1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/pgtable.h>
70 #include <asm/mmu_context.h>
72 static void __unhash_process(struct task_struct
*p
, bool group_dead
)
75 detach_pid(p
, PIDTYPE_PID
);
77 detach_pid(p
, PIDTYPE_TGID
);
78 detach_pid(p
, PIDTYPE_PGID
);
79 detach_pid(p
, PIDTYPE_SID
);
81 list_del_rcu(&p
->tasks
);
82 list_del_init(&p
->sibling
);
83 __this_cpu_dec(process_counts
);
85 list_del_rcu(&p
->thread_group
);
86 list_del_rcu(&p
->thread_node
);
90 * This function expects the tasklist_lock write-locked.
92 static void __exit_signal(struct task_struct
*tsk
)
94 struct signal_struct
*sig
= tsk
->signal
;
95 bool group_dead
= thread_group_leader(tsk
);
96 struct sighand_struct
*sighand
;
97 struct tty_struct
*uninitialized_var(tty
);
100 sighand
= rcu_dereference_check(tsk
->sighand
,
101 lockdep_tasklist_lock_is_held());
102 spin_lock(&sighand
->siglock
);
104 #ifdef CONFIG_POSIX_TIMERS
105 posix_cpu_timers_exit(tsk
);
107 posix_cpu_timers_exit_group(tsk
);
110 * This can only happen if the caller is de_thread().
111 * FIXME: this is the temporary hack, we should teach
112 * posix-cpu-timers to handle this case correctly.
114 if (unlikely(has_group_leader_pid(tsk
)))
115 posix_cpu_timers_exit_group(tsk
);
124 * If there is any task waiting for the group exit
127 if (sig
->notify_count
> 0 && !--sig
->notify_count
)
128 wake_up_process(sig
->group_exit_task
);
130 if (tsk
== sig
->curr_target
)
131 sig
->curr_target
= next_thread(tsk
);
134 add_device_randomness((const void*) &tsk
->se
.sum_exec_runtime
,
135 sizeof(unsigned long long));
138 * Accumulate here the counters for all threads as they die. We could
139 * skip the group leader because it is the last user of signal_struct,
140 * but we want to avoid the race with thread_group_cputime() which can
141 * see the empty ->thread_head list.
143 task_cputime(tsk
, &utime
, &stime
);
144 write_seqlock(&sig
->stats_lock
);
147 sig
->gtime
+= task_gtime(tsk
);
148 sig
->min_flt
+= tsk
->min_flt
;
149 sig
->maj_flt
+= tsk
->maj_flt
;
150 sig
->nvcsw
+= tsk
->nvcsw
;
151 sig
->nivcsw
+= tsk
->nivcsw
;
152 sig
->inblock
+= task_io_get_inblock(tsk
);
153 sig
->oublock
+= task_io_get_oublock(tsk
);
154 task_io_accounting_add(&sig
->ioac
, &tsk
->ioac
);
155 sig
->sum_sched_runtime
+= tsk
->se
.sum_exec_runtime
;
157 __unhash_process(tsk
, group_dead
);
158 write_sequnlock(&sig
->stats_lock
);
161 * Do this under ->siglock, we can race with another thread
162 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
164 flush_sigqueue(&tsk
->pending
);
166 spin_unlock(&sighand
->siglock
);
168 __cleanup_sighand(sighand
);
169 clear_tsk_thread_flag(tsk
, TIF_SIGPENDING
);
171 flush_sigqueue(&sig
->shared_pending
);
176 static void delayed_put_task_struct(struct rcu_head
*rhp
)
178 struct task_struct
*tsk
= container_of(rhp
, struct task_struct
, rcu
);
180 perf_event_delayed_put(tsk
);
181 trace_sched_process_free(tsk
);
182 put_task_struct(tsk
);
186 void release_task(struct task_struct
*p
)
188 struct task_struct
*leader
;
191 /* don't need to get the RCU readlock here - the process is dead and
192 * can't be modifying its own credentials. But shut RCU-lockdep up */
194 atomic_dec(&__task_cred(p
)->user
->processes
);
199 write_lock_irq(&tasklist_lock
);
200 ptrace_release_task(p
);
204 * If we are the last non-leader member of the thread
205 * group, and the leader is zombie, then notify the
206 * group leader's parent process. (if it wants notification.)
209 leader
= p
->group_leader
;
210 if (leader
!= p
&& thread_group_empty(leader
)
211 && leader
->exit_state
== EXIT_ZOMBIE
) {
213 * If we were the last child thread and the leader has
214 * exited already, and the leader's parent ignores SIGCHLD,
215 * then we are the one who should release the leader.
217 zap_leader
= do_notify_parent(leader
, leader
->exit_signal
);
219 leader
->exit_state
= EXIT_DEAD
;
222 write_unlock_irq(&tasklist_lock
);
225 call_rcu(&p
->rcu
, delayed_put_task_struct
);
228 if (unlikely(zap_leader
))
233 * Note that if this function returns a valid task_struct pointer (!NULL)
234 * task->usage must remain >0 for the duration of the RCU critical section.
236 struct task_struct
*task_rcu_dereference(struct task_struct
**ptask
)
238 struct sighand_struct
*sighand
;
239 struct task_struct
*task
;
242 * We need to verify that release_task() was not called and thus
243 * delayed_put_task_struct() can't run and drop the last reference
244 * before rcu_read_unlock(). We check task->sighand != NULL,
245 * but we can read the already freed and reused memory.
248 task
= rcu_dereference(*ptask
);
252 probe_kernel_address(&task
->sighand
, sighand
);
255 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
256 * was already freed we can not miss the preceding update of this
260 if (unlikely(task
!= READ_ONCE(*ptask
)))
264 * We've re-checked that "task == *ptask", now we have two different
267 * 1. This is actually the same task/task_struct. In this case
268 * sighand != NULL tells us it is still alive.
