ath10k: add support for controlling tx power to a station
[linux/fpc-iii.git] / kernel / exit.c
blob1803efb2922ffaaa78ebf01e064c820cd8538b4e
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/exit.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/pgtable.h>
70 #include <asm/mmu_context.h>
72 static void __unhash_process(struct task_struct *p, bool group_dead)
74 nr_threads--;
75 detach_pid(p, PIDTYPE_PID);
76 if (group_dead) {
77 detach_pid(p, PIDTYPE_TGID);
78 detach_pid(p, PIDTYPE_PGID);
79 detach_pid(p, PIDTYPE_SID);
81 list_del_rcu(&p->tasks);
82 list_del_init(&p->sibling);
83 __this_cpu_dec(process_counts);
85 list_del_rcu(&p->thread_group);
86 list_del_rcu(&p->thread_node);
90 * This function expects the tasklist_lock write-locked.
92 static void __exit_signal(struct task_struct *tsk)
94 struct signal_struct *sig = tsk->signal;
95 bool group_dead = thread_group_leader(tsk);
96 struct sighand_struct *sighand;
97 struct tty_struct *uninitialized_var(tty);
98 u64 utime, stime;
100 sighand = rcu_dereference_check(tsk->sighand,
101 lockdep_tasklist_lock_is_held());
102 spin_lock(&sighand->siglock);
104 #ifdef CONFIG_POSIX_TIMERS
105 posix_cpu_timers_exit(tsk);
106 if (group_dead) {
107 posix_cpu_timers_exit_group(tsk);
108 } else {
110 * This can only happen if the caller is de_thread().
111 * FIXME: this is the temporary hack, we should teach
112 * posix-cpu-timers to handle this case correctly.
114 if (unlikely(has_group_leader_pid(tsk)))
115 posix_cpu_timers_exit_group(tsk);
117 #endif
119 if (group_dead) {
120 tty = sig->tty;
121 sig->tty = NULL;
122 } else {
124 * If there is any task waiting for the group exit
125 * then notify it:
127 if (sig->notify_count > 0 && !--sig->notify_count)
128 wake_up_process(sig->group_exit_task);
130 if (tsk == sig->curr_target)
131 sig->curr_target = next_thread(tsk);
134 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
135 sizeof(unsigned long long));
138 * Accumulate here the counters for all threads as they die. We could
139 * skip the group leader because it is the last user of signal_struct,
140 * but we want to avoid the race with thread_group_cputime() which can
141 * see the empty ->thread_head list.
143 task_cputime(tsk, &utime, &stime);
144 write_seqlock(&sig->stats_lock);
145 sig->utime += utime;
146 sig->stime += stime;
147 sig->gtime += task_gtime(tsk);
148 sig->min_flt += tsk->min_flt;
149 sig->maj_flt += tsk->maj_flt;
150 sig->nvcsw += tsk->nvcsw;
151 sig->nivcsw += tsk->nivcsw;
152 sig->inblock += task_io_get_inblock(tsk);
153 sig->oublock += task_io_get_oublock(tsk);
154 task_io_accounting_add(&sig->ioac, &tsk->ioac);
155 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
156 sig->nr_threads--;
157 __unhash_process(tsk, group_dead);
158 write_sequnlock(&sig->stats_lock);
161 * Do this under ->siglock, we can race with another thread
162 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
164 flush_sigqueue(&tsk->pending);
165 tsk->sighand = NULL;
166 spin_unlock(&sighand->siglock);
168 __cleanup_sighand(sighand);
169 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
170 if (group_dead) {
171 flush_sigqueue(&sig->shared_pending);
172 tty_kref_put(tty);
176 static void delayed_put_task_struct(struct rcu_head *rhp)
178 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
180 perf_event_delayed_put(tsk);
181 trace_sched_process_free(tsk);
182 put_task_struct(tsk);
186 void release_task(struct task_struct *p)
188 struct task_struct *leader;
189 int zap_leader;
190 repeat:
191 /* don't need to get the RCU readlock here - the process is dead and
192 * can't be modifying its own credentials. But shut RCU-lockdep up */
193 rcu_read_lock();
194 atomic_dec(&__task_cred(p)->user->processes);
195 rcu_read_unlock();
197 proc_flush_task(p);
199 write_lock_irq(&tasklist_lock);
200 ptrace_release_task(p);
201 __exit_signal(p);
204 * If we are the last non-leader member of the thread
205 * group, and the leader is zombie, then notify the
206 * group leader's parent process. (if it wants notification.)
208 zap_leader = 0;
209 leader = p->group_leader;
210 if (leader != p && thread_group_empty(leader)
211 && leader->exit_state == EXIT_ZOMBIE) {
213 * If we were the last child thread and the leader has
214 * exited already, and the leader's parent ignores SIGCHLD,
215 * then we are the one who should release the leader.
217 zap_leader = do_notify_parent(leader, leader->exit_signal);
218 if (zap_leader)
219 leader->exit_state = EXIT_DEAD;
222 write_unlock_irq(&tasklist_lock);
223 cgroup_release(p);
224 release_thread(p);
225 call_rcu(&p->rcu, delayed_put_task_struct);
227 p = leader;
228 if (unlikely(zap_leader))
229 goto repeat;
233 * Note that if this function returns a valid task_struct pointer (!NULL)
234 * task->usage must remain >0 for the duration of the RCU critical section.
236 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
238 struct sighand_struct *sighand;
239 struct task_struct *task;
242 * We need to verify that release_task() was not called and thus
243 * delayed_put_task_struct() can't run and drop the last reference
244 * before rcu_read_unlock(). We check task->sighand != NULL,
245 * but we can read the already freed and reused memory.
247 retry:
248 task = rcu_dereference(*ptask);
249 if (!task)
250 return NULL;
252 probe_kernel_address(&task->sighand, sighand);
255 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
256 * was already freed we can not miss the preceding update of this
257 * pointer.
