2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/sort.h>
22 #include <linux/rbtree.h>
24 #define DM_MSG_PREFIX "thin"
29 #define ENDIO_HOOK_POOL_SIZE 1024
30 #define MAPPING_POOL_SIZE 1024
31 #define COMMIT_PERIOD HZ
32 #define NO_SPACE_TIMEOUT_SECS 60
34 static unsigned no_space_timeout_secs
= NO_SPACE_TIMEOUT_SECS
;
36 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle
,
37 "A percentage of time allocated for copy on write");
40 * The block size of the device holding pool data must be
41 * between 64KB and 1GB.
43 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
44 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
47 * Device id is restricted to 24 bits.
49 #define MAX_DEV_ID ((1 << 24) - 1)
52 * How do we handle breaking sharing of data blocks?
53 * =================================================
55 * We use a standard copy-on-write btree to store the mappings for the
56 * devices (note I'm talking about copy-on-write of the metadata here, not
57 * the data). When you take an internal snapshot you clone the root node
58 * of the origin btree. After this there is no concept of an origin or a
59 * snapshot. They are just two device trees that happen to point to the
62 * When we get a write in we decide if it's to a shared data block using
63 * some timestamp magic. If it is, we have to break sharing.
65 * Let's say we write to a shared block in what was the origin. The
68 * i) plug io further to this physical block. (see bio_prison code).
70 * ii) quiesce any read io to that shared data block. Obviously
71 * including all devices that share this block. (see dm_deferred_set code)
73 * iii) copy the data block to a newly allocate block. This step can be
74 * missed out if the io covers the block. (schedule_copy).
76 * iv) insert the new mapping into the origin's btree
77 * (process_prepared_mapping). This act of inserting breaks some
78 * sharing of btree nodes between the two devices. Breaking sharing only
79 * effects the btree of that specific device. Btrees for the other
80 * devices that share the block never change. The btree for the origin
81 * device as it was after the last commit is untouched, ie. we're using
82 * persistent data structures in the functional programming sense.
84 * v) unplug io to this physical block, including the io that triggered
85 * the breaking of sharing.
87 * Steps (ii) and (iii) occur in parallel.
89 * The metadata _doesn't_ need to be committed before the io continues. We
90 * get away with this because the io is always written to a _new_ block.
91 * If there's a crash, then:
93 * - The origin mapping will point to the old origin block (the shared
94 * one). This will contain the data as it was before the io that triggered
95 * the breaking of sharing came in.
97 * - The snap mapping still points to the old block. As it would after
100 * The downside of this scheme is the timestamp magic isn't perfect, and
101 * will continue to think that data block in the snapshot device is shared
102 * even after the write to the origin has broken sharing. I suspect data
103 * blocks will typically be shared by many different devices, so we're
104 * breaking sharing n + 1 times, rather than n, where n is the number of
105 * devices that reference this data block. At the moment I think the
106 * benefits far, far outweigh the disadvantages.
109 /*----------------------------------------------------------------*/
114 static void build_data_key(struct dm_thin_device
*td
,
115 dm_block_t b
, struct dm_cell_key
*key
)
118 key
->dev
= dm_thin_dev_id(td
);
119 key
->block_begin
= b
;
120 key
->block_end
= b
+ 1ULL;
123 static void build_virtual_key(struct dm_thin_device
*td
, dm_block_t b
,
124 struct dm_cell_key
*key
)
127 key
->dev
= dm_thin_dev_id(td
);
128 key
->block_begin
= b
;
129 key
->block_end
= b
+ 1ULL;
132 /*----------------------------------------------------------------*/
134 #define THROTTLE_THRESHOLD (1 * HZ)
137 struct rw_semaphore lock
;
138 unsigned long threshold
;
139 bool throttle_applied
;
142 static void throttle_init(struct throttle
*t
)
144 init_rwsem(&t
->lock
);
145 t
->throttle_applied
= false;
148 static void throttle_work_start(struct throttle
*t
)
150 t
->threshold
= jiffies
+ THROTTLE_THRESHOLD
;
153 static void throttle_work_update(struct throttle
*t
)
155 if (!t
->throttle_applied
&& jiffies
> t
->threshold
) {
156 down_write(&t
->lock
);
157 t
->throttle_applied
= true;
161 static void throttle_work_complete(struct throttle
*t
)
163 if (t
->throttle_applied
) {
164 t
->throttle_applied
= false;
169 static void throttle_lock(struct throttle
*t
)
174 static void throttle_unlock(struct throttle
*t
)
179 /*----------------------------------------------------------------*/
182 * A pool device ties together a metadata device and a data device. It
183 * also provides the interface for creating and destroying internal
186 struct dm_thin_new_mapping
;
189 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
192 PM_WRITE
, /* metadata may be changed */
193 PM_OUT_OF_DATA_SPACE
, /* metadata may be changed, though data may not be allocated */
194 PM_READ_ONLY
, /* metadata may not be changed */
195 PM_FAIL
, /* all I/O fails */
198 struct pool_features
{
201 bool zero_new_blocks
:1;
202 bool discard_enabled
:1;
203 bool discard_passdown
:1;
204 bool error_if_no_space
:1;
208 typedef void (*process_bio_fn
)(struct thin_c
*tc
, struct bio
*bio
);
209 typedef void (*process_cell_fn
)(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
);
210 typedef void (*process_mapping_fn
)(struct dm_thin_new_mapping
*m
);
212 #define CELL_SORT_ARRAY_SIZE 8192
215 struct list_head list
;
216 struct dm_target
*ti
; /* Only set if a pool target is bound */
218 struct mapped_device
*pool_md
;
219 struct block_device
*md_dev
;
220 struct dm_pool_metadata
*pmd
;
222 dm_block_t low_water_blocks
;
223 uint32_t sectors_per_block
;
224 int sectors_per_block_shift
;
226 struct pool_features pf
;
227 bool low_water_triggered
:1; /* A dm event has been sent */
230 struct dm_bio_prison
*prison
;
231 struct dm_kcopyd_client
*copier
;
233 struct workqueue_struct
*wq
;
234 struct throttle throttle
;
235 struct work_struct worker
;
236 struct delayed_work waker
;
237 struct delayed_work no_space_timeout
;
239 unsigned long last_commit_jiffies
;
243 struct bio_list deferred_flush_bios
;
244 struct list_head prepared_mappings
;
245 struct list_head prepared_discards
;
246 struct list_head active_thins
;
248 struct dm_deferred_set
*shared_read_ds
;
249 struct dm_deferred_set
*all_io_ds
;
251 struct dm_thin_new_mapping
*next_mapping
;
252 mempool_t
*mapping_pool
;
254 process_bio_fn process_bio
;
255 process_bio_fn process_discard
;
257 process_cell_fn process_cell
;
258 process_cell_fn process_discard_cell
;
260 process_mapping_fn process_prepared_mapping
;
261 process_mapping_fn process_prepared_discard
;
263 struct dm_bio_prison_cell
*cell_sort_array
[CELL_SORT_ARRAY_SIZE
];
266 static enum pool_mode
get_pool_mode(struct pool
*pool
);
267 static void metadata_operation_failed(struct pool
*pool
, const char *op
, int r
);
270 * Target context for a pool.
273 struct dm_target
*ti
;
275 struct dm_dev
*data_dev
;
276 struct dm_dev
*metadata_dev
;
277 struct dm_target_callbacks callbacks
;
279 dm_block_t low_water_blocks
;
280 struct pool_features requested_pf
; /* Features requested during table load */
281 struct pool_features adjusted_pf
; /* Features used after adjusting for constituent devices */
285 * Target context for a thin.
288 struct list_head list
;
289 struct dm_dev
*pool_dev
;
290 struct dm_dev
*origin_dev
;
291 sector_t origin_size
;
295 struct dm_thin_device
*td
;
296 struct mapped_device
*thin_md
;
300 struct list_head deferred_cells
;
301 struct bio_list deferred_bio_list
;
302 struct bio_list retry_on_resume_list
;
303 struct rb_root sort_bio_list
; /* sorted list of deferred bios */
306 * Ensures the thin is not destroyed until the worker has finished
307 * iterating the active_thins list.
310 struct completion can_destroy
;
313 /*----------------------------------------------------------------*/
316 * wake_worker() is used when new work is queued and when pool_resume is
317 * ready to continue deferred IO processing.
319 static void wake_worker(struct pool
*pool
)
321 queue_work(pool
->wq
, &pool
->worker
);
324 /*----------------------------------------------------------------*/
326 static int bio_detain(struct pool
*pool
, struct dm_cell_key
*key
, struct bio
*bio
,
327 struct dm_bio_prison_cell
**cell_result
)
330 struct dm_bio_prison_cell
*cell_prealloc
;
333 * Allocate a cell from the prison's mempool.
334 * This might block but it can't fail.
336 cell_prealloc
= dm_bio_prison_alloc_cell(pool
->prison
, GFP_NOIO
);
338 r
= dm_bio_detain(pool
->prison
, key
, bio
, cell_prealloc
, cell_result
);
341 * We reused an old cell; we can get rid of
344 dm_bio_prison_free_cell(pool
->prison
, cell_prealloc
);
349 static void cell_release(struct pool
*pool
,
350 struct dm_bio_prison_cell
*cell
,
351 struct bio_list
*bios
)
353 dm_cell_release(pool
->prison
, cell
, bios
);
354 dm_bio_prison_free_cell(pool
->prison
, cell
);
357 static void cell_visit_release(struct pool
*pool
,
358 void (*fn
)(void *, struct dm_bio_prison_cell
*),
360 struct dm_bio_prison_cell
*cell
)
362 dm_cell_visit_release(pool
->prison
, fn
, context
, cell
);
363 dm_bio_prison_free_cell(pool
->prison
, cell
);
366 static void cell_release_no_holder(struct pool
*pool
,
367 struct dm_bio_prison_cell
*cell
,
368 struct bio_list
*bios
)
370 dm_cell_release_no_holder(pool
->prison
, cell
, bios
);
371 dm_bio_prison_free_cell(pool
->prison
, cell
);
374 static void cell_error_with_code(struct pool
*pool
,
375 struct dm_bio_prison_cell
*cell
, int error_code
)
377 dm_cell_error(pool
->prison
, cell
, error_code
);
378 dm_bio_prison_free_cell(pool
->prison
, cell
);
381 static void cell_error(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
383 cell_error_with_code(pool
, cell
, -EIO
);
386 static void cell_success(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
388 cell_error_with_code(pool
, cell
, 0);
391 static void cell_requeue(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
393 cell_error_with_code(pool
, cell
, DM_ENDIO_REQUEUE
);
396 /*----------------------------------------------------------------*/
399 * A global list of pools that uses a struct mapped_device as a key.
401 static struct dm_thin_pool_table
{
403 struct list_head pools
;
404 } dm_thin_pool_table
;
406 static void pool_table_init(void)
408 mutex_init(&dm_thin_pool_table
.mutex
);
409 INIT_LIST_HEAD(&dm_thin_pool_table
.pools
);
412 static void __pool_table_insert(struct pool
*pool
)
414 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
415 list_add(&pool
->list
, &dm_thin_pool_table
.pools
);
418 static void __pool_table_remove(struct pool
*pool
)
420 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
421 list_del(&pool
->list
);
424 static struct pool
*__pool_table_lookup(struct mapped_device
*md
)
426 struct pool
*pool
= NULL
, *tmp
;
428 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
430 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
431 if (tmp
->pool_md
== md
) {
440 static struct pool
*__pool_table_lookup_metadata_dev(struct block_device
*md_dev
)
442 struct pool
*pool
= NULL
, *tmp
;
444 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
446 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
447 if (tmp
->md_dev
== md_dev
) {
456 /*----------------------------------------------------------------*/
458 struct dm_thin_endio_hook
{
460 struct dm_deferred_entry
*shared_read_entry
;
461 struct dm_deferred_entry
*all_io_entry
;
462 struct dm_thin_new_mapping
*overwrite_mapping
;
463 struct rb_node rb_node
;
466 static void __merge_bio_list(struct bio_list
*bios
, struct bio_list
*master
)
468 bio_list_merge(bios
, master
);
469 bio_list_init(master
);
472 static void error_bio_list(struct bio_list
*bios
, int error
)
476 while ((bio
= bio_list_pop(bios
)))
477 bio_endio(bio
, error
);
480 static void error_thin_bio_list(struct thin_c
*tc
, struct bio_list
*master
, int error
)
482 struct bio_list bios
;
485 bio_list_init(&bios
);
487 spin_lock_irqsave(&tc
->lock
, flags
);
488 __merge_bio_list(&bios
, master
);
489 spin_unlock_irqrestore(&tc
->lock
, flags
);
491 error_bio_list(&bios
, error
);
494 static void requeue_deferred_cells(struct thin_c
*tc
)
496 struct pool
*pool
= tc
->pool
;
498 struct list_head cells
;
499 struct dm_bio_prison_cell
*cell
, *tmp
;
501 INIT_LIST_HEAD(&cells
);
503 spin_lock_irqsave(&tc
->lock
, flags
);
504 list_splice_init(&tc
->deferred_cells
, &cells
);
505 spin_unlock_irqrestore(&tc
->lock
, flags
);
507 list_for_each_entry_safe(cell
, tmp
, &cells
, user_list
)
508 cell_requeue(pool
, cell
);
511 static void requeue_io(struct thin_c
*tc
)
513 struct bio_list bios
;
516 bio_list_init(&bios
);
518 spin_lock_irqsave(&tc
->lock
, flags
);
519 __merge_bio_list(&bios
, &tc
->deferred_bio_list
);
520 __merge_bio_list(&bios
, &tc
->retry_on_resume_list
);
521 spin_unlock_irqrestore(&tc
->lock
, flags
);
523 error_bio_list(&bios
, DM_ENDIO_REQUEUE
);
524 requeue_deferred_cells(tc
);
527 static void error_retry_list(struct pool
*pool
)
532 list_for_each_entry_rcu(tc
, &pool
->active_thins
, list
)
533 error_thin_bio_list(tc
, &tc
->retry_on_resume_list
, -EIO
);
538 * This section of code contains the logic for processing a thin device's IO.
