write it out here */
1021 switch (pageout(page, mapping, sc)) {
1022 case PAGE_KEEP:
1023 goto keep_locked;
1024 case PAGE_ACTIVATE:
1025 goto activate_locked;
1026 case PAGE_SUCCESS:
1027 if (PageWriteback(page))
1028 goto keep;
1029 if (PageDirty(page))
1030 goto keep;
1033 * A synchronous write - probably a ramdisk. Go
1034 * ahead and try to reclaim the page.
1036 if (!trylock_page(page))
1037 goto keep;
1038 if (PageDirty(page) || PageWriteback(page))
1039 goto keep_locked;
1040 mapping = page_mapping(page);
1041 case PAGE_CLEAN:
1042 ; /* try to free the page below */
1047 * If the page has buffers, try to free the buffer mappings
1048 * associated with this page. If we succeed we try to free
1049 * the page as well.
1051 * We do this even if the page is PageDirty().
1052 * try_to_release_page() does not perform I/O, but it is
1053 * possible for a page to have PageDirty set, but it is actually
1054 * clean (all its buffers are clean). This happens if the
1055 * buffers were written out directly, with submit_bh(). ext3
1056 * will do this, as well as the blockdev mapping.
1057 * try_to_release_page() will discover that cleanness and will
1058 * drop the buffers and mark the page clean - it can be freed.
1060 * Rarely, pages can have buffers and no ->mapping. These are
1061 * the pages which were not successfully invalidated in
1062 * truncate_complete_page(). We try to drop those buffers here
1063 * and if that worked, and the page is no longer mapped into
1064 * process address space (page_count == 1) it can be freed.
1065 * Otherwise, leave the page on the LRU so it is swappable.
1067 if (page_has_private(page)) {
1068 if (!try_to_release_page(page, sc->gfp_mask))
1069 goto activate_locked;
1070 if (!mapping && page_count(page) == 1) {
1071 unlock_page(page);
1072 if (put_page_testzero(page))
1073 goto free_it;
1074 else {
1076 * rare race with speculative reference.
1077 * the speculative reference will free
1078 * this page shortly, so we may
1079 * increment nr_reclaimed here (and
1080 * leave it off the LRU).
1082 nr_reclaimed++;
1083 continue;
1088 if (!mapping || !__remove_mapping(mapping, page, true))
1089 goto keep_locked;
1092 * At this point, we have no other references and there is
1093 * no way to pick any more up (removed from LRU, removed
1094 * from pagecache). Can use non-atomic bitops now (and
1095 * we obviously don't have to worry about waking up a process
1096 * waiting on the page lock, because there are no references.
1098 __clear_page_locked(page);
1099 free_it:
1100 nr_reclaimed++;
1103 * Is there need to periodically free_page_list? It would
1104 * appear not as the counts should be low
1106 list_add(&page->lru, &free_pages);
1107 continue;
1109 cull_mlocked:
1110 if (PageSwapCache(page))
1111 try_to_free_swap(page);
1112 unlock_page(page);
1113 putback_lru_page(page);
1114 continue;
1116 activate_locked:
1117 /* Not a candidate for swapping, so reclaim swap space. */
1118 if (PageSwapCache(page) && vm_swap_full())
1119 try_to_free_swap(page);
1120 VM_BUG_ON_PAGE(PageActive(page), page);
1121 SetPageActive(page);
1122 pgactivate++;
1123 keep_locked:
1124 unlock_page(page);
1125 keep:
1126 list_add(&page->lru, &ret_pages);
1127 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1130 free_hot_cold_page_list(&free_pages, true);
1132 list_splice(&ret_pages, page_list);
1133 count_vm_events(PGACTIVATE, pgactivate);
1134 mem_cgroup_uncharge_end();
1135 *ret_nr_dirty += nr_dirty;
1136 *ret_nr_congested += nr_congested;
1137 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1138 *ret_nr_writeback += nr_writeback;
1139 *ret_nr_immediate += nr_immediate;
1140 return nr_reclaimed;
1143 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1144 struct list_head *page_list)
1146 struct scan_control sc = {
1147 .gfp_mask = GFP_KERNEL,
1148 .priority = DEF_PRIORITY,
1149 .may_unmap = 1,
1151 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1152 struct page *page, *next;
1153 LIST_HEAD(clean_pages);
1155 list_for_each_entry_safe(page, next, page_list, lru) {
1156 if (page_is_file_cache(page) && !PageDirty(page) &&
1157 !isolated_balloon_page(page)) {
1158 ClearPageActive(page);
1159 list_move(&page->lru, &clean_pages);
1163 ret = shrink_page_list(&clean_pages, zone, &sc,
1164 TTU_UNMAP|TTU_IGNORE_ACCESS,
1165 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1166 list_splice(&clean_pages, page_list);
1167 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1168 return ret;
1172 * Attempt to remove the specified page from its LRU. Only take this page
1173 * if it is of the appropriate PageActive status. Pages which are being
1174 * freed elsewhere are also ignored.
1176 * page: page to consider
1177 * mode: one of the LRU isolation modes defined above
1179 * returns 0 on success, -ve errno on failure.
1181 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1183 int ret = -EINVAL;
1185 /* Only take pages on the LRU. */
1186 if (!PageLRU(page))
1187 return ret;
1189 /* Compaction should not handle unevictable pages but CMA can do so */
1190 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1191 return ret;
1193 ret = -EBUSY;
1196 * To minimise LRU disruption, the caller can indicate that it only
1197 * wants to isolate pages it will be able to operate on without
1198 * blocking - clean pages for the most part.
1200 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1201 * is used by reclaim when it is cannot write to backing storage
1203 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1204 * that it is possible to migrate without blocking
1206 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1207 /* All the caller can do on PageWriteback is block */
1208 if (PageWriteback(page))
1209 return ret;
1211 if (PageDirty(page)) {
1212 struct address_space *mapping;
1214 /* ISOLATE_CLEAN means only clean pages */
1215 if (mode & ISOLATE_CLEAN)
1216 return ret;
1219 * Only pages without mappings or that have a
1220 * ->migratepage callback are possible to migrate
1221 * without blocking
1223 mapping = page_mapping(page);
1224 if (mapping && !mapping->a_ops->migratepage)
1225 return ret;
1229 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1230 return ret;
1232 if (likely(get_page_unless_zero(page))) {
1234 * Be careful not to clear PageLRU until after we're
1235 * sure the page is not being freed elsewhere -- the
1236 * page release code relies on it.
1238 ClearPageLRU(page);
1239 ret = 0;
1242 return ret;
1246 * zone->lru_lock is heavily contended. Some of the functions that
1247 * shrink the lists perform better by taking out a batch of pages
1248 * and working on them outside the LRU lock.
1250 * For pagecache intensive workloads, this function is the hottest
1251 * spot in the kernel (apart from copy_*_user functions).
1253 * Appropriate locks must be held before calling this function.
1255 * @nr_to_scan: The number of pages to look through on the list.
1256 * @lruvec: The LRU vector to pull pages from.
1257 * @dst: The temp list to put pages on to.
1258 * @nr_scanned: The number of pages that were scanned.
1259 * @sc: The scan_control struct for this reclaim session
1260 * @mode: One of the LRU isolation modes
1261 * @lru: LRU list id for isolating
1263 * returns how many pages were moved onto *@dst.
1265 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1266 struct lruvec *lruvec, struct list_head *dst,
1267 unsigned long *nr_scanned, struct scan_control *sc,
1268 isolate_mode_t mode, enum lru_list lru)
1270 struct list_head *src = &lruvec->lists[lru];
1271 unsigned long nr_taken = 0;
1272 unsigned long scan;
1274 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1275 struct page *page;
1276 int nr_pages;
1278 page = lru_to_page(src);
1279 prefetchw_prev_lru_page(page, src, flags);
1281 VM_BUG_ON_PAGE(!PageLRU(page), page);
1283 switch (__isolate_lru_page(page, mode)) {
1284 case 0:
1285 nr_pages = hpage_nr_pages(page);
1286 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1287 list_move(&page->lru, dst);
1288 nr_taken += nr_pages;
1289 break;
1291 case -EBUSY:
1292 /* else it is being freed elsewhere */
1293 list_move(&page->lru, src);
1294 continue;
1296 default:
1297 BUG();
1301 *nr_scanned = scan;
1302 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1303 nr_taken, mode, is_file_lru(lru));
1304 return nr_taken;
1308 * isolate_lru_page - tries to isolate a page from its LRU list
1309 * @page: page to isolate from its LRU list
1311 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1312 * vmstat statistic corresponding to whatever LRU list the page was on.
1314 * Returns 0 if the page was removed from an LRU list.
1315 * Returns -EBUSY if the page was not on an LRU list.
1317 * The returned page will have PageLRU() cleared. If it was found on
1318 * the active list, it will have PageActive set. If it was found on
1319 * the unevictable list, it will have the PageUnevictable bit set. That flag
1320 * may need to be cleared by the caller before letting the page go.
1322 * The vmstat statistic corresponding to the list on which the page was
1323 * found will be decremented.
1325 * Restrictions:
1326 * (1) Must be called with an elevated refcount on the page. This is a
1327 * fundamentnal difference from isolate_lru_pages (which is called
1328 * without a stable reference).
1329 * (2) the lru_lock must not be held.
1330 * (3) interrupts must be enabled.
1332 int isolate_lru_page(struct page *page)
1334 int ret = -EBUSY;
1336 VM_BUG_ON_PAGE(!page_count(page), page);
1338 if (PageLRU(page)) {
1339 struct zone *zone = page_zone(page);
1340 struct lruvec *lruvec;
1342 spin_lock_irq(&zone->lru_lock);
1343 lruvec = mem_cgroup_page_lruvec(page, zone);
1344 if (PageLRU(page)) {
1345 int lru = page_lru(page);
1346 get_page(page);
1347 ClearPageLRU(page);
1348 del_page_from_lru_list(page, lruvec, lru);
1349 ret = 0;
1351 spin_unlock_irq(&zone->lru_lock);
1353 return ret;
1357 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1358 * then get resheduled. When there are massive number of tasks doing page
1359 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1360 * the LRU list will go small and be scanned faster than necessary, leading to
1361 * unnecessary swapping, thrashing and OOM.