259 smp_rmb();
260 if (unlikely(task != READ_ONCE(*ptask)))
261 goto retry;
264 * We've re-checked that "task == *ptask", now we have two different
265 * cases:
267 * 1. This is actually the same task/task_struct. In this case
268 * sighand != NULL tells us it is still alive.
270 * 2. This is another task which got the same memory for task_struct.
271 * We can't know this of course, and we can not trust
272 * sighand != NULL.
274 * In this case we actually return a random value, but this is
275 * correct.
277 * If we return NULL - we can pretend that we actually noticed that
278 * *ptask was updated when the previous task has exited. Or pretend
279 * that probe_slab_address(&sighand) reads NULL.
281 * If we return the new task (because sighand is not NULL for any
282 * reason) - this is fine too. This (new) task can't go away before
283 * another gp pass.
285 * And note: We could even eliminate the false positive if re-read
286 * task->sighand once again to avoid the falsely NULL. But this case
287 * is very unlikely so we don't care.
289 if (!sighand)
290 return NULL;
292 return task;
295 void rcuwait_wake_up(struct rcuwait *w)
297 struct task_struct *task;
299 rcu_read_lock();
302 * Order condition vs @task, such that everything prior to the load
303 * of @task is visible. This is the condition as to why the user called
304 * rcuwait_trywake() in the first place. Pairs with set_current_state()
305 * barrier (A) in rcuwait_wait_event().
307 * WAIT WAKE
308 * [S] tsk = current [S] cond = true
309 * MB (A) MB (B)
310 * [L] cond [L] tsk
312 smp_mb(); /* (B) */
315 * Avoid using task_rcu_dereference() magic as long as we are careful,
316 * see comment in rcuwait_wait_event() regarding ->exit_state.
318 task = rcu_dereference(w->task);
319 if (task)
320 wake_up_process(task);
321 rcu_read_unlock();
325 * Determine if a process group is "orphaned", according to the POSIX
326 * definition in 2.2.2.52. Orphaned process groups are not to be affected
327 * by terminal-generated stop signals. Newly orphaned process groups are
328 * to receive a SIGHUP and a SIGCONT.
330 * "I ask you, have you ever known what it is to be an orphan?"
332 static int will_become_orphaned_pgrp(struct pid *pgrp,
333 struct task_struct *ignored_task)
335 struct task_struct *p;
337 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
338 if ((p == ignored_task) ||
339 (p->exit_state && thread_group_empty(p)) ||
340 is_global_init(p->real_parent))
341 continue;
343 if (task_pgrp(p->real_parent) != pgrp &&
344 task_session(p->real_parent) == task_session(p))
345 return 0;
346 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
348 return 1;
351 int is_current_pgrp_orphaned(void)
353 int retval;
355 read_lock(&tasklist_lock);
356 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
357 read_unlock(&tasklist_lock);
359 return retval;
362 static bool has_stopped_jobs(struct pid *pgrp)
364 struct task_struct *p;
366 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
367 if (p->signal->flags & SIGNAL_STOP_STOPPED)
368 return true;
369 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
371 return false;
375 * Check to see if any process groups have become orphaned as
376 * a result of our exiting, and if they have any stopped jobs,
377 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
379 static void
380 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
382 struct pid *pgrp = task_pgrp(tsk);
383 struct task_struct *ignored_task = tsk;
385 if (!parent)
386 /* exit: our father is in a different pgrp than
387 * we are and we were the only connection outside.
389 parent = tsk->real_parent;
390 else
391 /* reparent: our child is in a different pgrp than
392 * we are, and it was the only connection outside.
394 ignored_task = NULL;
396 if (task_pgrp(parent) != pgrp &&
397 task_session(parent) == task_session(tsk) &&
398 will_become_orphaned_pgrp(pgrp, ignored_task) &&
399 has_stopped_jobs(pgrp)) {
400 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
401 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
405 #ifdef CONFIG_MEMCG
407 * A task is exiting. If it owned this mm, find a new owner for the mm.
409 void mm_update_next_owner(struct mm_struct *mm)
411 struct task_struct *c, *g, *p = current;
413 retry:
415 * If the exiting or execing task is not the owner, it's
416 * someone else's problem.
418 if (mm->owner != p)
419 return;
421 * The current owner is exiting/execing and there are no other
422 * candidates. Do not leave the mm pointing to a possibly
423 * freed task structure.
425 if (atomic_read(&mm->mm_users) <= 1) {
426 WRITE_ONCE(mm->owner, NULL);
427 return;
430 read_lock(&tasklist_lock);
432 * Search in the children
434 list_for_each_entry(c, &p->children, sibling) {
435 if (c->mm == mm)
436 goto assign_new_owner;
440 * Search in the siblings
442 list_for_each_entry(c, &p->real_parent->children, sibling) {
443 if (c->mm == mm)
444 goto assign_new_owner;
448 * Search through everything else, we should not get here often.
450 for_each_process(g) {
451 if (g->flags & PF_KTHREAD)
452 continue;
453 for_each_thread(g, c) {
454 if (c->mm == mm)
455 goto assign_new_owner;
456 if (c->mm)
457 break;
460 read_unlock(&tasklist_lock);
462 * We found no owner yet mm_users > 1: this implies that we are
463 * most likely racing with swapoff (try_to_unuse()) or /proc or
464 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
466 WRITE_ONCE(mm->owner, NULL);
467 return;
469 assign_new_owner:
470 BUG_ON(c == p);
471 get_task_struct(c);
473 * The task_lock protects c->mm from changing.
474 * We always want mm->owner->mm == mm
476 task_lock(c);
478 * Delay read_unlock() till we have the task_lock()
479 * to ensure that c does not slip away underneath us
481 read_unlock(&tasklist_lock);
482 if (c->mm != mm) {
483 task_unlock(c);
484 put_task_struct(c);
485 goto retry;
487 WRITE_ONCE(mm->owner, c);
488 task_unlock(c);
489 put_task_struct(c);
491 #endif /* CONFIG_MEMCG */
494 * Turn us into a lazy TLB process if we
495 * aren't already..