270 * 2. This is another task which got the same memory for task_struct.
271 * We can't know this of course, and we can not trust
274 * In this case we actually return a random value, but this is
277 * If we return NULL - we can pretend that we actually noticed that
278 * *ptask was updated when the previous task has exited. Or pretend
279 * that probe_slab_address(&sighand) reads NULL.
281 * If we return the new task (because sighand is not NULL for any
282 * reason) - this is fine too. This (new) task can't go away before
285 * And note: We could even eliminate the false positive if re-read
286 * task->sighand once again to avoid the falsely NULL. But this case
287 * is very unlikely so we don't care.
295 void rcuwait_wake_up(struct rcuwait
*w
)
297 struct task_struct
*task
;
302 * Order condition vs @task, such that everything prior to the load
303 * of @task is visible. This is the condition as to why the user called
304 * rcuwait_trywake() in the first place. Pairs with set_current_state()
305 * barrier (A) in rcuwait_wait_event().
308 * [S] tsk = current [S] cond = true
315 * Avoid using task_rcu_dereference() magic as long as we are careful,
316 * see comment in rcuwait_wait_event() regarding ->exit_state.
318 task
= rcu_dereference(w
->task
);
320 wake_up_process(task
);
325 * Determine if a process group is "orphaned", according to the POSIX
326 * definition in 2.2.2.52. Orphaned process groups are not to be affected
327 * by terminal-generated stop signals. Newly orphaned process groups are
328 * to receive a SIGHUP and a SIGCONT.
330 * "I ask you, have you ever known what it is to be an orphan?"
332 static int will_become_orphaned_pgrp(struct pid
*pgrp
,
333 struct task_struct
*ignored_task
)
335 struct task_struct
*p
;
337 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
338 if ((p
== ignored_task
) ||
339 (p
->exit_state
&& thread_group_empty(p
)) ||
340 is_global_init(p
->real_parent
))
343 if (task_pgrp(p
->real_parent
) != pgrp
&&
344 task_session(p
->real_parent
) == task_session(p
))
346 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
351 int is_current_pgrp_orphaned(void)
355 read_lock(&tasklist_lock
);
356 retval
= will_become_orphaned_pgrp(task_pgrp(current
), NULL
);
357 read_unlock(&tasklist_lock
);
362 static bool has_stopped_jobs(struct pid
*pgrp
)
364 struct task_struct
*p
;
366 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
367 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
)
369 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
375 * Check to see if any process groups have become orphaned as
376 * a result of our exiting, and if they have any stopped jobs,
377 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
380 kill_orphaned_pgrp(struct task_struct
*tsk
, struct task_struct
*parent
)
382 struct pid
*pgrp
= task_pgrp(tsk
);
383 struct task_struct
*ignored_task
= tsk
;
386 /* exit: our father is in a different pgrp than
387 * we are and we were the only connection outside.
389 parent
= tsk
->real_parent
;
391 /* reparent: our child is in a different pgrp than
392 * we are, and it was the only connection outside.
396 if (task_pgrp(parent
) != pgrp
&&
397 task_session(parent
) == task_session(tsk
) &&
398 will_become_orphaned_pgrp(pgrp
, ignored_task
) &&
399 has_stopped_jobs(pgrp
)) {
400 __kill_pgrp_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
401 __kill_pgrp_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
407 * A task is exiting. If it owned this mm, find a new owner for the mm.
409 void mm_update_next_owner(struct mm_struct
*mm
)
411 struct task_struct
*c
, *g
, *p
= current
;
415 * If the exiting or execing task is not the owner, it's
416 * someone else's problem.
421 * The current owner is exiting/execing and there are no other
422 * candidates. Do not leave the mm pointing to a possibly
423 * freed task structure.
425 if (atomic_read(&mm
->mm_users
) <= 1) {
426 WRITE_ONCE(mm
->owner
, NULL
);
430 read_lock(&tasklist_lock
);
432 * Search in the children
434 list_for_each_entry(c
, &p
->children
, sibling
) {
436 goto assign_new_owner
;
440 * Search in the siblings
442 list_for_each_entry(c
, &p
->real_parent
->children
, sibling
) {
444 goto assign_new_owner
;
448 * Search through everything else, we should not get here often.
450 for_each_process(g
) {
451 if (g
->flags
& PF_KTHREAD
)
453 for_each_thread(g
, c
) {
455 goto assign_new_owner
;
460 read_unlock(&tasklist_lock
);
462 * We found no owner yet mm_users > 1: this implies that we are
463 * most likely racing with swapoff (try_to_unuse()) or /proc or
464 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
466 WRITE_ONCE(mm
->owner
, NULL
);
473 * The task_lock protects c->mm from changing.
474 * We always want mm->owner->mm == mm
478 * Delay read_unlock() till we have the task_lock()
479 * to ensure that c does not slip away underneath us
481 read_unlock(&tasklist_lock
);
487 WRITE_ONCE(mm
->owner
, c
);
491 #endif /* CONFIG_MEMCG */
494 * Turn us into a lazy TLB process if we
497 static void exit_mm(void)
499 struct mm_struct
*mm
= current
->mm
;
500 struct core_state
*core_state
;
502 mm_release(current
, mm
);
507 * Serialize with any possible pending coredump.
508 * We must hold mmap_sem around checking core_state
509 * and clearing tsk->mm. The core-inducing thread
510 * will increment ->nr_threads for each thread in the
511 * group with ->mm != NULL.
513 down_read(&mm
->mmap_sem
);
514 core_state
= mm
->core_state
;
516 struct core_thread self
;
518 up_read(&mm
->mmap_sem
);
521 self
.next
= xchg(&core_state
->dumper
.next
, &self
);
523 * Implies mb(), the result of xchg() must be visible
524 * to core_state->dumper.