1363 static int too_many_isolated(struct zone *zone, int file,
1364 struct scan_control *sc)
1366 unsigned long inactive, isolated;
1368 if (current_is_kswapd())
1369 return 0;
1371 if (!global_reclaim(sc))
1372 return 0;
1374 if (file) {
1375 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1376 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1377 } else {
1378 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1379 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1383 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1384 * won't get blocked by normal direct-reclaimers, forming a circular
1385 * deadlock.
1387 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1388 inactive >>= 3;
1390 return isolated > inactive;
1393 static noinline_for_stack void
1394 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1396 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1397 struct zone *zone = lruvec_zone(lruvec);
1398 LIST_HEAD(pages_to_free);
1401 * Put back any unfreeable pages.
1403 while (!list_empty(page_list)) {
1404 struct page *page = lru_to_page(page_list);
1405 int lru;
1407 VM_BUG_ON_PAGE(PageLRU(page), page);
1408 list_del(&page->lru);
1409 if (unlikely(!page_evictable(page))) {
1410 spin_unlock_irq(&zone->lru_lock);
1411 putback_lru_page(page);
1412 spin_lock_irq(&zone->lru_lock);
1413 continue;
1416 lruvec = mem_cgroup_page_lruvec(page, zone);
1418 SetPageLRU(page);
1419 lru = page_lru(page);
1420 add_page_to_lru_list(page, lruvec, lru);
1422 if (is_active_lru(lru)) {
1423 int file = is_file_lru(lru);
1424 int numpages = hpage_nr_pages(page);
1425 reclaim_stat->recent_rotated[file] += numpages;
1427 if (put_page_testzero(page)) {
1428 __ClearPageLRU(page);
1429 __ClearPageActive(page);
1430 del_page_from_lru_list(page, lruvec, lru);
1432 if (unlikely(PageCompound(page))) {
1433 spin_unlock_irq(&zone->lru_lock);
1434 (*get_compound_page_dtor(page))(page);
1435 spin_lock_irq(&zone->lru_lock);
1436 } else
1437 list_add(&page->lru, &pages_to_free);
1442 * To save our caller's stack, now use input list for pages to free.
1444 list_splice(&pages_to_free, page_list);
1448 * If a kernel thread (such as nfsd for loop-back mounts) services
1449 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1450 * In that case we should only throttle if the backing device it is
1451 * writing to is congested. In other cases it is safe to throttle.
1453 static int current_may_throttle(void)
1455 return !(current->flags & PF_LESS_THROTTLE) ||
1456 current->backing_dev_info == NULL ||
1457 bdi_write_congested(current->backing_dev_info);
1461 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1462 * of reclaimed pages
1464 static noinline_for_stack unsigned long
1465 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1466 struct scan_control *sc, enum lru_list lru)
1468 LIST_HEAD(page_list);
1469 unsigned long nr_scanned;
1470 unsigned long nr_reclaimed = 0;
1471 unsigned long nr_taken;
1472 unsigned long nr_dirty = 0;
1473 unsigned long nr_congested = 0;
1474 unsigned long nr_unqueued_dirty = 0;
1475 unsigned long nr_writeback = 0;
1476 unsigned long nr_immediate = 0;
1477 isolate_mode_t isolate_mode = 0;
1478 int file = is_file_lru(lru);
1479 struct zone *zone = lruvec_zone(lruvec);
1480 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1482 while (unlikely(too_many_isolated(zone, file, sc))) {
1483 congestion_wait(BLK_RW_ASYNC, HZ/10);
1485 /* We are about to die and free our memory. Return now. */
1486 if (fatal_signal_pending(current))
1487 return SWAP_CLUSTER_MAX;
1490 lru_add_drain();
1492 if (!sc->may_unmap)
1493 isolate_mode |= ISOLATE_UNMAPPED;
1494 if (!sc->may_writepage)
1495 isolate_mode |= ISOLATE_CLEAN;
1497 spin_lock_irq(&zone->lru_lock);
1499 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1500 &nr_scanned, sc, isolate_mode, lru);
1502 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1503 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1505 if (global_reclaim(sc)) {
1506 zone->pages_scanned += nr_scanned;
1507 if (current_is_kswapd())
1508 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1509 else
1510 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1512 spin_unlock_irq(&zone->lru_lock);
1514 if (nr_taken == 0)
1515 return 0;
1517 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1518 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1519 &nr_writeback, &nr_immediate,
1520 false);
1522 spin_lock_irq(&zone->lru_lock);
1524 reclaim_stat->recent_scanned[file] += nr_taken;
1526 if (global_reclaim(sc)) {
1527 if (current_is_kswapd())
1528 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1529 nr_reclaimed);
1530 else
1531 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1532 nr_reclaimed);
1535 putback_inactive_pages(lruvec, &page_list);
1537 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1539 spin_unlock_irq(&zone->lru_lock);
1541 free_hot_cold_page_list(&page_list, true);
1544 * If reclaim is isolating dirty pages under writeback, it implies
1545 * that the long-lived page allocation rate is exceeding the page
1546 * laundering rate. Either the global limits are not being effective
1547 * at throttling processes due to the page distribution throughout
1548 * zones or there is heavy usage of a slow backing device. The
1549 * only option is to throttle from reclaim context which is not ideal
1550 * as there is no guarantee the dirtying process is throttled in the
1551 * same way balance_dirty_pages() manages.
1553 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1554 * of pages under pages flagged for immediate reclaim and stall if any
1555 * are encountered in the nr_immediate check below.
1557 if (nr_writeback && nr_writeback == nr_taken)
1558 zone_set_flag(zone, ZONE_WRITEBACK);
1561 * memcg will stall in page writeback so only consider forcibly
1562 * stalling for global reclaim
1564 if (global_reclaim(sc)) {
1566 * Tag a zone as congested if all the dirty pages scanned were
1567 * backed by a congested BDI and wait_iff_congested will stall.
1569 if (nr_dirty && nr_dirty == nr_congested)
1570 zone_set_flag(zone, ZONE_CONGESTED);
1573 * If dirty pages are scanned that are not queued for IO, it
1574 * implies that flushers are not keeping up. In this case, flag
1575 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1576 * pages from reclaim context.
1578 if (nr_unqueued_dirty == nr_taken)
1579 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1582 * If kswapd scans pages marked marked for immediate
1583 * reclaim and under writeback (nr_immediate), it implies
1584 * that pages are cycling through the LRU faster than
1585 * they are written so also forcibly stall.
1587 if (nr_immediate && current_may_throttle())
1588 congestion_wait(BLK_RW_ASYNC, HZ/10);
1592 * Stall direct reclaim for IO completions if underlying BDIs or zone
1593 * is congested. Allow kswapd to continue until it starts encountering
1594 * unqueued dirty pages or cycling through the LRU too quickly.
1596 if (!sc->hibernation_mode && !current_is_kswapd() &&
1597 current_may_throttle())
1598 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1600 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1601 zone_idx(zone),
1602 nr_scanned, nr_reclaimed,
1603 sc->priority,
1604 trace_shrink_flags(file));
1605 return nr_reclaimed;
1609 * This moves pages from the active list to the inactive list.
1611 * We move them the other way if the page is referenced by one or more
1612 * processes, from rmap.
1614 * If the pages are mostly unmapped, the processing is fast and it is
1615 * appropriate to hold zone->lru_lock across the whole operation. But if
1616 * the pages are mapped, the processing is slow (page_referenced()) so we
1617 * should drop zone->lru_lock around each page. It's impossible to balance
1618 * this, so instead we remove the pages from the LRU while processing them.
1619 * It is safe to rely on PG_active against the non-LRU pages in here because
1620 * nobody will play with that bit on a non-LRU page.
1622 * The downside is that we have to touch page->_count against each page.
1623 * But we had to alter page->flags anyway.
1626 static void move_active_pages_to_lru(struct lruvec *lruvec,
1627 struct list_head *list,
1628 struct list_head *pages_to_free,
1629 enum lru_list lru)
1631 struct zone *zone = lruvec_zone(lruvec);
1632 unsigned long pgmoved = 0;
1633 struct page *page;
1634 int nr_pages;
1636 while (!list_empty(list)) {
1637 page = lru_to_page(list);
1638 lruvec = mem_cgroup_page_lruvec(page, zone);
1640 VM_BUG_ON_PAGE(PageLRU(page), page);
1641 SetPageLRU(page);
1643 nr_pages = hpage_nr_pages(page);
1644 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1645 list_move(&page->lru, &lruvec->lists[lru]);
1646 pgmoved += nr_pages;
1648 if (put_page_testzero(page)) {
1649 __ClearPageLRU(page);
1650 __ClearPageActive(page);
1651 del_page_from_lru_list(page, lruvec, lru);
1653 if (unlikely(PageCompound(page))) {
1654 spin_unlock_irq(&zone->lru_lock);
1655 (*get_compound_page_dtor(page))(page);
1656 spin_lock_irq(&zone->lru_lock);
1657 } else
1658 list_add(&page->lru, pages_to_free);
1661 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1662 if (!is_active_lru(lru))
1663 __count_vm_events(PGDEACTIVATE, pgmoved);
1666 static void shrink_active_list(unsigned long nr_to_scan,
1667 struct lruvec *lruvec,
1668 struct scan_control *sc,
1669 enum lru_list lru)
1671 unsigned long nr_taken;
1672 unsigned long nr_scanned;
1673 unsigned long vm_flags;
1674 LIST_HEAD(l_hold); /* The pages which were snipped off */
1675 LIST_HEAD(l_active);
1676 LIST_HEAD(l_inactive);
1677 struct page *page;
1678 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1679 unsigned long nr_rotated = 0;
1680 isolate_mode_t isolate_mode = 0;
1681 int file = is_file_lru(lru);
1682 struct zone *zone = lruvec_zone(lruvec);
1684 lru_add_drain();
1686 if (!sc->may_unmap)
1687 isolate_mode |= ISOLATE_UNMAPPED;
1688 if (!sc->may_writepage)
1689 isolate_mode |= ISOLATE_CLEAN;
1691 spin_lock_irq(&zone->lru_lock);
1693 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1694 &nr_scanned, sc, isolate_mode, lru);
1695 if (global_reclaim(sc))
1696 zone->pages_scanned += nr_scanned;
1698 reclaim_stat->recent_scanned[file] += nr_taken;
1700 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1701 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1702 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1703 spin_unlock_irq(&zone->lru_lock);
1705 while (!list_empty(&l_hold)) {
1706 cond_resched();
1707 page = lru_to_page(&l_hold);
1708 list_del(&page->lru);
1710 if (unlikely(!page_evictable(page))) {
1711 putback_lru_page(page);
1712 continue;
1715 if (unlikely(buffer_heads_over_limit)) {
1716 if (page_has_private(page) && trylock_page(page)) {
1717 if (page_has_private(page))
1718 try_to_release_page(page, 0);
1719 unlock_page(page);
1723 if (page_referenced(page, 0, sc->target_mem_cgroup,
1724 &vm_flags)) {
1725 nr_rotated += hpage_nr_pages(page);
1727 * Identify referenced, file-backed active pages and
1728 * give them one more trip around the active list. So
1729 * that executable code get better chances to stay in
1730 * memory under moderate memory pressure. Anon pages
1731 * are not likely to be evicted by use-once streaming
1732 * IO, plus JVM can create lots of anon VM_EXEC pages,
1733 * so we ignore them here.