497 static void exit_mm(void)
499 struct mm_struct *mm = current->mm;
500 struct core_state *core_state;
502 mm_release(current, mm);
503 if (!mm)
504 return;
505 sync_mm_rss(mm);
507 * Serialize with any possible pending coredump.
508 * We must hold mmap_sem around checking core_state
509 * and clearing tsk->mm. The core-inducing thread
510 * will increment ->nr_threads for each thread in the
511 * group with ->mm != NULL.
513 down_read(&mm->mmap_sem);
514 core_state = mm->core_state;
515 if (core_state) {
516 struct core_thread self;
518 up_read(&mm->mmap_sem);
520 self.task = current;
521 self.next = xchg(&core_state->dumper.next, &self);
523 * Implies mb(), the result of xchg() must be visible
524 * to core_state->dumper.
526 if (atomic_dec_and_test(&core_state->nr_threads))
527 complete(&core_state->startup);
529 for (;;) {
530 set_current_state(TASK_UNINTERRUPTIBLE);
531 if (!self.task) /* see coredump_finish() */
532 break;
533 freezable_schedule();
535 __set_current_state(TASK_RUNNING);
536 down_read(&mm->mmap_sem);
538 mmgrab(mm);
539 BUG_ON(mm != current->active_mm);
540 /* more a memory barrier than a real lock */
541 task_lock(current);
542 current->mm = NULL;
543 up_read(&mm->mmap_sem);
544 enter_lazy_tlb(mm, current);
545 task_unlock(current);
546 mm_update_next_owner(mm);
547 mmput(mm);
548 if (test_thread_flag(TIF_MEMDIE))
549 exit_oom_victim();
552 static struct task_struct *find_alive_thread(struct task_struct *p)
554 struct task_struct *t;
556 for_each_thread(p, t) {
557 if (!(t->flags & PF_EXITING))
558 return t;
560 return NULL;
563 static struct task_struct *find_child_reaper(struct task_struct *father,
564 struct list_head *dead)
565 __releases(&tasklist_lock)
566 __acquires(&tasklist_lock)
568 struct pid_namespace *pid_ns = task_active_pid_ns(father);
569 struct task_struct *reaper = pid_ns->child_reaper;
570 struct task_struct *p, *n;
572 if (likely(reaper != father))
573 return reaper;
575 reaper = find_alive_thread(father);
576 if (reaper) {
577 pid_ns->child_reaper = reaper;
578 return reaper;
581 write_unlock_irq(&tasklist_lock);
582 if (unlikely(pid_ns == &init_pid_ns)) {
583 panic("Attempted to kill init! exitcode=0x%08x\n",
584 father->signal->group_exit_code ?: father->exit_code);
587 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
588 list_del_init(&p->ptrace_entry);
589 release_task(p);
592 zap_pid_ns_processes(pid_ns);
593 write_lock_irq(&tasklist_lock);
595 return father;
599 * When we die, we re-parent all our children, and try to:
600 * 1. give them to another thread in our thread group, if such a member exists
601 * 2. give it to the first ancestor process which prctl'd itself as a
602 * child_subreaper for its children (like a service manager)
603 * 3. give it to the init process (PID 1) in our pid namespace
605 static struct task_struct *find_new_reaper(struct task_struct *father,
606 struct task_struct *child_reaper)
608 struct task_struct *thread, *reaper;
610 thread = find_alive_thread(father);
611 if (thread)
612 return thread;
614 if (father->signal->has_child_subreaper) {
615 unsigned int ns_level = task_pid(father)->level;
617 * Find the first ->is_child_subreaper ancestor in our pid_ns.
618 * We can't check reaper != child_reaper to ensure we do not
619 * cross the namespaces, the exiting parent could be injected
620 * by setns() + fork().
621 * We check pid->level, this is slightly more efficient than
622 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
624 for (reaper = father->real_parent;
625 task_pid(reaper)->level == ns_level;
626 reaper = reaper->real_parent) {
627 if (reaper == &init_task)
628 break;
629 if (!reaper->signal->is_child_subreaper)
630 continue;
631 thread = find_alive_thread(reaper);
632 if (thread)
633 return thread;
637 return child_reaper;
641 * Any that need to be release_task'd are put on the @dead list.
643 static void reparent_leader(struct task_struct *father, struct task_struct *p,
644 struct list_head *dead)
646 if (unlikely(p->exit_state == EXIT_DEAD))
647 return;
649 /* We don't want people slaying init. */
650 p->exit_signal = SIGCHLD;
652 /* If it has exited notify the new parent about this child's death. */
653 if (!p->ptrace &&
654 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
655 if (do_notify_parent(p, p->exit_signal)) {
656 p->exit_state = EXIT_DEAD;
657 list_add(&p->ptrace_entry, dead);
661 kill_orphaned_pgrp(p, father);
665 * This does two things:
667 * A. Make init inherit all the child processes
668 * B. Check to see if any process groups have become orphaned
669 * as a result of our exiting, and if they have any stopped
670 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
672 static void forget_original_parent(struct task_struct *father,
673 struct list_head *dead)
675 struct task_struct *p, *t, *reaper;
677 if (unlikely(!list_empty(&father->ptraced)))
678 exit_ptrace(father, dead);
680 /* Can drop and reacquire tasklist_lock */
681 reaper = find_child_reaper(father, dead);
682 if (list_empty(&father->children))
683 return;
685 reaper = find_new_reaper(father, reaper);
686 list_for_each_entry(p, &father->children, sibling) {
687 for_each_thread(p, t) {
688 t->real_parent = reaper;
689 BUG_ON((!t->ptrace) != (t->parent == father));
690 if (likely(!t->ptrace))
691 t->parent = t->real_parent;
692 if (t->pdeath_signal)
693 group_send_sig_info(t->pdeath_signal,
694 SEND_SIG_NOINFO, t,
695 PIDTYPE_TGID);
698 * If this is a threaded reparent there is no need to
699 * notify anyone anything has happened.