526 if (atomic_dec_and_test(&core_state
->nr_threads
))
527 complete(&core_state
->startup
);
530 set_current_state(TASK_UNINTERRUPTIBLE
);
531 if (!self
.task
) /* see coredump_finish() */
533 freezable_schedule();
535 __set_current_state(TASK_RUNNING
);
536 down_read(&mm
->mmap_sem
);
539 BUG_ON(mm
!= current
->active_mm
);
540 /* more a memory barrier than a real lock */
543 up_read(&mm
->mmap_sem
);
544 enter_lazy_tlb(mm
, current
);
545 task_unlock(current
);
546 mm_update_next_owner(mm
);
548 if (test_thread_flag(TIF_MEMDIE
))
552 static struct task_struct
*find_alive_thread(struct task_struct
*p
)
554 struct task_struct
*t
;
556 for_each_thread(p
, t
) {
557 if (!(t
->flags
& PF_EXITING
))
563 static struct task_struct
*find_child_reaper(struct task_struct
*father
,
564 struct list_head
*dead
)
565 __releases(&tasklist_lock
)
566 __acquires(&tasklist_lock
)
568 struct pid_namespace
*pid_ns
= task_active_pid_ns(father
);
569 struct task_struct
*reaper
= pid_ns
->child_reaper
;
570 struct task_struct
*p
, *n
;
572 if (likely(reaper
!= father
))
575 reaper
= find_alive_thread(father
);
577 pid_ns
->child_reaper
= reaper
;
581 write_unlock_irq(&tasklist_lock
);
582 if (unlikely(pid_ns
== &init_pid_ns
)) {
583 panic("Attempted to kill init! exitcode=0x%08x\n",
584 father
->signal
->group_exit_code
?: father
->exit_code
);
587 list_for_each_entry_safe(p
, n
, dead
, ptrace_entry
) {
588 list_del_init(&p
->ptrace_entry
);
592 zap_pid_ns_processes(pid_ns
);
593 write_lock_irq(&tasklist_lock
);
599 * When we die, we re-parent all our children, and try to:
600 * 1. give them to another thread in our thread group, if such a member exists
601 * 2. give it to the first ancestor process which prctl'd itself as a
602 * child_subreaper for its children (like a service manager)
603 * 3. give it to the init process (PID 1) in our pid namespace
605 static struct task_struct
*find_new_reaper(struct task_struct
*father
,
606 struct task_struct
*child_reaper
)
608 struct task_struct
*thread
, *reaper
;
610 thread
= find_alive_thread(father
);
614 if (father
->signal
->has_child_subreaper
) {
615 unsigned int ns_level
= task_pid(father
)->level
;
617 * Find the first ->is_child_subreaper ancestor in our pid_ns.
618 * We can't check reaper != child_reaper to ensure we do not
619 * cross the namespaces, the exiting parent could be injected
620 * by setns() + fork().
621 * We check pid->level, this is slightly more efficient than
622 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
624 for (reaper
= father
->real_parent
;
625 task_pid(reaper
)->level
== ns_level
;
626 reaper
= reaper
->real_parent
) {
627 if (reaper
== &init_task
)
629 if (!reaper
->signal
->is_child_subreaper
)
631 thread
= find_alive_thread(reaper
);
641 * Any that need to be release_task'd are put on the @dead list.
643 static void reparent_leader(struct task_struct
*father
, struct task_struct
*p
,
644 struct list_head
*dead
)
646 if (unlikely(p
->exit_state
== EXIT_DEAD
))
649 /* We don't want people slaying init. */
650 p
->exit_signal
= SIGCHLD
;
652 /* If it has exited notify the new parent about this child's death. */
654 p
->exit_state
== EXIT_ZOMBIE
&& thread_group_empty(p
)) {
655 if (do_notify_parent(p
, p
->exit_signal
)) {
656 p
->exit_state
= EXIT_DEAD
;
657 list_add(&p
->ptrace_entry
, dead
);
661 kill_orphaned_pgrp(p
, father
);
665 * This does two things:
667 * A. Make init inherit all the child processes
668 * B. Check to see if any process groups have become orphaned
669 * as a result of our exiting, and if they have any stopped
670 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
672 static void forget_original_parent(struct task_struct
*father
,
673 struct list_head
*dead
)
675 struct task_struct
*p
, *t
, *reaper
;
677 if (unlikely(!list_empty(&father
->ptraced
)))
678 exit_ptrace(father
, dead
);
680 /* Can drop and reacquire tasklist_lock */
681 reaper
= find_child_reaper(father
, dead
);
682 if (list_empty(&father
->children
))
685 reaper
= find_new_reaper(father
, reaper
);
686 list_for_each_entry(p
, &father
->children
, sibling
) {
687 for_each_thread(p
, t
) {
688 t
->real_parent
= reaper
;
689 BUG_ON((!t
->ptrace
) != (t
->parent
== father
));
690 if (likely(!t
->ptrace
))
691 t
->parent
= t
->real_parent
;
692 if (t
->pdeath_signal
)
693 group_send_sig_info(t
->pdeath_signal
,
698 * If this is a threaded reparent there is no need to
699 * notify anyone anything has happened.
701 if (!same_thread_group(reaper
, father
))
702 reparent_leader(father
, p
, dead
);
704 list_splice_tail_init(&father
->children
, &reaper
->children
);
708 * Send signals to all our closest relatives so that they know
709 * to properly mourn us..
711 static void exit_notify(struct task_struct
*tsk
, int group_dead
)
714 struct task_struct
*p
, *n
;
717 write_lock_irq(&tasklist_lock
);
718 forget_original_parent(tsk
, &dead
);
721 kill_orphaned_pgrp(tsk
->group_leader
, NULL
);
723 if (unlikely(tsk
->ptrace
)) {
724 int sig
= thread_group_leader(tsk
) &&
725 thread_group_empty(tsk
) &&
726 !ptrace_reparented(tsk
) ?