539 * Much of the code depends on pool object resources (lists, workqueues, etc)
540 * but most is exclusively called from the thin target rather than the thin-pool
544 static bool block_size_is_power_of_two(struct pool
*pool
)
546 return pool
->sectors_per_block_shift
>= 0;
549 static dm_block_t
get_bio_block(struct thin_c
*tc
, struct bio
*bio
)
551 struct pool
*pool
= tc
->pool
;
552 sector_t block_nr
= bio
->bi_iter
.bi_sector
;
554 if (block_size_is_power_of_two(pool
))
555 block_nr
>>= pool
->sectors_per_block_shift
;
557 (void) sector_div(block_nr
, pool
->sectors_per_block
);
562 static void remap(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
)
564 struct pool
*pool
= tc
->pool
;
565 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
567 bio
->bi_bdev
= tc
->pool_dev
->bdev
;
568 if (block_size_is_power_of_two(pool
))
569 bio
->bi_iter
.bi_sector
=
570 (block
<< pool
->sectors_per_block_shift
) |
571 (bi_sector
& (pool
->sectors_per_block
- 1));
573 bio
->bi_iter
.bi_sector
= (block
* pool
->sectors_per_block
) +
574 sector_div(bi_sector
, pool
->sectors_per_block
);
577 static void remap_to_origin(struct thin_c
*tc
, struct bio
*bio
)
579 bio
->bi_bdev
= tc
->origin_dev
->bdev
;
582 static int bio_triggers_commit(struct thin_c
*tc
, struct bio
*bio
)
584 return (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) &&
585 dm_thin_changed_this_transaction(tc
->td
);
588 static void inc_all_io_entry(struct pool
*pool
, struct bio
*bio
)
590 struct dm_thin_endio_hook
*h
;
592 if (bio
->bi_rw
& REQ_DISCARD
)
595 h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
596 h
->all_io_entry
= dm_deferred_entry_inc(pool
->all_io_ds
);
599 static void issue(struct thin_c
*tc
, struct bio
*bio
)
601 struct pool
*pool
= tc
->pool
;
604 if (!bio_triggers_commit(tc
, bio
)) {
605 generic_make_request(bio
);
610 * Complete bio with an error if earlier I/O caused changes to
611 * the metadata that can't be committed e.g, due to I/O errors
612 * on the metadata device.
614 if (dm_thin_aborted_changes(tc
->td
)) {
620 * Batch together any bios that trigger commits and then issue a
621 * single commit for them in process_deferred_bios().
623 spin_lock_irqsave(&pool
->lock
, flags
);
624 bio_list_add(&pool
->deferred_flush_bios
, bio
);
625 spin_unlock_irqrestore(&pool
->lock
, flags
);
628 static void remap_to_origin_and_issue(struct thin_c
*tc
, struct bio
*bio
)
630 remap_to_origin(tc
, bio
);
634 static void remap_and_issue(struct thin_c
*tc
, struct bio
*bio
,
637 remap(tc
, bio
, block
);
641 /*----------------------------------------------------------------*/
644 * Bio endio functions.
646 struct dm_thin_new_mapping
{
647 struct list_head list
;
650 bool definitely_not_shared
:1;
653 * Track quiescing, copying and zeroing preparation actions. When this
654 * counter hits zero the block is prepared and can be inserted into the
657 atomic_t prepare_actions
;
661 dm_block_t virt_block
;
662 dm_block_t data_block
;
663 struct dm_bio_prison_cell
*cell
, *cell2
;
666 * If the bio covers the whole area of a block then we can avoid
667 * zeroing or copying. Instead this bio is hooked. The bio will
668 * still be in the cell, so care has to be taken to avoid issuing
672 bio_end_io_t
*saved_bi_end_io
;
675 static void __complete_mapping_preparation(struct dm_thin_new_mapping
*m
)
677 struct pool
*pool
= m
->tc
->pool
;
679 if (atomic_dec_and_test(&m
->prepare_actions
)) {
680 list_add_tail(&m
->list
, &pool
->prepared_mappings
);
685 static void complete_mapping_preparation(struct dm_thin_new_mapping
*m
)
688 struct pool
*pool
= m
->tc
->pool
;
690 spin_lock_irqsave(&pool
->lock
, flags
);
691 __complete_mapping_preparation(m
);
692 spin_unlock_irqrestore(&pool
->lock
, flags
);
695 static void copy_complete(int read_err
, unsigned long write_err
, void *context
)
697 struct dm_thin_new_mapping
*m
= context
;
699 m
->err
= read_err
|| write_err
? -EIO
: 0;
700 complete_mapping_preparation(m
);
703 static void overwrite_endio(struct bio
*bio
, int err
)
705 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
706 struct dm_thin_new_mapping
*m
= h
->overwrite_mapping
;
709 complete_mapping_preparation(m
);
712 /*----------------------------------------------------------------*/
719 * Prepared mapping jobs.
723 * This sends the bios in the cell, except the original holder, back
724 * to the deferred_bios list.
726 static void cell_defer_no_holder(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
728 struct pool
*pool
= tc
->pool
;
731 spin_lock_irqsave(&tc
->lock
, flags
);
732 cell_release_no_holder(pool
, cell
, &tc
->deferred_bio_list
);
733 spin_unlock_irqrestore(&tc
->lock
, flags
);
738 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
);
742 struct bio_list defer_bios
;
743 struct bio_list issue_bios
;
746 static void __inc_remap_and_issue_cell(void *context
,
747 struct dm_bio_prison_cell
*cell
)
749 struct remap_info
*info
= context
;
752 while ((bio
= bio_list_pop(&cell
->bios
))) {
753 if (bio
->bi_rw
& (REQ_DISCARD
| REQ_FLUSH
| REQ_FUA
))
754 bio_list_add(&info
->defer_bios
, bio
);
756 inc_all_io_entry(info
->tc
->pool
, bio
);
759 * We can't issue the bios with the bio prison lock
760 * held, so we add them to a list to issue on
761 * return from this function.
763 bio_list_add(&info
->issue_bios
, bio
);
768 static void inc_remap_and_issue_cell(struct thin_c
*tc
,
769 struct dm_bio_prison_cell
*cell
,
773 struct remap_info info
;
776 bio_list_init(&info
.defer_bios
);
777 bio_list_init(&info
.issue_bios
);
780 * We have to be careful to inc any bios we're about to issue
781 * before the cell is released, and avoid a race with new bios
782 * being added to the cell.
784 cell_visit_release(tc
->pool
, __inc_remap_and_issue_cell
,
787 while ((bio
= bio_list_pop(&info
.defer_bios
)))
788 thin_defer_bio(tc
, bio
);
790 while ((bio
= bio_list_pop(&info
.issue_bios
)))
791 remap_and_issue(info
.tc
, bio
, block
);
794 static void process_prepared_mapping_fail(struct dm_thin_new_mapping
*m
)
797 m
->bio
->bi_end_io
= m
->saved_bi_end_io
;
798 atomic_inc(&m
->bio
->bi_remaining
);
800 cell_error(m
->tc
->pool
, m
->cell
);
802 mempool_free(m
, m
->tc
->pool
->mapping_pool
);
805 static void process_prepared_mapping(struct dm_thin_new_mapping
*m
)
807 struct thin_c
*tc
= m
->tc
;
808 struct pool
*pool
= tc
->pool
;
814 bio
->bi_end_io
= m
->saved_bi_end_io
;
815 atomic_inc(&bio
->bi_remaining
);
819 cell_error(pool
, m
->cell
);
824 * Commit the prepared block into the mapping btree.
825 * Any I/O for this block arriving after this point will get
826 * remapped to it directly.
828 r
= dm_thin_insert_block(tc
->td
, m
->virt_block
, m
->data_block
);
830 metadata_operation_failed(pool
, "dm_thin_insert_block", r
);
831 cell_error(pool
, m
->cell
);
836 * Release any bios held while the block was being provisioned.
837 * If we are processing a write bio that completely covers the block,
838 * we already processed it so can ignore it now when processing
839 * the bios in the cell.
842 inc_remap_and_issue_cell(tc
, m
->cell
, m
->data_block
);
845 inc_all_io_entry(tc
->pool
, m
->cell
->holder
);
846 remap_and_issue(tc
, m
->cell
->holder
, m
->data_block
);
847 inc_remap_and_issue_cell(tc
, m
->cell
, m
->data_block
);
852 mempool_free(m
, pool
->mapping_pool
);
855 static void process_prepared_discard_fail(struct dm_thin_new_mapping
*m
)
857 struct thin_c
*tc
= m
->tc
;
859 bio_io_error(m
->bio
);
860 cell_defer_no_holder(tc
, m
->cell
);
861 cell_defer_no_holder(tc
, m
->cell2
);
862 mempool_free(m
, tc
->pool
->mapping_pool
);
865 static void process_prepared_discard_passdown(struct dm_thin_new_mapping
*m
)
867 struct thin_c
*tc
= m
->tc
;
869 inc_all_io_entry(tc
->pool
, m
->bio
);
870 cell_defer_no_holder(tc
, m
->cell
);
871 cell_defer_no_holder(tc
, m
->cell2
);
874 if (m
->definitely_not_shared
)
875 remap_and_issue(tc
, m
->bio
, m
->data_block
);
878 if (dm_pool_block_is_used(tc
->pool
->pmd
, m
->data_block
, &used
) || used
)
879 bio_endio(m
->bio
, 0);
881 remap_and_issue(tc
, m
->bio
, m
->data_block
);
884 bio_endio(m
->bio
, 0);
886 mempool_free(m
, tc
->pool
->mapping_pool
);
889 static void process_prepared_discard(struct dm_thin_new_mapping
*m
)
892 struct thin_c
*tc
= m
->tc
;
894 r
= dm_thin_remove_block(tc
->td
, m
->virt_block
);
896 DMERR_LIMIT("dm_thin_remove_block() failed");
898 process_prepared_discard_passdown(m
);
901 static void process_prepared(struct pool
*pool
, struct list_head
*head
,
902 process_mapping_fn
*fn
)
905 struct list_head maps
;
906 struct dm_thin_new_mapping
*m
, *tmp
;
908 INIT_LIST_HEAD(&maps
);
909 spin_lock_irqsave(&pool
->lock
, flags
);
910 list_splice_init(head
, &maps
);
911 spin_unlock_irqrestore(&pool
->lock
, flags
);
913 list_for_each_entry_safe(m
, tmp
, &maps
, list
)
920 static int io_overlaps_block(struct pool
*pool
, struct bio
*bio
)
922 return bio
->bi_iter
.bi_size
==
923 (pool
->sectors_per_block
<< SECTOR_SHIFT
);
926 static int io_overwrites_block(struct pool
*pool
, struct bio
*bio
)
928 return (bio_data_dir(bio
) == WRITE
) &&
929 io_overlaps_block(pool
, bio
);
932 static void save_and_set_endio(struct bio
*bio
, bio_end_io_t
**save
,
935 *save
= bio
->bi_end_io
;
939 static int ensure_next_mapping(struct pool
*pool
)
941 if (pool
->next_mapping
)
944 pool
->next_mapping
= mempool_alloc(pool
->mapping_pool
, GFP_ATOMIC
);
946 return pool
->next_mapping
? 0 : -ENOMEM
;
949 static struct dm_thin_new_mapping
*get_next_mapping(struct pool
*pool
)
951 struct dm_thin_new_mapping
*m
= pool
->next_mapping
;
953 BUG_ON(!pool
->next_mapping
);
955 memset(m
, 0, sizeof(struct dm_thin_new_mapping
));
956 INIT_LIST_HEAD(&m
->list
);
959 pool
->next_mapping
= NULL
;
964 static void ll_zero(struct thin_c
*tc
, struct dm_thin_new_mapping
*m
,
965 sector_t begin
, sector_t end
)
968 struct dm_io_region to
;
970 to
.bdev
= tc
->pool_dev
->bdev
;
972 to
.count
= end
- begin
;
974 r
= dm_kcopyd_zero(tc
->pool
->copier
, 1, &to
, 0, copy_complete
, m
);
976 DMERR_LIMIT("dm_kcopyd_zero() failed");
977 copy_complete(1, 1, m
);
981 static void remap_and_issue_overwrite(struct thin_c
*tc
, struct bio
*bio
,
982 dm_block_t data_block
,
983 struct dm_thin_new_mapping
*m
)
985 struct pool
*pool
= tc
->pool
;
986 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
988 h
->overwrite_mapping
= m
;
990 save_and_set_endio(bio
, &m
->saved_bi_end_io
, overwrite_endio
);
991 inc_all_io_entry(pool
, bio
);
992 remap_and_issue(tc
, bio
, data_block
);
996 * A partial copy also needs to zero the uncopied region.
998 static void schedule_copy(struct thin_c
*tc
, dm_block_t virt_block
,
999 struct dm_dev
*origin
, dm_block_t data_origin
,
1000 dm_block_t data_dest
,
1001 struct dm_bio_prison_cell
*cell
, struct bio
*bio
,
1005 struct pool
*pool
= tc
->pool
;
1006 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1009 m
->virt_block
= virt_block
;
1010 m
->data_block
= data_dest
;
1014 * quiesce action + copy action + an extra reference held for the
1015 * duration of this function (we may need to inc later for a
1018 atomic_set(&m
->prepare_actions
, 3);
1020 if (!dm_deferred_set_add_work(pool
->shared_read_ds
, &m
->list
))
1021 complete_mapping_preparation(m
); /* already quiesced */
1024 * IO to pool_dev remaps to the pool target's data_dev.
1026 * If the whole block of data is being overwritten, we can issue the
1027 * bio immediately. Otherwise we use kcopyd to clone the data first.
1029 if (io_overwrites_block(pool
, bio
))
1030 remap_and_issue_overwrite(tc
, bio
, data_dest
, m
);
1032 struct dm_io_region from
, to
;
1034 from
.bdev
= origin
->bdev
;
1035 from
.sector
= data_origin
* pool
->sectors_per_block
;
1038 to
.bdev
= tc
->pool_dev
->bdev
;
1039 to
.sector
= data_dest
* pool
->sectors_per_block
;
1042 r
= dm_kcopyd_copy(pool
->copier
, &from
, 1, &to
,
1043 0, copy_complete
, m
);
1045 DMERR_LIMIT("dm_kcopyd_copy() failed");
1046 copy_complete(1, 1, m
);
1049 * We allow the zero to be issued, to simplify the
1050 * error path. Otherwise we'd need to start
1051 * worrying about decrementing the prepare_actions
1057 * Do we need to zero a tail region?