701 if (!same_thread_group(reaper, father))
702 reparent_leader(father, p, dead);
704 list_splice_tail_init(&father->children, &reaper->children);
708 * Send signals to all our closest relatives so that they know
709 * to properly mourn us..
711 static void exit_notify(struct task_struct *tsk, int group_dead)
713 bool autoreap;
714 struct task_struct *p, *n;
715 LIST_HEAD(dead);
717 write_lock_irq(&tasklist_lock);
718 forget_original_parent(tsk, &dead);
720 if (group_dead)
721 kill_orphaned_pgrp(tsk->group_leader, NULL);
723 if (unlikely(tsk->ptrace)) {
724 int sig = thread_group_leader(tsk) &&
725 thread_group_empty(tsk) &&
726 !ptrace_reparented(tsk) ?
727 tsk->exit_signal : SIGCHLD;
728 autoreap = do_notify_parent(tsk, sig);
729 } else if (thread_group_leader(tsk)) {
730 autoreap = thread_group_empty(tsk) &&
731 do_notify_parent(tsk, tsk->exit_signal);
732 } else {
733 autoreap = true;
736 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
737 if (tsk->exit_state == EXIT_DEAD)
738 list_add(&tsk->ptrace_entry, &dead);
740 /* mt-exec, de_thread() is waiting for group leader */
741 if (unlikely(tsk->signal->notify_count < 0))
742 wake_up_process(tsk->signal->group_exit_task);
743 write_unlock_irq(&tasklist_lock);
745 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
746 list_del_init(&p->ptrace_entry);
747 release_task(p);
751 #ifdef CONFIG_DEBUG_STACK_USAGE
752 static void check_stack_usage(void)
754 static DEFINE_SPINLOCK(low_water_lock);
755 static int lowest_to_date = THREAD_SIZE;
756 unsigned long free;
758 free = stack_not_used(current);
760 if (free >= lowest_to_date)
761 return;
763 spin_lock(&low_water_lock);
764 if (free < lowest_to_date) {
765 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
766 current->comm, task_pid_nr(current), free);
767 lowest_to_date = free;
769 spin_unlock(&low_water_lock);
771 #else
772 static inline void check_stack_usage(void) {}
773 #endif
775 void __noreturn do_exit(long code)
777 struct task_struct *tsk = current;
778 int group_dead;
780 profile_task_exit(tsk);
781 kcov_task_exit(tsk);
783 WARN_ON(blk_needs_flush_plug(tsk));
785 if (unlikely(in_interrupt()))
786 panic("Aiee, killing interrupt handler!");
787 if (unlikely(!tsk->pid))
788 panic("Attempted to kill the idle task!");
791 * If do_exit is called because this processes oopsed, it's possible
792 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
793 * continuing. Amongst other possible reasons, this is to prevent
794 * mm_release()->clear_child_tid() from writing to a user-controlled
795 * kernel address.
797 set_fs(USER_DS);
799 ptrace_event(PTRACE_EVENT_EXIT, code);
801 validate_creds_for_do_exit(tsk);
804 * We're taking recursive faults here in do_exit. Safest is to just
805 * leave this task alone and wait for reboot.
807 if (unlikely(tsk->flags & PF_EXITING)) {
808 pr_alert("Fixing recursive fault but reboot is needed!\n");
810 * We can do this unlocked here. The futex code uses
811 * this flag just to verify whether the pi state
812 * cleanup has been done or not. In the worst case it
813 * loops once more. We pretend that the cleanup was
814 * done as there is no way to return. Either the
815 * OWNER_DIED bit is set by now or we push the blocked
816 * task into the wait for ever nirwana as well.
818 tsk->flags |= PF_EXITPIDONE;
819 set_current_state(TASK_UNINTERRUPTIBLE);
820 schedule();
823 exit_signals(tsk); /* sets PF_EXITING */
825 * Ensure that all new tsk->pi_lock acquisitions must observe
826 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
828 smp_mb();
830 * Ensure that we must observe the pi_state in exit_mm() ->
831 * mm_release() -> exit_pi_state_list().
833 raw_spin_lock_irq(&tsk->pi_lock);
834 raw_spin_unlock_irq(&tsk->pi_lock);
836 if (unlikely(in_atomic())) {
837 pr_info("note: %s[%d] exited with preempt_count %d\n",
838 current->comm, task_pid_nr(current),
839 preempt_count());
840 preempt_count_set(PREEMPT_ENABLED);
843 /* sync mm's RSS info before statistics gathering */
844 if (tsk->mm)
845 sync_mm_rss(tsk->mm);
846 acct_update_integrals(tsk);
847 group_dead = atomic_dec_and_test(&tsk->signal->live);
848 if (group_dead) {
849 #ifdef CONFIG_POSIX_TIMERS
850 hrtimer_cancel(&tsk->signal->real_timer);
851 exit_itimers(tsk->signal);
852 #endif
853 if (tsk->mm)
854 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
856 acct_collect(code, group_dead);
857 if (group_dead)
858 tty_audit_exit();
859 audit_free(tsk);
861 tsk->exit_code = code;
862 taskstats_exit(tsk, group_dead);
864 exit_mm();
866 if (group_dead)
867 acct_process();
868 trace_sched_process_exit(tsk);
870 exit_sem(tsk);
871 exit_shm(tsk);
872 exit_files(tsk);
873 exit_fs(tsk);
874 if (group_dead)
875 disassociate_ctty(1);
876 exit_task_namespaces(tsk);
877 exit_task_work(tsk);
878 exit_thread(tsk);
879 exit_umh(tsk);
882 * Flush inherited counters to the parent - before the parent
883 * gets woken up by child-exit notifications.