727 tsk
->exit_signal
: SIGCHLD
;
728 autoreap
= do_notify_parent(tsk
, sig
);
729 } else if (thread_group_leader(tsk
)) {
730 autoreap
= thread_group_empty(tsk
) &&
731 do_notify_parent(tsk
, tsk
->exit_signal
);
736 tsk
->exit_state
= autoreap
? EXIT_DEAD
: EXIT_ZOMBIE
;
737 if (tsk
->exit_state
== EXIT_DEAD
)
738 list_add(&tsk
->ptrace_entry
, &dead
);
740 /* mt-exec, de_thread() is waiting for group leader */
741 if (unlikely(tsk
->signal
->notify_count
< 0))
742 wake_up_process(tsk
->signal
->group_exit_task
);
743 write_unlock_irq(&tasklist_lock
);
745 list_for_each_entry_safe(p
, n
, &dead
, ptrace_entry
) {
746 list_del_init(&p
->ptrace_entry
);
751 #ifdef CONFIG_DEBUG_STACK_USAGE
752 static void check_stack_usage(void)
754 static DEFINE_SPINLOCK(low_water_lock
);
755 static int lowest_to_date
= THREAD_SIZE
;
758 free
= stack_not_used(current
);
760 if (free
>= lowest_to_date
)
763 spin_lock(&low_water_lock
);
764 if (free
< lowest_to_date
) {
765 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
766 current
->comm
, task_pid_nr(current
), free
);
767 lowest_to_date
= free
;
769 spin_unlock(&low_water_lock
);
772 static inline void check_stack_usage(void) {}
775 void __noreturn
do_exit(long code
)
777 struct task_struct
*tsk
= current
;
780 profile_task_exit(tsk
);
783 WARN_ON(blk_needs_flush_plug(tsk
));
785 if (unlikely(in_interrupt()))
786 panic("Aiee, killing interrupt handler!");
787 if (unlikely(!tsk
->pid
))
788 panic("Attempted to kill the idle task!");
791 * If do_exit is called because this processes oopsed, it's possible
792 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
793 * continuing. Amongst other possible reasons, this is to prevent
794 * mm_release()->clear_child_tid() from writing to a user-controlled
799 ptrace_event(PTRACE_EVENT_EXIT
, code
);
801 validate_creds_for_do_exit(tsk
);
804 * We're taking recursive faults here in do_exit. Safest is to just
805 * leave this task alone and wait for reboot.
807 if (unlikely(tsk
->flags
& PF_EXITING
)) {
808 pr_alert("Fixing recursive fault but reboot is needed!\n");
810 * We can do this unlocked here. The futex code uses
811 * this flag just to verify whether the pi state
812 * cleanup has been done or not. In the worst case it
813 * loops once more. We pretend that the cleanup was
814 * done as there is no way to return. Either the
815 * OWNER_DIED bit is set by now or we push the blocked
816 * task into the wait for ever nirwana as well.
818 tsk
->flags
|= PF_EXITPIDONE
;
819 set_current_state(TASK_UNINTERRUPTIBLE
);
823 exit_signals(tsk
); /* sets PF_EXITING */
825 * Ensure that all new tsk->pi_lock acquisitions must observe
826 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
830 * Ensure that we must observe the pi_state in exit_mm() ->
831 * mm_release() -> exit_pi_state_list().
833 raw_spin_lock_irq(&tsk
->pi_lock
);
834 raw_spin_unlock_irq(&tsk
->pi_lock
);
836 if (unlikely(in_atomic())) {
837 pr_info("note: %s[%d] exited with preempt_count %d\n",
838 current
->comm
, task_pid_nr(current
),
840 preempt_count_set(PREEMPT_ENABLED
);
843 /* sync mm's RSS info before statistics gathering */
845 sync_mm_rss(tsk
->mm
);
846 acct_update_integrals(tsk
);
847 group_dead
= atomic_dec_and_test(&tsk
->signal
->live
);
849 #ifdef CONFIG_POSIX_TIMERS
850 hrtimer_cancel(&tsk
->signal
->real_timer
);
851 exit_itimers(tsk
->signal
);
854 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, tsk
->mm
);
856 acct_collect(code
, group_dead
);
861 tsk
->exit_code
= code
;
862 taskstats_exit(tsk
, group_dead
);
868 trace_sched_process_exit(tsk
);
875 disassociate_ctty(1);
876 exit_task_namespaces(tsk
);
882 * Flush inherited counters to the parent - before the parent
883 * gets woken up by child-exit notifications.
885 * because of cgroup mode, must be called before cgroup_exit()
887 perf_event_exit_task(tsk
);
889 sched_autogroup_exit_task(tsk
);
893 * FIXME: do that only when needed, using sched_exit tracepoint
895 flush_ptrace_hw_breakpoint(tsk
);
897 exit_tasks_rcu_start();
898 exit_notify(tsk
, group_dead
);
899 proc_exit_connector(tsk
);
900 mpol_put_task_policy(tsk
);
902 if (unlikely(current
->pi_state_cache
))
903 kfree(current
->pi_state_cache
);
906 * Make sure we are holding no locks:
908 debug_check_no_locks_held();
910 * We can do this unlocked here. The futex code uses this flag
911 * just to verify whether the pi state cleanup has been done
912 * or not. In the worst case it loops once more.