1059 if (len
< pool
->sectors_per_block
&& pool
->pf
.zero_new_blocks
) {
1060 atomic_inc(&m
->prepare_actions
);
1062 data_dest
* pool
->sectors_per_block
+ len
,
1063 (data_dest
+ 1) * pool
->sectors_per_block
);
1067 complete_mapping_preparation(m
); /* drop our ref */
1070 static void schedule_internal_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1071 dm_block_t data_origin
, dm_block_t data_dest
,
1072 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
1074 schedule_copy(tc
, virt_block
, tc
->pool_dev
,
1075 data_origin
, data_dest
, cell
, bio
,
1076 tc
->pool
->sectors_per_block
);
1079 static void schedule_zero(struct thin_c
*tc
, dm_block_t virt_block
,
1080 dm_block_t data_block
, struct dm_bio_prison_cell
*cell
,
1083 struct pool
*pool
= tc
->pool
;
1084 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1086 atomic_set(&m
->prepare_actions
, 1); /* no need to quiesce */
1088 m
->virt_block
= virt_block
;
1089 m
->data_block
= data_block
;
1093 * If the whole block of data is being overwritten or we are not
1094 * zeroing pre-existing data, we can issue the bio immediately.
1095 * Otherwise we use kcopyd to zero the data first.
1097 if (!pool
->pf
.zero_new_blocks
)
1098 process_prepared_mapping(m
);
1100 else if (io_overwrites_block(pool
, bio
))
1101 remap_and_issue_overwrite(tc
, bio
, data_block
, m
);
1105 data_block
* pool
->sectors_per_block
,
1106 (data_block
+ 1) * pool
->sectors_per_block
);
1109 static void schedule_external_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1110 dm_block_t data_dest
,
1111 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
1113 struct pool
*pool
= tc
->pool
;
1114 sector_t virt_block_begin
= virt_block
* pool
->sectors_per_block
;
1115 sector_t virt_block_end
= (virt_block
+ 1) * pool
->sectors_per_block
;
1117 if (virt_block_end
<= tc
->origin_size
)
1118 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
1119 virt_block
, data_dest
, cell
, bio
,
1120 pool
->sectors_per_block
);
1122 else if (virt_block_begin
< tc
->origin_size
)
1123 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
1124 virt_block
, data_dest
, cell
, bio
,
1125 tc
->origin_size
- virt_block_begin
);
1128 schedule_zero(tc
, virt_block
, data_dest
, cell
, bio
);
1131 static void set_pool_mode(struct pool
*pool
, enum pool_mode new_mode
);
1133 static void check_for_space(struct pool
*pool
)
1138 if (get_pool_mode(pool
) != PM_OUT_OF_DATA_SPACE
)
1141 r
= dm_pool_get_free_block_count(pool
->pmd
, &nr_free
);
1146 set_pool_mode(pool
, PM_WRITE
);
1150 * A non-zero return indicates read_only or fail_io mode.
1151 * Many callers don't care about the return value.
1153 static int commit(struct pool
*pool
)
1157 if (get_pool_mode(pool
) >= PM_READ_ONLY
)
1160 r
= dm_pool_commit_metadata(pool
->pmd
);
1162 metadata_operation_failed(pool
, "dm_pool_commit_metadata", r
);
1164 check_for_space(pool
);
1169 static void check_low_water_mark(struct pool
*pool
, dm_block_t free_blocks
)
1171 unsigned long flags
;
1173 if (free_blocks
<= pool
->low_water_blocks
&& !pool
->low_water_triggered
) {
1174 DMWARN("%s: reached low water mark for data device: sending event.",
1175 dm_device_name(pool
->pool_md
));
1176 spin_lock_irqsave(&pool
->lock
, flags
);
1177 pool
->low_water_triggered
= true;
1178 spin_unlock_irqrestore(&pool
->lock
, flags
);
1179 dm_table_event(pool
->ti
->table
);
1183 static int alloc_data_block(struct thin_c
*tc
, dm_block_t
*result
)
1186 dm_block_t free_blocks
;
1187 struct pool
*pool
= tc
->pool
;
1189 if (WARN_ON(get_pool_mode(pool
) != PM_WRITE
))
1192 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1194 metadata_operation_failed(pool
, "dm_pool_get_free_block_count", r
);
1198 check_low_water_mark(pool
, free_blocks
);
1202 * Try to commit to see if that will free up some
1209 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1211 metadata_operation_failed(pool
, "dm_pool_get_free_block_count", r
);
1216 set_pool_mode(pool
, PM_OUT_OF_DATA_SPACE
);
1221 r
= dm_pool_alloc_data_block(pool
->pmd
, result
);
1223 metadata_operation_failed(pool
, "dm_pool_alloc_data_block", r
);
1231 * If we have run out of space, queue bios until the device is
1232 * resumed, presumably after having been reloaded with more space.
1234 static void retry_on_resume(struct bio
*bio
)
1236 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1237 struct thin_c
*tc
= h
->tc
;
1238 unsigned long flags
;
1240 spin_lock_irqsave(&tc
->lock
, flags
);
1241 bio_list_add(&tc
->retry_on_resume_list
, bio
);
1242 spin_unlock_irqrestore(&tc
->lock
, flags
);
1245 static int should_error_unserviceable_bio(struct pool
*pool
)
1247 enum pool_mode m
= get_pool_mode(pool
);
1251 /* Shouldn't get here */
1252 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1255 case PM_OUT_OF_DATA_SPACE
:
1256 return pool
->pf
.error_if_no_space
? -ENOSPC
: 0;
1262 /* Shouldn't get here */
1263 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1268 static void handle_unserviceable_bio(struct pool
*pool
, struct bio
*bio
)
1270 int error
= should_error_unserviceable_bio(pool
);
1273 bio_endio(bio
, error
);
1275 retry_on_resume(bio
);
1278 static void retry_bios_on_resume(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
1281 struct bio_list bios
;
1284 error
= should_error_unserviceable_bio(pool
);
1286 cell_error_with_code(pool
, cell
, error
);
1290 bio_list_init(&bios
);
1291 cell_release(pool
, cell
, &bios
);
1293 while ((bio
= bio_list_pop(&bios
)))
1294 retry_on_resume(bio
);
1297 static void process_discard_cell(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1300 struct bio
*bio
= cell
->holder
;
1301 struct pool
*pool
= tc
->pool
;
1302 struct dm_bio_prison_cell
*cell2
;
1303 struct dm_cell_key key2
;
1304 dm_block_t block
= get_bio_block(tc
, bio
);
1305 struct dm_thin_lookup_result lookup_result
;
1306 struct dm_thin_new_mapping
*m
;
1308 if (tc
->requeue_mode
) {
1309 cell_requeue(pool
, cell
);
1313 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1317 * Check nobody is fiddling with this pool block. This can
1318 * happen if someone's in the process of breaking sharing
1321 build_data_key(tc
->td
, lookup_result
.block
, &key2
);
1322 if (bio_detain(tc
->pool
, &key2
, bio
, &cell2
)) {
1323 cell_defer_no_holder(tc
, cell
);
1327 if (io_overlaps_block(pool
, bio
)) {
1329 * IO may still be going to the destination block. We must
1330 * quiesce before we can do the removal.
1332 m
= get_next_mapping(pool
);
1334 m
->pass_discard
= pool
->pf
.discard_passdown
;
1335 m
->definitely_not_shared
= !lookup_result
.shared
;
1336 m
->virt_block
= block
;
1337 m
->data_block
= lookup_result
.block
;
1342 if (!dm_deferred_set_add_work(pool
->all_io_ds
, &m
->list
))
1343 pool
->process_prepared_discard(m
);
1346 inc_all_io_entry(pool
, bio
);
1347 cell_defer_no_holder(tc
, cell
);
1348 cell_defer_no_holder(tc
, cell2
);
1351 * The DM core makes sure that the discard doesn't span
1352 * a block boundary. So we submit the discard of a
1353 * partial block appropriately.
1355 if ((!lookup_result
.shared
) && pool
->pf
.discard_passdown
)
1356 remap_and_issue(tc
, bio
, lookup_result
.block
);
1364 * It isn't provisioned, just forget it.
1366 cell_defer_no_holder(tc
, cell
);
1371 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1373 cell_defer_no_holder(tc
, cell
);
1379 static void process_discard_bio(struct thin_c
*tc
, struct bio
*bio
)
1381 struct dm_bio_prison_cell
*cell
;
1382 struct dm_cell_key key
;
1383 dm_block_t block
= get_bio_block(tc
, bio
);
1385 build_virtual_key(tc
->td
, block
, &key
);
1386 if (bio_detain(tc
->pool
, &key
, bio
, &cell
))
1389 process_discard_cell(tc
, cell
);
1392 static void break_sharing(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1393 struct dm_cell_key
*key
,
1394 struct dm_thin_lookup_result
*lookup_result
,
1395 struct dm_bio_prison_cell
*cell
)
1398 dm_block_t data_block
;
1399 struct pool
*pool
= tc
->pool
;
1401 r
= alloc_data_block(tc
, &data_block
);
1404 schedule_internal_copy(tc
, block
, lookup_result
->block
,
1405 data_block
, cell
, bio
);
1409 retry_bios_on_resume(pool
, cell
);
1413 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1415 cell_error(pool
, cell
);
1420 static void __remap_and_issue_shared_cell(void *context
,
1421 struct dm_bio_prison_cell
*cell
)
1423 struct remap_info
*info
= context
;
1426 while ((bio
= bio_list_pop(&cell
->bios
))) {
1427 if ((bio_data_dir(bio
) == WRITE
) ||
1428 (bio
->bi_rw
& (REQ_DISCARD
| REQ_FLUSH
| REQ_FUA
)))
1429 bio_list_add(&info
->defer_bios
, bio
);
1431 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));;
1433 h
->shared_read_entry
= dm_deferred_entry_inc(info
->tc
->pool
->shared_read_ds
);
1434 inc_all_io_entry(info
->tc
->pool
, bio
);
1435 bio_list_add(&info
->issue_bios
, bio
);
1440 static void remap_and_issue_shared_cell(struct thin_c
*tc
,
1441 struct dm_bio_prison_cell
*cell
,
1445 struct remap_info info
;
1448 bio_list_init(&info
.defer_bios
);
1449 bio_list_init(&info
.issue_bios
);
1451 cell_visit_release(tc
->pool
, __remap_and_issue_shared_cell
,
1454 while ((bio
= bio_list_pop(&info
.defer_bios
)))
1455 thin_defer_bio(tc
, bio
);
1457 while ((bio
= bio_list_pop(&info
.issue_bios
)))
1458 remap_and_issue(tc
, bio
, block
);
1461 static void process_shared_bio(struct thin_c
*tc
, struct bio
*bio
,
1463 struct dm_thin_lookup_result
*lookup_result
,
1464 struct dm_bio_prison_cell
*virt_cell
)
1466 struct dm_bio_prison_cell
*data_cell
;
1467 struct pool
*pool
= tc
->pool
;
1468 struct dm_cell_key key
;
1471 * If cell is already occupied, then sharing is already in the process
1472 * of being broken so we have nothing further to do here.
1474 build_data_key(tc
->td
, lookup_result
->block
, &key
);
1475 if (bio_detain(pool
, &key
, bio
, &data_cell
)) {
1476 cell_defer_no_holder(tc
, virt_cell
);
1480 if (bio_data_dir(bio
) == WRITE
&& bio
->bi_iter
.bi_size
) {
1481 break_sharing(tc
, bio
, block
, &key
, lookup_result
, data_cell
);
1482 cell_defer_no_holder(tc
, virt_cell
);
1484 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1486 h
->shared_read_entry
= dm_deferred_entry_inc(pool
->shared_read_ds
);
1487 inc_all_io_entry(pool
, bio
);
1488 remap_and_issue(tc
, bio
, lookup_result
->block
);
1490 remap_and_issue_shared_cell(tc
, data_cell
, lookup_result
->block
);
1491 remap_and_issue_shared_cell(tc
, virt_cell
, lookup_result
->block
);
1495 static void provision_block(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1496 struct dm_bio_prison_cell
*cell
)
1499 dm_block_t data_block
;
1500 struct pool
*pool
= tc
->pool
;
1503 * Remap empty bios (flushes) immediately, without provisioning.
1505 if (!bio
->bi_iter
.bi_size
) {
1506 inc_all_io_entry(pool
, bio
);
1507 cell_defer_no_holder(tc
, cell
);
1509 remap_and_issue(tc
, bio
, 0);
1514 * Fill read bios with zeroes and complete them immediately.
1516 if (bio_data_dir(bio
) == READ
) {
1518 cell_defer_no_holder(tc
, cell
);
1523 r
= alloc_data_block(tc
, &data_block
);
1527 schedule_external_copy(tc
, block
, data_block
, cell
, bio
);
1529 schedule_zero(tc
, block
, data_block
, cell
, bio
);
1533 retry_bios_on_resume(pool
, cell
);
1537 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1539 cell_error(pool
, cell
);
1544 static void process_cell(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1547 struct pool
*pool
= tc
->pool
;
1548 struct bio
*bio
= cell
->holder
;
1549 dm_block_t block
= get_bio_block(tc
, bio
);
1550 struct dm_thin_lookup_result lookup_result
;
1552 if (tc
->requeue_mode
) {
1553 cell_requeue(pool
, cell
);
1557 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1560 if (lookup_result
.shared
)
1561 process_shared_bio(tc
, bio
, block
, &lookup_result
, cell
);
1563 inc_all_io_entry(pool
, bio
);
1564 remap_and_issue(tc
, bio
, lookup_result
.block
);
1565 inc_remap_and_issue_cell(tc
, cell
, lookup_result
.block
);
1570 if (bio_data_dir(bio
) == READ
&& tc
->origin_dev
) {
1571 inc_all_io_entry(pool
, bio
);
1572 cell_defer_no_holder(tc
, cell
);
1574 if (bio_end_sector(bio
) <= tc
->origin_size
)
1575 remap_to_origin_and_issue(tc
, bio
);
1577 else if (bio
->bi_iter
.bi_sector
< tc
->origin_size
) {
1579 bio
->bi_iter
.bi_size
= (tc
->origin_size
- bio
->bi_iter
.bi_sector
) << SECTOR_SHIFT
;
1580 remap_to_origin_and_issue(tc
, bio
);
1587 provision_block(tc
, bio
, block
, cell
);
1591 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1593 cell_defer_no_holder(tc
, cell
);
1599 static void process_bio(struct thin_c
*tc
, struct bio
*bio
)
1601 struct pool
*pool
= tc
->pool
;
1602 dm_block_t block
= get_bio_block(tc
, bio
);
1603 struct dm_bio_prison_cell
*cell
;
1604 struct dm_cell_key key
;
1607 * If cell is already occupied, then the block is already
1608 * being provisioned so we have nothing further to do here.