885 * because of cgroup mode, must be called before cgroup_exit()
887 perf_event_exit_task(tsk);
889 sched_autogroup_exit_task(tsk);
890 cgroup_exit(tsk);
893 * FIXME: do that only when needed, using sched_exit tracepoint
895 flush_ptrace_hw_breakpoint(tsk);
897 exit_tasks_rcu_start();
898 exit_notify(tsk, group_dead);
899 proc_exit_connector(tsk);
900 mpol_put_task_policy(tsk);
901 #ifdef CONFIG_FUTEX
902 if (unlikely(current->pi_state_cache))
903 kfree(current->pi_state_cache);
904 #endif
906 * Make sure we are holding no locks:
908 debug_check_no_locks_held();
910 * We can do this unlocked here. The futex code uses this flag
911 * just to verify whether the pi state cleanup has been done
912 * or not. In the worst case it loops once more.
914 tsk->flags |= PF_EXITPIDONE;
916 if (tsk->io_context)
917 exit_io_context(tsk);
919 if (tsk->splice_pipe)
920 free_pipe_info(tsk->splice_pipe);
922 if (tsk->task_frag.page)
923 put_page(tsk->task_frag.page);
925 validate_creds_for_do_exit(tsk);
927 check_stack_usage();
928 preempt_disable();
929 if (tsk->nr_dirtied)
930 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
931 exit_rcu();
932 exit_tasks_rcu_finish();
934 lockdep_free_task(tsk);
935 do_task_dead();
937 EXPORT_SYMBOL_GPL(do_exit);
939 void complete_and_exit(struct completion *comp, long code)
941 if (comp)
942 complete(comp);
944 do_exit(code);
946 EXPORT_SYMBOL(complete_and_exit);
948 SYSCALL_DEFINE1(exit, int, error_code)
950 do_exit((error_code&0xff)<<8);
954 * Take down every thread in the group. This is called by fatal signals
955 * as well as by sys_exit_group (below).
957 void
958 do_group_exit(int exit_code)
960 struct signal_struct *sig = current->signal;
962 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
964 if (signal_group_exit(sig))
965 exit_code = sig->group_exit_code;
966 else if (!thread_group_empty(current)) {
967 struct sighand_struct *const sighand = current->sighand;
969 spin_lock_irq(&sighand->siglock);
970 if (signal_group_exit(sig))
971 /* Another thread got here before we took the lock. */
972 exit_code = sig->group_exit_code;
973 else {
974 sig->group_exit_code = exit_code;
975 sig->flags = SIGNAL_GROUP_EXIT;
976 zap_other_threads(current);
978 spin_unlock_irq(&sighand->siglock);
981 do_exit(exit_code);
982 /* NOTREACHED */
986 * this kills every thread in the thread group. Note that any externally
987 * wait4()-ing process will get the correct exit code - even if this
988 * thread is not the thread group leader.
990 SYSCALL_DEFINE1(exit_group, int, error_code)
992 do_group_exit((error_code & 0xff) << 8);
993 /* NOTREACHED */
994 return 0;
997 struct waitid_info {
998 pid_t pid;
999 uid_t uid;
1000 int status;
1001 int cause;
1004 struct wait_opts {
1005 enum pid_type wo_type;
1006 int wo_flags;
1007 struct pid *wo_pid;
1009 struct waitid_info *wo_info;
1010 int wo_stat;
1011 struct rusage *wo_rusage;
1013 wait_queue_entry_t child_wait;
1014 int notask_error;
1017 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1019 return wo->wo_type == PIDTYPE_MAX ||
1020 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1023 static int
1024 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1026 if (!eligible_pid(wo, p))
1027 return 0;
1030 * Wait for all children (clone and not) if __WALL is set or
1031 * if it is traced by us.
1033 if (ptrace || (wo->wo_flags & __WALL))
1034 return 1;
1037 * Otherwise, wait for clone children *only* if __WCLONE is set;
1038 * otherwise, wait for non-clone children *only*.
1040 * Note: a "clone" child here is one that reports to its parent
1041 * using a signal other than SIGCHLD, or a non-leader thread which
1042 * we can only see if it is traced by us.
1044 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1045 return 0;
1047 return 1;
1051 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1052 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1053 * the lock and this task is uninteresting. If we return nonzero, we have
1054 * released the lock and the system call should return.
1056 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1058 int state, status;
1059 pid_t pid = task_pid_vnr(p);
1060 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1061 struct waitid_info *infop;
1063 if (!likely(wo->wo_flags & WEXITED))
1064 return 0;
1066 if (unlikely(wo->wo_flags & WNOWAIT)) {
1067 status = p->exit_code;
1068 get_task_struct(p);
1069 read_unlock(&tasklist_lock);
1070 sched_annotate_sleep();
1071 if (wo->wo_rusage)
1072 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1073 put_task_struct(p);
1074 goto out_info;
1077 * Move the task's state to DEAD/TRACE, only one thread can do this.
1079 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1080 EXIT_TRACE : EXIT_DEAD;
1081 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1082 return 0;
1084 * We own this thread, nobody else can reap it.
1086 read_unlock(&tasklist_lock);
1087 sched_annotate_sleep();
1090 * Check thread_group_leader() to exclude the traced sub-threads.
1092 if (state == EXIT_DEAD && thread_group_leader(p)) {
1093 struct signal_struct *sig = p->signal;
1094 struct signal_struct *psig = current->signal;
1095 unsigned long maxrss;
1096 u64 tgutime, tgstime;
1099 * The resource counters for the group leader are in its
1100 * own task_struct. Those for dead threads in the group
1101 * are in its signal_struct, as are those for the child
1102 * processes it has previously reaped. All these
1103 * accumulate in the parent's signal_struct c* fields.
1105 * We don't bother to take a lock here to protect these
1106 * p->signal fields because the whole thread group is dead
1107 * and nobody can change them.
1109 * psig->stats_lock also protects us from our sub-theads
1110 * which can reap other children at the same time. Until
1111 * we change k_getrusage()-like users to rely on this lock
1112 * we have to take ->siglock as well.
1114 * We use thread_group_cputime_adjusted() to get times for
1115 * the thread group, which consolidates times for all threads
1116 * in the group including the group leader.