914 tsk
->flags
|= PF_EXITPIDONE
;
917 exit_io_context(tsk
);
919 if (tsk
->splice_pipe
)
920 free_pipe_info(tsk
->splice_pipe
);
922 if (tsk
->task_frag
.page
)
923 put_page(tsk
->task_frag
.page
);
925 validate_creds_for_do_exit(tsk
);
930 __this_cpu_add(dirty_throttle_leaks
, tsk
->nr_dirtied
);
932 exit_tasks_rcu_finish();
934 lockdep_free_task(tsk
);
937 EXPORT_SYMBOL_GPL(do_exit
);
939 void complete_and_exit(struct completion
*comp
, long code
)
946 EXPORT_SYMBOL(complete_and_exit
);
948 SYSCALL_DEFINE1(exit
, int, error_code
)
950 do_exit((error_code
&0xff)<<8);
954 * Take down every thread in the group. This is called by fatal signals
955 * as well as by sys_exit_group (below).
958 do_group_exit(int exit_code
)
960 struct signal_struct
*sig
= current
->signal
;
962 BUG_ON(exit_code
& 0x80); /* core dumps don't get here */
964 if (signal_group_exit(sig
))
965 exit_code
= sig
->group_exit_code
;
966 else if (!thread_group_empty(current
)) {
967 struct sighand_struct
*const sighand
= current
->sighand
;
969 spin_lock_irq(&sighand
->siglock
);
970 if (signal_group_exit(sig
))
971 /* Another thread got here before we took the lock. */
972 exit_code
= sig
->group_exit_code
;
974 sig
->group_exit_code
= exit_code
;
975 sig
->flags
= SIGNAL_GROUP_EXIT
;
976 zap_other_threads(current
);
978 spin_unlock_irq(&sighand
->siglock
);
986 * this kills every thread in the thread group. Note that any externally
987 * wait4()-ing process will get the correct exit code - even if this
988 * thread is not the thread group leader.
990 SYSCALL_DEFINE1(exit_group
, int, error_code
)
992 do_group_exit((error_code
& 0xff) << 8);
1005 enum pid_type wo_type
;
1009 struct waitid_info
*wo_info
;
1011 struct rusage
*wo_rusage
;
1013 wait_queue_entry_t child_wait
;
1017 static int eligible_pid(struct wait_opts
*wo
, struct task_struct
*p
)
1019 return wo
->wo_type
== PIDTYPE_MAX
||
1020 task_pid_type(p
, wo
->wo_type
) == wo
->wo_pid
;
1024 eligible_child(struct wait_opts
*wo
, bool ptrace
, struct task_struct
*p
)
1026 if (!eligible_pid(wo
, p
))
1030 * Wait for all children (clone and not) if __WALL is set or
1031 * if it is traced by us.
1033 if (ptrace
|| (wo
->wo_flags
& __WALL
))
1037 * Otherwise, wait for clone children *only* if __WCLONE is set;
1038 * otherwise, wait for non-clone children *only*.
1040 * Note: a "clone" child here is one that reports to its parent
1041 * using a signal other than SIGCHLD, or a non-leader thread which
1042 * we can only see if it is traced by us.
1044 if ((p
->exit_signal
!= SIGCHLD
) ^ !!(wo
->wo_flags
& __WCLONE
))
1051 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1052 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1053 * the lock and this task is uninteresting. If we return nonzero, we have
1054 * released the lock and the system call should return.
1056 static int wait_task_zombie(struct wait_opts
*wo
, struct task_struct
*p
)
1059 pid_t pid
= task_pid_vnr(p
);
1060 uid_t uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1061 struct waitid_info
*infop
;
1063 if (!likely(wo
->wo_flags
& WEXITED
))
1066 if (unlikely(wo
->wo_flags
& WNOWAIT
)) {
1067 status
= p
->exit_code
;
1069 read_unlock(&tasklist_lock
);
1070 sched_annotate_sleep();
1072 getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
);
1077 * Move the task's state to DEAD/TRACE, only one thread can do this.
1079 state
= (ptrace_reparented(p
) && thread_group_leader(p
)) ?
1080 EXIT_TRACE
: EXIT_DEAD
;
1081 if (cmpxchg(&p
->exit_state
, EXIT_ZOMBIE
, state
) != EXIT_ZOMBIE
)
1084 * We own this thread, nobody else can reap it.
1086 read_unlock(&tasklist_lock
);
1087 sched_annotate_sleep();
1090 * Check thread_group_leader() to exclude the traced sub-threads.
1092 if (state
== EXIT_DEAD
&& thread_group_leader(p
)) {
1093 struct signal_struct
*sig
= p
->signal
;
1094 struct signal_struct
*psig
= current
->signal
;
1095 unsigned long maxrss
;
1096 u64 tgutime
, tgstime
;
1099 * The resource counters for the group leader are in its
1100 * own task_struct. Those for dead threads in the group
1101 * are in its signal_struct, as are those for the child
1102 * processes it has previously reaped. All these
1103 * accumulate in the parent's signal_struct c* fields.
1105 * We don't bother to take a lock here to protect these
1106 * p->signal fields because the whole thread group is dead
1107 * and nobody can change them.
1109 * psig->stats_lock also protects us from our sub-theads
1110 * which can reap other children at the same time. Until
1111 * we change k_getrusage()-like users to rely on this lock
1112 * we have to take ->siglock as well.
1114 * We use thread_group_cputime_adjusted() to get times for
1115 * the thread group, which consolidates times for all threads
1116 * in the group including the group leader.