1610 build_virtual_key(tc
->td
, block
, &key
);
1611 if (bio_detain(pool
, &key
, bio
, &cell
))
1614 process_cell(tc
, cell
);
1617 static void __process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
,
1618 struct dm_bio_prison_cell
*cell
)
1621 int rw
= bio_data_dir(bio
);
1622 dm_block_t block
= get_bio_block(tc
, bio
);
1623 struct dm_thin_lookup_result lookup_result
;
1625 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1628 if (lookup_result
.shared
&& (rw
== WRITE
) && bio
->bi_iter
.bi_size
) {
1629 handle_unserviceable_bio(tc
->pool
, bio
);
1631 cell_defer_no_holder(tc
, cell
);
1633 inc_all_io_entry(tc
->pool
, bio
);
1634 remap_and_issue(tc
, bio
, lookup_result
.block
);
1636 inc_remap_and_issue_cell(tc
, cell
, lookup_result
.block
);
1642 cell_defer_no_holder(tc
, cell
);
1644 handle_unserviceable_bio(tc
->pool
, bio
);
1648 if (tc
->origin_dev
) {
1649 inc_all_io_entry(tc
->pool
, bio
);
1650 remap_to_origin_and_issue(tc
, bio
);
1659 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1662 cell_defer_no_holder(tc
, cell
);
1668 static void process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
)
1670 __process_bio_read_only(tc
, bio
, NULL
);
1673 static void process_cell_read_only(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1675 __process_bio_read_only(tc
, cell
->holder
, cell
);
1678 static void process_bio_success(struct thin_c
*tc
, struct bio
*bio
)
1683 static void process_bio_fail(struct thin_c
*tc
, struct bio
*bio
)
1688 static void process_cell_success(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1690 cell_success(tc
->pool
, cell
);
1693 static void process_cell_fail(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1695 cell_error(tc
->pool
, cell
);
1699 * FIXME: should we also commit due to size of transaction, measured in
1702 static int need_commit_due_to_time(struct pool
*pool
)
1704 return !time_in_range(jiffies
, pool
->last_commit_jiffies
,
1705 pool
->last_commit_jiffies
+ COMMIT_PERIOD
);
1708 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1709 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1711 static void __thin_bio_rb_add(struct thin_c
*tc
, struct bio
*bio
)
1713 struct rb_node
**rbp
, *parent
;
1714 struct dm_thin_endio_hook
*pbd
;
1715 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
1717 rbp
= &tc
->sort_bio_list
.rb_node
;
1721 pbd
= thin_pbd(parent
);
1723 if (bi_sector
< thin_bio(pbd
)->bi_iter
.bi_sector
)
1724 rbp
= &(*rbp
)->rb_left
;
1726 rbp
= &(*rbp
)->rb_right
;
1729 pbd
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1730 rb_link_node(&pbd
->rb_node
, parent
, rbp
);
1731 rb_insert_color(&pbd
->rb_node
, &tc
->sort_bio_list
);
1734 static void __extract_sorted_bios(struct thin_c
*tc
)
1736 struct rb_node
*node
;
1737 struct dm_thin_endio_hook
*pbd
;
1740 for (node
= rb_first(&tc
->sort_bio_list
); node
; node
= rb_next(node
)) {
1741 pbd
= thin_pbd(node
);
1742 bio
= thin_bio(pbd
);
1744 bio_list_add(&tc
->deferred_bio_list
, bio
);
1745 rb_erase(&pbd
->rb_node
, &tc
->sort_bio_list
);
1748 WARN_ON(!RB_EMPTY_ROOT(&tc
->sort_bio_list
));
1751 static void __sort_thin_deferred_bios(struct thin_c
*tc
)
1754 struct bio_list bios
;
1756 bio_list_init(&bios
);
1757 bio_list_merge(&bios
, &tc
->deferred_bio_list
);
1758 bio_list_init(&tc
->deferred_bio_list
);
1760 /* Sort deferred_bio_list using rb-tree */
1761 while ((bio
= bio_list_pop(&bios
)))
1762 __thin_bio_rb_add(tc
, bio
);
1765 * Transfer the sorted bios in sort_bio_list back to
1766 * deferred_bio_list to allow lockless submission of
1769 __extract_sorted_bios(tc
);
1772 static void process_thin_deferred_bios(struct thin_c
*tc
)
1774 struct pool
*pool
= tc
->pool
;
1775 unsigned long flags
;
1777 struct bio_list bios
;
1778 struct blk_plug plug
;
1781 if (tc
->requeue_mode
) {
1782 error_thin_bio_list(tc
, &tc
->deferred_bio_list
, DM_ENDIO_REQUEUE
);
1786 bio_list_init(&bios
);
1788 spin_lock_irqsave(&tc
->lock
, flags
);
1790 if (bio_list_empty(&tc
->deferred_bio_list
)) {
1791 spin_unlock_irqrestore(&tc
->lock
, flags
);
1795 __sort_thin_deferred_bios(tc
);
1797 bio_list_merge(&bios
, &tc
->deferred_bio_list
);
1798 bio_list_init(&tc
->deferred_bio_list
);
1800 spin_unlock_irqrestore(&tc
->lock
, flags
);
1802 blk_start_plug(&plug
);
1803 while ((bio
= bio_list_pop(&bios
))) {
1805 * If we've got no free new_mapping structs, and processing
1806 * this bio might require one, we pause until there are some
1807 * prepared mappings to process.
1809 if (ensure_next_mapping(pool
)) {
1810 spin_lock_irqsave(&tc
->lock
, flags
);
1811 bio_list_add(&tc
->deferred_bio_list
, bio
);
1812 bio_list_merge(&tc
->deferred_bio_list
, &bios
);
1813 spin_unlock_irqrestore(&tc
->lock
, flags
);
1817 if (bio
->bi_rw
& REQ_DISCARD
)
1818 pool
->process_discard(tc
, bio
);
1820 pool
->process_bio(tc
, bio
);
1822 if ((count
++ & 127) == 0) {
1823 throttle_work_update(&pool
->throttle
);
1824 dm_pool_issue_prefetches(pool
->pmd
);
1827 blk_finish_plug(&plug
);
1830 static int cmp_cells(const void *lhs
, const void *rhs
)
1832 struct dm_bio_prison_cell
*lhs_cell
= *((struct dm_bio_prison_cell
**) lhs
);
1833 struct dm_bio_prison_cell
*rhs_cell
= *((struct dm_bio_prison_cell
**) rhs
);
1835 BUG_ON(!lhs_cell
->holder
);
1836 BUG_ON(!rhs_cell
->holder
);
1838 if (lhs_cell
->holder
->bi_iter
.bi_sector
< rhs_cell
->holder
->bi_iter
.bi_sector
)
1841 if (lhs_cell
->holder
->bi_iter
.bi_sector
> rhs_cell
->holder
->bi_iter
.bi_sector
)
1847 static unsigned sort_cells(struct pool
*pool
, struct list_head
*cells
)
1850 struct dm_bio_prison_cell
*cell
, *tmp
;
1852 list_for_each_entry_safe(cell
, tmp
, cells
, user_list
) {
1853 if (count
>= CELL_SORT_ARRAY_SIZE
)
1856 pool
->cell_sort_array
[count
++] = cell
;
1857 list_del(&cell
->user_list
);
1860 sort(pool
->cell_sort_array
, count
, sizeof(cell
), cmp_cells
, NULL
);
1865 static void process_thin_deferred_cells(struct thin_c
*tc
)
1867 struct pool
*pool
= tc
->pool
;
1868 unsigned long flags
;
1869 struct list_head cells
;
1870 struct dm_bio_prison_cell
*cell
;
1871 unsigned i
, j
, count
;
1873 INIT_LIST_HEAD(&cells
);
1875 spin_lock_irqsave(&tc
->lock
, flags
);
1876 list_splice_init(&tc
->deferred_cells
, &cells
);
1877 spin_unlock_irqrestore(&tc
->lock
, flags
);
1879 if (list_empty(&cells
))
1883 count
= sort_cells(tc
->pool
, &cells
);
1885 for (i
= 0; i
< count
; i
++) {
1886 cell
= pool
->cell_sort_array
[i
];
1887 BUG_ON(!cell
->holder
);
1890 * If we've got no free new_mapping structs, and processing
1891 * this bio might require one, we pause until there are some
1892 * prepared mappings to process.
1894 if (ensure_next_mapping(pool
)) {
1895 for (j
= i
; j
< count
; j
++)
1896 list_add(&pool
->cell_sort_array
[j
]->user_list
, &cells
);
1898 spin_lock_irqsave(&tc
->lock
, flags
);
1899 list_splice(&cells
, &tc
->deferred_cells
);
1900 spin_unlock_irqrestore(&tc
->lock
, flags
);
1904 if (cell
->holder
->bi_rw
& REQ_DISCARD
)
1905 pool
->process_discard_cell(tc
, cell
);
1907 pool
->process_cell(tc
, cell
);
1909 } while (!list_empty(&cells
));
1912 static void thin_get(struct thin_c
*tc
);
1913 static void thin_put(struct thin_c
*tc
);
1916 * We can't hold rcu_read_lock() around code that can block. So we
1917 * find a thin with the rcu lock held; bump a refcount; then drop
1920 static struct thin_c
*get_first_thin(struct pool
*pool
)
1922 struct thin_c
*tc
= NULL
;
1925 if (!list_empty(&pool
->active_thins
)) {
1926 tc
= list_entry_rcu(pool
->active_thins
.next
, struct thin_c
, list
);
1934 static struct thin_c
*get_next_thin(struct pool
*pool
, struct thin_c
*tc
)
1936 struct thin_c
*old_tc
= tc
;
1939 list_for_each_entry_continue_rcu(tc
, &pool
->active_thins
, list
) {
1951 static void process_deferred_bios(struct pool
*pool
)
1953 unsigned long flags
;
1955 struct bio_list bios
;
1958 tc
= get_first_thin(pool
);
1960 process_thin_deferred_cells(tc
);
1961 process_thin_deferred_bios(tc
);
1962 tc
= get_next_thin(pool
, tc
);
1966 * If there are any deferred flush bios, we must commit
1967 * the metadata before issuing them.
1969 bio_list_init(&bios
);
1970 spin_lock_irqsave(&pool
->lock
, flags
);
1971 bio_list_merge(&bios
, &pool
->deferred_flush_bios
);
1972 bio_list_init(&pool
->deferred_flush_bios
);
1973 spin_unlock_irqrestore(&pool
->lock
, flags
);
1975 if (bio_list_empty(&bios
) &&
1976 !(dm_pool_changed_this_transaction(pool
->pmd
) && need_commit_due_to_time(pool
)))
1980 while ((bio
= bio_list_pop(&bios
)))
1984 pool
->last_commit_jiffies
= jiffies
;
1986 while ((bio
= bio_list_pop(&bios
)))
1987 generic_make_request(bio
);
1990 static void do_worker(struct work_struct
*ws
)
1992 struct pool
*pool
= container_of(ws
, struct pool
, worker
);
1994 throttle_work_start(&pool
->throttle
);
1995 dm_pool_issue_prefetches(pool
->pmd
);
1996 throttle_work_update(&pool
->throttle
);
1997 process_prepared(pool
, &pool
->prepared_mappings
, &pool
->process_prepared_mapping
);
1998 throttle_work_update(&pool
->throttle
);
1999 process_prepared(pool
, &pool
->prepared_discards
, &pool
->process_prepared_discard
);
2000 throttle_work_update(&pool
->throttle
);
2001 process_deferred_bios(pool
);
2002 throttle_work_complete(&pool
->throttle
);
2006 * We want to commit periodically so that not too much
2007 * unwritten data builds up.
2009 static void do_waker(struct work_struct
*ws
)
2011 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
, waker
);
2013 queue_delayed_work(pool
->wq
, &pool
->waker
, COMMIT_PERIOD
);
2017 * We're holding onto IO to allow userland time to react. After the
2018 * timeout either the pool will have been resized (and thus back in
2019 * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
2021 static void do_no_space_timeout(struct work_struct
*ws
)
2023 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
,
2026 if (get_pool_mode(pool
) == PM_OUT_OF_DATA_SPACE
&& !pool
->pf
.error_if_no_space
)
2027 set_pool_mode(pool
, PM_READ_ONLY
);
2030 /*----------------------------------------------------------------*/
2033 struct work_struct worker
;
2034 struct completion complete
;
2037 static struct pool_work
*to_pool_work(struct work_struct
*ws
)
2039 return container_of(ws
, struct pool_work
, worker
);
2042 static void pool_work_complete(struct pool_work
*pw
)
2044 complete(&pw
->complete
);
2047 static void pool_work_wait(struct pool_work
*pw
, struct pool
*pool
,
2048 void (*fn
)(struct work_struct
*))
2050 INIT_WORK_ONSTACK(&pw
->worker
, fn
);
2051 init_completion(&pw
->complete
);
2052 queue_work(pool
->wq
, &pw
->worker
);
2053 wait_for_completion(&pw
->complete
);
2056 /*----------------------------------------------------------------*/
2058 struct noflush_work
{
2059 struct pool_work pw
;
2063 static struct noflush_work
*to_noflush(struct work_struct
*ws
)
2065 return container_of(to_pool_work(ws
), struct noflush_work
, pw
);
2068 static void do_noflush_start(struct work_struct
*ws
)
2070 struct noflush_work
*w
= to_noflush(ws
);
2071 w
->tc
->requeue_mode
= true;
2073 pool_work_complete(&w
->pw
);
2076 static void do_noflush_stop(struct work_struct
*ws
)
2078 struct noflush_work
*w
= to_noflush(ws
);
2079 w
->tc
->requeue_mode
= false;
2080 pool_work_complete(&w
->pw
);
2083 static void noflush_work(struct thin_c
*tc
, void (*fn
)(struct work_struct
*))
2085 struct noflush_work w
;
2088 pool_work_wait(&w
.pw
, tc
->pool
, fn
);
2091 /*----------------------------------------------------------------*/
2093 static enum pool_mode
get_pool_mode(struct pool
*pool
)
2095 return pool
->pf
.mode
;
2098 static void notify_of_pool_mode_change(struct pool
*pool
, const char *new_mode
)
2100 dm_table_event(pool
->ti
->table
);
2101 DMINFO("%s: switching pool to %s mode",
2102 dm_device_name(pool
->pool_md
), new_mode
);
2105 static void set_pool_mode(struct pool
*pool
, enum pool_mode new_mode
)
2107 struct pool_c
*pt
= pool
->ti
->private;
2108 bool needs_check
= dm_pool_metadata_needs_check(pool
->pmd
);
2109 enum pool_mode old_mode
= get_pool_mode(pool
);
2110 unsigned long no_space_timeout
= ACCESS_ONCE(no_space_timeout_secs
) * HZ
;
2113 * Never allow the pool to transition to PM_WRITE mode if user
2114 * intervention is required to verify metadata and data consistency.