1118 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1119 spin_lock_irq(&current->sighand->siglock);
1120 write_seqlock(&psig->stats_lock);
1121 psig->cutime += tgutime + sig->cutime;
1122 psig->cstime += tgstime + sig->cstime;
1123 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1124 psig->cmin_flt +=
1125 p->min_flt + sig->min_flt + sig->cmin_flt;
1126 psig->cmaj_flt +=
1127 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1128 psig->cnvcsw +=
1129 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1130 psig->cnivcsw +=
1131 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1132 psig->cinblock +=
1133 task_io_get_inblock(p) +
1134 sig->inblock + sig->cinblock;
1135 psig->coublock +=
1136 task_io_get_oublock(p) +
1137 sig->oublock + sig->coublock;
1138 maxrss = max(sig->maxrss, sig->cmaxrss);
1139 if (psig->cmaxrss < maxrss)
1140 psig->cmaxrss = maxrss;
1141 task_io_accounting_add(&psig->ioac, &p->ioac);
1142 task_io_accounting_add(&psig->ioac, &sig->ioac);
1143 write_sequnlock(&psig->stats_lock);
1144 spin_unlock_irq(&current->sighand->siglock);
1147 if (wo->wo_rusage)
1148 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1149 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1150 ? p->signal->group_exit_code : p->exit_code;
1151 wo->wo_stat = status;
1153 if (state == EXIT_TRACE) {
1154 write_lock_irq(&tasklist_lock);
1155 /* We dropped tasklist, ptracer could die and untrace */
1156 ptrace_unlink(p);
1158 /* If parent wants a zombie, don't release it now */
1159 state = EXIT_ZOMBIE;
1160 if (do_notify_parent(p, p->exit_signal))
1161 state = EXIT_DEAD;
1162 p->exit_state = state;
1163 write_unlock_irq(&tasklist_lock);
1165 if (state == EXIT_DEAD)
1166 release_task(p);
1168 out_info:
1169 infop = wo->wo_info;
1170 if (infop) {
1171 if ((status & 0x7f) == 0) {
1172 infop->cause = CLD_EXITED;
1173 infop->status = status >> 8;
1174 } else {
1175 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1176 infop->status = status & 0x7f;
1178 infop->pid = pid;
1179 infop->uid = uid;
1182 return pid;
1185 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1187 if (ptrace) {
1188 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1189 return &p->exit_code;
1190 } else {
1191 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1192 return &p->signal->group_exit_code;
1194 return NULL;
1198 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1199 * @wo: wait options
1200 * @ptrace: is the wait for ptrace
1201 * @p: task to wait for
1203 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1205 * CONTEXT:
1206 * read_lock(&tasklist_lock), which is released if return value is
1207 * non-zero. Also, grabs and releases @p->sighand->siglock.
1209 * RETURNS:
1210 * 0 if wait condition didn't exist and search for other wait conditions
1211 * should continue. Non-zero return, -errno on failure and @p's pid on
1212 * success, implies that tasklist_lock is released and wait condition
1213 * search should terminate.
1215 static int wait_task_stopped(struct wait_opts *wo,
1216 int ptrace, struct task_struct *p)
1218 struct waitid_info *infop;
1219 int exit_code, *p_code, why;
1220 uid_t uid = 0; /* unneeded, required by compiler */
1221 pid_t pid;
1224 * Traditionally we see ptrace'd stopped tasks regardless of options.
1226 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1227 return 0;
1229 if (!task_stopped_code(p, ptrace))
1230 return 0;
1232 exit_code = 0;
1233 spin_lock_irq(&p->sighand->siglock);
1235 p_code = task_stopped_code(p, ptrace);
1236 if (unlikely(!p_code))
1237 goto unlock_sig;
1239 exit_code = *p_code;
1240 if (!exit_code)
1241 goto unlock_sig;
1243 if (!unlikely(wo->wo_flags & WNOWAIT))
1244 *p_code = 0;
1246 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1247 unlock_sig:
1248 spin_unlock_irq(&p->sighand->siglock);
1249 if (!exit_code)
1250 return 0;
1253 * Now we are pretty sure this task is interesting.
1254 * Make sure it doesn't get reaped out from under us while we
1255 * give up the lock and then examine it below. We don't want to
1256 * keep holding onto the tasklist_lock while we call getrusage and
1257 * possibly take page faults for user memory.
1259 get_task_struct(p);
1260 pid = task_pid_vnr(p);
1261 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1262 read_unlock(&tasklist_lock);
1263 sched_annotate_sleep();
1264 if (wo->wo_rusage)
1265 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1266 put_task_struct(p);
1268 if (likely(!(wo->wo_flags & WNOWAIT)))
1269 wo->wo_stat = (exit_code << 8) | 0x7f;
1271 infop = wo->wo_info;
1272 if (infop) {
1273 infop->cause = why;
1274 infop->status = exit_code;
1275 infop->pid = pid;
1276 infop->uid = uid;
1278 return pid;
1282 * Handle do_wait work for one task in a live, non-stopped state.
1283 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1284 * the lock and this task is uninteresting. If we return nonzero, we have
1285 * released the lock and the system call should return.
1287 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1289 struct waitid_info *infop;
1290 pid_t pid;
1291 uid_t uid;
1293 if (!unlikely(wo->wo_flags & WCONTINUED))
1294 return 0;
1296 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1297 return 0;
1299 spin_lock_irq(&p->sighand->siglock);
1300 /* Re-check with the lock held. */
1301 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1302 spin_unlock_irq(&p->sighand->siglock);
1303 return 0;
1305 if (!unlikely(wo->wo_flags & WNOWAIT))
1306 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1307 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1308 spin_unlock_irq(&p->sighand->siglock);
1310 pid = task_pid_vnr(p);
1311 get_task_struct(p);
1312 read_unlock(&tasklist_lock);
1313 sched_annotate_sleep();
1314 if (wo->wo_rusage)
1315 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1316 put_task_struct(p);
1318 infop = wo->wo_info;
1319 if (!infop) {
1320 wo->wo_stat = 0xffff;
1321 } else {
1322 infop->cause = CLD_CONTINUED;
1323 infop->pid = pid;
1324 infop->uid = uid;
1325 infop->status = SIGCONT;
1327 return pid;
1331 * Consider @p for a wait by @parent.