1735 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1736 list_add(&page->lru, &l_active);
1737 continue;
1741 ClearPageActive(page); /* we are de-activating */
1742 list_add(&page->lru, &l_inactive);
1746 * Move pages back to the lru list.
1748 spin_lock_irq(&zone->lru_lock);
1750 * Count referenced pages from currently used mappings as rotated,
1751 * even though only some of them are actually re-activated. This
1752 * helps balance scan pressure between file and anonymous pages in
1753 * get_scan_ratio.
1755 reclaim_stat->recent_rotated[file] += nr_rotated;
1757 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1758 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1759 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1760 spin_unlock_irq(&zone->lru_lock);
1762 free_hot_cold_page_list(&l_hold, true);
1765 #ifdef CONFIG_SWAP
1766 static int inactive_anon_is_low_global(struct zone *zone)
1768 unsigned long active, inactive;
1770 active = zone_page_state(zone, NR_ACTIVE_ANON);
1771 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1773 if (inactive * zone->inactive_ratio < active)
1774 return 1;
1776 return 0;
1780 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1781 * @lruvec: LRU vector to check
1783 * Returns true if the zone does not have enough inactive anon pages,
1784 * meaning some active anon pages need to be deactivated.
1786 static int inactive_anon_is_low(struct lruvec *lruvec)
1789 * If we don't have swap space, anonymous page deactivation
1790 * is pointless.
1792 if (!total_swap_pages)
1793 return 0;
1795 if (!mem_cgroup_disabled())
1796 return mem_cgroup_inactive_anon_is_low(lruvec);
1798 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1800 #else
1801 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1803 return 0;
1805 #endif
1808 * inactive_file_is_low - check if file pages need to be deactivated
1809 * @lruvec: LRU vector to check
1811 * When the system is doing streaming IO, memory pressure here
1812 * ensures that active file pages get deactivated, until more
1813 * than half of the file pages are on the inactive list.
1815 * Once we get to that situation, protect the system's working
1816 * set from being evicted by disabling active file page aging.
1818 * This uses a different ratio than the anonymous pages, because
1819 * the page cache uses a use-once replacement algorithm.
1821 static int inactive_file_is_low(struct lruvec *lruvec)
1823 unsigned long inactive;
1824 unsigned long active;
1826 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1827 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1829 return active > inactive;
1832 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1834 if (is_file_lru(lru))
1835 return inactive_file_is_low(lruvec);
1836 else
1837 return inactive_anon_is_low(lruvec);
1840 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1841 struct lruvec *lruvec, struct scan_control *sc)
1843 if (is_active_lru(lru)) {
1844 if (inactive_list_is_low(lruvec, lru))
1845 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1846 return 0;
1849 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1852 enum scan_balance {
1853 SCAN_EQUAL,
1854 SCAN_FRACT,
1855 SCAN_ANON,
1856 SCAN_FILE,
1860 * Determine how aggressively the anon and file LRU lists should be
1861 * scanned. The relative value of each set of LRU lists is determined
1862 * by looking at the fraction of the pages scanned we did rotate back
1863 * onto the active list instead of evict.
1865 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1866 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1868 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1869 unsigned long *nr)
1871 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1872 u64 fraction[2];
1873 u64 denominator = 0; /* gcc */
1874 struct zone *zone = lruvec_zone(lruvec);
1875 unsigned long anon_prio, file_prio;
1876 enum scan_balance scan_balance;
1877 unsigned long anon, file;
1878 bool force_scan = false;
1879 unsigned long ap, fp;
1880 enum lru_list lru;
1881 bool some_scanned;
1882 int pass;
1885 * If the zone or memcg is small, nr[l] can be 0. This
1886 * results in no scanning on this priority and a potential
1887 * priority drop. Global direct reclaim can go to the next
1888 * zone and tends to have no problems. Global kswapd is for
1889 * zone balancing and it needs to scan a minimum amount. When
1890 * reclaiming for a memcg, a priority drop can cause high
1891 * latencies, so it's better to scan a minimum amount there as
1892 * well.
1894 if (current_is_kswapd() && !zone_reclaimable(zone))
1895 force_scan = true;
1896 if (!global_reclaim(sc))
1897 force_scan = true;
1899 /* If we have no swap space, do not bother scanning anon pages. */
1900 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1901 scan_balance = SCAN_FILE;
1902 goto out;
1906 * Global reclaim will swap to prevent OOM even with no
1907 * swappiness, but memcg users want to use this knob to
1908 * disable swapping for individual groups completely when
1909 * using the memory controller's swap limit feature would be
1910 * too expensive.
1912 if (!global_reclaim(sc) && !sc->swappiness) {
1913 scan_balance = SCAN_FILE;
1914 goto out;
1918 * Do not apply any pressure balancing cleverness when the
1919 * system is close to OOM, scan both anon and file equally
1920 * (unless the swappiness setting disagrees with swapping).
1922 if (!sc->priority && sc->swappiness) {
1923 scan_balance = SCAN_EQUAL;
1924 goto out;
1927 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1928 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1929 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1930 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1933 * Prevent the reclaimer from falling into the cache trap: as
1934 * cache pages start out inactive, every cache fault will tip
1935 * the scan balance towards the file LRU. And as the file LRU
1936 * shrinks, so does the window for rotation from references.
1937 * This means we have a runaway feedback loop where a tiny
1938 * thrashing file LRU becomes infinitely more attractive than
1939 * anon pages. Try to detect this based on file LRU size.
1941 if (global_reclaim(sc)) {
1942 unsigned long free = zone_page_state(zone, NR_FREE_PAGES);
1944 if (unlikely(file + free <= high_wmark_pages(zone))) {
1945 scan_balance = SCAN_ANON;
1946 goto out;
1951 * There is enough inactive page cache, do not reclaim
1952 * anything from the anonymous working set right now.
1954 if (!inactive_file_is_low(lruvec)) {
1955 scan_balance = SCAN_FILE;
1956 goto out;
1959 scan_balance = SCAN_FRACT;
1962 * With swappiness at 100, anonymous and file have the same priority.
1963 * This scanning priority is essentially the inverse of IO cost.
1965 anon_prio = sc->swappiness;
1966 file_prio = 200 - anon_prio;
1969 * OK, so we have swap space and a fair amount of page cache
1970 * pages. We use the recently rotated / recently scanned
1971 * ratios to determine how valuable each cache is.
1973 * Because workloads change over time (and to avoid overflow)
1974 * we keep these statistics as a floating average, which ends
1975 * up weighing recent references more than old ones.
1977 * anon in [0], file in [1]
1979 spin_lock_irq(&zone->lru_lock);
1980 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1981 reclaim_stat->recent_scanned[0] /= 2;
1982 reclaim_stat->recent_rotated[0] /= 2;
1985 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1986 reclaim_stat->recent_scanned[1] /= 2;
1987 reclaim_stat->recent_rotated[1] /= 2;
1991 * The amount of pressure on anon vs file pages is inversely
1992 * proportional to the fraction of recently scanned pages on
1993 * each list that were recently referenced and in active use.
1995 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1996 ap /= reclaim_stat->recent_rotated[0] + 1;
1998 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1999 fp /= reclaim_stat->recent_rotated[1] + 1;
2000 spin_unlock_irq(&zone->lru_lock);
2002 fraction[0] = ap;
2003 fraction[1] = fp;
2004 denominator = ap + fp + 1;
2005 out:
2006 some_scanned = false;
2007 /* Only use force_scan on second pass. */
2008 for (pass = 0; !some_scanned && pass < 2; pass++) {
2009 for_each_evictable_lru(lru) {
2010 int file = is_file_lru(lru);
2011 unsigned long size;
2012 unsigned long scan;
2014 size = get_lru_size(lruvec, lru);
2015 scan = size >> sc->priority;
2017 if (!scan && pass && force_scan)
2018 scan = min(size, SWAP_CLUSTER_MAX);
2020 switch (scan_balance) {
2021 case SCAN_EQUAL:
2022 /* Scan lists relative to size */
2023 break;
2024 case SCAN_FRACT:
2026 * Scan types proportional to swappiness and
2027 * their relative recent reclaim efficiency.
2029 scan = div64_u64(scan * fraction[file],
2030 denominator);
2031 break;
2032 case SCAN_FILE:
2033 case SCAN_ANON:
2034 /* Scan one type exclusively */
2035 if ((scan_balance == SCAN_FILE) != file)
2036 scan = 0;
2037 break;
2038 default:
2039 /* Look ma, no brain */
2040 BUG();
2042 nr[lru] = scan;
2044 * Skip the second pass and don't force_scan,
2045 * if we found something to scan.