1118 thread_group_cputime_adjusted(p
, &tgutime
, &tgstime
);
1119 spin_lock_irq(¤t
->sighand
->siglock
);
1120 write_seqlock(&psig
->stats_lock
);
1121 psig
->cutime
+= tgutime
+ sig
->cutime
;
1122 psig
->cstime
+= tgstime
+ sig
->cstime
;
1123 psig
->cgtime
+= task_gtime(p
) + sig
->gtime
+ sig
->cgtime
;
1125 p
->min_flt
+ sig
->min_flt
+ sig
->cmin_flt
;
1127 p
->maj_flt
+ sig
->maj_flt
+ sig
->cmaj_flt
;
1129 p
->nvcsw
+ sig
->nvcsw
+ sig
->cnvcsw
;
1131 p
->nivcsw
+ sig
->nivcsw
+ sig
->cnivcsw
;
1133 task_io_get_inblock(p
) +
1134 sig
->inblock
+ sig
->cinblock
;
1136 task_io_get_oublock(p
) +
1137 sig
->oublock
+ sig
->coublock
;
1138 maxrss
= max(sig
->maxrss
, sig
->cmaxrss
);
1139 if (psig
->cmaxrss
< maxrss
)
1140 psig
->cmaxrss
= maxrss
;
1141 task_io_accounting_add(&psig
->ioac
, &p
->ioac
);
1142 task_io_accounting_add(&psig
->ioac
, &sig
->ioac
);
1143 write_sequnlock(&psig
->stats_lock
);
1144 spin_unlock_irq(¤t
->sighand
->siglock
);
1148 getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
);
1149 status
= (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1150 ? p
->signal
->group_exit_code
: p
->exit_code
;
1151 wo
->wo_stat
= status
;
1153 if (state
== EXIT_TRACE
) {
1154 write_lock_irq(&tasklist_lock
);
1155 /* We dropped tasklist, ptracer could die and untrace */
1158 /* If parent wants a zombie, don't release it now */
1159 state
= EXIT_ZOMBIE
;
1160 if (do_notify_parent(p
, p
->exit_signal
))
1162 p
->exit_state
= state
;
1163 write_unlock_irq(&tasklist_lock
);
1165 if (state
== EXIT_DEAD
)
1169 infop
= wo
->wo_info
;
1171 if ((status
& 0x7f) == 0) {
1172 infop
->cause
= CLD_EXITED
;
1173 infop
->status
= status
>> 8;
1175 infop
->cause
= (status
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1176 infop
->status
= status
& 0x7f;
1185 static int *task_stopped_code(struct task_struct
*p
, bool ptrace
)
1188 if (task_is_traced(p
) && !(p
->jobctl
& JOBCTL_LISTENING
))
1189 return &p
->exit_code
;
1191 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
)
1192 return &p
->signal
->group_exit_code
;
1198 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1200 * @ptrace: is the wait for ptrace
1201 * @p: task to wait for
1203 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1206 * read_lock(&tasklist_lock), which is released if return value is
1207 * non-zero. Also, grabs and releases @p->sighand->siglock.
1210 * 0 if wait condition didn't exist and search for other wait conditions
1211 * should continue. Non-zero return, -errno on failure and @p's pid on
1212 * success, implies that tasklist_lock is released and wait condition
1213 * search should terminate.
1215 static int wait_task_stopped(struct wait_opts
*wo
,
1216 int ptrace
, struct task_struct
*p
)
1218 struct waitid_info
*infop
;
1219 int exit_code
, *p_code
, why
;
1220 uid_t uid
= 0; /* unneeded, required by compiler */
1224 * Traditionally we see ptrace'd stopped tasks regardless of options.
1226 if (!ptrace
&& !(wo
->wo_flags
& WUNTRACED
))
1229 if (!task_stopped_code(p
, ptrace
))
1233 spin_lock_irq(&p
->sighand
->siglock
);
1235 p_code
= task_stopped_code(p
, ptrace
);
1236 if (unlikely(!p_code
))
1239 exit_code
= *p_code
;
1243 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1246 uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1248 spin_unlock_irq(&p
->sighand
->siglock
);
1253 * Now we are pretty sure this task is interesting.
1254 * Make sure it doesn't get reaped out from under us while we
1255 * give up the lock and then examine it below. We don't want to
1256 * keep holding onto the tasklist_lock while we call getrusage and
1257 * possibly take page faults for user memory.
1260 pid
= task_pid_vnr(p
);
1261 why
= ptrace
? CLD_TRAPPED
: CLD_STOPPED
;
1262 read_unlock(&tasklist_lock
);
1263 sched_annotate_sleep();
1265 getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
);
1268 if (likely(!(wo
->wo_flags
& WNOWAIT
)))
1269 wo
->wo_stat
= (exit_code
<< 8) | 0x7f;
1271 infop
= wo
->wo_info
;
1274 infop
->status
= exit_code
;
1282 * Handle do_wait work for one task in a live, non-stopped state.
1283 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1284 * the lock and this task is uninteresting. If we return nonzero, we have
1285 * released the lock and the system call should return.
1287 static int wait_task_continued(struct wait_opts
*wo
, struct task_struct
*p
)
1289 struct waitid_info
*infop
;
1293 if (!unlikely(wo
->wo_flags
& WCONTINUED
))
1296 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
))
1299 spin_lock_irq(&p
->sighand
->siglock
);
1300 /* Re-check with the lock held. */
1301 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
)) {
1302 spin_unlock_irq(&p
->sighand
->siglock
);
1305 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1306 p
->signal
->flags
&= ~SIGNAL_STOP_CONTINUED
;
1307 uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1308 spin_unlock_irq(&p
->sighand
->siglock
);
1310 pid
= task_pid_vnr(p
);
1312 read_unlock(&tasklist_lock
);
1313 sched_annotate_sleep();
1315 getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
);
1318 infop
= wo
->wo_info
;
1320 wo
->wo_stat
= 0xffff;
1322 infop
->cause
= CLD_CONTINUED
;
1325 infop
->status
= SIGCONT
;
1331 * Consider @p for a wait by @parent.
1333 * -ECHILD should be in ->notask_error before the first call.
1334 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1335 * Returns zero if the search for a child should continue;
1336 * then ->notask_error is 0 if @p is an eligible child,
1339 static int wait_consider_task(struct wait_opts
*wo
, int ptrace
,
1340 struct task_struct
*p
)
1343 * We can race with wait_task_zombie() from another thread.