1333 * -ECHILD should be in ->notask_error before the first call.
1334 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1335 * Returns zero if the search for a child should continue;
1336 * then ->notask_error is 0 if @p is an eligible child,
1337 * or still -ECHILD.
1339 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1340 struct task_struct *p)
1343 * We can race with wait_task_zombie() from another thread.
1344 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1345 * can't confuse the checks below.
1347 int exit_state = READ_ONCE(p->exit_state);
1348 int ret;
1350 if (unlikely(exit_state == EXIT_DEAD))
1351 return 0;
1353 ret = eligible_child(wo, ptrace, p);
1354 if (!ret)
1355 return ret;
1357 if (unlikely(exit_state == EXIT_TRACE)) {
1359 * ptrace == 0 means we are the natural parent. In this case
1360 * we should clear notask_error, debugger will notify us.
1362 if (likely(!ptrace))
1363 wo->notask_error = 0;
1364 return 0;
1367 if (likely(!ptrace) && unlikely(p->ptrace)) {
1369 * If it is traced by its real parent's group, just pretend
1370 * the caller is ptrace_do_wait() and reap this child if it
1371 * is zombie.
1373 * This also hides group stop state from real parent; otherwise
1374 * a single stop can be reported twice as group and ptrace stop.
1375 * If a ptracer wants to distinguish these two events for its
1376 * own children it should create a separate process which takes
1377 * the role of real parent.
1379 if (!ptrace_reparented(p))
1380 ptrace = 1;
1383 /* slay zombie? */
1384 if (exit_state == EXIT_ZOMBIE) {
1385 /* we don't reap group leaders with subthreads */
1386 if (!delay_group_leader(p)) {
1388 * A zombie ptracee is only visible to its ptracer.
1389 * Notification and reaping will be cascaded to the
1390 * real parent when the ptracer detaches.
1392 if (unlikely(ptrace) || likely(!p->ptrace))
1393 return wait_task_zombie(wo, p);
1397 * Allow access to stopped/continued state via zombie by
1398 * falling through. Clearing of notask_error is complex.
1400 * When !@ptrace:
1402 * If WEXITED is set, notask_error should naturally be
1403 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1404 * so, if there are live subthreads, there are events to
1405 * wait for. If all subthreads are dead, it's still safe
1406 * to clear - this function will be called again in finite
1407 * amount time once all the subthreads are released and
1408 * will then return without clearing.
1410 * When @ptrace:
1412 * Stopped state is per-task and thus can't change once the
1413 * target task dies. Only continued and exited can happen.
1414 * Clear notask_error if WCONTINUED | WEXITED.
1416 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1417 wo->notask_error = 0;
1418 } else {
1420 * @p is alive and it's gonna stop, continue or exit, so
1421 * there always is something to wait for.
1423 wo->notask_error = 0;
1427 * Wait for stopped. Depending on @ptrace, different stopped state
1428 * is used and the two don't interact with each other.
1430 ret = wait_task_stopped(wo, ptrace, p);
1431 if (ret)
1432 return ret;
1435 * Wait for continued. There's only one continued state and the
1436 * ptracer can consume it which can confuse the real parent. Don't
1437 * use WCONTINUED from ptracer. You don't need or want it.
1439 return wait_task_continued(wo, p);
1443 * Do the work of do_wait() for one thread in the group, @tsk.
1445 * -ECHILD should be in ->notask_error before the first call.
1446 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1447 * Returns zero if the search for a child should continue; then
1448 * ->notask_error is 0 if there were any eligible children,
1449 * or still -ECHILD.
1451 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1453 struct task_struct *p;
1455 list_for_each_entry(p, &tsk->children, sibling) {
1456 int ret = wait_consider_task(wo, 0, p);
1458 if (ret)
1459 return ret;
1462 return 0;
1465 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1467 struct task_struct *p;
1469 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1470 int ret = wait_consider_task(wo, 1, p);
1472 if (ret)
1473 return ret;
1476 return 0;
1479 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1480 int sync, void *key)
1482 struct wait_opts *wo = container_of(wait, struct wait_opts,
1483 child_wait);
1484 struct task_struct *p = key;
1486 if (!eligible_pid(wo, p))
1487 return 0;
1489 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1490 return 0;
1492 return default_wake_function(wait, mode, sync, key);
1495 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1497 __wake_up_sync_key(&parent->signal->wait_chldexit,
1498 TASK_INTERRUPTIBLE, 1, p);
1501 static long do_wait(struct wait_opts *wo)
1503 struct task_struct *tsk;
1504 int retval;
1506 trace_sched_process_wait(wo->wo_pid);
1508 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1509 wo->child_wait.private = current;
1510 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1511 repeat:
1513 * If there is nothing that can match our criteria, just get out.
1514 * We will clear ->notask_error to zero if we see any child that
1515 * might later match our criteria, even if we are not able to reap
1516 * it yet.