2047 some_scanned |= !!scan;
2053 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2055 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2057 unsigned long nr[NR_LRU_LISTS];
2058 unsigned long targets[NR_LRU_LISTS];
2059 unsigned long nr_to_scan;
2060 enum lru_list lru;
2061 unsigned long nr_reclaimed = 0;
2062 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2063 struct blk_plug plug;
2064 bool scan_adjusted;
2066 get_scan_count(lruvec, sc, nr);
2068 /* Record the original scan target for proportional adjustments later */
2069 memcpy(targets, nr, sizeof(nr));
2072 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2073 * event that can occur when there is little memory pressure e.g.
2074 * multiple streaming readers/writers. Hence, we do not abort scanning
2075 * when the requested number of pages are reclaimed when scanning at
2076 * DEF_PRIORITY on the assumption that the fact we are direct
2077 * reclaiming implies that kswapd is not keeping up and it is best to
2078 * do a batch of work at once. For memcg reclaim one check is made to
2079 * abort proportional reclaim if either the file or anon lru has already
2080 * dropped to zero at the first pass.
2082 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2083 sc->priority == DEF_PRIORITY);
2085 blk_start_plug(&plug);
2086 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2087 nr[LRU_INACTIVE_FILE]) {
2088 unsigned long nr_anon, nr_file, percentage;
2089 unsigned long nr_scanned;
2091 for_each_evictable_lru(lru) {
2092 if (nr[lru]) {
2093 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2094 nr[lru] -= nr_to_scan;
2096 nr_reclaimed += shrink_list(lru, nr_to_scan,
2097 lruvec, sc);
2101 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2102 continue;
2105 * For kswapd and memcg, reclaim at least the number of pages
2106 * requested. Ensure that the anon and file LRUs are scanned
2107 * proportionally what was requested by get_scan_count(). We
2108 * stop reclaiming one LRU and reduce the amount scanning
2109 * proportional to the original scan target.
2111 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2112 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2115 * It's just vindictive to attack the larger once the smaller
2116 * has gone to zero. And given the way we stop scanning the
2117 * smaller below, this makes sure that we only make one nudge
2118 * towards proportionality once we've got nr_to_reclaim.
2120 if (!nr_file || !nr_anon)
2121 break;
2123 if (nr_file > nr_anon) {
2124 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2125 targets[LRU_ACTIVE_ANON] + 1;
2126 lru = LRU_BASE;
2127 percentage = nr_anon * 100 / scan_target;
2128 } else {
2129 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2130 targets[LRU_ACTIVE_FILE] + 1;
2131 lru = LRU_FILE;
2132 percentage = nr_file * 100 / scan_target;
2135 /* Stop scanning the smaller of the LRU */
2136 nr[lru] = 0;
2137 nr[lru + LRU_ACTIVE] = 0;
2140 * Recalculate the other LRU scan count based on its original
2141 * scan target and the percentage scanning already complete
2143 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2144 nr_scanned = targets[lru] - nr[lru];
2145 nr[lru] = targets[lru] * (100 - percentage) / 100;
2146 nr[lru] -= min(nr[lru], nr_scanned);
2148 lru += LRU_ACTIVE;
2149 nr_scanned = targets[lru] - nr[lru];
2150 nr[lru] = targets[lru] * (100 - percentage) / 100;
2151 nr[lru] -= min(nr[lru], nr_scanned);
2153 scan_adjusted = true;
2155 blk_finish_plug(&plug);
2156 sc->nr_reclaimed += nr_reclaimed;
2159 * Even if we did not try to evict anon pages at all, we want to
2160 * rebalance the anon lru active/inactive ratio.
2162 if (inactive_anon_is_low(lruvec))
2163 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2164 sc, LRU_ACTIVE_ANON);
2166 throttle_vm_writeout(sc->gfp_mask);
2169 /* Use reclaim/compaction for costly allocs or under memory pressure */
2170 static bool in_reclaim_compaction(struct scan_control *sc)
2172 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2173 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2174 sc->priority < DEF_PRIORITY - 2))
2175 return true;
2177 return false;
2181 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2182 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2183 * true if more pages should be reclaimed such that when the page allocator
2184 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2185 * It will give up earlier than that if there is difficulty reclaiming pages.
2187 static inline bool should_continue_reclaim(struct zone *zone,
2188 unsigned long nr_reclaimed,
2189 unsigned long nr_scanned,
2190 struct scan_control *sc)
2192 unsigned long pages_for_compaction;
2193 unsigned long inactive_lru_pages;
2195 /* If not in reclaim/compaction mode, stop */
2196 if (!in_reclaim_compaction(sc))
2197 return false;
2199 /* Consider stopping depending on scan and reclaim activity */
2200 if (sc->gfp_mask & __GFP_REPEAT) {
2202 * For __GFP_REPEAT allocations, stop reclaiming if the
2203 * full LRU list has been scanned and we are still failing
2204 * to reclaim pages. This full LRU scan is potentially
2205 * expensive but a __GFP_REPEAT caller really wants to succeed
2207 if (!nr_reclaimed && !nr_scanned)
2208 return false;
2209 } else {
2211 * For non-__GFP_REPEAT allocations which can presumably
2212 * fail without consequence, stop if we failed to reclaim
2213 * any pages from the last SWAP_CLUSTER_MAX number of
2214 * pages that were scanned. This will return to the
2215 * caller faster at the risk reclaim/compaction and
2216 * the resulting allocation attempt fails
2218 if (!nr_reclaimed)
2219 return false;
2223 * If we have not reclaimed enough pages for compaction and the
2224 * inactive lists are large enough, continue reclaiming
2226 pages_for_compaction = (2UL << sc->order);
2227 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2228 if (get_nr_swap_pages() > 0)
2229 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2230 if (sc->nr_reclaimed < pages_for_compaction &&
2231 inactive_lru_pages > pages_for_compaction)
2232 return true;
2234 /* If compaction would go ahead or the allocation would succeed, stop */
2235 switch (compaction_suitable(zone, sc->order)) {
2236 case COMPACT_PARTIAL:
2237 case COMPACT_CONTINUE:
2238 return false;
2239 default:
2240 return true;
2244 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2246 unsigned long nr_reclaimed, nr_scanned;
2248 do {
2249 struct mem_cgroup *root = sc->target_mem_cgroup;
2250 struct mem_cgroup_reclaim_cookie reclaim = {
2251 .zone = zone,
2252 .priority = sc->priority,
2254 struct mem_cgroup *memcg;
2256 nr_reclaimed = sc->nr_reclaimed;
2257 nr_scanned = sc->nr_scanned;
2259 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2260 do {
2261 struct lruvec *lruvec;
2263 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2265 sc->swappiness = mem_cgroup_swappiness(memcg);
2266 shrink_lruvec(lruvec, sc);
2269 * Direct reclaim and kswapd have to scan all memory
2270 * cgroups to fulfill the overall scan target for the
2271 * zone.
2273 * Limit reclaim, on the other hand, only cares about
2274 * nr_to_reclaim pages to be reclaimed and it will
2275 * retry with decreasing priority if one round over the
2276 * whole hierarchy is not sufficient.
2278 if (!global_reclaim(sc) &&
2279 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2280 mem_cgroup_iter_break(root, memcg);
2281 break;
2283 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2284 } while (memcg);
2286 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2287 sc->nr_scanned - nr_scanned,
2288 sc->nr_reclaimed - nr_reclaimed);
2290 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2291 sc->nr_scanned - nr_scanned, sc));
2294 /* Returns true if compaction should go ahead for a high-order request */
2295 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2297 unsigned long balance_gap, watermark;
2298 bool watermark_ok;
2300 /* Do not consider compaction for orders reclaim is meant to satisfy */
2301 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2302 return false;
2305 * Compaction takes time to run and there are potentially other
2306 * callers using the pages just freed. Continue reclaiming until
2307 * there is a buffer of free pages available to give compaction
2308 * a reasonable chance of completing and allocating the page
2310 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2311 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2312 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2313 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2316 * If compaction is deferred, reclaim up to a point where
2317 * compaction will have a chance of success when re-enabled
2319 if (compaction_deferred(zone, sc->order))
2320 return watermark_ok;
2322 /* If compaction is not ready to start, keep reclaiming */
2323 if (!compaction_suitable(zone, sc->order))
2324 return false;
2326 return watermark_ok;
2330 * This is the direct reclaim path, for page-allocating processes. We only
2331 * try to reclaim pages from zones which will satisfy the caller's allocation
2332 * request.
2334 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2335 * Because:
2336 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2337 * allocation or
2338 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2339 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2340 * zone defense algorithm.
2342 * If a zone is deemed to be full of pinned pages then just give it a light
2343 * scan then give up on it.
2345 * This function returns true if a zone is being reclaimed for a costly
2346 * high-order allocation and compaction is ready to begin. This indicates to
2347 * the caller that it should consider retrying the allocation instead of
2348 * further reclaim.
2350 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2352 struct zoneref *z;
2353 struct zone *zone;
2354 unsigned long nr_soft_reclaimed;
2355 unsigned long nr_soft_scanned;
2356 unsigned long lru_pages = 0;
2357 bool aborted_reclaim = false;
2358 struct reclaim_state *reclaim_state = current->reclaim_state;
2359 gfp_t orig_mask;
2360 struct shrink_control shrink = {
2361 .gfp_mask = sc->gfp_mask,
2363 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2366 * If the number of buffer_heads in the machine exceeds the maximum
2367 * allowed level, force direct reclaim to scan the highmem zone as
2368 * highmem pages could be pinning lowmem pages storing buffer_heads
2370 orig_mask = sc->gfp_mask;
2371 if (buffer_heads_over_limit)
2372 sc->gfp_mask |= __GFP_HIGHMEM;
2374 nodes_clear(shrink.nodes_to_scan);
2376 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2377 gfp_zone(sc->gfp_mask), sc->nodemask) {
2378 if (!populated_zone(zone))
2379 continue;
2381 * Take care memory controller reclaiming has small influence
2382 * to global LRU.