1344 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1345 * can't confuse the checks below.
1347 int exit_state
= READ_ONCE(p
->exit_state
);
1350 if (unlikely(exit_state
== EXIT_DEAD
))
1353 ret
= eligible_child(wo
, ptrace
, p
);
1357 if (unlikely(exit_state
== EXIT_TRACE
)) {
1359 * ptrace == 0 means we are the natural parent. In this case
1360 * we should clear notask_error, debugger will notify us.
1362 if (likely(!ptrace
))
1363 wo
->notask_error
= 0;
1367 if (likely(!ptrace
) && unlikely(p
->ptrace
)) {
1369 * If it is traced by its real parent's group, just pretend
1370 * the caller is ptrace_do_wait() and reap this child if it
1373 * This also hides group stop state from real parent; otherwise
1374 * a single stop can be reported twice as group and ptrace stop.
1375 * If a ptracer wants to distinguish these two events for its
1376 * own children it should create a separate process which takes
1377 * the role of real parent.
1379 if (!ptrace_reparented(p
))
1384 if (exit_state
== EXIT_ZOMBIE
) {
1385 /* we don't reap group leaders with subthreads */
1386 if (!delay_group_leader(p
)) {
1388 * A zombie ptracee is only visible to its ptracer.
1389 * Notification and reaping will be cascaded to the
1390 * real parent when the ptracer detaches.
1392 if (unlikely(ptrace
) || likely(!p
->ptrace
))
1393 return wait_task_zombie(wo
, p
);
1397 * Allow access to stopped/continued state via zombie by
1398 * falling through. Clearing of notask_error is complex.
1402 * If WEXITED is set, notask_error should naturally be
1403 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1404 * so, if there are live subthreads, there are events to
1405 * wait for. If all subthreads are dead, it's still safe
1406 * to clear - this function will be called again in finite
1407 * amount time once all the subthreads are released and
1408 * will then return without clearing.
1412 * Stopped state is per-task and thus can't change once the
1413 * target task dies. Only continued and exited can happen.
1414 * Clear notask_error if WCONTINUED | WEXITED.
1416 if (likely(!ptrace
) || (wo
->wo_flags
& (WCONTINUED
| WEXITED
)))
1417 wo
->notask_error
= 0;
1420 * @p is alive and it's gonna stop, continue or exit, so
1421 * there always is something to wait for.
1423 wo
->notask_error
= 0;
1427 * Wait for stopped. Depending on @ptrace, different stopped state
1428 * is used and the two don't interact with each other.
1430 ret
= wait_task_stopped(wo
, ptrace
, p
);
1435 * Wait for continued. There's only one continued state and the
1436 * ptracer can consume it which can confuse the real parent. Don't
1437 * use WCONTINUED from ptracer. You don't need or want it.
1439 return wait_task_continued(wo
, p
);
1443 * Do the work of do_wait() for one thread in the group, @tsk.
1445 * -ECHILD should be in ->notask_error before the first call.
1446 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1447 * Returns zero if the search for a child should continue; then
1448 * ->notask_error is 0 if there were any eligible children,
1451 static int do_wait_thread(struct wait_opts
*wo
, struct task_struct
*tsk
)
1453 struct task_struct
*p
;
1455 list_for_each_entry(p
, &tsk
->children
, sibling
) {
1456 int ret
= wait_consider_task(wo
, 0, p
);
1465 static int ptrace_do_wait(struct wait_opts
*wo
, struct task_struct
*tsk
)
1467 struct task_struct
*p
;
1469 list_for_each_entry(p
, &tsk
->ptraced
, ptrace_entry
) {
1470 int ret
= wait_consider_task(wo
, 1, p
);
1479 static int child_wait_callback(wait_queue_entry_t
*wait
, unsigned mode
,
1480 int sync
, void *key
)
1482 struct wait_opts
*wo
= container_of(wait
, struct wait_opts
,
1484 struct task_struct
*p
= key
;
1486 if (!eligible_pid(wo
, p
))
1489 if ((wo
->wo_flags
& __WNOTHREAD
) && wait
->private != p
->parent
)
1492 return default_wake_function(wait
, mode
, sync
, key
);
1495 void __wake_up_parent(struct task_struct
*p
, struct task_struct
*parent
)
1497 __wake_up_sync_key(&parent
->signal
->wait_chldexit
,
1498 TASK_INTERRUPTIBLE
, 1, p
);
1501 static long do_wait(struct wait_opts
*wo
)
1503 struct task_struct
*tsk
;
1506 trace_sched_process_wait(wo
->wo_pid
);
1508 init_waitqueue_func_entry(&wo
->child_wait
, child_wait_callback
);
1509 wo
->child_wait
.private = current
;
1510 add_wait_queue(¤t
->signal
->wait_chldexit
, &wo
->child_wait
);
1513 * If there is nothing that can match our criteria, just get out.