1518 wo->notask_error = -ECHILD;
1519 if ((wo->wo_type < PIDTYPE_MAX) &&
1520 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1521 goto notask;
1523 set_current_state(TASK_INTERRUPTIBLE);
1524 read_lock(&tasklist_lock);
1525 tsk = current;
1526 do {
1527 retval = do_wait_thread(wo, tsk);
1528 if (retval)
1529 goto end;
1531 retval = ptrace_do_wait(wo, tsk);
1532 if (retval)
1533 goto end;
1535 if (wo->wo_flags & __WNOTHREAD)
1536 break;
1537 } while_each_thread(current, tsk);
1538 read_unlock(&tasklist_lock);
1540 notask:
1541 retval = wo->notask_error;
1542 if (!retval && !(wo->wo_flags & WNOHANG)) {
1543 retval = -ERESTARTSYS;
1544 if (!signal_pending(current)) {
1545 schedule();
1546 goto repeat;
1549 end:
1550 __set_current_state(TASK_RUNNING);
1551 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1552 return retval;
1555 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1556 int options, struct rusage *ru)
1558 struct wait_opts wo;
1559 struct pid *pid = NULL;
1560 enum pid_type type;
1561 long ret;
1563 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1564 __WNOTHREAD|__WCLONE|__WALL))
1565 return -EINVAL;
1566 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1567 return -EINVAL;
1569 switch (which) {
1570 case P_ALL:
1571 type = PIDTYPE_MAX;
1572 break;
1573 case P_PID:
1574 type = PIDTYPE_PID;
1575 if (upid <= 0)
1576 return -EINVAL;
1577 break;
1578 case P_PGID:
1579 type = PIDTYPE_PGID;
1580 if (upid <= 0)
1581 return -EINVAL;
1582 break;
1583 default:
1584 return -EINVAL;
1587 if (type < PIDTYPE_MAX)
1588 pid = find_get_pid(upid);
1590 wo.wo_type = type;
1591 wo.wo_pid = pid;
1592 wo.wo_flags = options;
1593 wo.wo_info = infop;
1594 wo.wo_rusage = ru;
1595 ret = do_wait(&wo);
1597 put_pid(pid);
1598 return ret;
1601 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1602 infop, int, options, struct rusage __user *, ru)
1604 struct rusage r;
1605 struct waitid_info info = {.status = 0};
1606 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1607 int signo = 0;
1609 if (err > 0) {
1610 signo = SIGCHLD;
1611 err = 0;
1612 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1613 return -EFAULT;
1615 if (!infop)
1616 return err;
1618 if (!user_access_begin(infop, sizeof(*infop)))
1619 return -EFAULT;
1621 unsafe_put_user(signo, &infop->si_signo, Efault);
1622 unsafe_put_user(0, &infop->si_errno, Efault);
1623 unsafe_put_user(info.cause, &infop->si_code, Efault);
1624 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1625 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1626 unsafe_put_user(info.status, &infop->si_status, Efault);
1627 user_access_end();
1628 return err;
1629 Efault:
1630 user_access_end();
1631 return -EFAULT;
1634 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1635 struct rusage *ru)
1637 struct wait_opts wo;
1638 struct pid *pid = NULL;
1639 enum pid_type type;
1640 long ret;
1642 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1643 __WNOTHREAD|__WCLONE|__WALL))
1644 return -EINVAL;
1646 /* -INT_MIN is not defined */
1647 if (upid == INT_MIN)
1648 return -ESRCH;
1650 if (upid == -1)
1651 type = PIDTYPE_MAX;
1652 else if (upid < 0) {
1653 type = PIDTYPE_PGID;
1654 pid = find_get_pid(-upid);
1655 } else if (upid == 0) {
1656 type = PIDTYPE_PGID;
1657 pid = get_task_pid(current, PIDTYPE_PGID);
1658 } else /* upid > 0 */ {
1659 type = PIDTYPE_PID;
1660 pid = find_get_pid(upid);
1663 wo.wo_type = type;
1664 wo.wo_pid = pid;
1665 wo.wo_flags = options | WEXITED;
1666 wo.wo_info = NULL;
1667 wo.wo_stat = 0;
1668 wo.wo_rusage = ru;
1669 ret = do_wait(&wo);
1670 put_pid(pid);
1671 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1672 ret = -EFAULT;
1674 return ret;
1677 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1678 int, options, struct rusage __user *, ru)
1680 struct rusage r;
1681 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1683 if (err > 0) {
1684 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1685 return -EFAULT;
1687 return err;
1690 #ifdef __ARCH_WANT_SYS_WAITPID
1693 * sys_waitpid() remains for compatibility. waitpid() should be
1694 * implemented by calling sys_wait4() from libc.a.
1696 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1698 return kernel_wait4(pid, stat_addr, options, NULL);
1701 #endif
1703 #ifdef CONFIG_COMPAT
1704 COMPAT_SYSCALL_DEFINE4(wait4,
1705 compat_pid_t, pid,
1706 compat_uint_t __user *, stat_addr,
1707 int, options,
1708 struct compat_rusage __user *, ru)
1710 struct rusage r;
1711 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1712 if (err > 0) {
1713 if (ru && put_compat_rusage(&r, ru))
1714 return -EFAULT;
1716 return err;
1719 COMPAT_SYSCALL_DEFINE5(waitid,
1720 int, which, compat_pid_t, pid,
1721 struct compat_siginfo __user *, infop, int, options,
1722 struct compat_rusage __user *, uru)
1724 struct rusage ru;
1725 struct waitid_info info = {.status = 0};
1726 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1727 int signo = 0;
1728 if (err > 0) {
1729 signo = SIGCHLD;
1730 err = 0;
1731 if (uru) {
1732 /* kernel_waitid() overwrites everything in ru */
1733 if (COMPAT_USE_64BIT_TIME)
1734 err = copy_to_user(uru, &ru, sizeof(ru));
1735 else
1736 err = put_compat_rusage(&ru, uru);
1737 if (err)
1738 return -EFAULT;
1742 if (!infop)
1743 return err;
1745 if (!user_access_begin(infop, sizeof(*infop)))
1746 return -EFAULT;
1748 unsafe_put_user(signo, &infop->si_signo, Efault);
1749 unsafe_put_user(0, &infop->si_errno, Efault);
1750 unsafe_put_user(info.cause, &infop->si_code, Efault);
1751 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1752 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1753 unsafe_put_user(info.status, &infop->si_status, Efault);
1754 user_access_end();
1755 return err;
1756 Efault:
1757 user_access_end();
1758 return -EFAULT;
1760 #endif
1762 __weak void abort(void)
1764 BUG();
1766 /* if that doesn't kill us, halt */
1767 panic("Oops failed to kill thread");
1769 EXPORT_SYMBOL(abort);