2384 if (global_reclaim(sc)) {
2385 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2386 continue;
2388 lru_pages += zone_reclaimable_pages(zone);
2389 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2391 if (sc->priority != DEF_PRIORITY &&
2392 !zone_reclaimable(zone))
2393 continue; /* Let kswapd poll it */
2394 if (IS_ENABLED(CONFIG_COMPACTION)) {
2396 * If we already have plenty of memory free for
2397 * compaction in this zone, don't free any more.
2398 * Even though compaction is invoked for any
2399 * non-zero order, only frequent costly order
2400 * reclamation is disruptive enough to become a
2401 * noticeable problem, like transparent huge
2402 * page allocations.
2404 if ((zonelist_zone_idx(z) <= requested_highidx)
2405 && compaction_ready(zone, sc)) {
2406 aborted_reclaim = true;
2407 continue;
2411 * This steals pages from memory cgroups over softlimit
2412 * and returns the number of reclaimed pages and
2413 * scanned pages. This works for global memory pressure
2414 * and balancing, not for a memcg's limit.
2416 nr_soft_scanned = 0;
2417 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2418 sc->order, sc->gfp_mask,
2419 &nr_soft_scanned);
2420 sc->nr_reclaimed += nr_soft_reclaimed;
2421 sc->nr_scanned += nr_soft_scanned;
2422 /* need some check for avoid more shrink_zone() */
2425 shrink_zone(zone, sc);
2429 * Don't shrink slabs when reclaiming memory from over limit cgroups
2430 * but do shrink slab at least once when aborting reclaim for
2431 * compaction to avoid unevenly scanning file/anon LRU pages over slab
2432 * pages.
2434 if (global_reclaim(sc)) {
2435 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2436 if (reclaim_state) {
2437 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2438 reclaim_state->reclaimed_slab = 0;
2443 * Restore to original mask to avoid the impact on the caller if we
2444 * promoted it to __GFP_HIGHMEM.
2446 sc->gfp_mask = orig_mask;
2448 return aborted_reclaim;
2451 /* All zones in zonelist are unreclaimable? */
2452 static bool all_unreclaimable(struct zonelist *zonelist,
2453 struct scan_control *sc)
2455 struct zoneref *z;
2456 struct zone *zone;
2458 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2459 gfp_zone(sc->gfp_mask), sc->nodemask) {
2460 if (!populated_zone(zone))
2461 continue;
2462 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2463 continue;
2464 if (zone_reclaimable(zone))
2465 return false;
2468 return true;
2472 * This is the main entry point to direct page reclaim.
2474 * If a full scan of the inactive list fails to free enough memory then we
2475 * are "out of memory" and something needs to be killed.
2477 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2478 * high - the zone may be full of dirty or under-writeback pages, which this
2479 * caller can't do much about. We kick the writeback threads and take explicit
2480 * naps in the hope that some of these pages can be written. But if the
2481 * allocating task holds filesystem locks which prevent writeout this might not
2482 * work, and the allocation attempt will fail.
2484 * returns: 0, if no pages reclaimed
2485 * else, the number of pages reclaimed
2487 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2488 struct scan_control *sc)
2490 unsigned long total_scanned = 0;
2491 unsigned long writeback_threshold;
2492 bool aborted_reclaim;
2494 delayacct_freepages_start();
2496 if (global_reclaim(sc))
2497 count_vm_event(ALLOCSTALL);
2499 do {
2500 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2501 sc->priority);
2502 sc->nr_scanned = 0;
2503 aborted_reclaim = shrink_zones(zonelist, sc);
2505 total_scanned += sc->nr_scanned;
2506 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2507 goto out;
2510 * If we're getting trouble reclaiming, start doing
2511 * writepage even in laptop mode.
2513 if (sc->priority < DEF_PRIORITY - 2)
2514 sc->may_writepage = 1;
2517 * Try to write back as many pages as we just scanned. This
2518 * tends to cause slow streaming writers to write data to the
2519 * disk smoothly, at the dirtying rate, which is nice. But
2520 * that's undesirable in laptop mode, where we *want* lumpy
2521 * writeout. So in laptop mode, write out the whole world.
2523 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2524 if (total_scanned > writeback_threshold) {
2525 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2526 WB_REASON_TRY_TO_FREE_PAGES);
2527 sc->may_writepage = 1;
2529 } while (--sc->priority >= 0 && !aborted_reclaim);
2531 out:
2532 delayacct_freepages_end();
2534 if (sc->nr_reclaimed)
2535 return sc->nr_reclaimed;
2538 * As hibernation is going on, kswapd is freezed so that it can't mark
2539 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2540 * check.
2542 if (oom_killer_disabled)
2543 return 0;
2545 /* Aborted reclaim to try compaction? don't OOM, then */
2546 if (aborted_reclaim)
2547 return 1;
2549 /* top priority shrink_zones still had more to do? don't OOM, then */
2550 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2551 return 1;
2553 return 0;
2556 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2558 struct zone *zone;
2559 unsigned long pfmemalloc_reserve = 0;
2560 unsigned long free_pages = 0;
2561 int i;
2562 bool wmark_ok;
2564 for (i = 0; i <= ZONE_NORMAL; i++) {
2565 zone = &pgdat->node_zones[i];
2566 if (!populated_zone(zone))
2567 continue;
2569 pfmemalloc_reserve += min_wmark_pages(zone);
2570 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2573 /* If there are no reserves (unexpected config) then do not throttle */
2574 if (!pfmemalloc_reserve)
2575 return true;
2577 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2579 /* kswapd must be awake if processes are being throttled */
2580 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2581 pgdat->classzone_idx = min(pgdat->classzone_idx,
2582 (enum zone_type)ZONE_NORMAL);
2583 wake_up_interruptible(&pgdat->kswapd_wait);
2586 return wmark_ok;
2590 * Throttle direct reclaimers if backing storage is backed by the network
2591 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2592 * depleted. kswapd will continue to make progress and wake the processes
2593 * when the low watermark is reached.
2595 * Returns true if a fatal signal was delivered during throttling. If this
2596 * happens, the page allocator should not consider triggering the OOM killer.
2598 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2599 nodemask_t *nodemask)
2601 struct zoneref *z;
2602 struct zone *zone;
2603 pg_data_t *pgdat = NULL;
2606 * Kernel threads should not be throttled as they may be indirectly
2607 * responsible for cleaning pages necessary for reclaim to make forward
2608 * progress. kjournald for example may enter direct reclaim while
2609 * committing a transaction where throttling it could forcing other
2610 * processes to block on log_wait_commit().
2612 if (current->flags & PF_KTHREAD)
2613 goto out;
2616 * If a fatal signal is pending, this process should not throttle.
2617 * It should return quickly so it can exit and free its memory
2619 if (fatal_signal_pending(current))
2620 goto out;
2623 * Check if the pfmemalloc reserves are ok by finding the first node
2624 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2625 * GFP_KERNEL will be required for allocating network buffers when
2626 * swapping over the network so ZONE_HIGHMEM is unusable.
2628 * Throttling is based on the first usable node and throttled processes
2629 * wait on a queue until kswapd makes progress and wakes them. There
2630 * is an affinity then between processes waking up and where reclaim
2631 * progress has been made assuming the process wakes on the same node.
2632 * More importantly, processes running on remote nodes will not compete
2633 * for remote pfmemalloc reserves and processes on different nodes
2634 * should make reasonable progress.
2636 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2637 gfp_mask, nodemask) {
2638 if (zone_idx(zone) > ZONE_NORMAL)
2639 continue;
2641 /* Throttle based on the first usable node */
2642 pgdat = zone->zone_pgdat;
2643 if (pfmemalloc_watermark_ok(pgdat))
2644 goto out;
2645 break;
2648 /* If no zone was usable by the allocation flags then do not throttle */
2649 if (!pgdat)
2650 goto out;
2652 /* Account for the throttling */
2653 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2656 * If the caller cannot enter the filesystem, it's possible that it
2657 * is due to the caller holding an FS lock or performing a journal
2658 * transaction in the case of a filesystem like ext[3|4]. In this case,
2659 * it is not safe to block on pfmemalloc_wait as kswapd could be
2660 * blocked waiting on the same lock. Instead, throttle for up to a
2661 * second before continuing.
2663 if (!(gfp_mask & __GFP_FS)) {
2664 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2665 pfmemalloc_watermark_ok(pgdat), HZ);
2667 goto check_pending;
2670 /* Throttle until kswapd wakes the process */
2671 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2672 pfmemalloc_watermark_ok(pgdat));
2674 check_pending:
2675 if (fatal_signal_pending(current))
2676 return true;
2678 out:
2679 return false;
2682 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2683 gfp_t gfp_mask, nodemask_t *nodemask)
2685 unsigned long nr_reclaimed;
2686 struct scan_control sc = {
2687 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2688 .may_writepage = !laptop_mode,
2689 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2690 .may_unmap = 1,
2691 .may_swap = 1,
2692 .order = order,
2693 .priority = DEF_PRIORITY,
2694 .target_mem_cgroup = NULL,
2695 .nodemask = nodemask,
2699 * Do not enter reclaim if fatal signal was delivered while throttled.
2700 * 1 is returned so that the page allocator does not OOM kill at this
2701 * point.
2703 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2704 return 1;
2706 trace_mm_vmscan_direct_reclaim_begin(order,
2707 sc.may_writepage,
2708 gfp_mask);
2710 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2712 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2714 return nr_reclaimed;
2717 #ifdef CONFIG_MEMCG
2719 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2720 gfp_t gfp_mask, bool noswap,
2721 struct zone *zone,
2722 unsigned long *nr_scanned)
2724 struct scan_control sc = {
2725 .nr_scanned = 0,
2726 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2727 .may_writepage = !laptop_mode,
2728 .may_unmap = 1,
2729 .may_swap = !noswap,
2730 .order = 0,
2731 .priority = 0,
2732 .swappiness = mem_cgroup_swappiness(memcg),
2733 .target_mem_cgroup = memcg,
2735 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2737 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2738 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2740 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2741 sc.may_writepage,
2742 sc.gfp_mask);
2745 * NOTE: Although we can get the priority field, using it
2746 * here is not a good idea, since it limits the pages we can scan.