1514 * We will clear ->notask_error to zero if we see any child that
1515 * might later match our criteria, even if we are not able to reap
1518 wo
->notask_error
= -ECHILD
;
1519 if ((wo
->wo_type
< PIDTYPE_MAX
) &&
1520 (!wo
->wo_pid
|| hlist_empty(&wo
->wo_pid
->tasks
[wo
->wo_type
])))
1523 set_current_state(TASK_INTERRUPTIBLE
);
1524 read_lock(&tasklist_lock
);
1527 retval
= do_wait_thread(wo
, tsk
);
1531 retval
= ptrace_do_wait(wo
, tsk
);
1535 if (wo
->wo_flags
& __WNOTHREAD
)
1537 } while_each_thread(current
, tsk
);
1538 read_unlock(&tasklist_lock
);
1541 retval
= wo
->notask_error
;
1542 if (!retval
&& !(wo
->wo_flags
& WNOHANG
)) {
1543 retval
= -ERESTARTSYS
;
1544 if (!signal_pending(current
)) {
1550 __set_current_state(TASK_RUNNING
);
1551 remove_wait_queue(¤t
->signal
->wait_chldexit
, &wo
->child_wait
);
1555 static long kernel_waitid(int which
, pid_t upid
, struct waitid_info
*infop
,
1556 int options
, struct rusage
*ru
)
1558 struct wait_opts wo
;
1559 struct pid
*pid
= NULL
;
1563 if (options
& ~(WNOHANG
|WNOWAIT
|WEXITED
|WSTOPPED
|WCONTINUED
|
1564 __WNOTHREAD
|__WCLONE
|__WALL
))
1566 if (!(options
& (WEXITED
|WSTOPPED
|WCONTINUED
)))
1579 type
= PIDTYPE_PGID
;
1587 if (type
< PIDTYPE_MAX
)
1588 pid
= find_get_pid(upid
);
1592 wo
.wo_flags
= options
;
1601 SYSCALL_DEFINE5(waitid
, int, which
, pid_t
, upid
, struct siginfo __user
*,
1602 infop
, int, options
, struct rusage __user
*, ru
)
1605 struct waitid_info info
= {.status
= 0};
1606 long err
= kernel_waitid(which
, upid
, &info
, options
, ru
? &r
: NULL
);
1612 if (ru
&& copy_to_user(ru
, &r
, sizeof(struct rusage
)))
1618 if (!user_access_begin(infop
, sizeof(*infop
)))
1621 unsafe_put_user(signo
, &infop
->si_signo
, Efault
);
1622 unsafe_put_user(0, &infop
->si_errno
, Efault
);
1623 unsafe_put_user(info
.cause
, &infop
->si_code
, Efault
);
1624 unsafe_put_user(info
.pid
, &infop
->si_pid
, Efault
);
1625 unsafe_put_user(info
.uid
, &infop
->si_uid
, Efault
);
1626 unsafe_put_user(info
.status
, &infop
->si_status
, Efault
);
1634 long kernel_wait4(pid_t upid
, int __user
*stat_addr
, int options
,
1637 struct wait_opts wo
;
1638 struct pid
*pid
= NULL
;
1642 if (options
& ~(WNOHANG
|WUNTRACED
|WCONTINUED
|
1643 __WNOTHREAD
|__WCLONE
|__WALL
))
1646 /* -INT_MIN is not defined */
1647 if (upid
== INT_MIN
)
1652 else if (upid
< 0) {
1653 type
= PIDTYPE_PGID
;
1654 pid
= find_get_pid(-upid
);
1655 } else if (upid
== 0) {
1656 type
= PIDTYPE_PGID
;
1657 pid
= get_task_pid(current
, PIDTYPE_PGID
);
1658 } else /* upid > 0 */ {
1660 pid
= find_get_pid(upid
);
1665 wo
.wo_flags
= options
| WEXITED
;
1671 if (ret
> 0 && stat_addr
&& put_user(wo
.wo_stat
, stat_addr
))
1677 SYSCALL_DEFINE4(wait4
, pid_t
, upid
, int __user
*, stat_addr
,
1678 int, options
, struct rusage __user
*, ru
)
1681 long err
= kernel_wait4(upid
, stat_addr
, options
, ru
? &r
: NULL
);
1684 if (ru
&& copy_to_user(ru
, &r
, sizeof(struct rusage
)))
1690 #ifdef __ARCH_WANT_SYS_WAITPID
1693 * sys_waitpid() remains for compatibility. waitpid() should be
1694 * implemented by calling sys_wait4() from libc.a.
1696 SYSCALL_DEFINE3(waitpid
, pid_t
, pid
, int __user
*, stat_addr
, int, options
)
1698 return kernel_wait4(pid
, stat_addr
, options
, NULL
);
1703 #ifdef CONFIG_COMPAT
1704 COMPAT_SYSCALL_DEFINE4(wait4
,
1706 compat_uint_t __user
*, stat_addr
,
1708 struct compat_rusage __user
*, ru
)
1711 long err
= kernel_wait4(pid
, stat_addr
, options
, ru
? &r
: NULL
);
1713 if (ru
&& put_compat_rusage(&r
, ru
))
1719 COMPAT_SYSCALL_DEFINE5(waitid
,
1720 int, which
, compat_pid_t
, pid
,
1721 struct compat_siginfo __user
*, infop
, int, options
,
1722 struct compat_rusage __user
*, uru
)
1725 struct waitid_info info
= {.status
= 0};
1726 long err
= kernel_waitid(which
, pid
, &info
, options
, uru
? &ru
: NULL
);
1732 /* kernel_waitid() overwrites everything in ru */
1733 if (COMPAT_USE_64BIT_TIME
)
1734 err
= copy_to_user(uru
, &ru
, sizeof(ru
));
1736 err
= put_compat_rusage(&ru
, uru
);
1745 if (!user_access_begin(infop
, sizeof(*infop
)))
1748 unsafe_put_user(signo
, &infop
->si_signo
, Efault
);
1749 unsafe_put_user(0, &infop
->si_errno
, Efault
);
1750 unsafe_put_user(info
.cause
, &infop
->si_code
, Efault
);
1751 unsafe_put_user(info
.pid
, &infop
->si_pid
, Efault
);
1752 unsafe_put_user(info
.uid
, &infop
->si_uid
, Efault
);
1753 unsafe_put_user(info
.status
, &infop
->si_status
, Efault
);
1762 __weak
void abort(void)
1766 /* if that doesn't kill us, halt */
1767 panic("Oops failed to kill thread");
1769 EXPORT_SYMBOL(abort
);