2116 if (new_mode
== PM_WRITE
&& needs_check
) {
2117 DMERR("%s: unable to switch pool to write mode until repaired.",
2118 dm_device_name(pool
->pool_md
));
2119 if (old_mode
!= new_mode
)
2120 new_mode
= old_mode
;
2122 new_mode
= PM_READ_ONLY
;
2125 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2126 * not going to recover without a thin_repair. So we never let the
2127 * pool move out of the old mode.
2129 if (old_mode
== PM_FAIL
)
2130 new_mode
= old_mode
;
2134 if (old_mode
!= new_mode
)
2135 notify_of_pool_mode_change(pool
, "failure");
2136 dm_pool_metadata_read_only(pool
->pmd
);
2137 pool
->process_bio
= process_bio_fail
;
2138 pool
->process_discard
= process_bio_fail
;
2139 pool
->process_cell
= process_cell_fail
;
2140 pool
->process_discard_cell
= process_cell_fail
;
2141 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
2142 pool
->process_prepared_discard
= process_prepared_discard_fail
;
2144 error_retry_list(pool
);
2148 if (old_mode
!= new_mode
)
2149 notify_of_pool_mode_change(pool
, "read-only");
2150 dm_pool_metadata_read_only(pool
->pmd
);
2151 pool
->process_bio
= process_bio_read_only
;
2152 pool
->process_discard
= process_bio_success
;
2153 pool
->process_cell
= process_cell_read_only
;
2154 pool
->process_discard_cell
= process_cell_success
;
2155 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
2156 pool
->process_prepared_discard
= process_prepared_discard_passdown
;
2158 error_retry_list(pool
);
2161 case PM_OUT_OF_DATA_SPACE
:
2163 * Ideally we'd never hit this state; the low water mark
2164 * would trigger userland to extend the pool before we
2165 * completely run out of data space. However, many small
2166 * IOs to unprovisioned space can consume data space at an
2167 * alarming rate. Adjust your low water mark if you're
2168 * frequently seeing this mode.
2170 if (old_mode
!= new_mode
)
2171 notify_of_pool_mode_change(pool
, "out-of-data-space");
2172 pool
->process_bio
= process_bio_read_only
;
2173 pool
->process_discard
= process_discard_bio
;
2174 pool
->process_cell
= process_cell_read_only
;
2175 pool
->process_discard_cell
= process_discard_cell
;
2176 pool
->process_prepared_mapping
= process_prepared_mapping
;
2177 pool
->process_prepared_discard
= process_prepared_discard
;
2179 if (!pool
->pf
.error_if_no_space
&& no_space_timeout
)
2180 queue_delayed_work(pool
->wq
, &pool
->no_space_timeout
, no_space_timeout
);
2184 if (old_mode
!= new_mode
)
2185 notify_of_pool_mode_change(pool
, "write");
2186 dm_pool_metadata_read_write(pool
->pmd
);
2187 pool
->process_bio
= process_bio
;
2188 pool
->process_discard
= process_discard_bio
;
2189 pool
->process_cell
= process_cell
;
2190 pool
->process_discard_cell
= process_discard_cell
;
2191 pool
->process_prepared_mapping
= process_prepared_mapping
;
2192 pool
->process_prepared_discard
= process_prepared_discard
;
2196 pool
->pf
.mode
= new_mode
;
2198 * The pool mode may have changed, sync it so bind_control_target()
2199 * doesn't cause an unexpected mode transition on resume.
2201 pt
->adjusted_pf
.mode
= new_mode
;
2204 static void abort_transaction(struct pool
*pool
)
2206 const char *dev_name
= dm_device_name(pool
->pool_md
);
2208 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name
);
2209 if (dm_pool_abort_metadata(pool
->pmd
)) {
2210 DMERR("%s: failed to abort metadata transaction", dev_name
);
2211 set_pool_mode(pool
, PM_FAIL
);
2214 if (dm_pool_metadata_set_needs_check(pool
->pmd
)) {
2215 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name
);
2216 set_pool_mode(pool
, PM_FAIL
);
2220 static void metadata_operation_failed(struct pool
*pool
, const char *op
, int r
)
2222 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2223 dm_device_name(pool
->pool_md
), op
, r
);
2225 abort_transaction(pool
);
2226 set_pool_mode(pool
, PM_READ_ONLY
);
2229 /*----------------------------------------------------------------*/
2232 * Mapping functions.
2236 * Called only while mapping a thin bio to hand it over to the workqueue.
2238 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
)
2240 unsigned long flags
;
2241 struct pool
*pool
= tc
->pool
;
2243 spin_lock_irqsave(&tc
->lock
, flags
);
2244 bio_list_add(&tc
->deferred_bio_list
, bio
);
2245 spin_unlock_irqrestore(&tc
->lock
, flags
);
2250 static void thin_defer_bio_with_throttle(struct thin_c
*tc
, struct bio
*bio
)
2252 struct pool
*pool
= tc
->pool
;
2254 throttle_lock(&pool
->throttle
);
2255 thin_defer_bio(tc
, bio
);
2256 throttle_unlock(&pool
->throttle
);
2259 static void thin_defer_cell(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2261 unsigned long flags
;
2262 struct pool
*pool
= tc
->pool
;
2264 throttle_lock(&pool
->throttle
);
2265 spin_lock_irqsave(&tc
->lock
, flags
);
2266 list_add_tail(&cell
->user_list
, &tc
->deferred_cells
);
2267 spin_unlock_irqrestore(&tc
->lock
, flags
);
2268 throttle_unlock(&pool
->throttle
);
2273 static void thin_hook_bio(struct thin_c
*tc
, struct bio
*bio
)
2275 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
2278 h
->shared_read_entry
= NULL
;
2279 h
->all_io_entry
= NULL
;
2280 h
->overwrite_mapping
= NULL
;
2284 * Non-blocking function called from the thin target's map function.
2286 static int thin_bio_map(struct dm_target
*ti
, struct bio
*bio
)
2289 struct thin_c
*tc
= ti
->private;
2290 dm_block_t block
= get_bio_block(tc
, bio
);
2291 struct dm_thin_device
*td
= tc
->td
;
2292 struct dm_thin_lookup_result result
;
2293 struct dm_bio_prison_cell
*virt_cell
, *data_cell
;
2294 struct dm_cell_key key
;
2296 thin_hook_bio(tc
, bio
);
2298 if (tc
->requeue_mode
) {
2299 bio_endio(bio
, DM_ENDIO_REQUEUE
);
2300 return DM_MAPIO_SUBMITTED
;
2303 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
2305 return DM_MAPIO_SUBMITTED
;
2308 if (bio
->bi_rw
& (REQ_DISCARD
| REQ_FLUSH
| REQ_FUA
)) {
2309 thin_defer_bio_with_throttle(tc
, bio
);
2310 return DM_MAPIO_SUBMITTED
;
2314 * We must hold the virtual cell before doing the lookup, otherwise
2315 * there's a race with discard.
2317 build_virtual_key(tc
->td
, block
, &key
);
2318 if (bio_detain(tc
->pool
, &key
, bio
, &virt_cell
))
2319 return DM_MAPIO_SUBMITTED
;
2321 r
= dm_thin_find_block(td
, block
, 0, &result
);
2324 * Note that we defer readahead too.
2328 if (unlikely(result
.shared
)) {
2330 * We have a race condition here between the
2331 * result.shared value returned by the lookup and
2332 * snapshot creation, which may cause new
2335 * To avoid this always quiesce the origin before
2336 * taking the snap. You want to do this anyway to
2337 * ensure a consistent application view
2340 * More distant ancestors are irrelevant. The
2341 * shared flag will be set in their case.
2343 thin_defer_cell(tc
, virt_cell
);
2344 return DM_MAPIO_SUBMITTED
;
2347 build_data_key(tc
->td
, result
.block
, &key
);
2348 if (bio_detain(tc
->pool
, &key
, bio
, &data_cell
)) {
2349 cell_defer_no_holder(tc
, virt_cell
);
2350 return DM_MAPIO_SUBMITTED
;
2353 inc_all_io_entry(tc
->pool
, bio
);
2354 cell_defer_no_holder(tc
, data_cell
);
2355 cell_defer_no_holder(tc
, virt_cell
);
2357 remap(tc
, bio
, result
.block
);
2358 return DM_MAPIO_REMAPPED
;
2362 thin_defer_cell(tc
, virt_cell
);
2363 return DM_MAPIO_SUBMITTED
;
2367 * Must always call bio_io_error on failure.
2368 * dm_thin_find_block can fail with -EINVAL if the
2369 * pool is switched to fail-io mode.
2372 cell_defer_no_holder(tc
, virt_cell
);
2373 return DM_MAPIO_SUBMITTED
;
2377 static int pool_is_congested(struct dm_target_callbacks
*cb
, int bdi_bits
)
2379 struct pool_c
*pt
= container_of(cb
, struct pool_c
, callbacks
);
2380 struct request_queue
*q
;
2382 if (get_pool_mode(pt
->pool
) == PM_OUT_OF_DATA_SPACE
)
2385 q
= bdev_get_queue(pt
->data_dev
->bdev
);
2386 return bdi_congested(&q
->backing_dev_info
, bdi_bits
);
2389 static void requeue_bios(struct pool
*pool
)
2391 unsigned long flags
;
2395 list_for_each_entry_rcu(tc
, &pool
->active_thins
, list
) {
2396 spin_lock_irqsave(&tc
->lock
, flags
);
2397 bio_list_merge(&tc
->deferred_bio_list
, &tc
->retry_on_resume_list
);
2398 bio_list_init(&tc
->retry_on_resume_list
);
2399 spin_unlock_irqrestore(&tc
->lock
, flags
);
2404 /*----------------------------------------------------------------
2405 * Binding of control targets to a pool object
2406 *--------------------------------------------------------------*/
2407 static bool data_dev_supports_discard(struct pool_c
*pt
)
2409 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
2411 return q
&& blk_queue_discard(q
);
2414 static bool is_factor(sector_t block_size
, uint32_t n
)
2416 return !sector_div(block_size
, n
);
2420 * If discard_passdown was enabled verify that the data device
2421 * supports discards. Disable discard_passdown if not.
2423 static void disable_passdown_if_not_supported(struct pool_c
*pt
)
2425 struct pool
*pool
= pt
->pool
;
2426 struct block_device
*data_bdev
= pt
->data_dev
->bdev
;
2427 struct queue_limits
*data_limits
= &bdev_get_queue(data_bdev
)->limits
;
2428 sector_t block_size
= pool
->sectors_per_block
<< SECTOR_SHIFT
;
2429 const char *reason
= NULL
;
2430 char buf
[BDEVNAME_SIZE
];
2432 if (!pt
->adjusted_pf
.discard_passdown
)
2435 if (!data_dev_supports_discard(pt
))
2436 reason
= "discard unsupported";
2438 else if (data_limits
->max_discard_sectors
< pool
->sectors_per_block
)
2439 reason
= "max discard sectors smaller than a block";
2441 else if (data_limits
->discard_granularity
> block_size
)
2442 reason
= "discard granularity larger than a block";
2444 else if (!is_factor(block_size
, data_limits
->discard_granularity
))
2445 reason
= "discard granularity not a factor of block size";
2448 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev
, buf
), reason
);
2449 pt
->adjusted_pf
.discard_passdown
= false;
2453 static int bind_control_target(struct pool
*pool
, struct dm_target
*ti
)
2455 struct pool_c
*pt
= ti
->private;
2458 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2460 enum pool_mode old_mode
= get_pool_mode(pool
);
2461 enum pool_mode new_mode
= pt
->adjusted_pf
.mode
;
2464 * Don't change the pool's mode until set_pool_mode() below.
2465 * Otherwise the pool's process_* function pointers may
2466 * not match the desired pool mode.
2468 pt
->adjusted_pf
.mode
= old_mode
;
2471 pool
->pf
= pt
->adjusted_pf
;
2472 pool
->low_water_blocks
= pt
->low_water_blocks
;
2474 set_pool_mode(pool
, new_mode
);
2479 static void unbind_control_target(struct pool
*pool
, struct dm_target
*ti
)
2485 /*----------------------------------------------------------------
2487 *--------------------------------------------------------------*/
2488 /* Initialize pool features. */
2489 static void pool_features_init(struct pool_features
*pf
)
2491 pf
->mode
= PM_WRITE
;
2492 pf
->zero_new_blocks
= true;
2493 pf
->discard_enabled
= true;
2494 pf
->discard_passdown
= true;
2495 pf
->error_if_no_space
= false;
2498 static void __pool_destroy(struct pool
*pool
)
2500 __pool_table_remove(pool
);
2502 if (dm_pool_metadata_close(pool
->pmd
) < 0)
2503 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
2505 dm_bio_prison_destroy(pool
->prison
);
2506 dm_kcopyd_client_destroy(pool
->copier
);
2509 destroy_workqueue(pool
->wq
);
2511 if (pool
->next_mapping
)
2512 mempool_free(pool
->next_mapping
, pool
->mapping_pool
);
2513 mempool_destroy(pool
->mapping_pool
);
2514 dm_deferred_set_destroy(pool
->shared_read_ds
);
2515 dm_deferred_set_destroy(pool
->all_io_ds
);
2519 static struct kmem_cache
*_new_mapping_cache
;
2521 static struct pool
*pool_create(struct mapped_device
*pool_md
,
2522 struct block_device
*metadata_dev
,
2523 unsigned long block_size
,
2524 int read_only
, char **error
)
2529 struct dm_pool_metadata
*pmd
;
2530 bool format_device
= read_only
? false : true;
2532 pmd
= dm_pool_metadata_open(metadata_dev
, block_size
, format_device
);
2534 *error
= "Error creating metadata object";
2535 return (struct pool
*)pmd
;
2538 pool
= kmalloc(sizeof(*pool
), GFP_KERNEL
);
2540 *error
= "Error allocating memory for pool";
2541 err_p
= ERR_PTR(-ENOMEM
);
2546 pool
->sectors_per_block
= block_size
;
2547 if (block_size
& (block_size
- 1))
2548 pool
->sectors_per_block_shift
= -1;
2550 pool
->sectors_per_block_shift
= __ffs(block_size
);
2551 pool
->low_water_blocks
= 0;
2552 pool_features_init(&pool
->pf
);
2553 pool
->prison
= dm_bio_prison_create();
2554 if (!pool
->prison
) {
2555 *error
= "Error creating pool's bio prison";
2556 err_p
= ERR_PTR(-ENOMEM
);
2560 pool
->copier
= dm_kcopyd_client_create(&dm_kcopyd_throttle
);
2561 if (IS_ERR(pool
->copier
)) {
2562 r
= PTR_ERR(pool
->copier
);
2563 *error
= "Error creating pool's kcopyd client";
2565 goto bad_kcopyd_client
;
2569 * Create singlethreaded workqueue that will service all devices
2570 * that use this metadata.