2747 * if we don't reclaim here, the shrink_zone from balance_pgdat
2748 * will pick up pages from other mem cgroup's as well. We hack
2749 * the priority and make it zero.
2751 shrink_lruvec(lruvec, &sc);
2753 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2755 *nr_scanned = sc.nr_scanned;
2756 return sc.nr_reclaimed;
2759 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2760 gfp_t gfp_mask,
2761 bool noswap)
2763 struct zonelist *zonelist;
2764 unsigned long nr_reclaimed;
2765 int nid;
2766 struct scan_control sc = {
2767 .may_writepage = !laptop_mode,
2768 .may_unmap = 1,
2769 .may_swap = !noswap,
2770 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2771 .order = 0,
2772 .priority = DEF_PRIORITY,
2773 .target_mem_cgroup = memcg,
2774 .nodemask = NULL, /* we don't care the placement */
2775 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2776 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2780 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2781 * take care of from where we get pages. So the node where we start the
2782 * scan does not need to be the current node.
2784 nid = mem_cgroup_select_victim_node(memcg);
2786 zonelist = NODE_DATA(nid)->node_zonelists;
2788 trace_mm_vmscan_memcg_reclaim_begin(0,
2789 sc.may_writepage,
2790 sc.gfp_mask);
2792 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2794 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2796 return nr_reclaimed;
2798 #endif
2800 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2802 struct mem_cgroup *memcg;
2804 if (!total_swap_pages)
2805 return;
2807 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2808 do {
2809 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2811 if (inactive_anon_is_low(lruvec))
2812 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2813 sc, LRU_ACTIVE_ANON);
2815 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2816 } while (memcg);
2819 static bool zone_balanced(struct zone *zone, int order,
2820 unsigned long balance_gap, int classzone_idx)
2822 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2823 balance_gap, classzone_idx, 0))
2824 return false;
2826 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2827 !compaction_suitable(zone, order))
2828 return false;
2830 return true;
2834 * pgdat_balanced() is used when checking if a node is balanced.
2836 * For order-0, all zones must be balanced!
2838 * For high-order allocations only zones that meet watermarks and are in a
2839 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2840 * total of balanced pages must be at least 25% of the zones allowed by
2841 * classzone_idx for the node to be considered balanced. Forcing all zones to
2842 * be balanced for high orders can cause excessive reclaim when there are
2843 * imbalanced zones.
2844 * The choice of 25% is due to
2845 * o a 16M DMA zone that is balanced will not balance a zone on any
2846 * reasonable sized machine
2847 * o On all other machines, the top zone must be at least a reasonable
2848 * percentage of the middle zones. For example, on 32-bit x86, highmem
2849 * would need to be at least 256M for it to be balance a whole node.
2850 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2851 * to balance a node on its own. These seemed like reasonable ratios.
2853 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2855 unsigned long managed_pages = 0;
2856 unsigned long balanced_pages = 0;
2857 int i;
2859 /* Check the watermark levels */
2860 for (i = 0; i <= classzone_idx; i++) {
2861 struct zone *zone = pgdat->node_zones + i;
2863 if (!populated_zone(zone))
2864 continue;
2866 managed_pages += zone->managed_pages;
2869 * A special case here:
2871 * balance_pgdat() skips over all_unreclaimable after
2872 * DEF_PRIORITY. Effectively, it considers them balanced so
2873 * they must be considered balanced here as well!
2875 if (!zone_reclaimable(zone)) {
2876 balanced_pages += zone->managed_pages;
2877 continue;
2880 if (zone_balanced(zone, order, 0, i))
2881 balanced_pages += zone->managed_pages;
2882 else if (!order)
2883 return false;
2886 if (order)
2887 return balanced_pages >= (managed_pages >> 2);
2888 else
2889 return true;
2893 * Prepare kswapd for sleeping. This verifies that there are no processes
2894 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2896 * Returns true if kswapd is ready to sleep
2898 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2899 int classzone_idx)
2901 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2902 if (remaining)
2903 return false;
2906 * There is a potential race between when kswapd checks its watermarks
2907 * and a process gets throttled. There is also a potential race if
2908 * processes get throttled, kswapd wakes, a large process exits therby
2909 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2910 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2911 * so wake them now if necessary. If necessary, processes will wake
2912 * kswapd and get throttled again
2914 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2915 wake_up(&pgdat->pfmemalloc_wait);
2916 return false;
2919 return pgdat_balanced(pgdat, order, classzone_idx);
2923 * kswapd shrinks the zone by the number of pages required to reach
2924 * the high watermark.
2926 * Returns true if kswapd scanned at least the requested number of pages to
2927 * reclaim or if the lack of progress was due to pages under writeback.
2928 * This is used to determine if the scanning priority needs to be raised.
2930 static bool kswapd_shrink_zone(struct zone *zone,
2931 int classzone_idx,
2932 struct scan_control *sc,
2933 unsigned long lru_pages,
2934 unsigned long *nr_attempted)
2936 int testorder = sc->order;
2937 unsigned long balance_gap;
2938 struct reclaim_state *reclaim_state = current->reclaim_state;
2939 struct shrink_control shrink = {
2940 .gfp_mask = sc->gfp_mask,
2942 bool lowmem_pressure;
2944 /* Reclaim above the high watermark. */
2945 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2948 * Kswapd reclaims only single pages with compaction enabled. Trying
2949 * too hard to reclaim until contiguous free pages have become
2950 * available can hurt performance by evicting too much useful data
2951 * from memory. Do not reclaim more than needed for compaction.
2953 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2954 compaction_suitable(zone, sc->order) !=
2955 COMPACT_SKIPPED)
2956 testorder = 0;
2959 * We put equal pressure on every zone, unless one zone has way too
2960 * many pages free already. The "too many pages" is defined as the
2961 * high wmark plus a "gap" where the gap is either the low
2962 * watermark or 1% of the zone, whichever is smaller.
2964 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2965 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2968 * If there is no low memory pressure or the zone is balanced then no
2969 * reclaim is necessary
2971 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2972 if (!lowmem_pressure && zone_balanced(zone, testorder,
2973 balance_gap, classzone_idx))
2974 return true;
2976 shrink_zone(zone, sc);
2977 nodes_clear(shrink.nodes_to_scan);
2978 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2980 reclaim_state->reclaimed_slab = 0;
2981 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2982 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2984 /* Account for the number of pages attempted to reclaim */
2985 *nr_attempted += sc->nr_to_reclaim;
2987 zone_clear_flag(zone, ZONE_WRITEBACK);
2990 * If a zone reaches its high watermark, consider it to be no longer
2991 * congested. It's possible there are dirty pages backed by congested
2992 * BDIs but as pressure is relieved, speculatively avoid congestion
2993 * waits.
2995 if (zone_reclaimable(zone) &&
2996 zone_balanced(zone, testorder, 0, classzone_idx)) {
2997 zone_clear_flag(zone, ZONE_CONGESTED);
2998 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
3001 return sc->nr_scanned >= sc->nr_to_reclaim;
3005 * For kswapd, balance_pgdat() will work across all this node's zones until
3006 * they are all at high_wmark_pages(zone).
3008 * Returns the final order kswapd was reclaiming at
3010 * There is special handling here for zones which are full of pinned pages.
3011 * This can happen if the pages are all mlocked, or if they are all used by
3012 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3013 * What we do is to detect the case where all pages in the zone have been
3014 * scanned twice and there has been zero successful reclaim. Mark the zone as
3015 * dead and from now on, only perform a short scan. Basically we're polling
3016 * the zone for when the problem goes away.
3018 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3019 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3020 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3021 * lower zones regardless of the number of free pages in the lower zones. This
3022 * interoperates with the page allocator fallback scheme to ensure that aging
3023 * of pages is balanced across the zones.
3025 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3026 int *classzone_idx)
3028 int i;
3029 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
3030 unsigned long nr_soft_reclaimed;
3031 unsigned long nr_soft_scanned;
3032 struct scan_control sc = {
3033 .gfp_mask = GFP_KERNEL,
3034 .priority = DEF_PRIORITY,
3035 .may_unmap = 1,
3036 .may_swap = 1,
3037 .may_writepage = !laptop_mode,
3038 .order = order,
3039 .target_mem_cgroup = NULL,
3041 count_vm_event(PAGEOUTRUN);
3043 do {
3044 unsigned long lru_pages = 0;
3045 unsigned long nr_attempted = 0;
3046 bool raise_priority = true;
3047 bool pgdat_needs_compaction = (order > 0);
3049 sc.nr_reclaimed = 0;
3052 * Scan in the highmem->dma direction for the highest
3053 * zone which needs scanning
3055 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3056 struct zone *zone = pgdat->node_zones + i;
3058 if (!populated_zone(zone))
3059 continue;
3061 if (sc.priority != DEF_PRIORITY &&
3062 !zone_reclaimable(zone))
3063 continue;
3066 * Do some background aging of the anon list, to give
3067 * pages a chance to be referenced before reclaiming.
3069 age_active_anon(zone, &sc);
3072 * If the number of buffer_heads in the machine
3073 * exceeds the maximum allowed level and this node
3074 * has a highmem zone, force kswapd to reclaim from
3075 * it to relieve lowmem pressure.
3077 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3078 end_zone = i;
3079 break;
3082 if (!zone_balanced(zone, order, 0, 0)) {
3083 end_zone = i;
3084 break;
3085 } else {
3087 * If balanced, clear the dirty and congested
3088 * flags
3090 zone_clear_flag(zone, ZONE_CONGESTED);
3091 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
3095 if (i < 0)
3096 goto out;
3098 for (i = 0; i <= end_zone; i++) {
3099 struct zone *zone = pgdat->node_zones + i;
3101 if (!populated_zone(zone))
3102 continue;
3104 lru_pages += zone_reclaimable_pages(zone);
3107 * If any zone is currently balanced then kswapd will
3108 * not call compaction as it is expected that the
3109 * necessary pages are already available.
3111 if (pgdat_needs_compaction &&
3112 zone_watermark_ok(zone, order,
3113 low_wmark_pages(zone),
3114 *classzone_idx, 0))
3115 pgdat_needs_compaction = false;
3119 * If we're getting trouble reclaiming, start doing writepage
3120 * even in laptop mode.
3122 if (sc.priority < DEF_PRIORITY - 2)
3123 sc.may_writepage = 1;
3126 * Now scan the zone in the dma->highmem direction, stopping
3127 * at the last zone which needs scanning.
3129 * We do this because the page allocator works in the opposite
3130 * direction. This prevents the page allocator from allocating
3131 * pages behind kswapd's direction of progress, which would
3132 * cause too much scanning of the lower zones.
3134 for (i = 0; i <= end_zone; i++) {
3135 struct zone *zone = pgdat->node_zones + i;
3137 if (!populated_zone(zone))
3138 continue;
3140 if (sc.priority != DEF_PRIORITY &&
3141 !zone_reclaimable(zone))
3142 continue;
3144 sc.nr_scanned = 0;
3146 nr_soft_scanned = 0;
3148 * Call soft limit reclaim before calling shrink_zone.
3150 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3151 order, sc.gfp_mask,
3152 &nr_soft_scanned);
3153 sc.nr_reclaimed += nr_soft_reclaimed;
3156 * There should be no need to raise the scanning
3157 * priority if enough pages are already being scanned
3158 * that that high watermark would be met at 100%
3159 * efficiency.
3161 if (kswapd_shrink_zone(zone, end_zone, &sc,
3162 lru_pages, &nr_attempted))
3163 raise_priority = false;
3167 * If the low watermark is met there is no need for processes
3168 * to be throttled on pfmemalloc_wait as they should not be
3169 * able to safely make forward progress. Wake them
3171 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3172 pfmemalloc_watermark_ok(pgdat))
3173 wake_up(&pgdat->pfmemalloc_wait);
3176 * Fragmentation may mean that the system cannot be rebalanced
3177 * for high-order allocations in all zones. If twice the
3178 * allocation size has been reclaimed and the zones are still
3179 * not balanced then recheck the watermarks at order-0 to
3180 * prevent kswapd reclaiming excessively. Assume that a
3181 * process requested a high-order can direct reclaim/compact.
3183 if (order && sc.nr_reclaimed >= 2UL << order)
3184 order = sc.order = 0;
3186 /* Check if kswapd should be suspending */
3187 if (try_to_freeze() || kthread_should_stop())
3188 break;
3191 * Compact if necessary and kswapd is reclaiming at least the
3192 * high watermark number of pages as requsted
3194 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3195 compact_pgdat(pgdat, order);
3198 * Raise priority if scanning rate is too low or there was no
3199 * progress in reclaiming pages
3201 if (raise_priority || !sc.nr_reclaimed)
3202 sc.priority--;
3203 } while (sc.priority >= 1 &&
3204 !pgdat_balanced(pgdat, order, *classzone_idx));
3206 out:
3208 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3209 * makes a decision on the order we were last reclaiming at. However,
3210 * if another caller entered the allocator slow path while kswapd
3211 * was awake, order will remain at the higher level
3213 *classzone_idx = end_zone;
3214 return order;
3217 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3219 long remaining = 0;
3220 DEFINE_WAIT(wait);
3222 if (freezing(current) || kthread_should_stop())
3223 return;
3225 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3227 /* Try to sleep for a short interval */
3228 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3229 remaining = schedule_timeout(HZ/10);
3230 finish_wait(&pgdat->kswapd_wait, &wait);
3231 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3235 * After a short sleep, check if it was a premature sleep. If not, then
3236 * go fully to sleep until explicitly woken up.
3238 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3239 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3242 * vmstat counters are not perfectly accurate and the estimated
3243 * value for counters such as NR_FREE_PAGES can deviate from the
3244 * true value by nr_online_cpus * threshold. To avoid the zone
3245 * watermarks being breached while under pressure, we reduce the
3246 * per-cpu vmstat threshold while kswapd is awake and restore
3247 * them before going back to sleep.
3249 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3252 * Compaction records what page blocks it recently failed to
3253 * isolate pages from and skips them in the future scanning.
3254 * When kswapd is going to sleep, it is reasonable to assume
3255 * that pages and compaction may succeed so reset the cache.
3257 reset_isolation_suitable(pgdat);
3259 if (!kthread_should_stop())
3260 schedule();
3262 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3263 } else {
3264 if (remaining)
3265 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3266 else
3267 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3269 finish_wait(&pgdat->kswapd_wait, &wait);
3273 * The background pageout daemon, started as a kernel thread
3274 * from the init process.
3276 * This basically trickles out pages so that we have _some_
3277 * free memory available even if there is no other activity
3278 * that frees anything up. This is needed for things like routing
3279 * etc, where we otherwise might have all activity going on in
3280 * asynchronous contexts that cannot page things out.
3282 * If there are applications that are active memory-allocators
3283 * (most normal use), this basically shouldn't matter.
3285 static int kswapd(void *p)
3287 unsigned long order, new_order;
3288 unsigned balanced_order;
3289 int classzone_idx, new_classzone_idx;
3290 int balanced_classzone_idx;
3291 pg_data_t *pgdat = (pg_data_t*)p;
3292 struct task_struct *tsk = current;
3294 struct reclaim_state reclaim_state = {
3295 .reclaimed_slab = 0,
3297 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3299 lockdep_set_current_reclaim_state(GFP_KERNEL);
3301 if (!cpumask_empty(cpumask))
3302 set_cpus_allowed_ptr(tsk, cpumask);
3303 current->reclaim_state = &reclaim_state;
3306 * Tell the memory management that we're a "memory allocator",
3307 * and that if we need more memory we should get access to it
3308 * regardless (see "__alloc_pages()"). "kswapd" should
3309 * never get caught in the normal page freeing logic.
3311 * (Kswapd normally doesn't need memory anyway, but sometimes
3312 * you need a small amount of memory in order to be able to
3313 * page out something else, and this flag essentially protects
3314 * us from recursively trying to free more memory as we're
3315 * trying to free the first piece of memory in the first place).
3317 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3318 set_freezable();
3320 order = new_order = 0;
3321 balanced_order = 0;
3322 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3323 balanced_classzone_idx = classzone_idx;
3324 for ( ; ; ) {
3325 bool ret;
3328 * If the last balance_pgdat was unsuccessful it's unlikely a
3329 * new request of a similar or harder type will succeed soon
3330 * so consider going to sleep on the basis we reclaimed at
3332 if (balanced_classzone_idx >= new_classzone_idx &&
3333 balanced_order == new_order) {
3334 new_order = pgdat->kswapd_max_order;
3335 new_classzone_idx = pgdat->classzone_idx;
3336 pgdat->kswapd_max_order = 0;
3337 pgdat->classzone_idx = pgdat->nr_zones - 1;
3340 if (order < new_order || classzone_idx > new_classzone_idx) {
3342 * Don't sleep if someone wants a larger 'order'
3343 * allocation or has tigher zone constraints
3345 order = new_order;
3346 classzone_idx = new_classzone_idx;
3347 } else {
3348 kswapd_try_to_sleep(pgdat, balanced_order,
3349 balanced_classzone_idx);
3350 order = pgdat->kswapd_max_order;
3351 classzone_idx = pgdat->classzone_idx;
3352 new_order = order;
3353 new_classzone_idx = classzone_idx;
3354 pgdat->kswapd_max_order = 0;
3355 pgdat->classzone_idx = pgdat->nr_zones - 1;
3358 ret = try_to_freeze();
3359 if (kthread_should_stop())
3360 break;
3363 * We can speed up thawing tasks if we don't call balance_pgdat
3364 * after returning from the refrigerator
3366 if (!ret) {
3367 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3368 balanced_classzone_idx = classzone_idx;
3369 balanced_order = balance_pgdat(pgdat, order,
3370 &balanced_classzone_idx);
3374 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3375 current->reclaim_state = NULL;
3376 lockdep_clear_current_reclaim_state();
3378 return 0;
3382 * A zone is low on free memory, so wake its kswapd task to service it.
3384 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3386 pg_data_t *pgdat;
3388 if (!populated_zone(zone))
3389 return;
3391 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3392 return;
3393 pgdat = zone->zone_pgdat;
3394 if (pgdat->kswapd_max_order < order) {
3395 pgdat->kswapd_max_order = order;
3396 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3398 if (!waitqueue_active(&pgdat->kswapd_wait))
3399 return;
3400 if (zone_balanced(zone, order, 0, 0))
3401 return;
3403 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3404 wake_up_interruptible(&pgdat->kswapd_wait);
3407 #ifdef CONFIG_HIBERNATION
3409 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3410 * freed pages.
3412 * Rather than trying to age LRUs the aim is to preserve the overall
3413 * LRU order by reclaiming preferentially
3414 * inactive > active > active referenced > active mapped
3416 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3418 struct reclaim_state reclaim_state;
3419 struct scan_control sc = {
3420 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3421 .may_swap = 1,
3422 .may_unmap = 1,
3423 .may_writepage = 1,
3424 .nr_to_reclaim = nr_to_reclaim,
3425 .hibernation_mode = 1,
3426 .order = 0,
3427 .priority = DEF_PRIORITY,
3429 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3430 struct task_struct *p = current;
3431 unsigned long nr_reclaimed;
3433 p->flags |= PF_MEMALLOC;
3434 lockdep_set_current_reclaim_state(sc.gfp_mask);
3435 reclaim_state.reclaimed_slab = 0;
3436 p->reclaim_state = &reclaim_state;
3438 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3440 p->reclaim_state = NULL;
3441 lockdep_clear_current_reclaim_state();
3442 p->flags &= ~PF_MEMALLOC;
3444 return nr_reclaimed;
3446 #endif /* CONFIG_HIBERNATION */
3448 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3449 not required for correctness. So if the last cpu in a node goes
3450 away, we get changed to run anywhere: as the first one comes back,
3451 restore their cpu bindings. */
3452 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3453 void *hcpu)
3455 int nid;
3457 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3458 for_each_node_state(nid, N_MEMORY) {
3459 pg_data_t *pgdat = NODE_DATA(nid);
3460 const struct cpumask *mask;
3462 mask = cpumask_of_node(pgdat->node_id);
3464 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3465 /* One of our CPUs online: restore mask */
3466 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3469 return NOTIFY_OK;
3473 * This kswapd start function will be called by init and node-hot-add.