2572 pool
->wq
= alloc_ordered_workqueue("dm-" DM_MSG_PREFIX
, WQ_MEM_RECLAIM
);
2574 *error
= "Error creating pool's workqueue";
2575 err_p
= ERR_PTR(-ENOMEM
);
2579 throttle_init(&pool
->throttle
);
2580 INIT_WORK(&pool
->worker
, do_worker
);
2581 INIT_DELAYED_WORK(&pool
->waker
, do_waker
);
2582 INIT_DELAYED_WORK(&pool
->no_space_timeout
, do_no_space_timeout
);
2583 spin_lock_init(&pool
->lock
);
2584 bio_list_init(&pool
->deferred_flush_bios
);
2585 INIT_LIST_HEAD(&pool
->prepared_mappings
);
2586 INIT_LIST_HEAD(&pool
->prepared_discards
);
2587 INIT_LIST_HEAD(&pool
->active_thins
);
2588 pool
->low_water_triggered
= false;
2589 pool
->suspended
= true;
2591 pool
->shared_read_ds
= dm_deferred_set_create();
2592 if (!pool
->shared_read_ds
) {
2593 *error
= "Error creating pool's shared read deferred set";
2594 err_p
= ERR_PTR(-ENOMEM
);
2595 goto bad_shared_read_ds
;
2598 pool
->all_io_ds
= dm_deferred_set_create();
2599 if (!pool
->all_io_ds
) {
2600 *error
= "Error creating pool's all io deferred set";
2601 err_p
= ERR_PTR(-ENOMEM
);
2605 pool
->next_mapping
= NULL
;
2606 pool
->mapping_pool
= mempool_create_slab_pool(MAPPING_POOL_SIZE
,
2607 _new_mapping_cache
);
2608 if (!pool
->mapping_pool
) {
2609 *error
= "Error creating pool's mapping mempool";
2610 err_p
= ERR_PTR(-ENOMEM
);
2611 goto bad_mapping_pool
;
2614 pool
->ref_count
= 1;
2615 pool
->last_commit_jiffies
= jiffies
;
2616 pool
->pool_md
= pool_md
;
2617 pool
->md_dev
= metadata_dev
;
2618 __pool_table_insert(pool
);
2623 dm_deferred_set_destroy(pool
->all_io_ds
);
2625 dm_deferred_set_destroy(pool
->shared_read_ds
);
2627 destroy_workqueue(pool
->wq
);
2629 dm_kcopyd_client_destroy(pool
->copier
);
2631 dm_bio_prison_destroy(pool
->prison
);
2635 if (dm_pool_metadata_close(pmd
))
2636 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
2641 static void __pool_inc(struct pool
*pool
)
2643 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
2647 static void __pool_dec(struct pool
*pool
)
2649 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
2650 BUG_ON(!pool
->ref_count
);
2651 if (!--pool
->ref_count
)
2652 __pool_destroy(pool
);
2655 static struct pool
*__pool_find(struct mapped_device
*pool_md
,
2656 struct block_device
*metadata_dev
,
2657 unsigned long block_size
, int read_only
,
2658 char **error
, int *created
)
2660 struct pool
*pool
= __pool_table_lookup_metadata_dev(metadata_dev
);
2663 if (pool
->pool_md
!= pool_md
) {
2664 *error
= "metadata device already in use by a pool";
2665 return ERR_PTR(-EBUSY
);
2670 pool
= __pool_table_lookup(pool_md
);
2672 if (pool
->md_dev
!= metadata_dev
) {
2673 *error
= "different pool cannot replace a pool";
2674 return ERR_PTR(-EINVAL
);
2679 pool
= pool_create(pool_md
, metadata_dev
, block_size
, read_only
, error
);
2687 /*----------------------------------------------------------------
2688 * Pool target methods
2689 *--------------------------------------------------------------*/
2690 static void pool_dtr(struct dm_target
*ti
)
2692 struct pool_c
*pt
= ti
->private;
2694 mutex_lock(&dm_thin_pool_table
.mutex
);
2696 unbind_control_target(pt
->pool
, ti
);
2697 __pool_dec(pt
->pool
);
2698 dm_put_device(ti
, pt
->metadata_dev
);
2699 dm_put_device(ti
, pt
->data_dev
);
2702 mutex_unlock(&dm_thin_pool_table
.mutex
);
2705 static int parse_pool_features(struct dm_arg_set
*as
, struct pool_features
*pf
,
2706 struct dm_target
*ti
)
2710 const char *arg_name
;
2712 static struct dm_arg _args
[] = {
2713 {0, 4, "Invalid number of pool feature arguments"},
2717 * No feature arguments supplied.
2722 r
= dm_read_arg_group(_args
, as
, &argc
, &ti
->error
);
2726 while (argc
&& !r
) {
2727 arg_name
= dm_shift_arg(as
);
2730 if (!strcasecmp(arg_name
, "skip_block_zeroing"))
2731 pf
->zero_new_blocks
= false;
2733 else if (!strcasecmp(arg_name
, "ignore_discard"))
2734 pf
->discard_enabled
= false;
2736 else if (!strcasecmp(arg_name
, "no_discard_passdown"))
2737 pf
->discard_passdown
= false;
2739 else if (!strcasecmp(arg_name
, "read_only"))
2740 pf
->mode
= PM_READ_ONLY
;
2742 else if (!strcasecmp(arg_name
, "error_if_no_space"))
2743 pf
->error_if_no_space
= true;
2746 ti
->error
= "Unrecognised pool feature requested";
2755 static void metadata_low_callback(void *context
)
2757 struct pool
*pool
= context
;
2759 DMWARN("%s: reached low water mark for metadata device: sending event.",
2760 dm_device_name(pool
->pool_md
));
2762 dm_table_event(pool
->ti
->table
);
2765 static sector_t
get_dev_size(struct block_device
*bdev
)
2767 return i_size_read(bdev
->bd_inode
) >> SECTOR_SHIFT
;
2770 static void warn_if_metadata_device_too_big(struct block_device
*bdev
)
2772 sector_t metadata_dev_size
= get_dev_size(bdev
);
2773 char buffer
[BDEVNAME_SIZE
];
2775 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS_WARNING
)
2776 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2777 bdevname(bdev
, buffer
), THIN_METADATA_MAX_SECTORS
);
2780 static sector_t
get_metadata_dev_size(struct block_device
*bdev
)
2782 sector_t metadata_dev_size
= get_dev_size(bdev
);
2784 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS
)
2785 metadata_dev_size
= THIN_METADATA_MAX_SECTORS
;
2787 return metadata_dev_size
;
2790 static dm_block_t
get_metadata_dev_size_in_blocks(struct block_device
*bdev
)
2792 sector_t metadata_dev_size
= get_metadata_dev_size(bdev
);
2794 sector_div(metadata_dev_size
, THIN_METADATA_BLOCK_SIZE
);
2796 return metadata_dev_size
;
2800 * When a metadata threshold is crossed a dm event is triggered, and
2801 * userland should respond by growing the metadata device. We could let
2802 * userland set the threshold, like we do with the data threshold, but I'm
2803 * not sure they know enough to do this well.
2805 static dm_block_t
calc_metadata_threshold(struct pool_c
*pt
)
2808 * 4M is ample for all ops with the possible exception of thin
2809 * device deletion which is harmless if it fails (just retry the
2810 * delete after you've grown the device).
2812 dm_block_t quarter
= get_metadata_dev_size_in_blocks(pt
->metadata_dev
->bdev
) / 4;
2813 return min((dm_block_t
)1024ULL /* 4M */, quarter
);
2817 * thin-pool <metadata dev> <data dev>
2818 * <data block size (sectors)>
2819 * <low water mark (blocks)>
2820 * [<#feature args> [<arg>]*]
2822 * Optional feature arguments are:
2823 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2824 * ignore_discard: disable discard
2825 * no_discard_passdown: don't pass discards down to the data device
2826 * read_only: Don't allow any changes to be made to the pool metadata.
2827 * error_if_no_space: error IOs, instead of queueing, if no space.
2829 static int pool_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
2831 int r
, pool_created
= 0;
2834 struct pool_features pf
;
2835 struct dm_arg_set as
;
2836 struct dm_dev
*data_dev
;
2837 unsigned long block_size
;
2838 dm_block_t low_water_blocks
;
2839 struct dm_dev
*metadata_dev
;
2840 fmode_t metadata_mode
;
2843 * FIXME Remove validation from scope of lock.
2845 mutex_lock(&dm_thin_pool_table
.mutex
);
2848 ti
->error
= "Invalid argument count";
2857 * Set default pool features.
2859 pool_features_init(&pf
);
2861 dm_consume_args(&as
, 4);
2862 r
= parse_pool_features(&as
, &pf
, ti
);
2866 metadata_mode
= FMODE_READ
| ((pf
.mode
== PM_READ_ONLY
) ? 0 : FMODE_WRITE
);
2867 r
= dm_get_device(ti
, argv
[0], metadata_mode
, &metadata_dev
);
2869 ti
->error
= "Error opening metadata block device";
2872 warn_if_metadata_device_too_big(metadata_dev
->bdev
);
2874 r
= dm_get_device(ti
, argv
[1], FMODE_READ
| FMODE_WRITE
, &data_dev
);
2876 ti
->error
= "Error getting data device";
2880 if (kstrtoul(argv
[2], 10, &block_size
) || !block_size
||
2881 block_size
< DATA_DEV_BLOCK_SIZE_MIN_SECTORS
||
2882 block_size
> DATA_DEV_BLOCK_SIZE_MAX_SECTORS
||
2883 block_size
& (DATA_DEV_BLOCK_SIZE_MIN_SECTORS
- 1)) {
2884 ti
->error
= "Invalid block size";
2889 if (kstrtoull(argv
[3], 10, (unsigned long long *)&low_water_blocks
)) {
2890 ti
->error
= "Invalid low water mark";
2895 pt
= kzalloc(sizeof(*pt
), GFP_KERNEL
);
2901 pool
= __pool_find(dm_table_get_md(ti
->table
), metadata_dev
->bdev
,
2902 block_size
, pf
.mode
== PM_READ_ONLY
, &ti
->error
, &pool_created
);
2909 * 'pool_created' reflects whether this is the first table load.
2910 * Top level discard support is not allowed to be changed after
2911 * initial load. This would require a pool reload to trigger thin
2914 if (!pool_created
&& pf
.discard_enabled
!= pool
->pf
.discard_enabled
) {
2915 ti
->error
= "Discard support cannot be disabled once enabled";
2917 goto out_flags_changed
;
2922 pt
->metadata_dev
= metadata_dev
;
2923 pt
->data_dev
= data_dev
;
2924 pt
->low_water_blocks
= low_water_blocks
;
2925 pt
->adjusted_pf
= pt
->requested_pf
= pf
;
2926 ti
->num_flush_bios
= 1;
2929 * Only need to enable discards if the pool should pass
2930 * them down to the data device. The thin device's discard
2931 * processing will cause mappings to be removed from the btree.
2933 ti
->discard_zeroes_data_unsupported
= true;
2934 if (pf
.discard_enabled
&& pf
.discard_passdown
) {
2935 ti
->num_discard_bios
= 1;
2938 * Setting 'discards_supported' circumvents the normal
2939 * stacking of discard limits (this keeps the pool and
2940 * thin devices' discard limits consistent).
2942 ti
->discards_supported
= true;
2946 r
= dm_pool_register_metadata_threshold(pt
->pool
->pmd
,
2947 calc_metadata_threshold(pt
),
2948 metadata_low_callback
,
2953 pt
->callbacks
.congested_fn
= pool_is_congested
;
2954 dm_table_add_target_callbacks(ti
->table
, &pt
->callbacks
);
2956 mutex_unlock(&dm_thin_pool_table
.mutex
);
2965 dm_put_device(ti
, data_dev
);
2967 dm_put_device(ti
, metadata_dev
);
2969 mutex_unlock(&dm_thin_pool_table
.mutex
);
2974 static int pool_map(struct dm_target
*ti
, struct bio
*bio
)
2977 struct pool_c
*pt
= ti
->private;
2978 struct pool
*pool
= pt
->pool
;
2979 unsigned long flags
;
2982 * As this is a singleton target, ti->begin is always zero.
2984 spin_lock_irqsave(&pool
->lock
, flags
);
2985 bio
->bi_bdev
= pt
->data_dev
->bdev
;
2986 r
= DM_MAPIO_REMAPPED
;
2987 spin_unlock_irqrestore(&pool
->lock
, flags
);
2992 static int maybe_resize_data_dev(struct dm_target
*ti
, bool *need_commit
)
2995 struct pool_c
*pt
= ti
->private;
2996 struct pool
*pool
= pt
->pool
;
2997 sector_t data_size
= ti
->len
;
2998 dm_block_t sb_data_size
;
3000 *need_commit
= false;
3002 (void) sector_div(data_size
, pool
->sectors_per_block
);
3004 r
= dm_pool_get_data_dev_size(pool
->pmd
, &sb_data_size
);
3006 DMERR("%s: failed to retrieve data device size",
3007 dm_device_name(pool
->pool_md
));
3011 if (data_size
< sb_data_size
) {
3012 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3013 dm_device_name(pool
->pool_md
),
3014 (unsigned long long)data_size
, sb_data_size
);
3017 } else if (data_size
> sb_data_size
) {
3018 if (dm_pool_metadata_needs_check(pool
->pmd
)) {
3019 DMERR("%s: unable to grow the data device until repaired.",
3020 dm_device_name(pool
->pool_md
));
3025 DMINFO("%s: growing the data device from %llu to %llu blocks",
3026 dm_device_name(pool
->pool_md
),
3027 sb_data_size
, (unsigned long long)data_size
);
3028 r
= dm_pool_resize_data_dev(pool
->pmd
, data_size
);
3030 metadata_operation_failed(pool
, "dm_pool_resize_data_dev", r
);
3034 *need_commit
= true;
3040 static int maybe_resize_metadata_dev(struct dm_target
*ti
, bool *need_commit
)
3043 struct pool_c
*pt
= ti
->private;
3044 struct pool
*pool
= pt
->pool
;
3045 dm_block_t metadata_dev_size
, sb_metadata_dev_size
;
3047 *need_commit
= false;
3049 metadata_dev_size
= get_metadata_dev_size_in_blocks(pool
->md_dev
);
3051 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &sb_metadata_dev_size
);
3053 DMERR("%s: failed to retrieve metadata device size",
3054 dm_device_name(pool
->pool_md
));
3058 if (metadata_dev_size
< sb_metadata_dev_size
) {
3059 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3060 dm_device_name(pool
->pool_md
),
3061 metadata_dev_size
, sb_metadata_dev_size
);
3064 } else if (metadata_dev_size
> sb_metadata_dev_size
) {
3065 if (dm_pool_metadata_needs_check(pool
->pmd
)) {
3066 DMERR("%s: unable to grow the metadata device until repaired.",
3067 dm_device_name(pool
->pool_md
));
3071 warn_if_metadata_device_too_big(pool
->md_dev
);
3072 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3073 dm_device_name(pool
->pool_md
),
3074 sb_metadata_dev_size
, metadata_dev_size
);
3075 r
= dm_pool_resize_metadata_dev(pool
->pmd
, metadata_dev_size
);
3077 metadata_operation_failed(pool
, "dm_pool_resize_metadata_dev", r
);
3081 *need_commit
= true;
3088 * Retrieves the number of blocks of the data device from
3089 * the superblock and compares it to the actual device size,
3090 * thus resizing the data device in case it has grown.