3474 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3476 int kswapd_run(int nid)
3478 pg_data_t *pgdat = NODE_DATA(nid);
3479 int ret = 0;
3481 if (pgdat->kswapd)
3482 return 0;
3484 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3485 if (IS_ERR(pgdat->kswapd)) {
3486 /* failure at boot is fatal */
3487 BUG_ON(system_state == SYSTEM_BOOTING);
3488 pr_err("Failed to start kswapd on node %d\n", nid);
3489 ret = PTR_ERR(pgdat->kswapd);
3490 pgdat->kswapd = NULL;
3492 return ret;
3496 * Called by memory hotplug when all memory in a node is offlined. Caller must
3497 * hold mem_hotplug_begin/end().
3499 void kswapd_stop(int nid)
3501 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3503 if (kswapd) {
3504 kthread_stop(kswapd);
3505 NODE_DATA(nid)->kswapd = NULL;
3509 static int __init kswapd_init(void)
3511 int nid;
3513 swap_setup();
3514 for_each_node_state(nid, N_MEMORY)
3515 kswapd_run(nid);
3516 hotcpu_notifier(cpu_callback, 0);
3517 return 0;
3520 module_init(kswapd_init)
3522 #ifdef CONFIG_NUMA
3524 * Zone reclaim mode
3526 * If non-zero call zone_reclaim when the number of free pages falls below
3527 * the watermarks.
3529 int zone_reclaim_mode __read_mostly;
3531 #define RECLAIM_OFF 0
3532 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3533 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3534 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3537 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3538 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3539 * a zone.
3541 #define ZONE_RECLAIM_PRIORITY 4
3544 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3545 * occur.
3547 int sysctl_min_unmapped_ratio = 1;
3550 * If the number of slab pages in a zone grows beyond this percentage then
3551 * slab reclaim needs to occur.
3553 int sysctl_min_slab_ratio = 5;
3555 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3557 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3558 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3559 zone_page_state(zone, NR_ACTIVE_FILE);
3562 * It's possible for there to be more file mapped pages than
3563 * accounted for by the pages on the file LRU lists because
3564 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3566 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3569 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3570 static long zone_pagecache_reclaimable(struct zone *zone)
3572 long nr_pagecache_reclaimable;
3573 long delta = 0;
3576 * If RECLAIM_SWAP is set, then all file pages are considered
3577 * potentially reclaimable. Otherwise, we have to worry about
3578 * pages like swapcache and zone_unmapped_file_pages() provides
3579 * a better estimate
3581 if (zone_reclaim_mode & RECLAIM_SWAP)
3582 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3583 else
3584 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3586 /* If we can't clean pages, remove dirty pages from consideration */
3587 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3588 delta += zone_page_state(zone, NR_FILE_DIRTY);
3590 /* Watch for any possible underflows due to delta */
3591 if (unlikely(delta > nr_pagecache_reclaimable))
3592 delta = nr_pagecache_reclaimable;
3594 return nr_pagecache_reclaimable - delta;
3598 * Try to free up some pages from this zone through reclaim.
3600 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3602 /* Minimum pages needed in order to stay on node */
3603 const unsigned long nr_pages = 1 << order;
3604 struct task_struct *p = current;
3605 struct reclaim_state reclaim_state;
3606 struct scan_control sc = {
3607 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3608 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3609 .may_swap = 1,
3610 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3611 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3612 .order = order,
3613 .priority = ZONE_RECLAIM_PRIORITY,
3615 struct shrink_control shrink = {
3616 .gfp_mask = sc.gfp_mask,
3618 unsigned long nr_slab_pages0, nr_slab_pages1;
3620 cond_resched();
3622 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3623 * and we also need to be able to write out pages for RECLAIM_WRITE
3624 * and RECLAIM_SWAP.
3626 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3627 lockdep_set_current_reclaim_state(gfp_mask);
3628 reclaim_state.reclaimed_slab = 0;
3629 p->reclaim_state = &reclaim_state;
3631 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3633 * Free memory by calling shrink zone with increasing
3634 * priorities until we have enough memory freed.
3636 do {
3637 shrink_zone(zone, &sc);
3638 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3641 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3642 if (nr_slab_pages0 > zone->min_slab_pages) {
3644 * shrink_slab() does not currently allow us to determine how
3645 * many pages were freed in this zone. So we take the current
3646 * number of slab pages and shake the slab until it is reduced
3647 * by the same nr_pages that we used for reclaiming unmapped
3648 * pages.
3650 nodes_clear(shrink.nodes_to_scan);
3651 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3652 for (;;) {
3653 unsigned long lru_pages = zone_reclaimable_pages(zone);
3655 /* No reclaimable slab or very low memory pressure */
3656 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3657 break;
3659 /* Freed enough memory */
3660 nr_slab_pages1 = zone_page_state(zone,
3661 NR_SLAB_RECLAIMABLE);
3662 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3663 break;
3667 * Update nr_reclaimed by the number of slab pages we
3668 * reclaimed from this zone.
3670 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3671 if (nr_slab_pages1 < nr_slab_pages0)
3672 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3675 p->reclaim_state = NULL;
3676 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3677 lockdep_clear_current_reclaim_state();
3678 return sc.nr_reclaimed >= nr_pages;
3681 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3683 int node_id;
3684 int ret;
3687 * Zone reclaim reclaims unmapped file backed pages and
3688 * slab pages if we are over the defined limits.
3690 * A small portion of unmapped file backed pages is needed for
3691 * file I/O otherwise pages read by file I/O will be immediately
3692 * thrown out if the zone is overallocated. So we do not reclaim
3693 * if less than a specified percentage of the zone is used by
3694 * unmapped file backed pages.
3696 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3697 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3698 return ZONE_RECLAIM_FULL;
3700 if (!zone_reclaimable(zone))
3701 return ZONE_RECLAIM_FULL;
3704 * Do not scan if the allocation should not be delayed.
3706 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3707 return ZONE_RECLAIM_NOSCAN;
3710 * Only run zone reclaim on the local zone or on zones that do not
3711 * have associated processors. This will favor the local processor
3712 * over remote processors and spread off node memory allocations
3713 * as wide as possible.
3715 node_id = zone_to_nid(zone);
3716 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3717 return ZONE_RECLAIM_NOSCAN;
3719 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3720 return ZONE_RECLAIM_NOSCAN;
3722 ret = __zone_reclaim(zone, gfp_mask, order);
3723 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3725 if (!ret)
3726 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3728 return ret;
3730 #endif
3733 * page_evictable - test whether a page is evictable
3734 * @page: the page to test
3736 * Test whether page is evictable--i.e., should be placed on active/inactive
3737 * lists vs unevictable list.
3739 * Reasons page might not be evictable:
3740 * (1) page's mapping marked unevictable
3741 * (2) page is part of an mlocked VMA
3744 int page_evictable(struct page *page)
3746 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3749 #ifdef CONFIG_SHMEM
3751 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3752 * @pages: array of pages to check
3753 * @nr_pages: number of pages to check
3755 * Checks pages for evictability and moves them to the appropriate lru list.
3757 * This function is only used for SysV IPC SHM_UNLOCK.
3759 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3761 struct lruvec *lruvec;
3762 struct zone *zone = NULL;
3763 int pgscanned = 0;
3764 int pgrescued = 0;
3765 int i;
3767 for (i = 0; i < nr_pages; i++) {
3768 struct page *page = pages[i];
3769 struct zone *pagezone;
3771 pgscanned++;
3772 pagezone = page_zone(page);
3773 if (pagezone != zone) {
3774 if (zone)
3775 spin_unlock_irq(&zone->lru_lock);
3776 zone = pagezone;
3777 spin_lock_irq(&zone->lru_lock);
3779 lruvec = mem_cgroup_page_lruvec(page, zone);
3781 if (!PageLRU(page) || !PageUnevictable(page))
3782 continue;
3784 if (page_evictable(page)) {
3785 enum lru_list lru = page_lru_base_type(page);
3787 VM_BUG_ON_PAGE(PageActive(page), page);
3788 ClearPageUnevictable(page);
3789 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3790 add_page_to_lru_list(page, lruvec, lru);
3791 pgrescued++;
3795 if (zone) {
3796 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3797 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3798 spin_unlock_irq(&zone->lru_lock);
3801 #endif /* CONFIG_SHMEM */
3803 static void warn_scan_unevictable_pages(void)
3805 printk_once(KERN_WARNING
3806 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3807 "disabled for lack of a legitimate use case. If you have "
3808 "one, please send an email to linux-mm@kvack.org.\n",
3809 current->comm);
3813 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3814 * all nodes' unevictable lists for evictable pages
3816 unsigned long scan_unevictable_pages;
3818 int scan_unevictable_handler(struct ctl_table *table, int write,
3819 void __user *buffer,
3820 size_t *length, loff_t *ppos)
3822 warn_scan_unevictable_pages();
3823 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3824 scan_unevictable_pages = 0;
3825 return 0;
3828 #ifdef CONFIG_NUMA
3830 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3831 * a specified node's per zone unevictable lists for evictable pages.
3834 static ssize_t read_scan_unevictable_node(struct device *dev,
3835 struct device_attribute *attr,
3836 char *buf)
3838 warn_scan_unevictable_pages();
3839 return sprintf(buf, "0\n"); /* always zero; should fit... */
3842 static ssize_t write_scan_unevictable_node(struct device *dev,
3843 struct device_attribute *attr,
3844 const char *buf, size_t count)
3846 warn_scan_unevictable_pages();
3847 return 1;
3851 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3852 read_scan_unevictable_node,
3853 write_scan_unevictable_node);
3855 int scan_unevictable_register_node(struct node *node)
3857 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3860 void scan_unevictable_unregister_node(struct node *node)
3862 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3864 #endif