3092 * This both copes with opening preallocated data devices in the ctr
3093 * being followed by a resume
3095 * calling the resume method individually after userspace has
3096 * grown the data device in reaction to a table event.
3098 static int pool_preresume(struct dm_target
*ti
)
3101 bool need_commit1
, need_commit2
;
3102 struct pool_c
*pt
= ti
->private;
3103 struct pool
*pool
= pt
->pool
;
3106 * Take control of the pool object.
3108 r
= bind_control_target(pool
, ti
);
3112 r
= maybe_resize_data_dev(ti
, &need_commit1
);
3116 r
= maybe_resize_metadata_dev(ti
, &need_commit2
);
3120 if (need_commit1
|| need_commit2
)
3121 (void) commit(pool
);
3126 static void pool_suspend_active_thins(struct pool
*pool
)
3130 /* Suspend all active thin devices */
3131 tc
= get_first_thin(pool
);
3133 dm_internal_suspend_noflush(tc
->thin_md
);
3134 tc
= get_next_thin(pool
, tc
);
3138 static void pool_resume_active_thins(struct pool
*pool
)
3142 /* Resume all active thin devices */
3143 tc
= get_first_thin(pool
);
3145 dm_internal_resume(tc
->thin_md
);
3146 tc
= get_next_thin(pool
, tc
);
3150 static void pool_resume(struct dm_target
*ti
)
3152 struct pool_c
*pt
= ti
->private;
3153 struct pool
*pool
= pt
->pool
;
3154 unsigned long flags
;
3157 * Must requeue active_thins' bios and then resume
3158 * active_thins _before_ clearing 'suspend' flag.
3161 pool_resume_active_thins(pool
);
3163 spin_lock_irqsave(&pool
->lock
, flags
);
3164 pool
->low_water_triggered
= false;
3165 pool
->suspended
= false;
3166 spin_unlock_irqrestore(&pool
->lock
, flags
);
3168 do_waker(&pool
->waker
.work
);
3171 static void pool_presuspend(struct dm_target
*ti
)
3173 struct pool_c
*pt
= ti
->private;
3174 struct pool
*pool
= pt
->pool
;
3175 unsigned long flags
;
3177 spin_lock_irqsave(&pool
->lock
, flags
);
3178 pool
->suspended
= true;
3179 spin_unlock_irqrestore(&pool
->lock
, flags
);
3181 pool_suspend_active_thins(pool
);
3184 static void pool_presuspend_undo(struct dm_target
*ti
)
3186 struct pool_c
*pt
= ti
->private;
3187 struct pool
*pool
= pt
->pool
;
3188 unsigned long flags
;
3190 pool_resume_active_thins(pool
);
3192 spin_lock_irqsave(&pool
->lock
, flags
);
3193 pool
->suspended
= false;
3194 spin_unlock_irqrestore(&pool
->lock
, flags
);
3197 static void pool_postsuspend(struct dm_target
*ti
)
3199 struct pool_c
*pt
= ti
->private;
3200 struct pool
*pool
= pt
->pool
;
3202 cancel_delayed_work(&pool
->waker
);
3203 cancel_delayed_work(&pool
->no_space_timeout
);
3204 flush_workqueue(pool
->wq
);
3205 (void) commit(pool
);
3208 static int check_arg_count(unsigned argc
, unsigned args_required
)
3210 if (argc
!= args_required
) {
3211 DMWARN("Message received with %u arguments instead of %u.",
3212 argc
, args_required
);
3219 static int read_dev_id(char *arg
, dm_thin_id
*dev_id
, int warning
)
3221 if (!kstrtoull(arg
, 10, (unsigned long long *)dev_id
) &&
3222 *dev_id
<= MAX_DEV_ID
)
3226 DMWARN("Message received with invalid device id: %s", arg
);
3231 static int process_create_thin_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3236 r
= check_arg_count(argc
, 2);
3240 r
= read_dev_id(argv
[1], &dev_id
, 1);
3244 r
= dm_pool_create_thin(pool
->pmd
, dev_id
);
3246 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3254 static int process_create_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3257 dm_thin_id origin_dev_id
;
3260 r
= check_arg_count(argc
, 3);
3264 r
= read_dev_id(argv
[1], &dev_id
, 1);
3268 r
= read_dev_id(argv
[2], &origin_dev_id
, 1);
3272 r
= dm_pool_create_snap(pool
->pmd
, dev_id
, origin_dev_id
);
3274 DMWARN("Creation of new snapshot %s of device %s failed.",
3282 static int process_delete_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3287 r
= check_arg_count(argc
, 2);
3291 r
= read_dev_id(argv
[1], &dev_id
, 1);
3295 r
= dm_pool_delete_thin_device(pool
->pmd
, dev_id
);
3297 DMWARN("Deletion of thin device %s failed.", argv
[1]);
3302 static int process_set_transaction_id_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3304 dm_thin_id old_id
, new_id
;
3307 r
= check_arg_count(argc
, 3);
3311 if (kstrtoull(argv
[1], 10, (unsigned long long *)&old_id
)) {
3312 DMWARN("set_transaction_id message: Unrecognised id %s.", argv
[1]);
3316 if (kstrtoull(argv
[2], 10, (unsigned long long *)&new_id
)) {
3317 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv
[2]);
3321 r
= dm_pool_set_metadata_transaction_id(pool
->pmd
, old_id
, new_id
);
3323 DMWARN("Failed to change transaction id from %s to %s.",
3331 static int process_reserve_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3335 r
= check_arg_count(argc
, 1);
3339 (void) commit(pool
);
3341 r
= dm_pool_reserve_metadata_snap(pool
->pmd
);
3343 DMWARN("reserve_metadata_snap message failed.");
3348 static int process_release_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3352 r
= check_arg_count(argc
, 1);
3356 r
= dm_pool_release_metadata_snap(pool
->pmd
);
3358 DMWARN("release_metadata_snap message failed.");
3364 * Messages supported:
3365 * create_thin <dev_id>
3366 * create_snap <dev_id> <origin_id>
3368 * set_transaction_id <current_trans_id> <new_trans_id>
3369 * reserve_metadata_snap
3370 * release_metadata_snap
3372 static int pool_message(struct dm_target
*ti
, unsigned argc
, char **argv
)
3375 struct pool_c
*pt
= ti
->private;
3376 struct pool
*pool
= pt
->pool
;
3378 if (get_pool_mode(pool
) >= PM_READ_ONLY
) {
3379 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3380 dm_device_name(pool
->pool_md
));
3384 if (!strcasecmp(argv
[0], "create_thin"))
3385 r
= process_create_thin_mesg(argc
, argv
, pool
);
3387 else if (!strcasecmp(argv
[0], "create_snap"))
3388 r
= process_create_snap_mesg(argc
, argv
, pool
);
3390 else if (!strcasecmp(argv
[0], "delete"))
3391 r
= process_delete_mesg(argc
, argv
, pool
);
3393 else if (!strcasecmp(argv
[0], "set_transaction_id"))
3394 r
= process_set_transaction_id_mesg(argc
, argv
, pool
);
3396 else if (!strcasecmp(argv
[0], "reserve_metadata_snap"))
3397 r
= process_reserve_metadata_snap_mesg(argc
, argv
, pool
);
3399 else if (!strcasecmp(argv
[0], "release_metadata_snap"))
3400 r
= process_release_metadata_snap_mesg(argc
, argv
, pool
);
3403 DMWARN("Unrecognised thin pool target message received: %s", argv
[0]);
3406 (void) commit(pool
);
3411 static void emit_flags(struct pool_features
*pf
, char *result
,
3412 unsigned sz
, unsigned maxlen
)
3414 unsigned count
= !pf
->zero_new_blocks
+ !pf
->discard_enabled
+
3415 !pf
->discard_passdown
+ (pf
->mode
== PM_READ_ONLY
) +
3416 pf
->error_if_no_space
;
3417 DMEMIT("%u ", count
);
3419 if (!pf
->zero_new_blocks
)
3420 DMEMIT("skip_block_zeroing ");
3422 if (!pf
->discard_enabled
)
3423 DMEMIT("ignore_discard ");
3425 if (!pf
->discard_passdown
)
3426 DMEMIT("no_discard_passdown ");
3428 if (pf
->mode
== PM_READ_ONLY
)
3429 DMEMIT("read_only ");
3431 if (pf
->error_if_no_space
)
3432 DMEMIT("error_if_no_space ");
3437 * <transaction id> <used metadata sectors>/<total metadata sectors>
3438 * <used data sectors>/<total data sectors> <held metadata root>
3440 static void pool_status(struct dm_target
*ti
, status_type_t type
,
3441 unsigned status_flags
, char *result
, unsigned maxlen
)
3445 uint64_t transaction_id
;
3446 dm_block_t nr_free_blocks_data
;
3447 dm_block_t nr_free_blocks_metadata
;
3448 dm_block_t nr_blocks_data
;
3449 dm_block_t nr_blocks_metadata
;
3450 dm_block_t held_root
;
3451 char buf
[BDEVNAME_SIZE
];
3452 char buf2
[BDEVNAME_SIZE
];
3453 struct pool_c
*pt
= ti
->private;
3454 struct pool
*pool
= pt
->pool
;
3457 case STATUSTYPE_INFO
:
3458 if (get_pool_mode(pool
) == PM_FAIL
) {
3463 /* Commit to ensure statistics aren't out-of-date */
3464 if (!(status_flags
& DM_STATUS_NOFLUSH_FLAG
) && !dm_suspended(ti
))
3465 (void) commit(pool
);
3467 r
= dm_pool_get_metadata_transaction_id(pool
->pmd
, &transaction_id
);
3469 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3470 dm_device_name(pool
->pool_md
), r
);
3474 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
, &nr_free_blocks_metadata
);
3476 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3477 dm_device_name(pool
->pool_md
), r
);
3481 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &nr_blocks_metadata
);
3483 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3484 dm_device_name(pool
->pool_md
), r
);
3488 r
= dm_pool_get_free_block_count(pool
->pmd
, &nr_free_blocks_data
);
3490 DMERR("%s: dm_pool_get_free_block_count returned %d",
3491 dm_device_name(pool
->pool_md
), r
);
3495 r
= dm_pool_get_data_dev_size(pool
->pmd
, &nr_blocks_data
);
3497 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3498 dm_device_name(pool
->pool_md
), r
);
3502 r
= dm_pool_get_metadata_snap(pool
->pmd
, &held_root
);
3504 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3505 dm_device_name(pool
->pool_md
), r
);
3509 DMEMIT("%llu %llu/%llu %llu/%llu ",
3510 (unsigned long long)transaction_id
,
3511 (unsigned long long)(nr_blocks_metadata
- nr_free_blocks_metadata
),
3512 (unsigned long long)nr_blocks_metadata
,
3513 (unsigned long long)(nr_blocks_data
- nr_free_blocks_data
),
3514 (unsigned long long)nr_blocks_data
);
3517 DMEMIT("%llu ", held_root
);
3521 if (pool
->pf
.mode
== PM_OUT_OF_DATA_SPACE
)
3522 DMEMIT("out_of_data_space ");
3523 else if (pool
->pf
.mode
== PM_READ_ONLY
)
3528 if (!pool
->pf
.discard_enabled
)
3529 DMEMIT("ignore_discard ");
3530 else if (pool
->pf
.discard_passdown
)
3531 DMEMIT("discard_passdown ");
3533 DMEMIT("no_discard_passdown ");
3535 if (pool
->pf
.error_if_no_space
)
3536 DMEMIT("error_if_no_space ");
3538 DMEMIT("queue_if_no_space ");
3542 case STATUSTYPE_TABLE
:
3543 DMEMIT("%s %s %lu %llu ",
3544 format_dev_t(buf
, pt
->metadata_dev
->bdev
->bd_dev
),
3545 format_dev_t(buf2
, pt
->data_dev
->bdev
->bd_dev
),
3546 (unsigned long)pool
->sectors_per_block
,
3547 (unsigned long long)pt
->low_water_blocks
);
3548 emit_flags(&pt
->requested_pf
, result
, sz
, maxlen
);
3557 static int pool_iterate_devices(struct dm_target
*ti
,
3558 iterate_devices_callout_fn fn
, void *data
)
3560 struct pool_c
*pt
= ti
->private;
3562 return fn(ti
, pt
->data_dev
, 0, ti
->len
, data
);
3565 static int pool_merge(struct dm_target
*ti
, struct bvec_merge_data
*bvm
,
3566 struct bio_vec
*biovec
, int max_size
)
3568 struct pool_c
*pt
= ti
->private;
3569 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
3571 if (!q
->merge_bvec_fn
)
3574 bvm
->bi_bdev
= pt
->data_dev
->bdev
;
3576 return min(max_size
, q
->merge_bvec_fn(q
, bvm
, biovec
));
3579 static void set_discard_limits(struct pool_c
*pt
, struct queue_limits
*limits
)
3581 struct pool
*pool
= pt
->pool
;
3582 struct queue_limits
*data_limits
;
3584 limits
->max_discard_sectors
= pool
->sectors_per_block
;
3587 * discard_granularity is just a hint, and not enforced.
3589 if (pt
->adjusted_pf
.discard_passdown
) {
3590 data_limits
= &bdev_get_queue(pt
->data_dev
->bdev
)->limits
;
3591 limits
->discard_granularity
= max(data_limits
->discard_granularity
,
3592 pool
->sectors_per_block
<< SECTOR_SHIFT
);
3594 limits
->discard_granularity
= pool
->sectors_per_block
<< SECTOR_SHIFT
;
3597 static void pool_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
3599 struct pool_c
*pt
= ti
->private;
3600 struct pool
*pool
= pt
->pool
;
3601 sector_t io_opt_sectors
= limits
->io_opt
>> SECTOR_SHIFT
;
3604 * If max_sectors is smaller than pool->sectors_per_block adjust it
3605 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3606 * This is especially beneficial when the pool's data device is a RAID
3607 * device that has a full stripe width that matches pool->sectors_per_block
3608 * -- because even though partial RAID stripe-sized IOs will be issued to a
3609 * single RAID stripe; when aggregated they will end on a full RAID stripe
3610 * boundary.. which avoids additional partial RAID stripe writes cascading
3612 if (limits
->max_sectors
< pool
->sectors_per_block
) {
3613 while (!is_factor(pool
->sectors_per_block
, limits
->max_sectors
)) {
3614 if ((limits
->max_sectors
& (limits
->max_sectors
- 1)) == 0)
3615 limits
->max_sectors
--;
3616 limits
->max_sectors
= rounddown_pow_of_two(limits
->max_sectors
);
3621 * If the system-determined stacked limits are compatible with the
3622 * pool's blocksize (io_opt is a factor) do not override them.
3624 if (io_opt_sectors
< pool
->sectors_per_block
||
3625 !is_factor(io_opt_sectors
, pool
->sectors_per_block
)) {
3626 if (is_factor(pool
->sectors_per_block
, limits
->max_sectors
))
3627 blk_limits_io_min(limits
, limits
->max_sectors
<< SECTOR_SHIFT
);
3629 blk_limits_io_min(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
3630 blk_limits_io_opt(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
3634 * pt->adjusted_pf is a staging area for the actual features to use.
3635 * They get transferred to the live pool in bind_control_target()
3636 * called from pool_preresume().
3638 if (!pt
->adjusted_pf
.discard_enabled
) {
3640 * Must explicitly disallow stacking discard limits otherwise the
3641 * block layer will stack them if pool's data device has support.
3642 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3643 * user to see that, so make sure to set all discard limits to 0.
3645 limits
->discard_granularity
= 0;
3649 disable_passdown_if_not_supported(pt
);
3651 set_discard_limits(pt
, limits
);
3654 static struct target_type pool_target
= {
3655 .name
= "thin-pool",
3656 .features
= DM_TARGET_SINGLETON
| DM_TARGET_ALWAYS_WRITEABLE
|
3657 DM_TARGET_IMMUTABLE
,
3658 .version
= {1, 14, 0},
3659 .module
= THIS_MODULE
,
3663 .presuspend
= pool_presuspend
,
3664 .presuspend_undo
= pool_presuspend_undo
,
3665 .postsuspend
= pool_postsuspend
,
3666 .preresume
= pool_preresume
,
3667 .resume
= pool_resume
,
3668 .message
= pool_message
,
3669 .status
= pool_status
,
3670 .merge
= pool_merge
,
3671 .iterate_devices
= pool_iterate_devices
,
3672 .io_hints
= pool_io_hints
,
3675 /*----------------------------------------------------------------
3676 * Thin target methods
3677 *--------------------------------------------------------------*/
3678 static void thin_get(struct thin_c
*tc
)
3680 atomic_inc(&tc
->refcount
);
3683 static void thin_put(struct thin_c
*tc
)
3685 if (atomic_dec_and_test(&tc
->refcount
))
3686 complete(&tc
->can_destroy
);
3689 static void thin_dtr(struct dm_target
*ti
)
3691 struct thin_c
*tc
= ti
->private;
3692 unsigned long flags
;
3694 spin_lock_irqsave(&tc
->pool
->lock
, flags
);
3695 list_del_rcu(&tc
->list
);
3696 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
3700 wait_for_completion(&tc
->can_destroy
);
3702 mutex_lock(&dm_thin_pool_table
.mutex
);
3704 __pool_dec(tc
->pool
);
3705 dm_pool_close_thin_device(tc
->td
);
3706 dm_put_device(ti
, tc
->pool_dev
);
3708 dm_put_device(ti
, tc
->origin_dev
);
3711 mutex_unlock(&dm_thin_pool_table
.mutex
);
3715 * Thin target parameters:
3717 * <pool_dev> <dev_id> [origin_dev]
3719 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3720 * dev_id: the internal device identifier
3721 * origin_dev: a device external to the pool that should act as the origin
3723 * If the pool device has discards disabled, they get disabled for the thin
3726 static int thin_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
3730 struct dm_dev
*pool_dev
, *origin_dev
;
3731 struct mapped_device
*pool_md
;
3732 unsigned long flags
;
3734 mutex_lock(&dm_thin_pool_table
.mutex
);
3736 if (argc
!= 2 && argc
!= 3) {
3737 ti
->error
= "Invalid argument count";
3742 tc
= ti
->private = kzalloc(sizeof(*tc
), GFP_KERNEL
);
3744 ti
->error
= "Out of memory";
3748 tc
->thin_md
= dm_table_get_md(ti
->table
);
3749 spin_lock_init(&tc
->lock
);
3750 INIT_LIST_HEAD(&tc
->deferred_cells
);
3751 bio_list_init(&tc
->deferred_bio_list
);
3752 bio_list_init(&tc
->retry_on_resume_list
);
3753 tc
->sort_bio_list
= RB_ROOT
;
3756 r
= dm_get_device(ti
, argv
[2], FMODE_READ
, &origin_dev
);
3758 ti
->error
= "Error opening origin device";
3759 goto bad_origin_dev
;
3761 tc
->origin_dev
= origin_dev
;
3764 r
= dm_get_device(ti
, argv
[0], dm_table_get_mode(ti
->table
), &pool_dev
);
3766 ti
->error
= "Error opening pool device";
3769 tc
->pool_dev
= pool_dev
;
3771 if (read_dev_id(argv
[1], (unsigned long long *)&tc
->dev_id
, 0)) {
3772 ti
->error
= "Invalid device id";
3777 pool_md
= dm_get_md(tc
->pool_dev
->bdev
->bd_dev
);
3779 ti
->error
= "Couldn't get pool mapped device";
3784 tc
->pool
= __pool_table_lookup(pool_md
);
3786 ti
->error
= "Couldn't find pool object";
3788 goto bad_pool_lookup
;
3790 __pool_inc(tc
->pool
);
3792 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
3793 ti
->error
= "Couldn't open thin device, Pool is in fail mode";
3798 r
= dm_pool_open_thin_device(tc
->pool
->pmd
, tc
->dev_id
, &tc
->td
);
3800 ti
->error
= "Couldn't open thin internal device";
3804 r
= dm_set_target_max_io_len(ti
, tc
->pool
->sectors_per_block
);
3808 ti
->num_flush_bios
= 1;
3809 ti
->flush_supported
= true;
3810 ti
->per_bio_data_size
= sizeof(struct dm_thin_endio_hook
);
3812 /* In case the pool supports discards, pass them on. */
3813 ti
->discard_zeroes_data_unsupported
= true;
3814 if (tc
->pool
->pf
.discard_enabled
) {
3815 ti
->discards_supported
= true;
3816 ti
->num_discard_bios
= 1;
3817 /* Discard bios must be split on a block boundary */
3818 ti
->split_discard_bios
= true;
3821 mutex_unlock(&dm_thin_pool_table
.mutex
);
3823 spin_lock_irqsave(&tc
->pool
->lock
, flags
);
3824 if (tc
->pool
->suspended
) {
3825 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
3826 mutex_lock(&dm_thin_pool_table
.mutex
); /* reacquire for __pool_dec */
3827 ti
->error
= "Unable to activate thin device while pool is suspended";
3831 atomic_set(&tc
->refcount
, 1);
3832 init_completion(&tc
->can_destroy
);
3833 list_add_tail_rcu(&tc
->list
, &tc
->pool
->active_thins
);
3834 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
3836 * This synchronize_rcu() call is needed here otherwise we risk a
3837 * wake_worker() call finding no bios to process (because the newly
3838 * added tc isn't yet visible). So this reduces latency since we
3839 * aren't then dependent on the periodic commit to wake_worker().
3848 dm_pool_close_thin_device(tc
->td
);
3850 __pool_dec(tc
->pool
);
3854 dm_put_device(ti
, tc
->pool_dev
);
3857 dm_put_device(ti
, tc
->origin_dev
);
3861 mutex_unlock(&dm_thin_pool_table
.mutex
);
3866 static int thin_map(struct dm_target
*ti
, struct bio
*bio
)
3868 bio
->bi_iter
.bi_sector
= dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
3870 return thin_bio_map(ti
, bio
);
3873 static int thin_endio(struct dm_target
*ti
, struct bio
*bio
, int err
)
3875 unsigned long flags
;
3876 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
3877 struct list_head work
;
3878 struct dm_thin_new_mapping
*m
, *tmp
;
3879 struct pool
*pool
= h
->tc
->pool
;
3881 if (h
->shared_read_entry
) {
3882 INIT_LIST_HEAD(&work
);
3883 dm_deferred_entry_dec(h
->shared_read_entry
, &work
);
3885 spin_lock_irqsave(&pool
->lock
, flags
);
3886 list_for_each_entry_safe(m
, tmp
, &work
, list
) {
3888 __complete_mapping_preparation(m
);
3890 spin_unlock_irqrestore(&pool
->lock
, flags
);
3893 if (h
->all_io_entry
) {
3894 INIT_LIST_HEAD(&work
);
3895 dm_deferred_entry_dec(h
->all_io_entry
, &work
);
3896 if (!list_empty(&work
)) {
3897 spin_lock_irqsave(&pool
->lock
, flags
);
3898 list_for_each_entry_safe(m
, tmp
, &work
, list
)
3899 list_add_tail(&m
->list
, &pool
->prepared_discards
);
3900 spin_unlock_irqrestore(&pool
->lock
, flags
);
3908 static void thin_presuspend(struct dm_target
*ti
)
3910 struct thin_c
*tc
= ti
->private;
3912 if (dm_noflush_suspending(ti
))
3913 noflush_work(tc
, do_noflush_start
);
3916 static void thin_postsuspend(struct dm_target
*ti
)
3918 struct thin_c
*tc
= ti
->private;
3921 * The dm_noflush_suspending flag has been cleared by now, so
3922 * unfortunately we must always run this.
3924 noflush_work(tc
, do_noflush_stop
);
3927 static int thin_preresume(struct dm_target
*ti
)
3929 struct thin_c
*tc
= ti
->private;
3932 tc
->origin_size
= get_dev_size(tc
->origin_dev
->bdev
);
3938 * <nr mapped sectors> <highest mapped sector>
3940 static void thin_status(struct dm_target
*ti
, status_type_t type
,
3941 unsigned status_flags
, char *result
, unsigned maxlen
)
3945 dm_block_t mapped
, highest
;
3946 char buf
[BDEVNAME_SIZE
];
3947 struct thin_c
*tc
= ti
->private;
3949 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
3958 case STATUSTYPE_INFO
:
3959 r
= dm_thin_get_mapped_count(tc
->td
, &mapped
);
3961 DMERR("dm_thin_get_mapped_count returned %d", r
);
3965 r
= dm_thin_get_highest_mapped_block(tc
->td
, &highest
);
3967 DMERR("dm_thin_get_highest_mapped_block returned %d", r
);
3971 DMEMIT("%llu ", mapped
* tc
->pool
->sectors_per_block
);
3973 DMEMIT("%llu", ((highest
+ 1) *
3974 tc
->pool
->sectors_per_block
) - 1);
3979 case STATUSTYPE_TABLE
:
3981 format_dev_t(buf
, tc
->pool_dev
->bdev
->bd_dev
),
3982 (unsigned long) tc
->dev_id
);
3984 DMEMIT(" %s", format_dev_t(buf
, tc
->origin_dev
->bdev
->bd_dev
));
3995 static int thin_merge(struct dm_target
*ti
, struct bvec_merge_data
*bvm
,
3996 struct bio_vec
*biovec
, int max_size
)
3998 struct thin_c
*tc
= ti
->private;
3999 struct request_queue
*q
= bdev_get_queue(tc
->pool_dev
->bdev
);
4001 if (!q
->merge_bvec_fn
)
4004 bvm
->bi_bdev
= tc
->pool_dev
->bdev
;
4005 bvm
->bi_sector
= dm_target_offset(ti
, bvm
->bi_sector
);
4007 return min(max_size
, q
->merge_bvec_fn(q
, bvm
, biovec
));
4010 static int thin_iterate_devices(struct dm_target
*ti
,
4011 iterate_devices_callout_fn fn
, void *data
)
4014 struct thin_c
*tc
= ti
->private;
4015 struct pool
*pool
= tc
->pool
;
4018 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4019 * we follow a more convoluted path through to the pool's target.
4022 return 0; /* nothing is bound */
4024 blocks
= pool
->ti
->len
;
4025 (void) sector_div(blocks
, pool
->sectors_per_block
);
4027 return fn(ti
, tc
->pool_dev
, 0, pool
->sectors_per_block
* blocks
, data
);
4032 static struct target_type thin_target
= {
4034 .version
= {1, 14, 0},
4035 .module
= THIS_MODULE
,
4039 .end_io
= thin_endio
,
4040 .preresume
= thin_preresume
,
4041 .presuspend
= thin_presuspend
,
4042 .postsuspend
= thin_postsuspend
,
4043 .status
= thin_status
,
4044 .merge
= thin_merge
,
4045 .iterate_devices
= thin_iterate_devices
,
4048 /*----------------------------------------------------------------*/
4050 static int __init
dm_thin_init(void)
4056 r
= dm_register_target(&thin_target
);
4060 r
= dm_register_target(&pool_target
);
4062 goto bad_pool_target
;
4066 _new_mapping_cache
= KMEM_CACHE(dm_thin_new_mapping
, 0);
4067 if (!_new_mapping_cache
)
4068 goto bad_new_mapping_cache
;
4072 bad_new_mapping_cache
:
4073 dm_unregister_target(&pool_target
);
4075 dm_unregister_target(&thin_target
);
4080 static void dm_thin_exit(void)
4082 dm_unregister_target(&thin_target
);
4083 dm_unregister_target(&pool_target
);
4085 kmem_cache_destroy(_new_mapping_cache
);
4088 module_init(dm_thin_init
);
4089 module_exit(dm_thin_exit
);
4091 module_param_named(no_space_timeout
, no_space_timeout_secs
, uint
, S_IRUGO
| S_IWUSR
);
4092 MODULE_PARM_DESC(no_space_timeout
, "Out of data space queue IO timeout in seconds");
4094 MODULE_DESCRIPTION(DM_NAME
" thin provisioning target");
4095 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4096 MODULE_LICENSE("GPL");